ECONOMIC LOAD DISPATCH FOR IEEE 14 BUS SYSTEM IN 3D SPACE

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF DELHI

FOR THE AWARD OF DEGREE OF

MASTER OF ENGINEERING

(CONTROL & INSTRUMENTATION)

Submitted by

MAHENDRA KUMAR

(University Roll No. 9023)

Under the supervision of

Prof. N. K. Jain

&

Dr. Uma Nangia

(Electrical Engineering Department)

Department of Electrical Engineering

DELHI COLLEGE OF ENGINEERING

Bawana road, Delhi-110042

2009 - 2011

CERTIFICATE

It is certified that Mr. MAHENDRA KUMAR, Roll No 9023, student of M.E, Control and Instrumentation, Department of Electrical Engineering, Delhi College of Engineering, has submitted the dissertation entitled "ECONOMIC LOAD DISPATCH FOR IEEE 14 BUS SYSTEM IN 3D SPACE" under our guidance towards partial fulfillment of the requirements for the award of the degree of Master of Engineering (Control & Instrumentation Engineering).

This dissertation is a bonafide record of project work carried out by him under our guidance and supervision. His work is found to be outstanding and has not been done earlier.

I wish him success in all his endeavours.

Prof. N.K Jain

Electrical Engineering Department

Delhi College of Engineering

Dr. Uma Nangia

Electrical Engineering Department

Delhi College of Engineering

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic challenges I have ever had to face, without **GOD**'s blessings and support, patience and guidance of the following people, this study would not have been completed. It is to them that I owe my deepest gratitude.

- Prof. N.K Jain & Dr. Uma Nangia, Electrical Engineering Department, Delhi College of Engineering who undertook to act as my supervisor despite of their many other academic and professional commitments to the highest standards that inspired and motivated me.
- Prof. NARENDRA Kumar, Head, Electrical Engineering department, Delhi college of Engineering, New Delhi, for providing me with the best facilities in the Department and timely suggestions.
- My C n I 'core' group, who inspired my final report despite the enormous work pressures we are facing together.
- My Parents, who have always supported, encouraged and believed in me and patiently waited for my dreams to come true.

MAHENDRA KUMAR

ROLL NO 9023

ME (C&I)

ABSTRACT

Economic load dispatch problem allocates loads to plants at minimum cost while meeting the constraints. It is done by an optimization problem which minimizes the total fuel cost of all committed plants while meeting the demand and system constraints.

There are various objectives of power system- cost of generation, transmission losses and environment pollution etc. In this work, the cost of generation, transmission losses and environment pollution have been considered as objectives for optimization.

The Multiobjective Economic Load Dispatch (MOELD) problem is formulated using weighting method and a noninferior set is generated in 3D space by varying weights for IEEE 14 bus system.

Ideal Point (IP) is the one where all the objectives are minimum and it is impossible to achieve this point because of conflicting nature of the objectives, therefore an attempt is made to minimize the Euclidean distance between the Ideal Point (IP) and set of noninferior solutions. This gives the **Target Point (TP)** or the best compromise solution in 3D space.

CONTENTS

(i) Acknowledgemen	nt
--------------------	----

(ii) Abstract

CHAPTER 1 INTRODUCTION

	1.1 Overview	1
	1.2 Objectives and Methodology	2
	1.3 Literature Survey	2
	1.3.1 Genetic Algorithm	2
	1.3.2 Multiobjective Optimization	5
	1.3.3 Economic Load Dispatch	6
	1.4 Plan of Thesis	9
CHAPTER	R 2 GENETIC ALGORITHM	
	2.1 Introduction	10
	2.1.1 General Structure of GA	10
	2.2 Definitions & Concepts	11
	2.2.1 Evolutionary algorithms	12
	2.3 GA approach	12
	2.4 Theory of GAs	15
	2.5 General algorithm of GAs	20

CHAPTER 3 OPTIMIZATION USING GA TOOLBOX

	3.1 Exploring the tools of GA	21
	3.2 Different Parameters in GA Tool	24
	3.3 Run Solver in GA Tool	27
	3.4 Optimization Problem	27
	3.5 Discussion	32
	3.6 Conclusion	33
СНАРТЕБ	R 4 MULTIOBJECTIVE OPTIMIZATION	
	4.1 Introduction	34
	4.2 Formulation of General Multiobjective Programming Problem	34
	4.3 Noninferiority	35
	4.3.1 Graphical Explanation of Noninferiority	36
	4.3.2 Mathematical Definition of Noninferiority	36
	4.4 Weighting Method	38
	4.5 Ideal Distance Minimization Method	39
СНАРТЕБ	R 5 ECONOMIC LOAD DISPATCH IN 3D SPACE	
	5.1 Introduction	41
	5.2 Load Dispatching	41
	5.3 Economics of power generation of power plant	42
	5.4 Transmission losses	44
	5.4.1 Formulation of Economic Load Dispatch problem	45

	5.5 Environmental pollution			
	5.6 Formulation of MOELD in 3D space			
CHAPTER 6 RESULTS AND DISCUSSION				
	6.1 Introduction			
	6.2 2D Graphs			
	6.3 3D Graphs53			
	6.4 Discussion54			
CHAPTER 7 CONCLUSIONS AND FUTURE SCOPE				
	7.1 Conclusions			
	7.2 Scope of Future Work			
APPENDIX	X 57			
REFEREN	CES			