
Table of Contents
CERTIFICATE ..I
ACKNOWLEDGEMENT ... II
ABSTRACT ...III

1. Introduction...3
 1.1 Overview of the project ...3
 1.2 Related Research ...4
 1.3 Problem Formulation ...5
2. Spatial Interest and Spatial Temporal Interest Points.............7
 2.1 Introduction ..7
 2.2 Related Work ..7
 2.3 Spatial interest and spatial temporal interest points extraction8	
3. Gaussian Mixture Model ..11
 3.1 Introduction ..11
 3.2 Theory ...11
 3.3 Practical Applications..13
4. Expectation Maximization Algorithms..14
 4.1 Introduction ..14
 4.2 Expectation maximization ..14
 4.3 Maximum Likelihood Parameter Estimation ...15
5. Classification..17
 5.1 Principle ..17
 5.2 Gaussian Mixture Model ..17
 5.3 Training Model...18
 5.4 Classifier ...18

6. Hidden Markov Model (HMM)..20
 6.1Introduction ..20
 6.2 Theory ...20
 6.3 Traffic Prediction...28
 6.4 HMM for Traffic Prediction ..29
7. RESULTS ..31
 7.1 Classification...31
 7.2 Conclusion ...33
 Appendix A..34
 Matlab..34
 A.1 Introduction ...34
 A.2 Analyzing and Accessing data...37
 A.3 Visualizing Data ..39
 A.4 Performing Numeric Computation ..42
 A.5 Publishing Results and Deploying Applications.....................................44
 A.6 Video and Image Processing Block set ...45
 A.7 Video I/O, visualization and Graphics..47
 A.8 image processing primitives ..49
 A.9 Video Processing and Computer vision ..52
 A.10 Statistical toolbox ..54
Appendix B...64
 Software ..64
References...94

Chapter 1
Introduction

1.1 Overview of the project
The dramatic increase in traffic volumes worldwide is leading to massive congestion causing various social, environmental and economic problems. As video has become ubiquitous source of information, video analysis has received a lot of attention [1]. Human eye identifies the traffic condition just by looking into a video / image. Analyzing and interpreting video is an important topic in computer vision and its applications. Video data contains information about changes in the environment and is highly important for many visual tasks including navigation, surveillance video indexing, browsing, clustering, and segmentation.

The vision based camera systems are more sophisticated and powerful than those based on the spot sensors like loop detectors and pneumatic sensors since the information content associated with image sequences allows precise classification. In contrast, spot sensors are limited to measure or quantify only traffic flow, or to solve specific sub problems (e.g., queue detection or congestion detection), and thereby lack general application. Traffic control should be adaptable to different environment, weather, and light conditions. Camera based systems are more advantageous than the spot sensors due to the following reasons;

(i) A large set of traffic parameters can be estimated in addition to vehicle counts and speeds. These include vehicle classifications, queue lengths, link travel times, lane changes, rapid accelerations or decelerations etc.
(ii) Cameras are less expensive and disruptive to install than spot sensors.

The traffic model presented here extracts spatial and spatial temporal interest points from a video and processes the data to classify the road condition as open, slight congestion, heavy congestion or traffic jam [2]. The same data obtained can also be used for predicting the traffic conditions along the road. This can further be used to find out the best way to reach the destination.

Spatial interest points and spatial temporal interest points are being implemented in the modern traffic modeling systems. These are very rarely uncorrelated and computationally expensive. Here a modified patio temporal interest point detector is suggested. As any moving thing on a road contributes to the traffic congestion, second moment matrix calculations can be avoided. It has been found that the spatial interest points are produced by the vehicles on the road and the spatial temporal points are produced by the moving vehicles. The number of spatial interest points indicates the number of vehicles on the road and also the ratio of spatial temporal interest points to spatial interest points indicates the percentage of moving vehicles on the road. These points are classified using Gaussian Mixture Model (GMM).

1.2 Related Research
Traffic modeling has gained significant interest among the researchers and a plenty of work has been carried out already.
(a) Peng Cheng and et. al.[3] developed a particle filter based traffic estimation using hand off data. According to this, every vehicle should have a cell phone which is not practical always.
(b) Ren C Boel and et.al. have developed a hybrid stochastic traffic model [4]. According to this the whole network is divided into sections and the prediction of traffic is done by sending and receiving functions. Later particle filter based traffic modeling was developed by them which is faster and can also be used for online prediction. The main disadvantage of this is to detect vehicle in every section that becomes computationally complex.
(c) X.Li and et.al. [5] used DTC in spatial and temporal domain as features and HMM for event detection. This method is computationally complex as it involves image processing.
(d) Y.Zou and et.al. [6] have developed HMM based traffic incident detection which is location specific and needs vehicle detection.
In general, traffic modeling is done using image processing and tracking. Here we present a traffic model which do not require tracking and hence suitable for online prediction.

