

A

Dissertation On

WATERMARKING RELATIONAL

DATABASES USING OPTIMIZATION

BASED TECHNIQUES

Submitted in the partial fulfillment of the requirements

For the award of degree of

Master of Engineering

In

Computer Technology And Applications

Delhi University

Delhi

Submitted By

Vidhi Khanduja (19/ME/CTA/08)

Under the Guidance of

Prof. O. P. Verma

Head of Department,

Department of Information Technology

Department of Computer Engineering

Delhi College of Engineering

Delhi University

i

CERTIFICATE
NA ROAD, DELHI – 110042

Date: ___________

This is certified that the work contained in this dissertation entitled

―Watermarking Relational Databases using Optimization Based Techniques.”

by Vidhi Khanduja (19/ME/CTA/08) is the requirement of the partial fulfilment

for the award of degree of Master of Engineering in Computer Technology and

Application at Delhi College of Engineering.

The work is a bonafide piece of work carried out and completed under my

supervision and guidance. She has completed her work with utmost sincerity

and diligence. The work embodied in this major project has not been submitted

for the award of any other degree to the best of my knowledge.

(Project Mentor) (Head of Department)

Prof. O. P. Verma Dr. Daya Gupta

Head of Department Head of Department

Dept. of Information Technology Dept. of Computer Engineering

Delhi Technological University Delhi Technological University

(Formerly Delhi College of Engineering) (Formerly Delhi College of Engg.)

ii

ACKNOWLEDGEMENT

It gives me a pleasure to express my profound gratitude to my project mentor

Prof.O.P.Verma, Head of Department, Information Technology, Delhi

Technological University for his valuable and inspiring guidance throughout the

progress of this project. His rich experience, cooperation and valuable support

have been a great motivation for me to complete this dissertation.

I would like to extend my heartfelt thanks to Dr. (Mrs.) Daya Gupta, Head of

Department, Department of Computer Engineering, Delhi Technological

University for keeping the spirits high and clearing the visions to work on the

project.

I humbly extend my words of gratitude to other faculty members of this

department for providing their valuable help and time whenever it was required.

Vidhi Khanduja

Roll No. 19/ME/CTA/08

Master of Engineering

(Computer Technology and Applications)

iii

ABSTRACT

Proving ownership rights on outsourced relational databases is a crucial issue in

today‘s internet-based application environments and in many content

distribution applications. In this dissertation, a mechanism is presented for proof

of ownership and ownership identification based on the secure embedding of a

robust imperceptible watermark in relational data. Watermarking problem of

relational databases is formulated as a constrained optimization problem and

Genetic and Bacterial Foraging Optimization algorithms are implemented to

solve the optimization problem and to handle the constraints. Proposed

watermarking technique is resilient to watermark synchronization errors

because it uses a partitioning approach that does not require marker tuples.

Watermark decoding is based on a threshold-based technique characterized by

an optimal threshold that minimizes the probability of decoding errors.

Experimental results have shown that technique proposed in this dissertation is

resilient to tuple deletion, alteration, and insertion attacks.

iv

CONTENTS

CERTIFICATE i

ACKNOWLEDGEMENT ii

ABSTRACT iii

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

LIST OF SYMBOLS xi

CHAPTER 1. INTRODUCTION 1

1.1 Database Copyright 1

1.2 Motivation 2

1.3 Organization Of Thesis 3

CHAPTER 2. LITERATURE SURVEY 5

2.1 Introduction 5

2.2 Related Work 5

2.3 Conclusion 7

CHAPTER 3. WATERMARKING IN RELATIONAL DATABASES 8

3.1 Introduction 8

3.2 Watermarking Life-Cycle Phases 9

3.3 Copyright Issues 10

3.4 Relational Databases 11

3.5 Technical Challenges of Database watermarking 12

3.6 Requirements of Database Watermarking 13

3.7 Types of Attacks on Watermarked Data 14

3.8 Conclusion 15

v

CHAPTER 4 OPTIMIZATION ALGORITHMS 16

 4.1 Introduction 16

 4.2 Genetic Algorithms 17

 4.3 Bacterial Foraging 20

 4.4 Algorithmic Analogies 26

 4.5 Conclusion 27

 CHAPTER 5. IDENTIFICATION AND PROOF OF OWNERSHIP BY

WATERMARKING RELATIONAL DATABASES 28

5.1 Introduction 28

5.2 Proposed Algorithm 28

5.2.1 Watermark Encoder 28

5.2.2 Watermark Decoder 32

5.3 Conclusion 34

CHAPTER 6. PROPOSED METHOD 35

6.1 Introduction 35

6.2 Watermark Encoder 35

 6.2.1 Watermark Preparator 36

 6.2.2. Data Partitioner 37

 6.2.3 Watermark Embedder 38

 6.2.4 Threshold Evlauator 44

 6.3 Watermark Decoder 45

 6.3.1 Watermark Preparator 46

 6.3.2 Data Partitioner 46

 6.3.3 Threshold Decoder 46

 6.3.4 Majority Voter 47

 6.3.5 Watermark Detection Algorithm 47

6.4 Conclusion 48

CHAPTER 7 EXPERIMENTS AND ANALYSIS 49

7.1 Introduction 49

vi

7.2 Genetic Algorithms 49

7.3 Bacterial Foraging 53

7.4 Attacks 56

7.5 Conclusion 59

CHAPTER 8 CONCLUSION AND FUTURE SCOPE 60

REFERENCES 61

vii

LIST OF FIGURES

Figure Page

2.1. Block Diagram of Digital Watermarking Scheme 6

3.1. Watermarking Lifecycle 9

4.1. Swim and Tumble of a Bacterium. 21

5.1. Watermark Encoder 29

5.2 Watermark Decoder 32

6.1 Watermark Encoder for Proposed Algorithm 35

6.2 Md5 37

6.3 The Distribution of Set Si + ∆i* on Number Line 40

6.4. Working Cycle of Each Generation of Genetic Algorithm 42

6.5 Flowchart of Bacterial Foraging 43

6.6 Watermark Decoder 46

6.7 Threshold-Based Decoding Scheme. 47

7.1 GA Toolbox in MATLAB 50

7.2 Graph Plots the Value of Fitness Function with Generations. 51

7.3 Graph calculates Current Best Value of Delta of an Individual 51

7.4 Graph Tells the Fitness of Each Individual in that Partition. 52

7.5 Graph Plots The Stopping Criteria With The % Of Criteria Met. 52

viii

7.6 Optimal Values Attained At Various Datasets. 54

7.7 Cost of bacterium at various chemotactic steps for S=50, 55

 minimum value attained at Nc=64.

7.8 Graph Depicting Optimal Value Attained at Nc=95 for S=20. 55

7.9 Resilience to Deletion Attack 57

7.10 Resilience to Insertion Attack 58

ix

LIST OF TABLES

Table Page

5.1 Notations Used 30

6.1 Notations used in proposed technique 39

7.1 Cost and Execution time by varying S (for Minimization) 54

7.2 Resilience to Deletion Attack 56

7.3 Resilience to Insertion Attack 58

7.4 Comparison between our technique and techniques based on

marker tuples 59

x

LIST OF ABBREVIATIONS

Ant Colony Optimization ACO

Bacterial Foraging Optimization Algorithm BFOA

Cryptographic Pseudorandom Sequence Generators CPSG

Discrete Wavelet Transform DWT

Evolutionary Programming EP

Evolutionary Strategies ES

Escherichia Coli E.Coli

Genetic Algorithm GA

Least Significant Bit LSB

Message Authentication Code MAC

Message Digest MD5

Most Significant Bit MSB

Pattern Search PS

Particle Swarm Optimization PSO

Random Access Memory RAM

World Trade Organization WTO

xi

LIST OF SYMBOLS

Items Symbols

Dataset D

Hash function H

Primary Key P

Concatenation operator ||

Usability Constraints G

Partition Set Si

Manipulation Vector ∆

Mean μ

Threshold T

Objective Function J, θc

Population S

Watermarked Dataset DW

Reference point ref

Probability of Error Perr

1

CHAPTER 1

INTRODUCTION

Internet is an excellent distribution system for digital media because it is inexpensive,

eliminates warehousing and stock and delivery is almost instantaneous. Copying and

distributing digital assets have become layman‘s task. The Internet is exerting tremendous

pressure on data providers to create services that allow users to search and access databases

remotely. Although this trend is a boon to end users, it exposes the data providers to the

threat of data theft. Providers are therefore demanding technology for identifying pirated

copies of their databases as they are concerned about the copyright of their products

Digital watermarking is an approach to solve such problems related to ownership issues,

tamper detection, etc. The watermarking technique introduces small errors into the object

being watermarked. These intentional errors are called marks, and all the marks together

constitute the watermark. The marks are chosen so as to have an insignificant impact on the

usefulness of the data [1] and are placed in such a way that a malicious user cannot destroy

them without making the data significantly less useful.

Although watermarking does not prevent illegal copying, it deters such copying by providing

a means for establishing the original ownership of a redistributed copy. Unlike encryption

and hash description, typical watermarking techniques modify ordinal data as a modulation of

the watermark information and inevitably cause permanent distortion to the original data and

therefore cannot meet the integrity requirement of the data as required in some applications

1.1 DATABASE COPYRIGHT

Legislations for Protection of Intellectual Property

The intellectual property is protected and governed by appropriate national legislations and

international treaties [Gupta][wiki copyrights]. The main national legislations are The Indian

Patents Act, 1970, The Trade and Merchandise Act, 1958, The Copyright Act, 1957 with

amendments to the Act in 1994, The Designs Act, 1911. For the protection of databases, it is

the Copyright Act that is most important. The key International Treaties on copyright are

WTO Agreement on Trade Related Aspects of Intellectual Property Rights, Berne

Convention for the Protection of Literary and Artistic Works, Universal Copyright Act.

2

Key Issues in Copyright Protection of Databases

In theory, databases may be protected per se under copyright within a national law. Key

issues in copyright protection of databases are concerned with:

i.Individual records within the database are recognized as literary works and are thus

individually and separately have their own proprietary value.

ii.Mode of compilation of database may be protected solely as compilations because skill and

effort were extended in making the collection.

Recently, the Delhi High Court in a case held that even if only labour had gone into the

making of a database, it is good enough and a copyright subsists in the compilation. A US

court in a similar case involving copying of telephone directory refused copyright protection

on the grounds that it was not an intellectual task as it did not involve special skills.

However, what is important is that compilation of databases does need classification systems

to organise data. The intellectual skills of `data organisation' facilities quick retrieval and a

variety of analyses of data.

Databases - whether in online form, CD-ROM form, or any other form _ are thus treated as a

standard copyright work. Such compilations should not be downloaded or copied in any other

way without prior permission (except for small portions only for fair use such as research or

private study). They should not be distributed around local or wide area networks to multiple

key stations without prior permission.

1.2 MOTIVATION

The rapid growth of the Internet and related technologies has offered an unprecedented

ability to access and redistribute digital contents. In such a context, enforcing data ownership

is an important requirement, which requires articulated solutions, encompassing technical,

organizational, and legal aspects [Vaas]. Although we are still far from such comprehensive

solutions, in the last years, watermarking techniques have emerged as an important building

block that plays a crucial role in addressing the ownership problem. Such techniques allow

the owner of the data to embed an imperceptible watermark into the data. A watermark

describes information that can be used to prove the ownership of data such as the owner,

origin, or recipient of the content. The problem of watermarking relational data has not been

given appropriate attention. There are, however, many application contexts for which data

represent an important asset, the ownership of which must thus be carefully enforced. This is

3

the case, for example, of weather data, stock market data, power consumption, consumer

behaviour data, and medical and scientific data. Watermark embedding for relational data is

made possible by the fact that real data can very often tolerate a small amount of error

without any significant degradation with respect to their usability. For example, when dealing

with weather data, changing some daily temperatures of 1 or 2 degrees is a modification that

leaves the data still usable. To date, only a few approaches to the problem of watermarking

relational data have been proposed [Agrawal][Al-Haj][Sion]. These techniques, however, are

not very resilient to watermark attacks. In this dissertation, a watermarking technique is

presented for relational data that is highly resilient compared to these techniques. In

particular, our proposed technique is resilient to tuple deletion, alteration, and insertion

attacks.

1.3 ORGANIZATION OF THESIS

The thesis first introduces the concept of digital watermarking, along with its significance in

copyright issues in respect to relational databases. It proceeds to elaborate the Optimization

Algorithms that have been implemented in technique proposed in this dissertation to arrive at

the experimental observations. The next chapter gives a detailed outline of the existing

techniques related to proposed technique which is followed by detailed discussion on

proposed algorithm, Chapter 7 goes on to state the experimental results and inferences of

consequence. From here on, the thesis concludes the study, with a mention of the references.

