A Dissertation on

CASE STUDY OF MEMRISTANCE BASED CHUA'S CIRCUIT

Submitted in partial fulfilment of the requirement For the award of Degree of

MASTER OF ENGINEERING (Control & Instrumentation Engineering)

By
SHRUTI SHARMA
University Roll No. 9028

Under the esteemed guidance of

Department of Electrical Engineering Delhi College of Engineering 2009-2011

CERTIFICATE

This is to certify that major thesis titled "Case study of Memristance based Chua's circuit" submitted by, Ms. Shruti Sharma in partial fulfillment for the degree of Master of Engineering (CONTROL AND INSTRUMENTATION) of Electrical Engineering Department, Delhi College of Engineering, is a bonafide record of work carried out by her under my guidance and supervision.

Mr. RAM BHAGAT

Lecturer
Deptt. of Electrical Engineering
Delhi College of Engineering
Delhi-110042

ACKNOWLEDGEMENT

I am greatly indebted to the guidance and the help I have received from numerous

people during the course of my project. I would like to extend my sincere gratitude and sincere

thanks to my respected guide Mr. Ram Bhagat, under whose guidance I am able to successfully

complete my work.

I am also thankful to **Prof.** Narendra Kumar, Head of Electrical Engineering

Department, for providing valuable comments and supporting my efforts.

My special thanks to my loving family & my friends, who always gave moral support

and continuously encourage my academic endeavor.

Date

Shruti Sharma (13/C&I/09)

Master of Engineering Delhi College of Engineering

III

ABSTRACT

This Project report highlights the V-I characteristics analysis of various implementations of chua diode by plotting the characteristics at different values of breakpoints and slopes. The V-I characteristics are obtained by simulating the different implementations of chua circuit by matlab simulink software.

In the next section, a case study is performed on memristance driven chua's circuit. Some parameters are selected by studying the desired conditions of memrister attractor and then two cases are implemented to obtain the memristor attractors. In First case the attractors pattern obtained confirms the presence of chaos on incorporating amemristor in place of chua diode while the second case gives us the desired attractors that can be used in various applications of secure communications.

Table of content

Certificate	ii
Acknowledgement	iii
Abstract	iv
Chapter 1 Introduction	
 1.1 Chao's Theory 1.2 Features of Chaotic Systems 1.3 Chua's Circuit- An Overview 1.4 Memristor Theory 1.5 Basic Model of Memristor 1.6 Outline of Thesis 	1 4 4 6 7 7
Chapter 2 Literature Review	
2.1 About Chua's Oscillator Circuit2.2 About Memristor	8 9
Chapter 3 Chua's Circuit	
 3.1 General 3.2 Qualitative Description of RLC Model 3.3 Driving Point Characteristics of Non Linear Resistor NR 3.4 Chua's Circuit Description 3.5 Chua Diode 	11 11 13 17 19
Chapter 4 Memristance Driven Chua's circuit	
4.1 General4.2 Memdevices4.3 Principle of Memristor4.4 Analogy of Memristor	22 23 24 25

4.5 Construction of memristor	26
4.6 Working of memristor	27
4.7 Basic model of memristor	28
4.8 Memristor: an overview of piecewise linear characteristic	30
4.9 Canonical memristor's oscillator- fourth order	32
CHAPTER-5 SIMULATION AND RESULTS	34
CHAPTER-6 CONCLUSION AND FUTURE WORK	48
REFERENCES	49