1.3 Problem Formulation
A traffic monitoring system is presented here using a distributed sensor network. Sensor nodes which can communicate to all nearby nodes are placed in road links. A sensor node is equipped with, camera with accessories to process the data and communication devices.
[image:]

Figure 1.1: Road Network
 The main aim of the proposed work is to develop an autonomous distributed camera network for traffic prediction. A sample road network is shown fig.1.1. R1 – R10 are different road links and C1 – C10 are cameras for recording the activities on the road links respectively. The video features of each road link will be extracted, processed, predicted and communicated to the nearby nodes periodically by each node. Each node will be sending the predicted sates of the road and neighboring road links along with the ID of the respective road link for updating the current status.

 Traffic on any road can be completely defined by the number of moving vehicles and their average velocity. But these two features will depend on each other. Therefore we classify the road states by comparing the no. of vehicles with the no. of moving vehicles. If the no. of vehicles in a road link is x and the no. of moving vehicles is y we can classify the road xy domain. The major classification considered is: Stopped (S), heavy Congestion (HC), Mild Congestion (MC), Slight Traffic (ST) and Open (O). We can extract the SIP and STIP from the video frames recorded by the camera. The classification of the traffic state can be done based on the ratio of STIP to SIP as the ratio will give the indication of the state of the road. This is possible only when we get a dense feature set of correlated SIP and STIP, whereas the existing operators are providing sparse feature set of uncorrelated SIP and STIP. Hence we made a novel spatial interest set of correlated points by modifying the Harris corner detector.

 The spatial interest points indicate the number of vehicles and the spatial temporal interest points indicate the number of moving vehicles. Therefore the ratio of spatial interest points to spatial temporal interest points will be indicating the state of the road. The existing spatial interest point detectors were unable to extract the number of moving vehicles moving with uniform speed. We are suggesting a new method to extract the number of moving vehicles which is explained in the next chapter.

Chapter 2
Spatial Interest and Spatial Temporal Interest Points

2.1 Introduction
Image structures in video are not restricted to constant velocity and / or constant appearance over time. On contrary, many interesting events in video are characterized by strong variations in the data along both the spatial and the temporal dimensions. In the spatial domain, points with significant local variation of image intensities have been extensively investigated in the past. Such image points are frequently referred to as “interest points” and are attractive due to their high information contents and relative stability with respect to perspective transformations of the data. Highly successful applications of interest points have been presented for image indexing, stereo matching, optic flow estimation and tracking and object recognition.
2.2 Related Work
Laptev and Lindberg were the first to propose such a spatio temporal extension [7].They typically detect only a sparse set of features as a time–consuming iterative procedure that has to be repeated for each feature candidate separately. The iterative procedure often diverges and as a result detecting a low number of features is a necessity to keep the computation time under control.
Dollar et. al. [8] on the other hand claim that direct 3D counterparts to 2D interest point detectors are inadequate for the detection of spatio-temporal feature points, since true patio-temporal corners are quite rare. They propose to select local maxima over space and time of a response function based on spatial Gaussian convolved with a quadrature pair of 1D Gabor-filters along the time axis.
Oikonomopoulos et. al. [9] has proposed a spatio – temporal extension of the salient region detector. The features are scale-invariant yet sparse.
Recently Wong and Cipolla [10] have developed a novel method for extracting patio-temporal features using global information. This method requires only a sparse set of features for action recognition. However the input video needs to be preprocessed into samples containing one iteration of the action each.
The related work of Ke et. al. [11] on visual event detection is based on the concept of integral video to achieve real-time processing of video data. However, rather than relying on interest points, they use dense spatio-temporal Haar-wavelets computed on the optical flow. Discriminative features are then selected during a training stage. This results in application dependent features which are again not scale – invariant.