The chapter wise description is as follows:

Chapter 1: Introduction about digital Watermarking and Copyright Issues.

Chapter 2: Literature Survey includes references related to watermarking relational databases,

optimization techniques based on Genetic algorithms and Bacterial Foraging.

Chapter 3: Watermarking in Relational Databases deals with details of embedding

watermarks into relational databases discussing about basic requirements of watermarking,

technical challenges faced and various attacks possible in context of relational databases.

Chapter 4: Optimization Algorithm deals with detailed discussion of two evolutionary

algorithms, Genetic Algorithms and bacterial foraging. Workings of both algorithms are

discussed along with their algorithms.

4

Chapter 5: Identification and Proof of Ownership by Watermarking Relational Databases

discusses about the robust secure and imperceptible procedure of watermarking numeric

attributes such that it provides ownership identification and proof of ownership. The

watermarking process is divided into two phases i.e. watermark encoder and watermark

decoder.

Chapter 6: Proposed Technique is discussed. The technique proposed divides watermark

encoder into 4 phases i.e. watermark preparator, watermark partitioner, watermark embedder

and threshold evaluator. Each of these phases are explained in this chapter. Similarly,

watermark decoder is divided into 4 phases i.e. watermark preparator, watermark partitioner,

threshold decoder and majority voter. The working of these phases are discussed.

Chapter 7: Experiments and Analysis goes on to state the experimental results and inferences

of consequence. Experiments are conducted that shows proposed algorithm is robust against

various attacks.

Chapter 8: In Conclusion, the thesis concludes the study along with suggestions for future

work.

5

CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Relational databases watermarking is used to protect the intellectual or property in today

internet-based application environments and in many content distribution applications. Much

research has done on the watermarking relational database. Many algorithms are proposed

that watermark both numeric and non-numeric attributes using various techniques. However,

very few works focus on the optimization of watermark signal of relational databases.

2.2 RELATED WORK

The main application of watermarking is copyright protection, proof of ownership and

ownership identification. Zhi-Hao Zhang et al [Zhang] proposed image-based novel

watermarking method for the numeric data. In their method an identification image is

embedded into relational data for representing copyright information. Several other image-

based watermarking mechanisms [Haj][Sun][Hu][Odeh] are proposed in literature for

watermarking numeric and non-numeric attributes.

However [Deshpande][Bhattacharya] proposed different mechanism for watermarking

relational databases based on partitioning the databases and then embedding watermarks into

them. Chuanxian Jiang et al [Jiang] proposed the watermarking algorithm, which can embed

the watermark into relational database in DWT domain. Damien Hanyurwimfura et al

[Hanyurwimfura] watermarks non-numeric multi words data based on lavenshtein distance.

Haiting Cui et al [Cui] proposed a public key cryptography based algorithm for watermarking

relational databases.

In general [Hanyurwimfura], any watermarking scheme (algorithm) needs three components

such as original data, secret key and watermark as shown in Fig.2.1[Hanyurwimfura]

6

Fig. 2.1 Block Diagram of digital Watermarking Scheme

The watermarking algorithm for relational databases proposed in [Agrawal] assume that

database relations can be watermarked in some attributes, such that changes in few values do

not affect their applications. This algorithm embeds watermarks only in one attribute out of

several candidates attributes in a tuple. This technique ensures that some bit positions of

some of the attributes of some of the tuples contain specific values. The specific bit locations

and values are algorithmically determined under the control of a secret key known only to the

owner of the data. This bit pattern constitutes the watermark. Only if one has access to the

secret key can the watermark be detected with high probability.

However, Vidhi Khanduja and O.P.Verma [Khanduja] has proposed new robust secure and

imperceptible embedding mechanism that securely and randomly select any number of

attributes out of selected candidate attributes for embedding watermarks in varying number of

least significant bits and resolves the two important concerns namely; owner identification

and proof of ownership. This algorithm embeds the identity of a work‘s copyright holder as a

watermark and this watermark can be used to provide evidence in ownership disputes.

Mohamed Shehab et al [Shehab] formulate the watermarking of relational databases as a

constrained optimization problem and discuss efficient techniques to solve the optimization

problem and to handle the constraints. This watermarking technique is resilient to watermark

synchronization errors because it uses a partitioning approach that does not require marker

tuples. Genetic Algorithm and Pattern Search techniques were employed to solve the

proposed optimization problem and to handle the constraints. Genetic Algorithms are used

widely to solve optimization problems [Mathew][Goldberg]. A genetic algorithm (GA) is a

search technique that is based on the principles of natural selection or survival of the fittest.

Genetic algorithms are one of the best ways to solve a problem for which little is known

objective function directly in the search. It searches the referred to solution space by

7

maintaining a population of potential solutions. Then, by using evolving operations such as

crossover, mutation, and selection, the GA creates successive generations of solutions that

evolve and inherit the positive characteristics of their parents and thus gradually approach

optimal or near optimal solutions. By using the objective function directly in the search, GA‘s

can be effectively applied in nonconvex, highly nonlinear, complex problems.

Bacterial Foraging Optimization (BFO) is a recently developed nature-inspired optimization

algorithm, which is based on the foraging behaviour of E. coli bacteria. Up to now, BFO has

been applied successfully to some engineering problems due to its simplicity and ease of

implementation [Passino][Chen][Das]. [Passino] gives brief discussion on the potential uses

of biomimicry of social foraging to develop adaptive controllers and cooperative control

strategies for autonomous vehicles. Several BFO variants have been developed to improve its

optimization performance. [Tripathy], proposed an improved BFO algorithm using two

approaches: (1) in order to speed up the convergence, the average value is replaced by the

minimum value of all the chemotactic cost functions for deciding the bacterium‘s health; (2)

for swarming, the distances of all the bacteria in a new chemotactic step are evaluated from

the globally optimal bacterium to these points and not the distances of each bacterium from

the rest of the others. [Mishra] proposed a fuzzy bacterial foraging (FBF) algorithm using

Takagi-Sugeno-type fuzzy inference scheme to select the optimal chemotactic step size in

BFO.

2.3 CONCLUSION

The [Agrawal] has proposed novel watermarking technique for numeric data which is

referenced widely in this area and forms the basics of work presented in this thesis. Further,

[Shehab] has presented the watermarking problem as a constraint optimization problem and

proposed GA and PS to solve the problem. Work presented in this dissertation solves the

problem of watermarking relational databases using Bacterial Foraging. Bacterial Foraging

technique is described in [Passino] which is followed.

8

CHAPTER 3

WATERMARKING IN RELATIONAL DATABASES

3.1 INTRODUCTION

Digital images, video and audio are examples of digital assets which have become easily

accessible by ordinary people around the world. However, the owners of such digital

assets[Haj] have long been concerned with the copyright of their digital products, since

copying and distributing digital assets across the Internet was never easier and possible as its

nowadays. Therefore, researchers have been looking for ways to protect the ownership of

digital assets for a long time.

Digital watermarking technology was suggested lately as an effective solution for protecting

the copyright of digital assets. This technology provides ownership verification of a digital

product by inserting imperceptive information into the digital product. Such 'right witness'

information is called the watermark and it is inserted in such a way that the usefulness of the

product remains, in addition to providing it with robustness against attempts to remove the

watermark.

Most watermarking research concentrated on watermarking multimedia data objects such as

still images and video and audio. However, watermarking of database systems started to

receive attention because of the increasing use of database systems in many real-life

applications. Examples where database watermarking might be of a crucial importance

include protecting rights of outsourced relational databases and allowing the creation of

secured and copyright-protected web-based services that enable users to search and access

databases remotely.

With the development of Internet and databases application techniques, the demand that lots

of databases in the Internet are permitted to remote query and access for authorized users has

become common. But in this case the copyright of the data may not be protected effectively,

the data providers are worried about the data being burgled, illegal copy etc. Embedding

digital watermark into the relational databases solves these problems by indicating the

invasion and piracy of the databases.

9

3.2 WATERMARKING LIFE-CYCLE PHASES

Fig. 3.1 Watermarking Life-cycle

General watermark life-cycle phases as shown in fig 3.1 [wiki] with embedding-, attacking-

and detection/retrieval functions [wiki]. The information to be embedded is called a digital

watermark, although in some contexts the phrase digital watermark means the difference

between the watermarked signal and the cover signal. The signal where the watermark is to

be embedded is called the host signal. A watermarking system is usually divided into three

distinct steps, embedding, attack and detection.

In embedding, an algorithm accepts the host and the data to be embedded and produces a

watermarked signal. The watermarked signal is then transmitted or stored, usually transmitted

to another person. If this person makes a modification, this is called an attack. While the

modification may not be malicious, the term attack arises from copyright protection

application, where pirates attempt to remove the digital watermark through modification.

There are many possible modifications, for example, lossy compression of the data, cropping

an image or video or intentionally adding noise.

Detection (often called extraction) is an algorithm which is applied to the attacked signal to

attempt to extract the watermark from it. If the signal was unmodified during transmission,

then the watermark is still present and it can be extracted.

In robust watermarking applications, the extraction algorithm should be able to correctly

produce the watermark, even if the modifications were strong. In fragile watermarking, the

extraction algorithm should fail if any change is made to the signal.

http://en.wikipedia.org/wiki/File:Watermark_life_cycle.png

10

Applications of watermarking are following:

i. Broadcast monitoring: Identifying when and where works are broadcast by

recognizing watermarks embedded in them.

ii. Ownership Identification: Embedding the identity of a work‘s copyright holder as

a watermark.

iii. Proof of ownership: Using watermarks to provide evidence in ownership disputes.

iv. Transaction tracking: Using watermarks to identify people who obtain content

legally but illegally redistribute it.

v. Content authentication: Embedding signature information in content that can be

checked to verify it has not been tampered with.

3.3 COPYRIGHT ISSUES

Digital watermarking technology was suggested as an effective solution for protecting the

copyright of digital assets [Gupta].

 Copyright is a set of exclusive rights granted to the author or creator of an original

work, including the right to copy, distribute and adapt the work. Copyright does not

protect ideas, only their expression.

 In most jurisdictions copyright arises upon fixation and does not need to be registered.

Copyright owners have the exclusive statutory right to exercise control over copying

and other exploitation of the works for a specific period of time, after which the work

is said to enter the public domain [wiki copyright].

 Uses covered under limitations and exceptions to copyright, such as fair use, do not

require permission from the copyright owner. All other uses require permission.

 Copyright owners can license or permanently transfer or assign their exclusive rights

to others.

Database Copyright

The salient aspects concerning database protection under copyright are:-

 Under the copyright laws, databases are protected as collections or compilations

of literary and artistic works. The essential requirement is that a database should be

11

the result of its creator's own intellectual effort and that it achieves a sufficient level

of originality.

 The intellectual skill involved in copyright protection is the conceptual approach

to classification and data organisation, which facilitates quick retrieval and various

analyses of the data.

Importance of Database Watermarking as a part of Database Copyright

 Although watermarking does not prevent illegal copying, it deters such copying by

providing a means for establishing the original ownership of a redistributed copy

 The Internet is exerting tremendous pressure on data providers to create services that

allow users to search and access databases remotely. Although this trend is a boon to

end users, it exposes the data providers to the threat of data theft. Providers are

therefore demanding technology for identifying pirated copies of their databases.

 Also People pay much attention to the technology of data mining recently and more

and more research institutions begin to buy the databases to analyze.

 If it doesn‘t concern customer‘s secrets the enterprises would also like to sell their

data warehouse to do the research. Therefore, it becomes an important subject to

prove the integrity of the database.

 The concept of digital watermarking is from Information Hiding. If people argued the

copyright of protected information, we can extract the embedded watermarks to prove

the copyright.

 Digital watermarking technique mainly applies to copyright protected and integrity of

information content authenticated. In the copyright protected, the watermarks must

have robustness. Having robustness is even if the data is altered maliciously and it

could be extracted watermarks back easily.

 In the integrity of information content authenticated, the watermarks have to make

sure whether the data is attacked. In the past, digital watermarking technique is widely

used on image process. At present, it used on databases because the markets of

databases is rising.

3.4 RELATIONAL DATABASES

A relation is defined as a set of tuples that have the same attributes. A tuple usually

represents an object and information about that object. Objects are typically physical objects

12

or concepts. A relation is usually described as a table, which is organized into rows and

columns. All the data referenced by an attribute are in the same domain and conform to the

same constraints.

The relational model specifies that the tuples of a relation have no specific order and that the

tuples, in turn, impose no order on the attributes. Applications access data by specifying

queries, which use operations such as select to identify tuples, project to identify attributes,

and join to combine relations. Relations can be modified using the insert, delete, and update

operators. New tuples can supply explicit values or be derived from a query. Similarly,

queries identify tuples for updating or deleting. It is necessary for each tuple of a relation to

be uniquely identifiable by some combination (one or more) of its attribute values. This

combination is referred to as the primary key.

