MULTISIM SIMULATION AND IMPLEMENTATION OF CHAOTIC CIRCUIT

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF DELHI

FOR THE AWARD OF DEGREE OF

MASTER OF ENGINEERING

(CONTROL & INSTRUMENTATION)

Submitted by

ARUN KUMAR SHARMA

(University Roll No. 9021)

Under the supervision of

Mr. RAM BHAGAT

(Electrical Engineering Department)

WORK IS WORSHIP

Department of Electrical Engineering

DELHI COLLEGE OF ENGINEERING

Bawana road, Delhi-110042

2009 - 2011

CERTIFICATE

It is certified that **Mr. ARUN KUMAR SHARMA**, student of M.E, Control and Instrumentation, Department of Electrical Engineering, Delhi College of Engineering, has submitted the dissertation entitled "**Multisim simulation and implementation of chaotic circuit**" under our guidance towards partial fulfillment of the requirements for the award of the degree of Master of Engineering (Control & Instrumentation Engineering).

This dissertation is a bonafide record of project work carried out by him under our guidance and supervision. His work is found to be outstanding and has not been done earlier.

I wish him success in all his endeavors.

(Mr. RAMBHAGAT)

Assistant Professor Electrical Engineering Department Delhi College of Engineering Delhi-110042

ACKNOWLEDGEMENT

I express sincere thanks and deep sense of gratitude to my Project Guide Mr. Rambhagat Lecturer of Electrical Engineering, Delhi College of Engineering for his motivation & guidance, without which this project wouldn't have been possible. I consider myself fortunate for having the opportunity to learn and work under his able supervision & guidance for his innate goodness.

Also I am deeply thankful to Dr. Narendra Kumar, Professor and Head of Department of Electrical Engineering for providing valuable comments and supporting my efforts.

My special thanks to my loving friends of C&I class, who always gave moral support and continuously encourage my academic endeavor

(Arun Kumar Sharma)

University Roll No.: 9021 College Roll No.:01/C&I/09 M.E. (C&I)

ABSTRACT

The linear system gives the inadequate information about the characteristic of sustained oscillation. We will take the linear concepts and simple harmonic motion to nonlinear concept and chaos. In order to exhibit chaos, an autonomous circuit consisting of resistors, capacitors, and inductors must contain i) at least one nonlinear element ii) at least one locally active resistor and iii) at least three energy storage elements.

Chua circuit is the simplest electronic circuit that satisfies these boundations. In addition, this remarkable circuit is the only physical system for which the presence of chaos has been proved mathematically.

Here we are going to represent the chaotic circuit with different simulation of inductors i.e. inductor replaced by Op-amp, by GIC, by OTA. After it the different patterns are formed which represents chaos, in every circuit voltage Vs time characteristics, V_1 Vs V_2 characteristics and inductor characteristics in MULTISIM software are depicted.

CONTENTS

(i) Ack	nowledgement	iii
(ii) Abs	stract	iv
СНАР	TER-1 INTRODUCTION	
	1.1 Introduction	1
	1.2 Chua circuit	1
	1.3 Chaos theory	2
CHAP'	TER- 2 LITERATURE REVIEW	3
CHAP'	TER- 3 CHUA'S CIRCUIT	
	3.1 General	6
	3.2 The Non-Linear Resistor Concept and Chua Diode	9
	3.3 Circuit topology and realization of Chua diode	
	3.4 Software used	13
CHAP'	TER-4 REALIZATION OF CHUA CIRCUIT WITH DIFFERENT VALUE	E OF R1 0
	4.1Simulation and results of realization of chua circuit with different value	e of R10
	4.2 V1-V2 Characteristic	15
	4.3 V ₁ (t)-V ₂ (t) Characteristic	18
CHAP'	TER- 5 REALIZATION OF INDUCTORLESS CHUA CIRCUIT	
	5.1 Simulation and results of realization of inductorless chua circuit	19
	5.2 The Synthetic Inductor Impedance	20
	5.3 The Synthetic Inductor Impedance Derivation	21
	5.4 V1–V2 Characteristics	23
	5.5 V ₁ (t)-V ₂ (t) Characteristic	25
CHAP'	TER- 6 SIMULATION OF INDUCTOR USING GIC	
	6.1 Inductance simulator using GIC	26
	6.2 Generealised impedance convertor	27
	6.3 Simulation for Vin-Vout characteristic of inductor	29
	6.4 Vin-Vout characteristics	30

MULTISIM SIMULATION AND IMPLEMENTATION OF CHAOTIC CIRCUIT

6.5 Simulation and results of Realization of Chua's circuit Using GIC	31
6.6 V1–V2 Characteristics	32
CHAPTER- 7 SIMULATION OF INDUCTOR USING OTA	
7.1 Inductor simulator using OTA	35
7.2 Idealized Gyrator–based Inductances	35
7.3 Practical Gyrator Based Inductance	39
7.4 Analysis Of The OTA-Based Gyrator Active Inductance	40
7.5 Design Constraints and Guidelines	44
7.6 Vin-Vout Characteristic of inductor using OTA	48
7.7 Vin – Vout Characteristics	49
7.8 Simulation and results of realization of Chua's circuit using OTA	50
7.9V1 –V2 Characteristics	51
CHAPTER- 8 CONCLUSIONS AND FURTHER SCOPE	53
REFERENCES	