2.3 Spatial Interest and Spatial Temporal Interest Points Extraction
The currently available spatio-temporal interest point detectors [12], [13], [14] are mostly sparse, if they are derived from a spatial interest point detector. For our application, we need spatial interest points to be generated on abrupt changes in intensity over spatial domain and corresponding spatial temporal interest points for even small changes in intensity over temporal domain. Therefore we propose a novel method to calculate spatial and corresponding spatial temporal interest points with detection of changes in intensity over temporal domain.
Let us define the image as to remove high frequency variation over the spatial domain we convolve the image with a 2D Gaussian to obtain

The spatial interest points are obtained by listing the intensities at point along a dimension and points along a dimension.

Now, determinant of will give us the product of Eigen values. This product indicates the variance along the principal directions and hence in our operator the denotes the strength of spatial interest points. We define a strength threshold above which all the points are considered spatial interest points

For spatial temporal domain the consecutive smoothened frames are stacked to form and are expressed as

[image:]

 Figure 2.1: The white circle shows SIP and green circle shows STIP

A spatial temporal interest point should satisfy both the equations. The resulting operator gives a dense representation of a video strength of each point defined crisply in both spatial and temporal domain independently. Such points can be used to identify moving spatial interest points and hence detect moving objects in the field of view. Fig.2.1 shows the spatial points and spatial temporal points represented by white circles and green circles respectively.

Chapter 3
Gaussian Mixture Model

3.1 Introduction
Gaussian mixture model (GMM for short) is an effective tool for data modeling and pattern classification. GMM assumes the data under modeling is generated via a probability density distribution which is the weighted sum of a set of Gaussian PDF. With the use of EM (expectation maximization), we can identify the optimum set of parameters for GMM in an iterative manner.
Due to the flexibility of GMM, it has been successfully applied to numerous applications of data modeling and pattern classification, including speaker/speech recognition, audio classification, and so on.
GMMs belong to the class of pattern recognition systems. They model the probability density function of observed variables using a multivariate Gaussian mixture density. Given a series of inputs, it refines the weights of each distribution through expectation-maximization algorithms.
3.2 Theory
A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities [15]. GMM is commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system such as vocal-tract related spectral features in a speaker recognition system. GMM parameters are estimated from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation from a well-trained prior model.
A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equation,
 (1)
where is a D-dimensional continuous-valued data vector (i.e. measurement or feature), , i = 1, . . . ,M, are the mixture weights, and g(x|,), i = 1, . . . ,M, are the component Gaussian densities. Each component density is a D-variate Gaussian function of the form,

With mean vector and covariance matrix . The mixture weights satisfy the constraint that = 1.
The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture weights from all component densities. These parameters are collectively represented by the notation,
 λ = { (3)
There are several variants on the GMM shown in Equation (3). The covariance matrices, , can be full rank or constrained to be diagonal. Additionally, parameters can be shared, or tied, among the Gaussian components, such as having a common covariance matrix for all components. The choice of model configuration (number of components, full or diagonal covariance matrices, and parameter tying) is often determined by the amount of data available for estimating the GMM parameters and how the GMM is used in a particular biometric application.
It is also important to note that because the component Gaussians are acting together to model the overall feature density, full covariance matrices are not necessary even if the features are not statistically independent. The linear combination of diagonal covariance basis Gaussians is capable of modeling the correlations between feature vector elements. The effect of using a set of M full covariance matrix Gaussians can be equally obtained by using a larger set of diagonal covariance Gaussians.
GMMs are often used in biometric systems, most notably in speaker recognition systems, due to their capability of representing a large class of sample distributions. One of the powerful attributes of the GMM is its ability to form smooth approximations to arbitrarily shaped densities. The classical uni-modal Gaussian model represents feature distributions by a position (mean vector) and an elliptic shape (covariance matrix) and a vector quantizer (VQ) or nearest neighbour model represents a distribution by a discrete set of characteristic templates. A GMM acts as a hybrid between these two models by using a discrete set of Gaussian functions, each with their own mean and covariance matrix, to allow a better modeling capability. Fig.3.1 shows the Gaussian distribution for four iterations.