As relational database consists of tuples, each of which represents a separate object. The

watermark needs to be spread over these separate objects. The tuples of a relation constitute a

set, and there is no implied ordering between them. Insertions, deletions, and updates can be

done easily on data stored. Due to the different characteristics between images or audio and

relational data, there exists no image or audio watermarking method suitable for

watermarking relational databases. Therefore, relational database watermarking is, in fact, a

process challenged by many factors such as data redundancy fewness, relational data out-of-

order and frequent updating.

Moreover, database systems watermarking have unique and sometimes complex,

requirements that differ from those required for watermarking digital audio-visual products.

Due to such unique requirements and challenges, literature on watermarking relational

databases is very limited and has focused mainly on embedding short strings of binary bits in

randomly selected locations in numerical databases. Most proposed algorithms lack

robustness against bit-level attacks such as bit-setting, bit resetting and bit-flipping. There are

many application contexts for which data represent an important asset, ownership of which

must be carefully enforced.

3.5 TECHNICAL CHALLENGES OF DATABASE WATERMARKING

There are many differences between the structures of multimedia data and relational

databases. Therefore, the watermarking process on relational database is challenged

[Zhang] by the following factors:

13

i. Few redundant data: A relational database is made up of tuples, each indicating an

independent object. Therefore, watermarks basically have no places to hide whereas

multimedia object consists of a large number of bits with considerable redundancy. Thus,

the watermark has a large cover in which to hide.

ii. Out-of-order relational data: Tuples of a relational database have no fixed location.

This makes building a corresponding relative is very difficult in relational databases.

However relative spatial/temporal positioning of various pieces of a multimedia object

typically does not change.

iii. Frequent updating: Insertion, dropping, updating of operation of relational database

is very frequent. Without malicious intention, users often casually drop some tuples or

attributes. On the other hand, the pirate can add or substitute the tuples and attributes

whereas, multimedia objects typically remain intact; portions of an object cannot be

dropped or replaced arbitrarily without causing perceptual changes in the object.

Because of these differences, techniques developed for multimedia data cannot be directly

used for watermarking relations. Work presented in this dissertation meets all the above

challenges to watermark relational databases.

3.6 REQUIREMENTS OF DATABASE WATERMARKING

Watermarking database systems has unique requirements that differ from those required for

watermarking digital image and audio systems. The watermarked database must maintain the

following properties [Agrawal]:

i. Usability: The amount of change in the database caused by the watermarking process

should not result in degrading the database and making it useless. The amount of allowable

change differs from one database to another, depending on the nature of stored records.

ii. Robustness: Watermarks embedded in the database should be robust against attacks to

erase them. That is, the database watermarking algorithm must be developed in such a way to

make it difficult for an adversary to remove or alter the watermark beyond detection without

destroying usability of the database.

iii. Blindness: Watermark extraction should neither require the knowledge of the original un-

watermarked database nor the watermark itself. This property is critical as it allows the

14

watermark to be detected in a copy of the database relation, irrespective of later updates to

the original relation.

iv. Structure: A database is made of inter-related tuples. The tuples that are joined before the

watermarking process should not be altered during watermarking. Moreover, scale and

classification must be considered during the watermarking process since they have impact on

the semantics of the database.

v. Security: Choice of the watermarked tuples, attributes, and bit positions should be secret

and be only known through the knowledge of a secret-key. Owner of the database should be

the only one who has knowledge of a secret-key. A watermark is secure if knowing the

algorithms for embedding and extracting does not help unauthorised party to detect or

remove the watermark.

3.7 TYPES OF ATTACKS ON WATERMARKED DATA

There are many ways in which a watermark can potentially be damaged, erased or

compromised. A watermarking system must be resistant to both intentional and unintentional

assaults, while not hindering ordinary data-processing operations.

Some common attacks [Hanyurwimfura] in databases are following:

i. Subset deletion attack: In this type of attack, the attacker may take a subset of the tuples

of the watermarked database and hope that the watermark will be removed.

ii. Subset addition attack: In this type of attack, the attacker adds a set of tuples to the

original database. This is one of the most difficult attacks to defeat. The attacker may add

some tuples to the watermarked table.

iii. Subset alteration attack: In this type of attack, the attacker alters the tuples of the

database through operations such as linear transformation. The attacker hopes by doing so to

erase the watermark from the database.

iv. Subset selection attack: In this type of attack, the attacker randomly selects and uses a

subset of the original database that might still provide value for its intended purpose. The

attacker hopes by doing so that the selected subset will not contain the watermark.

15

3.8 CONCLUSION

As an embranchment of information hiding, the digital watermark techniques have been

attracting more and more interests in both research and industrial fields. As a tool for storing

and managing data, relational database is widely used in many information systems. It is a

crucial issue to protect the copyright of relational data. Watermarking techniques developed

for multimedia data cannot be directly used for watermarking relations because of lot of

differences as discussed above in. Thus, watermarking techniques for relational databases

should be devised such that it should follow all the necessary properties defined above i.e.

watermarking system must be blind, robust, secure and usable and system must be resistant

against various possible attacks.

16

CHAPTER 4

OPTIMIZATION ALGORITHMS

4.1 INTRODUCTION

An optimization algorithm is an algorithm for finding a value x such that f(x) is as small (or

as large) as possible, for a given function f, possibly with some constraints on x. Here, x can

be a scalar or vector of continuous or discrete values. An algorithm terminates in a finite

number of steps with a solution. In the past several decades, research on optimization has

attracted more attention. The general unconstrained optimization problem can be defined as:

Minimize (𝑋), 𝑋=[x1, 𝑥2,…, 𝑥𝐷] (4.1)

Where, 𝐷 is the number of the parameters to be optimized.

There are different optimization methods and algorithms that can be grouped into

deterministic and stochastic [Floudas][Spall]. Deterministic techniques depend on the

mathematical nature of the problem. Weaknesses of this technique are dependent on gradient,

local optimums, and inefficiency in large-scale search space. Stochastic techniques are

considered to be more users friendly because they do not depend on the mathematical

properties of a given function and are hence more appropriate for finding the global optimal

solutions for any type of objective function. As many real-world optimization problems

become increasingly complex, using stochastic methods is inevitable.

Nature ecosystems have always been the rich source of mechanisms for designing artificial

computational systems to solve difficult engineering and computer science problems [Chen,

2011]. In the optimization domain, researchers have been inspired by biological processes to

develop some effective stochastic techniques that mimic the specific structures or behaviours

of certain creatures. For examples, genetic algorithms (GA), originally conceived by

[Holland], represent a fairly abstract model of Darwinian evolution and biological genetics;

ant colony optimization (ACO), proposed by [Dorigo, 1996][Dorigo, 1999], is developed

based on the foraging behaviours of real ant colonies; particle swarm optimization (PSO),

proposed by Eberchart and Kennedy[Eberchart] and Chen et al. [Chen, 2010], glean ideas

from social behaviour of bird flocking and fish schooling. These algorithms have been found

to perform better than the classical heuristic or gradient-based methods, especially for

17

optimizing the nondifferentiable, multimodal, and discrete complex functions. Currently,

these nature-inspired paradigms have already come to be widely used in many areas.

4.2 GENETIC ALGORITHMS

Genetic Algorithms [Goldberg] are a family of computational models inspired by evolution.

It is a global optimization method that manipulates a string of numbers in a manner similar to

how chromosomes are changed in biological evolution. Genetic algorithms search by starting

from an initial set of solutions or hypotheses, and generating successive "generations" of

solutions. There is an initial set of population from which the most optimum solution is

obtained. Genetic algorithms are basically used in maximization and minimization problems.

The concept of GA is based on Darwin‘s theory of survival of fittest. In GA a binary string

which works as a solution set and the perspective problem to work upon is used. An initial

population made up of strings of numbers is chosen at random or is specified by the user.

Each string of numbers is called a "chromosome" or an "Individual and each number slot are

called a "gene." A set of chromosomes forms a population. Each chromosome represents a

given number of traits which are the actual parameters that are being varied to optimize the

"fitness function". The fitness function is a performance index that we seek to maximize.

WORKING PRINCIPLE

A GA uses the following in its evaluation [Mathew]:

 Population

 Objective function

 Fitness function

 Genetic operators

A GA uses a series of steps to reach the optimum solution. The first step is to select and

initialize the population i.e. from where the solution is obtained and preceded to what is

collectively known as generation. Then the Objective function for the problem is evaluated

and the fitness function corresponding to that objective function is found. After that a set of

genetic operators comprising of reproduction, mutation, and crossover are applied. These

steps are continued until a desired criterion is reached and the optimum solution is obtained.

The steps for the GA can be generalised as:

1. Select a population to work on

18

2. Initialize that selected population

3. Repeat these steps until a desired stopping criteria is reached

a) We evaluate the Objective function for the problem

b) find the fitness function corresponding to that objective function

c) Apply a set of genetic operators comprising of reproduction, mutation, and

crossover.

GA OPERATORS

There are three operators in Genetic Algorithm [Mathew]

 Reproduction

 Crossover

 Mutation

The main purpose of these operators is to create new solution vectors by selection,

combination and alteration to solution vectors with favourable solutions.

The operation of the GA proceeds in steps. Beginning with the initial population, "selection"

is used to choose which chromosomes should survive to form a "mating pool."

Chromosomes are chosen based on how fit they are (as computed by the fitness function)

relative to the other members of the population. More fit individuals end up with more

copies of themselves in the mating pool so that they will more significantly affect the

formation of the next Generation. Next, several operations are taken on the mating pool.

First, "crossover" (which represents mating, the exchange of genetic material) occurs between

parents. To perform crossover, a random spot is picked in the chromosome, and the genes

after this spot are switched with the corresponding genes of the other parent. Following this,

"mutation" occurs. This is where some genes are randomly changed to other values. After

the crossover and mutation operations occur, the resulting strings form the next generation

and the process is repeated. A termination criterion is used to specify when the GA should

end (e.g., the maximum number of generations or until the fitness stops increasing).

REPRODUCTION

It makes more than one copies of better strings in the new solution. This results individuals

with better encoded structures to produce copies more frequently. There are 2 types of

reproduction operator:

i. Roulette wheel selection

19

Here the string is selected with the probability proportional to its fitness value. Hence the

probability of selecting i
th

 string is

pi=
𝐹𝑖

 𝐹𝑖
𝑛
𝑖=1

 (4.2)

 Where, Fi is the fitness value of i
th

 string

ii. Stochastic remainder function

The string is removed or copied based on their reproduction counts. First the probability is

calculated (same as above), then the expected value of each string is calculated by

ei=pi * P (4.3)

where, P is the population size of i
th

 string

The fractional parts of ei are treated as probabilities with which strings are selected for

reproduction. For example if ei=1.5 then the count will be 1 and another with a probability of

0.5. In the end the strings with count 0 are eliminated and non zero counts get copies equal to

the value of their counts.

CROSSOVER

In this newer individuals are produced by recombining the material from two individuals of

the previous generation. The two strings participating are the parent strings and the one

produced is the child string. The child string may be stronger or weaker than the parent string.

All strings in the population are not used for crossover in order to preserve some of the good

strings. When a crossover probability say pc, is used only 100 pc per cent strings are used in

crossover and the remaining 100(1-pc) per cent of the strings remain in the population as they

are in current population.

MUTATION

In this we randomly add new information in the existing population. This helps us to avoid in

getting trapped in local optima. They operate at the bit level; when the bits are being copied

from the current string to the new string, there is a probability that the bit might be mutated.

This probability is called mutation probability pm. A coin toss mechanism is employed; if the

random number is less than pm then the bit is inverted. For example the population have 3

eight bit strings :

20

00100111 , 00101100, 00111001

It can be seen that all have 0 in their left most bit, if true optimum requires 1 in that position

then only mutation can help. The inclusion of mutation introduces probability pm of turning 0

to 1.

4.3 BACTERIAL FORAGING

Bacterial Foraging Optimization (BFO) proposed by [Passino] is a recently developed nature-

inspired optimization algorithm, which is based on the foraging behaviour of E. coli bacteria.

For over the last five decades, optimization algorithms like Genetic Algorithms (GAs)

[Mathew], Evolutionary Programming (EP), Evolutionary Strategies (ES), which draw their

inspiration from evolution and natural genetics, have been dominating the realm of

optimization algorithms. Recently natural swarm inspired algorithms like Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO) [Dorigo, 1996] have found their way

into this domain and proved their effectiveness. Following the same trend of swarm-based

algorithms, [Passino] proposed the BFOA. Application of group foraging strategy of a swarm

of E.coli bacteria in multi-optimal function optimization is the key idea of the new algorithm

[Das]. Bacteria search for nutrients in a manner to maximize energy obtained per unit time.

Individual bacterium also communicates with others by sending signals. A bacterium takes

foraging decisions after considering two previous factors. The process, in which a bacterium

moves by taking small steps while searching for nutrients, is called chemotaxis and key idea

of BFOA is mimicking chemotactic movement of virtual bacteria in the problem search

space.

THE E.COLI BACTERIUM

The E. coli bacterium has a plasma membrane, cell wall, and capsule that contains the

cytoplasm and nucleoid [Passino]. The pili (singular, pilus) are used for a type of gene

transfer to other E. coli bacteria, and flagella (singular, flagellum) are used for locomotion.

The cell is about 1 μmin diameter and 2 μm in length. The E. coli cell only weighs about 1

picogram and is about 70% water. Salmonella typhimurium is a similar type of bacterium.

The E. coli bacterium is probably the best understood microorganism. Its entire genome has

been sequenced; it contains 4,639,221 of the A, C, G, and T ―letters‖—adenosine, cytosine,

guanine, and thymine—arranged into a total of 4,288 genes. Mutations in E. coli occur at a

rate of about 10−7 per gene, per generation, and can affect its physiological aspects (e.g.,

21

reproductive efficiency at different temperatures). E. coli bacteria occasionally engage in a

type of ―sex‖ called ―conjugation‖ where small gene sequences are unidirectionally

transferred from one bacterium to another via an extended pilus. When E. coli grows, it gets

longer, and then divides in the middle into two ―daughters.‖ Given sufficient food and held at

the temperature of the human gut (one place where they live) of 37 ° C, E. coli can synthesize

and replicate everything it needs to make a copy of itself in about 20 min; hence growth of a

population of bacteria is exponential with a relatively short time to double. The E. coli

bacterium has a control system (guidance system) that enables it to search for food and try to

avoid noxious substances. For instance, it swims away from alkaline and acidic environments

and toward more neutral ones.

SWIMMING AND TUMBLING VIA FLAGELLA [PASSINO]

Locomotion is achieved via a set of relatively rigid flagella that enable the bacterium to swim

via each of them rotating in the same direction at about 100-200 revolutions per second. Each

flagellum is a left-handed helix configured so that as the base of the flagellum (i.e., where it

is connected to the cell) rotates counter clockwise, as viewed from the free end of the

flagellum looking toward the cell, it produces a force against the bacterium so it pushes the

cell. If a flagellum rotates clockwise, it will pull at the cell. An E. coli bacterium can move in

two different ways; it can run (swim for a period of time) or it can tumble, and it alternates

between these two modes of operation its entire lifetime (i.e., it is rare that the flagella will

stop rotating).

In the algorithm the bacteria undergoes chemotaxis, where they like to move towards a

nutrient gradient and avoid noxious environment. Generally the bacteria move for a longer

distance in a friendly environment. Figure 4.1[Passino] depicts how clockwise and counter

clockwise movement of a bacterium take place in a nutrient solution.

Fig. 4.1. Swimming, tumbling, and chemotactic behavior of E. coli.

22

When they get food in sufficient, they are increased in length and in presence of suitable

temperature they break in the middle to form an exact replica of it. This phenomenon inspired

Passino to introduce an event of reproduction in BFOA. Due to the occurrence of sudden

environmental changes or attack, the chemotactic progress may be destroyed and a group of

bacteria may move to some other places or some other may be introduced in the swarm of

concern. This constitutes the event of elimination-dispersal in the real bacterial population,

where all the bacteria in a region are killed or a group is dispersed into a new part of the

environment.

It is interesting to note that the ―decision-making‖ system in the E. coli bacterium must have

some ability to sense a derivative, and hence it has a type of memory. Experiments have

shown that it performs a type of sampling, and it remembers the concentration a moment ago,

compares it with a current one, and makes decisions based on the difference.

BACTERIAL FORAGING OPTIMIZATION ALGORITHM

 BFOA mimics the four principal mechanisms observed in a real bacterial system:

chemotaxis, swarming, reproduction, and elimination-dispersal to solve this non-gradient

optimization problem. Let us define a chemotactic step to be a tumble followed by a tumble

or a tumble followed by a run.

Let j be the index for the chemotactic step. Let k be the index for the reproduction step. Let l

be the index of the elimination-dispersal event.

Let p: Dimension of the search space,

S: Total number of bacteria in the population,

Nc : The number of chemotactic steps,

Ns: The swimming length.

Nre : The number of reproduction steps,

Ned : The number of elimination-dispersal events,

Ped : Elimination-dispersal probability,

C (i): The size of the step taken in the random direction specified by the tumble.

P(j,k,l) = {θ
i
(j,k,l)|i =1,2,K,S} represent the position of each member in the population of

the S bacteria at the j-th chemotactic step, k-th reproduction step, and l-th elimination-

dispersal event.

Here, let J (i, j, k, l) denote the cost at the location of the i-th bacterium θ
i
(j, k, l) (sometimes

the indices are dropped and referred to the i-th bacterium position as θ
i
). Note that J is

interchangeably referred as being a ―cost‖ (using terminology from optimization theory) and

23

as being a nutrient surface (in reference to the biological connections). For actual bacterial

populations, S can be very large (e.g., S =109), but p = 3. BFOA, however, allows p > 3 so

that the method can be applied to higher dimensional optimization problems.

Let Nc be the length of the lifetime of the bacteria as measured by the number of chemotactic

steps they take during their life.

LetC(i) > 0,i =1,2,K,S, denote a basic chemotactic step size that we will use to define the

lengths of steps during runs.

To represent a tumble, a unit length random direction, say υ(j), is generated; this will be used

to define the direction of movement after a tumble.

In particular, we let θi(j+1,k,l) = θi(j,k,l)+C(i)υ(j) ,so thatC(i) is the size of the step taken

in the random direction specified by the tumble. If at θi(j+1,k,l) the cost J(i , j+1,k,l) is

better (lower) than at θi(j,k,l), then another step of size C(i) in this same direction will be

taken, and again, if that step resulted in a position with a better cost value than at the previous

step, another step is taken. This swim is continued as long as it continues to reduce the cost,

but only up to a maximum number of steps, Ns. This represents that the cell will tend to keep

moving if it is headed in the direction of increasingly favourable environments.

The above discussion was for the case where no cell-released attractants are used to signal

other cells that they should swarm together. E.coli have cell-to-cell signalling via an

attractant and represented with Jcc
i
 (θ,θ

i
(i ,j,k)), i =1,2,K,S, for the ith bacterium. Work

presented in this dissertation using BFOA does not include Cell-to-cell signalling.

Bacterial Foraging Optimization Algorithm [Passino]:

p, S, Nc , Ns , Nre , Ned , ped ,and the C(i), i = 1,2,K,S parameters are initialised. If

swarming is used, the parameters of the cell-to-cell attractant functions are also chosen.

Also, initial values for the θ
i
 , i = 1,2,K, S, must be chosen. Choosing these to be in areas

where an optimum value is likely to exist is a good choice. Alternatively, simply randomly

distribute them across the domain of the optimization problem. The algorithm that models

bacterial population chemotaxis, swarming, reproduction, elimination, and dispersal is given

here (initially, j = k = l = 0). For the algorithm, note that updates to the θ
i
 automatically result

in updates to P. Termination test is simply specifying a maximum number of iterations.

1) Elimination-dispersal loop: l = l + 1

2) Reproduction loop: k = k + 1

3) Chemotaxis loop: j = j + 1

a) For i = 1, 2, K, S, take a chemotactic step for bacterium i as follows.

24

b) Compute J (i, j, k, l). (i.e., add on the cell-to-cell attractant effect to the nutrient

concentration). Let,

 J(i, j, k, l) = J(i, j, k, l)+Jcc(θ
i
 (j, k, l). P(j, k, l) (4.4)

c) LetJlast =J(i ,j, k, l) to save this value since a better cost via a run can be found.

d) Tumble: Generate a random vector Δ(i) ∈ R
p
 with each element Δm(i),

m = 1,2,K,p, a random number on [−1,1].

e) Move: Let

θ
i
 (j,k,l)= θ

i
 (j,k,l) +C(i) .

𝛥(𝑖)

√𝛥𝑇(𝑖)𝛥(𝑖)
 (4.5)

This results in a step of size C(i) in the direction of the tumble for bacterium i.

f) Compute J(i, j+1, k, l), and then Let,

J(i, j+1, k, l) = J (i, j+1, k, l) + Jcc(θ
i
 (j+1, k, l). P(j+1, k, l) (4.6)

g) Swim (note that an approximation is used since swimming behaviour of each cell is

decided as if the bacteria numbered {1,2,K,i} have moved and {i + 1,i + 2,K, S} have

not; this is much simpler to simulate than simultaneous decisions about swimming

and tumbling by all bacteria at the same time):

i) Let m = 0 (counter for swim length).

ii) While m <Ns (if have not climbed down too long)

• Let m = m+ 1.

• If J(i, j+1, k, l) < Jlast (if doing better), let Jlast =J(i, j+1, k, l) and let

θ
i
 (j+1, k, l)= θ

i
 (j+1, k, l) +C(i) .

𝛥(𝑖)

√𝛥𝑇(𝑖)𝛥(𝑖)
 (4.7)

And use this θ
i
(j + 1, k, l) to compute the new J(i, j + 1, k, l) as done in f).

• Else, let m =Ns . This is the end of the while statement.

h) Go to next bacterium (i + 1) if i ≠ S (i.e., go to b) to process the next bacterium).

4) If j< Nc , go to step 3. In this case, continue chemotaxis, since the life of the bacteria is not

over.

5) Reproduction:

a) For the given k and l, and for each i = 1, 2, K, S, let

25

𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖

 = 𝐽(𝑖, 𝑗, 𝑘, 𝑙)𝑁𝑐+1
𝑗 =1 (4.8)

be the health of bacterium i (a measure of how many nutrients it got over its lifetime and how

successful it was at avoiding noxious substances). Sort bacteria and chemotactic parameters

C(i) in order of ascending cost Jhealth (higher cost means lower health).

b) The Sr bacteria with the highest Jhealth values die and the other Sr bacteria with the best

values split (and the copies that are made are placed at the same location as their parent).

6) If k<Nre, go to step 2. In this case, the numbers of specified reproduction steps have not

reached, so the next generation in the chemotactic loop is started.

7) Elimination-dispersal: For i = 1,2,K, S, with probability ped , eliminate and disperse each

bacterium (this keeps the number of bacteria in the population constant).

To do this, if a bacterium is eliminated, simply disperse one to a random location on the

optimization domain.

8) If l< Ned, then go to step 1; otherwise end.

Below we briefly describe the four prime steps in BFOA.

i) Chemotaxis: This process simulates the movement of an E.coli cell through swimming and

tumbling via flagella. Biologically an E.coli bacterium can move in two different ways. It can

swim for a period of time in the same direction or it may tumble, and alternate between these

two modes of operation for the entire lifetime.

ii) Swarming: Interesting group behaviour has been observed for several motile species of

bacteria including E.coli and S. typhimurium, where intricate and stable spatio-temporal

patterns (swarms) are formed in semisolid nutrient medium. A group of E.coli cells arrange

themselves in a travelling ring by moving up the nutrient gradient when placed amidst a

semisolid matrix with a single nutrient chemo-effecter. The cells when stimulated by a high

level of succinate, release an attractant aspertate, which helps them to aggregate into groups

and thus move as concentric patterns of swarms with high bacterial density.

iii) Reproduction: The least healthy bacteria eventually die while each of the healthier

bacteria (those yielding lower value of the objective function) asexually split into two

bacteria, which are then placed in the same location. This keeps the swarm size constant.

iv) Elimination and Dispersal: Gradual or sudden changes in the local environment where a

bacterium population lives may occur due to various reasons e.g. a significant local rise of

temperature may kill a group of bacteria that are currently in a region with a high

concentration of nutrient gradients. Events can take place in such a fashion that all the

26

bacteria in a region are killed or a group is dispersed into a new location. To simulate this

phenomenon in BFOA some bacteria are liquidated at random with a very small probability

while the new replacements are randomly initialized over the search space.

4.4 ALGORITHMIC ANALOGIES AND DISTINGUISHED FEATURES

OF BACTERIAL FORAGING AND GENETIC ALGORITHMS

There is the algorithmic analogies [Passino] between the fitness function and the nutrient

concentration function, selection and bacterial reproduction (bacteria in the most favourable

environments gain a selective advantage for reproduction), crossover and bacterial splitting

(the children are at the same concentration, whereas with crossover they generally end up in a

region around their parents on the fitness landscape), and mutation and elimination and

dispersal. However, the algorithms are certainly not equivalent, and neither is a special case

of the other. Each has its own distinguishing features. The fitness function and nutrient

concentration functions are not the same (one represents likelihood of survival for given

phenotypic characteristics, whereas the other represents nutrient/noxious substance

concentrations or perhaps other environmental influences such as heat or light). Crossover

represents mating and resulting differences in offspring, something we ignore in the bacterial

foraging algorithm (we could, however, have made less than perfect copies of the bacteria to

represent their splitting). Moreover, mutation represents gene mutation and the resulting

phenotypical changes, not physical dispersal in a geographical area. From one perspective,

note that all the typical features of genetic algorithms could augment the bacterial foraging

algorithm by representing evolutionary characteristics of a forager in its environment. From

another perspective, foraging algorithms can be integrated into evolutionary algorithms and

thereby model some key survival activities that occur during the lifetime of the population

that is evolving (i.e., foraging success can help define fitness, mating characteristics, etc.).

For the bacteria studied here, foraging happens to entail hill-climbing via a type of biased

random walk, and hence the foraging algorithm can be viewed as a method to integrate a type

of approximate stochastic gradient search (where only an approximation to the gradient is

used, not analytical gradient information) into evolutionary algorithms. Of course, standard

gradient methods, quasi-Newton methods, etc., depend on the use of an explicit analytical

representation of the gradient, something that is not needed by a foraging or genetic

algorithm. Lack of dependence on analytical gradient information can be viewed as an

27

advantage (fewer assumptions) or a disadvantage (e.g., since if gradient information is

available then the foraging or genetic algorithm may not exploit it properly).

4.5 CONCLUSION

An Evolutionary Algorithm uses some mechanisms inspired by biological evolution:

reproduction, mutation, recombination, and selection. Candidate solutions to the optimization

problem play the role of individuals in a population, and the fitness function determines the

environment within which the solutions "live" (see also cost function). Evolution of the

population then takes place after the repeated application of the above operators. Genetic

Algorithms are widely used algorithms to solve optimization problems. The newly developed

algorithm in this area is Bacterial Foraging which is based on the foraging behaviour of E.

coli bacteria. The process, in which a bacterium moves by taking small steps while searching

for nutrients, is called chemotaxis and key idea of BFOA is mimicking chemotactic

movement of virtual bacteria in the problem search space.

28

CHAPTER 5

IDENTIFICATION AND PROOF OF OWNERSHIP BY

WATERMARKING RELATIONAL DATABASES

5.1 INTRODUCTION

In [Khanduja], a new robust secure and imperceptible embedding mechanism was proposed

to resolve the two important concerns namely; owner identification and proof of ownership.

The steps of proposed mechanism for watermarking relational databases mainly involves

encoding and decoding on numerical attribute of relational database in three phases:

1) Watermark preparator

2) Watermark position detector

3) Watermark Embedder or Detector.

The first phase resolves ownership identification issue as owner‘s identity is used to get

watermark bits. In second phase position where watermarks are to be embedded are

identified using secret key and pseudorandom generators. This phase marks multiple

attributes with varying number of candidate bit positions within a single tuple. In the third

phase watermarks are embedded in Encoder. While decoder extracts watermarks and detects

database piracy.

5.2 PROPOSED ALGORITHM

Proposed watermarking system consists of two subsystems watermark encoder and respective

decoder [Khanduja].

5.2.1 WATERMARK ENCODER

 It embeds desired watermarks into relational database. This task is achieved using three

steps as shown in Fig.5.1. Inputs fed to first block are Secret key K1 and text to be

watermarked W. Using these data, watermark bits (Wp) are prepared which are used in third

block i.e. Watermark Embedder. Inputs to second block are Relational database R and secret

key K2 which help in identifying various watermarking positions (Ai and j) within database.

In this step, bit positions where watermark bits Wp embedded are identified.

29

Fig. 5.1. Watermark Encoder

A. Watermark Preparator

Watermark to be inserted is selected by owner of the database. The watermark must be

chosen such that it reflects owner‘s identity. This step identifies the identity of database‘s

copyright holder as watermark. Thus ensures owners‘ identification.

Owner selects the watermarking text ‗W‘ and secret key ‗K1‘ to create a watermark to be

embedded.

The algorithm

1. Input the values of ‗W‘ and K1

2. For each character Ci in W do

3. Wb[i]=Ci + K1

[End of for loop]

 4. WP=binary (Wb) // binary (Wb) function converts number to binary.

Line 2 in the algorithm indicates that owner chosen text is read character by character and

addition of each character with secret key is computed in line 3 to give integer value. These

values are stored in Wb array. At line 4, binary of Wb is taken and finally stored in Wp array.

30

B. Watermarking position detector

Suppose R is relation whose scheme is R (P, A0, A1,....,An-1) where P is primary key attribute

and R contains total n attributes. Let owner selects ‗v‘ number of numeric attributes that are

candidates for marking. Each attribute Ai is numeric with values such that small changes in

LBAi least significant bits are imperceptible. We consider that each attribute has varying

number of candidate bit positions i.e. LBAi. The gap γ [Agrawal] is a control parameter that

determines the number w of tuples marked out of total r tuples via approximate relationship

w= r / γ. The t.X represents the value of attribute X in tuple t ε R.

In this algorithm cryptographic pseudorandom sequence generators (CPSG) [Schneier] are

used that generates computationally infeasible sequence of numbers which depends on initial

seed.

Cryptographic pseudorandom sequences A cryptographically secure pseudorandom

sequence generator G deterministically generates a sequence of numbers in which it is

computationally infeasible to predict the next number in the sequence. Statistically, the

numbers generated by G appear to be a realized sequence of independent and identically

distributed random variables, in the sense that the numbers pass standard statistical tests for

these properties. The values in the sequence are determined by the value of an initial seed.

Given a fixed seed value, repeated executions of G generate the same fixed sequence of

numbers every time. Here we have used BBS pseudo random number generator.

Table5.1 Notations Used

N Number of attributes in the relation.

V Attribute numbers to be marked

Γ Fractions of tuples to be marked.

R Number of tuples in the relation.

W Number of tuples actually marked

K1, K2 Secret key selected by owner of database

W Watermarking text selected by owner of database

WP Watermarking bits to be inserted

Α Significance level of test for detecting a watermark

Τ Threshold parameter for detecting a watermark

31

The following functions are used in the algorithm

a) MAC: For each tuple ‗t‘ in relation R, secure Message Authentication Code[Sion] is

computed using secret key K2 known only to owner of database and tuple‘s primary key t.P.

b) next(CPSG1): This generates next number in random sequence using CPSG1.

c) Selectattr(next(CPSG1)): An another pseudorandom sequence generator CPSG2 is created

with initial seed as next(CPSG1) whose output is a vector with number of states equivalent to

v. These states decide what all attributes in a tuple are selected for watermark. Since output of

this depends on previous pseudorandom generator, this increases the level of security.

For erasing a watermark, the attacker needs to correctly guess the tuples that are marked and

the selected attributes with their corresponding selected bit positions.

The algorithm

1. Input the value of secret key K2.

2. For each tuple t ϵ R do

3. Compute MAC = H(K2|| t.P || K2), where, H() is secure hash function and ‗ ||‘ is

concatenation operator.

4. Seed CPSG1 with MAC of each tuple.

5. If (next(CPSG1) mod γ equals 0) then //mark the tuple

6. Attrindc[]= selectattr(next(CPSG1))

7. For each value in Attrindc[]

8. If (Attrindc[i] equals 1) // mark the attribute

9. Select Ai for marking

10. Bitindex j=next(CPSG1) mod LBAi // mark corresponding bit position

 [end of if of line 8]

[end of for loop of line 7]

[end of if of line 5]

[end of for loop of line 2]

C. Embed Watermark

 For selected attribute Ai and corresponding selected bit position j, we embed watermark

generated Wp in relational database R. If number of watermark bits in Wp are less then

number of detected watermarked positions in step2 we repeat the watermark bits in Wp again.

32

5.2.2. WATERMARK DECODER

Fig. 5.2. shows watermark decoder which detects whether the database is pirated or not.

Fig. 5.2. Watermark Decoder

In detection process, the first two steps of watermark insertion are followed. Once attribute

indices and bit positions are found we test whether or not the bits value matches the values

that should have been assigned by insertion algorithm and count the number of matches

matchcnt(m) against total number of watermarks totalcount(w). If there are very many

matches or very few matches we suspect piracy [Agrawal]. We fix small value α ϵ (0, 1) and

sets

𝜏 = 𝑚𝑎𝑥{ 𝑡𝜖 0,
𝑤

2
 : 𝑏 𝑖; 𝑤,

1

2
 𝑤−𝑡

𝑖=𝑡 ≥ 1 − 𝛼} (5.1)

Where

𝑏 𝑖; 𝑛, 𝑝 = 𝑛𝑘𝑝𝑖(1 − 𝑝)𝑛−𝑖 (5.2)

We suspects piracy if either m< τ or m> w- τ, as probability of so few or so many matches

under null hypothesis is less than or equal to α. α is called significance level of the test.

Functions used in watermark detector algorithm:

a) match(s.Ai,j): This function test whether or not the bit value of attribute s.Ai at position j

matches the values that is assigned by embedding algorithm i.e Wp and returns 1 if match

found.

33

b) threshold (totalcount,α): This function calculates threshold value τ using (1).

The algorithm

//Watermark Preparation

1. Input the values of watermark information ‗W‘ and secret key K1

2. For each character Ci in W do

3. Wb[i]=Ci + K1

[end of for loop]

4. WP=binary (Wb) // binary(Wb) function converts number to binary.

//Watermark Position Detection

5. Input the value of secret key K2.

6. Totalcount=matchcnt=0

7. For each tuple t ϵ S do

8. Compute MAC = H(K2|| t.P || K2) where, H() is secure hash function and ‗ ||‘ is

concatenation operator.

9. Seed CPSG1 with MAC of each tuple.

10. If (next(CPSG1) mod γ equals 0) then //mark the tuple

11. Attrindc[]= selectattr(next(CPSG1))

12. For each value in Attrindc[]

13. If (Attrindc[i] equals 1) // mark the attribute

14. Select Ai for marking

15. Bitindex j=next(CPSG1) mod LBAi // mark corresponding bit position

16. totalcount=totalcount+1

// Watermark Detector

17. matchcnt=matchcnt+match(s.Ai,j)

18. τ = threshold(totalcount, α)

19. If ((matchcnt< τ) or (matchcnt>totalcount-τ))

 then

20. Suspect piracy

 [end of if at line 19]

 [end of if at line 13]

34

 [end of for loop at line 12]

 [end of if of line 3 at line 10]

 [end of for loop of line 7]

Detecting watermark is blind technique as it does not require original database and

watermarks can be detected even in small subset of watermark relations as long as sample

contains some of the marks

For ownership identity, the watermark bits are extracted from database S and reverse of the

watermark preparation algorithm is followed to get watermarking text W` from which W is

extracted.

5.3 CONCLUSION

Owner identification and proof of ownership issues are resolved in [Khanduja]. This paper

proposes a secure robust and imperceptible algorithm. Embedding algorithm is divided into

three phases: Watermark preparator, watermark position detector and watermark embedder.

The ownership identification issue is resolved by embedding owner‘s identity as watermark

in Preparator phase. Position detector phase securely identifies multiple attributes with

varying number of candidate bit positions of the single table. Embedder inserts watermarks at

identified bit positions of multiple attributes of relational database.

35

CHAPTER 6

PROPOSED METHOD

6.1 INTRODUCTION

A data set D is transformed into a watermarked version DW by applying a watermark

encoding function that also takes as inputs secret key Ks only known to the copyright owner

and a watermark W. Watermarking modifies the data. However, these modifications are

controlled by providing usability constraints referred to by the set G. These constraints limit

the amount alterations that can be performed on the data, such constraints will be discussed in

detail in the following sections. Technique proposed by [Shehab] is modified and

implemented in proposed algorithm. In the proposed technique both GA and BFOA are

implemented to optimize the result.

Proposed watermarking system consists of two subsystems watermark encoder and respective

decoder.

6.2 WATERMARK ENCODER

It embeds desired watermarks into relational database. This task is achieved using four steps

as shown in Fig 6.1

Fig. 6.1. Watermark Encoder

36

6.2.1 WATERMARK PREPARATOR

Watermark to be inserted is selected by owner of the database. The watermark must be

chosen such that it reflects owner‘s identity. This step identifies the identity of database‘s

copyright holder as watermark. Thus ensures owners‘ identification.

Owner selects the watermarking text W to create a watermark to be embedded (W‘) by

applying hash function. A cryptographic hash function is a deterministic procedure that takes

an arbitrary block of data and returns a fixed-size bit string, the (cryptographic) hash value,

such that an accidental or intentional change to the data will change the hash value. The hash

values are called the message digest or simply digest. One of the most important properties of

hash function is that it is infeasible to find a message that has a given hash.

Message-Digest 5 algorithm is a used as a cryptographic hash function with a 128-bit (16-

byte) hash value. Specified in RFC 1321, MD5 has been employed in a wide variety of

security applications, and is also commonly used to check the integrity of files. MD5

processes a variable-length message into a fixed-length output of 128 bits. The input message

is broken up into chunks of 512-bit blocks (sixteen 32-bit little endian integers); the message

is padded so that its length is divisible by 512. The padding works as follows: first a single

bit, 1, is appended to the end of the message. This is followed by as many zeros as are

required to bring the length of the message up to 64 bits less than a multiple of 512. The

remaining bits are filled up with a 64-bit integer representing the length of the original

message, in bits.

The main MD5 algorithm operates on a 128-bit state, divided into four 32-bit words, denoted

A, B, C and D. These are initialized to certain fixed constants. The main algorithm then

operates on each 512-bit message block in turn, each block modifying the state. The

processing of a message block consists of four similar stages, termed rounds; each round is

composed of 16 similar operations based on a non-linear function F, modular addition, and

left rotation. Figure6.2. [wiki] illustrates one operation within a round. There are four

possible functions F; a different one is used in each round:

 denote the XOR, AND, OR and NOT operations respectively.

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Padding_%28cryptography%29
http://en.wikipedia.org/wiki/Modular_addition
http://en.wikipedia.org/wiki/XOR
http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Logical_disjunction
http://en.wikipedia.org/wiki/Negation

37

Fig. 6.2 MD5

6.2.2 DATA PARTITIONER

In this step, the data set D is partitioned into m non-overlapping partitions {S0; . . . ; Sm}

using the secret key Ks as in [Shehab].

Algorithm name: get-partitions

Input: Data Set D, Secret key Ks, number of partitions m

Output:- Data partitions S0,, Sm-1

1. S0,.......,Sm-1 {}

2. For each tuple r ϵ D

3. Partition(r) H(Ks ||H(r.P||Ks)) mod m

4. Insert r into Spartition(r)

5. Return S0,.......,Sm-1

The data partitioning algorithm partitions the data set based on a secret key Ks selected by

owner of the database. The data set D is a database relation with scheme D(P, A0, . . .,Av-1),

where P is the primary key attribute, A0, . . .,Av-1 are v attributes which are candidates for

watermarking, and |D| is the number of tuples in relation D. The data set D is to be

partitioned into m non-overlapping partitions, namely, {S0, . . . , Sm-1}, such that each

partition Si contains on the average |D|/m tuples from the data set D. At line 3, the data

partitioning algorithm computes a MAC for each tuple r ϵ D, which is considered to be secure

[Schneier] and is given by H(Ks||H(r.P||Ks), where , r.P is the primary key of the tuple r, H()

is a secure hash function, and || is the concatenation operator.

38

Using the computed MAC, tuples are assigned to partitions. For a tuple r, its partition

assignment is given by

 Partition(r) = H (Ks||H (r.P||Ks)) mod m (6.1)

Using the property that secure hash functions generate uniformly distributed message digests

this partitioning technique, on average, places |D|/ m tuples in each partition.

A MAC algorithm, sometimes called a keyed (cryptographic) hash function, accepts as input

a secret key and an arbitrary-length message to be authenticated, and outputs a MAC

(sometimes known as a tag). The MAC value protects both a message's data integrity as well

as its authenticity, by allowing verifiers (who also possess the secret key) to detect any

changes to the message content.

Furthermore, an attacker cannot predict the tuples-to-partition assignment without the

knowledge of the secret key Ks and the number of partitions m, which are kept secret. In case

of a single attribute relation, the most significant χ bits (MSB) of the data could be used

instead of the primary key [Shehab]. The use of the MSB assumes that the watermark

embedding data alterations will unlikely alter the MSB χ bits. However, if too many tuples

share the same MSB χ bits, this would enable the attacker to infer information about the

partition distribution. The solution would be to select χ that minimizes the duplicates.

Another technique, in case of a relation with multiple attributes, is to use identifying

attributes instead of the primary key; for example, in medical data, the patient full name,

patient address, and patient date of birth could be used.

6.2.3 WATERMARK EMBEDDER

The watermark embedding algorithm is explained by formalizing the bit encoding as a

constrained optimization problem. A Genetic Algorithm or Bacteria Foraging technique can

be used to efficiently solve such optimization problem. The selection of which optimization

algorithm to use is decided according to the application time and processing requirements, as

will be discussed further. It is assumed that the tuples in a partition Si contain a single

numeric attribute. In such a case each partition, Si can be represented as a numeric data vector

Si=[Si1,.....Sin]ϵR
n
 .

39

Table 6.1 Notations used

6.2.3.1 SINGLE BIT ENCODING ALGORITHM

Given a watermark bit bi and a numeric data vector Si=[si1; . . . ; sin]ϵR
n
, the bit encoding

algorithm maps the data vector Si to a new data vector Si
W

= Si +∆i, where ∆i =[∆i1; . . . ;∆in]

ϵR
n
 is referred to as the manipulation vector. The performed manipulations are bounded by

the data usability constraints referred to by the set Gi =[gi1; . . . ; gip]. The encoding is based

on optimizing encoding function referred to as the hiding function, which is defined as

follows [Shehab]:

A hiding function θγ : R
n
 R (6.2)

where γ is the set of secret parameters decided by the data owner.

The set γ can be regarded as part of the secret key. Note that when the hiding function is

applied to Si +∆i, the only variable is the manipulation vector ∆i, whereas Si and γ are

constants. To encode bit bi into set Si, the bit encoding algorithm optimizes the hiding

function θγ(Si +∆i). The objective of the optimization problem of maximizing or minimizing

the hiding function is based on the bit bi such that if the bit bi is equal to 1, then the bit

encoding algorithm solves the following maximization problem:

 max

 ∆i θγ(Si +∆i). (6.3)

 subject to Gi

However, if the bit bi is equal to 0, then the problem is simply changed into a minimization

problem. The solution to the optimization problem generates the manipulation vector ∆i *

40

at which θγ(Si +∆i*) is optimal. The new data set Si
W

 is computed as Si +∆i*.

At line 1 of the bit encoding algorithm, bit bi is embedded in the partition Si if |Si| is greater

than €. The value of € represents the minimum partition size. The maximize and minimize in

the bit encoding algorithm optimize the hiding function θγ (Si +∆i*) subject to the constraints

in Gi. The maximization and minimization solution statistics are recorded for each encoding

step in Xmax, Xmin, respectively, as indicated in lines 4 and 7 of the encoding algorithm

written below. These values are used by threshold evaluator to compute optimal decoding

parameters.

The set of usability constraints Gi represents the bounds on the tolerated change that can be

performed on the elements of Si. These constraints describe the feasible space for the

manipulation vector ∆i for each bit encoding step. These constraints are application and data

dependent.

In my problem, interval constraints are used to control the magnitude of the alteration for ∆ij,

that is,

∆ij
min

 <= ∆ij <= ∆ij
max

 (6.4)

The reference point is calculated as

ref =μ+ c * σ, (6.5)

 Where, c ϵ(0,1); is a secret real number that is a part of the set γ , μ is mean of Si
W

=Si +∆i*

(i.e. μ(Si + ∆i*)) and σ is variance estimates of the set Si
W

=Si + ∆i* (i.e. σ
2

(Si + ∆i*) .)

 The data points in Si + ∆i that are above ref are referred to as the ―tail‖ entries, as illustrated

in Fig. 6.3 [Shehab].

Fig6.3. The distribution of set Si + ∆i* on number line and tail entries circled.

The hiding function θc is defined as the number of tail entries normalized by the cardinality of

Si, also referred to as the normalized tail count. It is computed as follows:

Θc(Si +∆i) = 1/n 𝟏 {
𝒏

𝒋=𝟏 Sij +∆ij>=ref} (6.6)

41

Where, n is the cardinality of Si, and 1{} is the indicator function defined as follows:

1{condition}=
1, 𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 }

The objective function Θc(Si +∆i) is nonlinear and nondifferentiable, which makes the

optimization problem at hand a nonlinear constrained optimization problem. To solve this

optimization problem, two techniques based on GA and BF is proposed respectively.

Algorithm:- encode_single_bit

Input:- Data Set Si, bit bi, constraint set Gi, secret parameters set γ,statistics Xmax, Xmin

Output:- data set Si+∆i
*

1. If (|Si|<€), then return Si

2. If (bi==1) then,

3. Maximize (θγ(Si+∆i)) subj to Gi (Call G.A or BFOA respectively)

4. Insert θγ(Si+∆i
*
) into Xmax

5. Else

6. Minimize (θγ(Si+∆i)) subj to Gi (Call G.A or BFOA respectively)

7. Insert θγ(Si+∆i
*
) into Xmin

8. Return Si+∆i
*

To optimize the specific attribute value for all the tuples within a partition is done using

Genetic Algorithm. At Line 3, Maximize (θγ(Si+∆i)) and Line 6, Minimize (θγ(Si+∆i)) is

achieved by invoking genetic algorithm. The fitness value of function is calculated by

calculating reference point for a partition first and then number of tail entries normalized by

the cardinality of Si is calculated. Similarly fitness value for every partition is calculated. In

this approach the fitness function optimizes the vector consisting of number of elements in a

particular partition. Thus, complexity of function increases as function has to optimize

variable number of elements depending on number of elements in that partition. Fitness

function changes the values of ∆i such that (Si+∆i) lies within the specified range.

General Genetic Algorithm used for the implementation is as follows:

42

Fig. 6.4. Working Cycle of Each Generation Of Genetic Algorithm

Optimization can also be achieved using Bacterial foraging algorithm, details are already

explained earlier. Objective function is calculated using same formula as for genetic

algorithm. First reference point for a particular partition is calculated and then number of tail

entries normalized by the cardinality of Si is calculated to get objective function. Similarly for

every partition is objective function is calculated. In this approach the objective function

optimizes the vector consisting of number of elements in a particular partition. Flowchart of

the steps followed in bacterial foraging for calculating optimal value of hiding function [Das]

43

Fig. 6.5. Flowchart of Bacterial Foraging Algorithm

6.2.3.2 WATERMARK EMBEDDING ALGORITHM

Algorithm:- embed_watermark [Shehab]

Input:- Data set D, watermark W= {b0,.......,bl-1}, Secret key Ks, number of partitions m

Output:- Watermarked Data set Dw, optimal decoding threshold T
*

1. Dw, Xmax,Xmin{}

2. S0,......,Sm-1 get_partitions(D,Ks,m)

3. For each partition Sk

4. ik mod l

5. Sk
w
 encode_single_bit(bi, Sk,c,Xmax,Xmin)

6. Insert Sk
w
 into Dw

44

7. T
*
 get_optimal_threshold(Xmax, Xmin)

8. Return Dw, T
*

A watermark is a set of l bits W = bl-1; . . . ; b0 that are to be embedded in the data partitions

{S0; . . . ; Sm-1}. To enable multiple embeddings of the watermark in the data set, the

Watermark length l is selected such that l <<m. At line 4 of the watermark embedding

algorithm bit bi is embedded in partition Sk such that k mod l =i. This technique ensures that

each watermark bit is embedded floor (m/ l) times in the data set D. The watermark

embedding algorithm generates the partitions by calling get partitions at line 2, then for each

partition Sk, a watermark bit bi is encoded by using the single bit encoding algorithm (encode

single bit). The generated altered partition S
W

k is inserted into watermarked data set DW.

Statistics (Xmax, Xmin) are collected after each bit embedding and are used by the get optimal

threshold algorithm to compute the optimal decoding threshold.

6.2.4 THRESHOLD EVALUATOR

The value of the threshold T* is calculated so as to minimize the probability of bit decoding

error. The probability of bit decoding error is defined as the probability of an embedded bit

decoded incorrectly. The decoding threshold T* is selected such that it minimizes the

probability of decoding error. The maximized hiding function values corresponding to b0 is

equal to 1 are stored in the set Xmax. Similarly, the minimized hiding function values are

stored in Xmin Let Perr, P0, and P1 represent the probability of decoding error, the probability

of encoding a bit = 0 and the probability of encoding a bit =1, respectively. Furthermore,

let be, bd, and f(x) represent the encoded bit, decoded bit, and a probability density function,

respectively. Perr is calculated as follows [Shehab]:

𝑃𝑒𝑟𝑟 =P (bd= 0, be = 1) + P (bd= 1, be =0) (6.7)

 = P(bd= 0| be = 1)P1 + P (bd= 1| be =0)P0 (6.8)

 = P(x<T| be = 1)P1 + P (x>T| be =0)P0 (6.9)

 = P1 𝑓(𝑥|𝑏𝑒 = 1
𝑇

−∞
)𝑑𝑥 + P0 𝑓(𝑥|𝑏𝑒 = 0)𝑑𝑥

∞

𝑇
 (6.10)

45

To minimize the probability of decoding error (Perr) with respect to the threshold T, we take

the first order derivative of Perr with respect to T to locate the optimal threshold T*, as

follows:

𝜕𝑃𝑒𝑟𝑟

𝜕𝑇
= 𝑃1

𝜕

𝜕𝑇
 𝑓 𝑥 𝑏𝑒 = 1 𝑑𝑥 + 𝑃0

𝜕

𝜕𝑇
 𝑓 𝑥 𝑏𝑒 = 0 𝑑𝑥

∞

𝑇

𝑇

−∞
 (6.11)

 = P1f(T|be=1)-P0f(T|be=0) (6.12)

The distributions f(x|be=0) and f(x|be=1) are estimated from the statistics of the sets Xmin and

Xmax, respectively. From our experimental observations of Xmin and Xmax, the distributions

f(x|be=0) and f(x|bc=1) pass the chi-square test of normality and thus can be estimated as

Gaussian distributions N(μ0,σ0) and N(μ1,σ1) respectively. P0 is estimated by |Xmin| /

(|Xmax|+|Xmin|) and P1 = 1 - P0. Substituting the Gaussian expressions for f(x|be= 0) and f(x|be=

1), the first order derivative of Perr is as follows:

𝜕𝑃𝑒𝑟𝑟

𝜕𝑇
=

𝑃1

𝜎1√2𝜋
exp −

 𝑇−𝜇1 2

2𝜎1
2 −

𝑃0

𝜎0√2𝜋
exp −

 𝑇−𝜇0 2

2𝜎0
2 (6.13)

By equating the first order derivative of Perr to zero, we get the following quadratic equation,

the roots of which include the optimal threshold T* that minimizes 𝑃𝑒𝑟𝑟 . The second order

derivative of 𝑃𝑒𝑟𝑟 is evaluated at T* to ensure that the second order necessary condition

𝜕2𝑃𝑒𝑟𝑟 (𝑇∗)

𝜕𝑇2 > 0 is met.

𝜎0
2− 𝜎1

2

2𝜎0
2𝜎1

2 𝑇∗2 +
𝜇0𝜎1

2− 𝜇1𝜎0
2

𝜎0
2𝜎1

2 𝑇∗ + ln(
𝑃0𝜎1

𝑃0𝜎0
) +

𝜇1
2𝜎0

2− 𝜇0
2𝜎1

2

2𝜎0
2𝜎1

2 = 0 (6.14)

From the above analysis, the selection of the optimal T* is based on the collected output

statistics of the watermark embedding algorithm. The optimal threshold T* minimizes the

probability of decoding error and thus enhances the strength of the embedded watermark by

increasing the chances of successful decoding.

6.3 WATERMARK DECODER

Watermark decoding is the process of extracting the embedded watermark using the

watermarked data set DW, the secret key Ks, and the optimal threshold T*. The decoding

algorithm is blind as the original data set D is not required for

the successful decoding of the embedded watermark.

46

The watermark decoding is divided into four main steps as shown in figure 6.6

Fig. 6.6 Watermark Decoder

6.3.1 WATERMARK PREPARATOR

By following same algorithm of watermark preparatory of encoder watermarks are prepared.

Watermark to be inserted is selected by owner of the database. The watermark must be

chosen such that it reflects owner‘s identity.

Owner selects the watermarking text W to create a watermark to be embedded (W‘) by

applying hash function.

6.3.2 DATA PARTITIONER

 By using the data partitioning algorithm used in Encoder, the data partitions are generated.

Input to algorithm: Data Set DW‘, Secret key Ks, number of partitions m.

Output of algorithm: Data partitions S0‘,, Sm-1‘..

6.3.3 THRESHOLD DECODER

The statistics of each partition are evaluated, and the embedded bit is decoded using a

threshold-based scheme based on the optimal threshold T*.

Presented with the data partition S
W

i , the bit decoding technique computes the hiding

function (θγSi
w
) and compares it to the optimal decoding threshold T* to decode the

embedded bit bi. If (θγSi
w
) is greater than T*, then the decoded bit is 1; otherwise, the

decoded bit is 0. The decoding technique computes the normalized tail count of Si
w
 by

computing the reference ref and by counting the number of entries in Si
w
 that is greater than

ref. Then, the computed normalized tail count is compared to T* see fig. 6.7[Shehab]

47

Fig.6.7. Threshold-based decoding scheme.

6.3.4 MAJORITY VOTER

The watermark bits are decoded using a majority voting technique. As the watermark W =bl-

1, . . ., b0 is embedded several times in the data set, each watermark bit is extracted several

times, where for a bit bi, it is extracted from partition Sk, where k mod l= i. The extracted bits

are decoded using the majority voting technique, which is used in the decoding of repetition

error correcting codes. Each bit bi is extracted m/ l times so it represents a floor (m/l)-fold

repetition code [Shehab].

6.3.5 WATERMARK DETECTION ALGORITHM

Watermark detection algorithm combines all the above described steps to extract the

embedded watermarking bits.

Algorithm: detect_watermark [Shehab]

Input: watermarked data set Dw, m,c,€, Ks, T
*
, watermark length l

Output: detected watermark WD

1. Set ones[0,.....,l-1]0

2. Set zeros[0,.....,l-1]0

3. S0,......,Sm-1 get_partitions(Dw,Ks,m)

4. For j=0 to m-1

5. If |Sj|>=€

6. I j mod l

7. Value θ(Sj, 0, c)

8. If value>=T
*

9. Ones[i] Ones[i+1]

10. Else

11. Zeros[i] Zeros[i+1]

12. For j=0,....., l-1

13. If ones[j]>zeros[j]

14. WD[j]1

48

15. Else If ones[j]<zeros[j]

16. WD[j]0

17. Else

18. WD[j]x

19. Return WD

6.4 CONCLUSION

Resilient watermarking technique for relational data that embeds watermark bits in the data

statistics is proposed. The watermarking problem was formulated as a constrained

optimization problem that maximizes or minimizes a hiding function based on the bit to be

embedded. GA and BFOA techniques were employed to solve the proposed optimization

problem and to handle the constraints. A data partitioning technique that does not depend on

special marker tuples to locate the partitions and proved its resilience to watermark

synchronization errors is proposed. I have developed an efficient threshold-based technique

for watermark detection that is based on an optimal threshold that minimizes the probability

of decoding error. The watermark resilience was improved by the repeated embedding of the

watermark and using majority voting technique in the watermark decoding phase.

49

CHAPTER 7

EXPERIMENTS AND ANALYSIS

7.1 INTRODUCTION

In this section, we report the results of an extensive experimental study that analyzes the

resilience of the proposed watermarking scheme to the attacks. All the experiments were

performed on 2.13 GHz Intel Core i3 CPUs with 2GB of RAM. Experiment was performed

to execute proposed method by using both Genetic Algorithms and Bacterial Foraging

Optimization Algorithm. Various parameters of both the algorithms were optimized to get

best results. A sample relational database is taken of 500 tuples and containing the record of

salaries of various individual at the survey conducted by an organization. However, salary

lies between a particular range and that range should not be violated while inserting

watermarks. The usability constraint considered is interval constraints that are used to control

the magnitude of the alteration for ∆ij, that is,

∆ij
min

 <= ∆ij <= ∆ij
max

Thus small changes in salary attribute are done by inserting watermarks in such a way that

usability constraints are not violated.

7.2 GENETIC ALGORITHMS

Experiment is conducted by initializing c=5%, a 4-bit watermark is created using watermark

preparatory algorithm; a minimum partition size of 20 and number of generation taken=1000,

by using genetic algorithm was used. The optimal threshold value was computed using

Matlab Genetic Algorithm Tool.

Matlab provides an optimization toolbox that includes a GA-based solver. The toolbox is

started by typing optimtool in the Matlab's command line. As soon as the optimization

window appears, the solver ga – Genetic Algorithm is selected and fitness function file is

mentioned.

One of the important parameters that affects the diversity of the population (remember, it's

vital to have good diversity in the population) is the Fitness Scaling (in Options). If the

fitness values vary too widely, the individuals with the lowest values (for minimization)

reproduce too rapidly, taking over the population pool too quickly and preventing the GA

from searching other areas of the solution space. On the other hand, if the values vary only a

50

little, all individuals have approximately the same chance of reproduction and the search will

progress very slowly. The Fitness Scaling adjusts the fitness values (scaled values) before the

selection step of the GA. This is done without changing the ranking order, that is, the best

individual based on the raw fitness value remains the best in the scaled rank, as well. Only

the values are changed, and thus the probability of an individual to get selected for mating by

the selection procedure. This prevents the GA from converging too fast which allows the

algorithm to better search the solution space.

Fig.7.1. GA Toolbox in MATLAB

The following graphs show the results obtained by implementing GA.

51

Figure7.2. Graph plots the value of fitness function with the generations.

Figure 7.3 Graph calculates the current best value of delta of each individual in a partition.

52

Figure7.4 Graph tells the fitness of each individual in a partition.

The GA will stop if any of the following 3 reaches 100%.

Generations (Generations) — specifies the maximum number of iterations for the genetic

algorithm to perform.

Stall generations (StallGenLimit) — the algorithm stops if the weighted average change in

the fitness function value over Stall generations is less than Function tolerance.

Stall time limit (StallTimeLimit) — the algorithm stops if there is no improvement in the

best fitness value for an interval of time in seconds specified by Stall time.

Figure 7.5. Graph plots the Stopping criteria with the % of criteria met.

53

7.3 BACTERIAL FORAGING

Bacterial Foraging Algorithm is executed to optimize the various partitions created of the

sample relational database taken of 500 tuples. The database contains the record of salaries of

various individual at the survey conducted by an organization. In this case, the exact value of

attribute salary is not required. However, salary lies between a particular range and that range

should not be violated while inserting watermarks. The usability constraint considered is

interval constraints that are used to control the magnitude of the alteration for ∆ij, that is,

∆ij
min

 <= ∆ij <= ∆ij
max

Minimum and maximum value of interval constraint is decided and accordingly optimization

is done using BFOA.

The reference point is calculated as ref =μ+ c* σ, where, c ϵ(0,1); is a secret real number

that is a part of the set γ , μ is mean of Si
W

=Si +∆i* (i.e. μ(Si + ∆i*)) and σ is variance estimates

of the set Si
W

=Si + ∆i* (i.e. σ
2

(Si + ∆i*) .)

C=0.5 is chosen as it gives best results in this case.

Experiment is conducted by initializing following values to the parameters, the results

obtained are shown in graph plotted (Fig.7.6)

S: Total number of bacteria in the population,

Nc =100: The number of chemotactic steps,

Ns=4: The swimming length.

Nre=4: The number of reproduction steps,

Ned =2: The number of elimination-dispersal events,

Ped=0.25: Elimination-dispersal probability,

54

Fig.7.6. Optimal values attained at various datasets.

Experiment is conducted by varying values of S and keeping other variables at constant value

reveals following result.

Considering following values of parameters the results obtained are shown in table 7.1. And

graph plotted for single bacteria representing Cost at various chemotactic steps. (Fig.7.7)

S: Total number of bacteria in the population,

Nc =100: The number of chemotactic steps,

Ns=4: The swimming length.

Nre=4: The number of reproduction steps,

Ned =2: The number of elimination-dispersal events,

Ped=0.25: Elimination-dispersal probability,

Table 7.1 Cost and Execution time by varying S (for Minimization)

S Cost(minimization) Execution Time

50 0.3077 102.914887 seconds

40 0.3077 81.096739 seconds.

30 0.3077 61.379924 seconds

20 0.3077 40.704909 seconds.

10 0.3846 22.361223 seconds

1 2 3 4 5 6 7 8 9 10

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

DataSet

C
o
s
t/

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Xmin

Xmax

55

Fig. 7.7 Cost of Bacterium at various chemotactic steps for S=50 (Minimum value attained at

Nc=64).

Fig. 7.8. Graph depicting optimal value attained at NC=95 for S=20.

0 20 40 60 80 100 120
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

X: 64

Y: 0.3077

Number of Chemotactic Steps, Nc

C
o
s
t

0 20 40 60 80 100 120
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

X: 95

Y: 0.3077

Number of Chemotactic Steps,Nc

C
o
s
t

56

Thus, the graphs reveals that for S=20 also, the results are obtained and execution time is

reduced to 60%. However by reducing Nc will affect the optimal value as for S=20 at Nc=95

approximately, optimal value is obtained. For Maximization, same results are obtained and

hence at S=20 optimal results can be obtained.

Thus, experiments are conducted by keeping value of Nc =100, S=20, Nre=4 while in case of

GA number of generations taken=1000 to get desired results. Hence the choice of the

technique to use depends on the application processing requirements. Solving the

optimization problem does not necessarily require to find a global solution because finding

such solution may require a large number of computations. GA could be used in order to

determine optimal solutions when by trading processing time. GAs only when the processing

time is not a strict requirement and watermarking is performed offline. For faster

performance, the use of BFOA technique is recommended.

7.4 ATTACKS

7.4.1. Deletion Attack

In this attack, attacker randomly drops α tuples from the watermarked data set, the watermark

is then decoded and watermark loss is measured for different α values. Fig. 7.9 shows the

experimental results; they clearly show that proposed watermarking technique is resilient to

the random deletion attack. Using proposed technique, the watermark was successfully

extracted with 100 percent accuracy even when more than 80 percent of the tuples were

deleted. Because our technique is highly resilient to tuple deletion attacks, the watermark can

be retrieved from a small sample of the data. This important property combined with the high

efficiency of proposed watermark detection algorithm makes it possible to develop tools able

to effectively and efficiently search the Web to detect illegal copies of data.

Table 7.2 Resilience to Deletion Attack

Tuples Deleted (%) Watermarks Extracted (%)

25% 100%

50% 100%

65% 100%

75% 80%

80% 80%

90% 50%

57

Fig. 7.9. Resilience to deletion attack

Alteration Attack

In this attack, attacker alters the data value of α tuples. Here, attacker is faced with the

challenge that altering the data may disturb the watermark; however, at the same time,

attacker does not have access to the original data set D and, thus, may easily violate the

usability constraints and render the data useless. The alteration attack basically perturbs the

data in hope of introducing errors in the embedded watermark bits. The attacker is trying to

move the hiding function values from the left of the optimal threshold to the right and vice

versa. However, using the conflicting objectives in encoding the watermark bits, that is the

maximizing the tail count for bi =1 and minimizing the tail count for bi = 0, maximizes the

distance between the hiding function values in both cases; thus, it makes it more difficult for

the attacker to alter the embedded bit. In addition, by the repeated embedding of the

watermark and the use of majority voting technique, this attack can easily be mitigated.

INSERTION ATTACK

Attacker decides to insert α tuples to the data set DW hoping to perturb the embedded

watermark. The insertion of new tuples acts as additive noise to the embedded watermark.

However, the watermark embedding is not based on a single tuple and is based on a

cumulative hiding function that operates on all the tuples in the partition. Thus, the effect of

10 20 30 40 50 60 70 80 90
50

55

60

65

70

75

80

85

90

95

100

 Deleted Tuples (%)

W
a
te

rm
a
rk

 M
a
tc

h
 (

%
)

58

adding tuples is a minor perturbation to the value of the hiding function and thus to the

embedded watermark bit. Marker-based watermarking techniques may suffer badly from this

attack because the addition of tuples may introduce new markers in the data set and thus lead

to the addition of new bits in the embedded watermark sequence. Consequently, this results in

a watermark synchronization error. The watermark was recovered with 100 percent accuracy

even when up to 75% percent of the data set size tuples were inserted.

Table 7.3 Resilience to Insertion Attack

Tuples Inserted (%) Watermarks Extracted (%)

25% 100%

50% 100%

65% 100%

75% 100%

80% 80%

100% 80%

Fig. 7.10. Resilience to Insertion attack

10 20 30 40 50 60 70 80 90 100
80

82

84

86

88

90

92

94

96

98

100

X: 90

Y: 80

Inserted Tuples (%)

W
a
te

rm
a
rk

 M
a
tc

h
 (

%
)

59

Table 7.4. Comparison between our technique and techniques based on marker tuples

7.5 CONCLUSION

An experiment is conducted to show resilience of our proposed technique to various attacks.

A comparison our watermarking technique with previously posed marker tuples based

techniques shows the superiority of our technique to deletion, alteration, and insertion

attacks. Moreover optimization done by Bacterial Foraging gives better results than by

genetic algorithm in terms of processing time and optimal results.

60

CHAPTER 8

CONCLUSION

The watermarking of relational databases is formulated as a constrained optimization

problem and efficient techniques to handle the constraints are discussed. Two techniques are

presented to solve the formulated optimization problem based on genetic algorithms (GAs)

and Bacterial foraging (BF) techniques. .

In this dissertation a data partitioning technique is presented that does not depend on marker

tuples to locate the partitions and, thus, it is resilient to watermark synchronization errors.

An efficient technique for watermark detection is proposed that is based on an optimal

threshold. The optimal threshold is selected by minimizing the probability of decoding error

We have compared our watermarking technique with previous marker tuples based

approaches and shown the superiority of our technique with respect to all types of attacks.

The watermark resilience was improved by the repeated embedding of the watermark and

using majority voting technique in the watermark decoding phase.

Hence proposed watermarking technique is secure robust and imperceptible algorithm for

numeric attributes that provides ownership identification as identity of owner is embedded as

watermarks and proof of ownership as watermarks can be extracted back accurately from

distorted or altered watermarked database. The robustness of the proposed algorithm is

verified against number of database attacks.

FUTURE SCOPE

In this dissertation, watermarking technique for numeric attributes is proposed which can be

extended for non-numeric attributes as well.

Further, in case of a relation with multiple attributes, the watermark resilience can be

increased by embedding the watermark in multiple attributes. This is a simple extension to

the presented encoding and decoding techniques in which the watermark is embedded in each

attributed separately. The future scope of the work is to explore other evolutionary algorithms

available in the literature is to solve constraint optimization problem framed in this

dissertation.

61

REFERENCES

[Agrawal] Agrawal Rakesh, Peter J. Haas, Jerry Kiernan, ―Watermarking

relational data: framework, algorithms and analysis‖, The VLDB

Journal, 2003, pp. 157-169.

[Al-Haj] Al-Haj Ali and Ashraf Odeh, ―Robust and Blind Watermarking of

Relational Database Systems‖, Journal of Computer Science 4 (12), pp.

1024-1029, 2008.

[Bhattarcharya] Bhattacharya S., A. Cortesi,‖A Distortion Free Watermark Framework

for Relational Databases". ICSOFT (2) 2009, pp. 229-234.

[Chen‘10] Chen H., Y. Zhu, K. Hu, and X. He, ―Hierarchical swarm model: a

new approach to optimization,‖ Discrete Dynamics in Nature and

Society, vol. 2010, Article ID 379649, 30 pages, 2010.

[Chen‘11] Chen Hanning , Yunlong Zhu, and Kunyuan Hu,‖ Adaptive Bacterial

Foraging Optimization‖ , Abstract and Applied Analysis,Volume 2011

(2011), Article ID 108269, 27 pages.

[Cui] Cui Haiting, Xinchun Cui, Mailing Meng, ―A Public Key

Cryptography Based Algorithm for Watermarking Relational

Databases‖, IEEE proceedings of International Conference on

Intelligent Information Hiding and Multimedia Signal Processing

2008, pp. 1344-1347.

[Deshpande] Deshpande Arti, Mr. Jayant Gadge,‖ New Watermarking technique for

Relational Databases‖, IEEE proc. on ICETET-09, pp. 664-669.

[Dorigo‘96] Dorigo M., V. Maniezzo, and A. Colorni, ―Ant system: Optimization

by a colony of cooperating agents,‖ IEEE Transactions on Systems,

Man, and Cybernetics. Part B, vol. 26, no. 1, pp. 29–41, 1996.

[Dorigo‘99] Dorigo M., G. Di Caro, and L. M. Gambardella, ―Ant algorithms for

discrete optimization,‖ Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

http://dx.doi.org/10.1155/2010/379649
http://dx.doi.org/10.1155/2010/379649
http://dx.doi.org/10.1155/2010/379649
http://www.hindawi.com/93513862/
http://www.hindawi.com/19749156/
http://www.hindawi.com/76738131/

62

[Das] Das Swagatam, Arijit Biswas, Sambarta Dasgupta, and Ajith

Abraham,‖ Bacterial Foraging Optimization Algorithm: Theoretical

Foundations, Analysis, and Applications‖, Foundations of

Computational Intelligence, Vol 3 (2009), Springer, pp: 23–55.

[Eberchart] Eberchart R. C. and J. Kennedy, ―A new optimizer using particle

swarm theory,‖ in Proceeding of the 6th International Symposium on

Micromachine and Human Science, pp. 39–43, Nagoya, Japan, 1995.

[Floudas] Floudas C. A., Deterministic Global Optimization: Theory, Methods

and Applications, vol. 37 of Nonconvex Optimization and Its

Applications, Kluwer Academic Publishers, Dordrecht, The

Netherlands, 2000.

[Goldberg] Goldberg D.E., ―Genetic algorithms in search, optimization and

machine learning‖, Addison-Wesley, Reading, MA, 1989

[Gupta] Gupta V.K., ―Copyright Issues Relating to Database Use‖ DESlDOC

Bulletin of k\tom\ation Technology, Vol. 17, No. 4, July 1997, pp. 1 1-

1 6 ,1997, OESIOOC.

[Hanyurwimfura] Hanyurwimfura Damien, Yuling Liu and Zhijie Liu, ―Text Format

Based Relational Database Watermarking for Non-numeric Data‖,

IEEE ICCDA 2010, pp.v4-312-316.

[Holland] Holland J. H., ―Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to B, control, and Artificial

Intelligence‖, University of Michigan Press, Ann Arbor, Mich, USA,

1975.

[Hu] Hu Zhongyan, Zaihui Cao, Jianhua Sun,‖ An Image Based Algorithm

for Watermarking Relational Databases‖, IEEE 2009 International

Conference on Measuring Technology and Mechatronics Automation,

pp. 425-428

[Jiang] Jiang Chuanxian, Xiaowei Chen , Zhi Li ―Watermarking Relational

Databases for Ownership Protection Based on DWT‖, Fifth

63

International Conference on Information Assurance and Security 2009,

pp. 305-308.

[Khanduja] Khanduja Vidhi , O.P.Verma,‖Identification and Proof of Ownership

by Watermarking Relational Databases‖, 2011 IEEE International

Conference on Network communication and Computer (ICNCC-2011),

pp. 257-260.

[Mathew] Mathew Tom V.,‖Genetic Algorithms‖, Lecture Notes, IITB, Jan,

2005.

[Odeh] Odeh Ashraf and Ali Al-Haj, ―Watermarking Relational Database

Systems‖, 2008 IEEE, pp. 270-274.

[Passino] K. M. Passino, ―Biomimmicry of bacterial foraging for distributed

optimization and control,‖ IEEE Control Systems Magazine, 2002,

Vol. 22, Issue 3, pp. 52–67.

[Mishra] S. Mishra, ―A hybrid least square-fuzzy bacterial foraging strategy for

harmonic estimation,‖ IEEE Transactions on Evolutionary

Computation, vol. 9, no. 1, pp. 61–73, 2005

[Schneier] Schneier, B.: Applied Cryptography. John Wiley, New York (1996).

[Shehab] Shehab Mohamed, Elisa Bertino, and Arif Ghafoor, ‖Watermarking

Relational Databases Using Optimization-Based Techniques‖, IEEE

Transactions On Knowledge And Data Engineering, Vol. 20, No. 1,

January 2008.

[Sion] Sion R., S., M. Atallah and S. Prabhakar, ―Rights protection for

relational data‖, IEEE Transactions on Knowledge and Data

Engineering, 2004, pp. 1509-1525.

[Spall] Spall J. C., ―Introduction to Stochastic Search and Optimization:

Estimation, Simulation, and Control‖, Wiley-Interscience Series in

Discrete Mathematics and Optimization, Wiley-Interscience, Hoboken,

NJ, USA, 2003.

http://dx.doi.org/10.1109/TEVC.2004.840144
http://dx.doi.org/10.1109/TEVC.2004.840144
http://dx.doi.org/10.1002/0471722138
http://dx.doi.org/10.1002/0471722138
http://dx.doi.org/10.1002/0471722138

64

[Sun] Sun Jianhua, Zaihui Cao, Zhongyan Hu,‖ Multiple Watermarking

Relational Databases Using Image‖, IEEE proc. on 2008 International

Conference on MultiMedia and Information Technology, pp-373-376.

[Tripathy] Tripathy M., S. Mishra, L. L. Lai, and Q. P. Zhang, ―Transmission loss

reduction based on FACTS and bacteria foraging algorithm,‖ 9th

International Conference on Parallel Problem Solving from Nature

(PPSN '06), vol. 4193 of Lecture Notes in Computer Science, pp. 222–

231, September 2006.

[wiki] http://en.wikipedia.org/wiki/Digital_watermarking.

[wiki] http://en.wikipedia.org/wiki/Copyright.

[Vaas] Vaas L.,―Putting a Stop to Database Piracy,‖ eWEEK, EnterpriseNews

and Revs., Sept. 2003.

[Zhang] Zhang Zhi-Hao , Xiao-Ming jin, Jain-Min wan , ―Watermarking

Relational Database Using Image‖ , IEEE, Third International

Conference on Machine Learning and Cybernetics, 2004, pp. 1739-

1744.