[image:]

Figure 3.1: Gaussian distribution

3.3 Practical Applications
· Biometric person authentication (using voice, face, handwriting, etc):
· Any highly imbalanced classification task
· Dimensionality reduction
· Quantization

Chapter 4
Expectation Maximization Algorithms

4.1 Introduction
The Expectation-Maximization (EM) iterative algorithm is a broadly applicable statistical technique for maximizing complex likelihoods and handling the incomplete data problem. At each iteration step of the algorithm, two steps are performed: (i) E-Step consisting of projecting an appropriate functional containing the augmented data on the space of the original, incomplete data, and (ii) M-Step consisting of maximizing the functional. The name EM algorithm was coined by Dempster, Laird, and Rubin in their fundamental paper, often referred to as DLR paper.
The EM algorithm relates to MCMC as a forerunner by its data augmentation step that replaces simulation by maximization. Newcomb was interested in estimating the mixtures of normals in 1886. McKendrick and Healy and Westmacott proposed iterative methods that, in fact, are examples of the EM algorithm. Dozens of papers proposing various applications of EM appeared before the DLR paper in 1997. However, the DLR paper was the first to unify and organize the approach.
[bookmark: em]4.2 Expectation Maximization
Expectation-Maximization (EM) is a well established maximum likelihood algorithm for fitting a mixture model to a set of training data. It should be noted that EM requires an a priori selection of model order, namely, the number of M components to be incorporated into the model.
The general E-M algorithm is comprised of the following simple steps:
Initialization
Initialize the distribution parameters, such as the means, covariance’s and mixing coefficients and evaluate the initial value of the log-likelihood (the goodness of fit of the current distribution against the observation dataset)’;

Expectation
Evaluate the responsibilities (i.e. weight factors of each sample) using the current parameter values;
Maximization
Re-estimate the parameters using the responsibilities found in the previous step;
Repeat
Re-evaluate the log-likelihood and check if it has changed; if it has changed less than a given threshold, the algorithm has converged.
4.3 Maximum Likelihood Parameter Estimation
Given training vectors and a GMM configuration, we wish to estimate the parameters of the GMM,, which in some sense best matches the distribution of the training feature vectors. There are several techniques available for estimating the parameters of a GMM. By far the most popular and well-established method is maximum likelihood (ML) estimation. The aim of ML estimation is to find the model parameters which maximize the likelihood of the GMM given the training data. For a sequence of T training vectors X = {, . . . , }, the GMM likelihood, assuming independence between the vectors, can be written as,
 (1)
Unfortunately, this expression is a non-linear function of the parameters λ and direct maximization is not possible. However, ML parameter estimates can be obtained iteratively using a special case of the expectation-maximization (EM) algorithm.
The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a new model, such that p(X|) p(X|λ). The new model then becomes the initial model for the next iteration and the process is repeated until some convergence threshold is reached. The initial model is typically derived by using some form of binary VQ estimation.
On each EM iteration, the following re-estimation formulae are used which guarantee a monotonic increase in the model’s likelihood value,

Mixture Weights
|
Means

Variances (diagonal covariance)
= (4)
, , and refer to arbitrary elements of the vectors , , and , respectively.
[image:]I
Figure 4.1 : GMM-EM Curves
Fig.4.1 shows the GMM – EM curves corresponding to the date obtained from the video.

Chapter 5
Classification

5.1 Principle
5.1.1 Classification Model
Before presenting more details on the Gaussian Mixture Model (GMM) classification process, it is worthwhile to consider what “classification” actually means. A “classification model” is made of three main parts:
• A transducer: in the case of music this would typically be the A/D conversion chain of the sound.
• A feature extractor: it extracts significant features from the information coming from the transducer (e.g. the spectral centroid of frames of signal). These features should be chosen in such a way that clear groups or classes of data can be identified.
• A classifier: its role is to assign the input data represented by their features to a number of different categories (e.g. different types of instruments).
5.1.2 GMM an unsupervised classifier
To describe the GMM classifier [17] more accurately, we should note that it belongs to the “unsupervised” classifiers category. This means that the training samples of a classifier are not labeled to show their category membership. More precisely, what makes GMM unsupervised is that during the training of the classifier, we try to estimate the underlying probability density functions (pdf’s) of the observations.
5.2 Gaussian Mixture Models
The normal traffic situation can be roughly categorized into two states, open and congestion. But we observe that such a classification is not enough to describe the traffic situation. Thus, we use traffic patterns similar to what humans define; Stopped (S), Heavy congestion (HC), Mild congestion (MC), Slight Traffic (ST), and Open (O).
Stopped: there are a large number of vehicles and almost all of the vehicles run very slowly or are completely stopped.
Heavy congestion: there are a large number of vehicles and most vehicles run slowly.
Mild congestion: most of the vehicles run at half speed.
Slight Traffic: vehicles run at normal speed.
Open: there is no vehicle or minimum number of vehicles in the region of interest.
It is important to note that for different road links, the traffic patterns above defined map to different region in the xy domain. Hence for every road link the corresponding parameters and their feature set mapping has to be learnt for every class or traffic pattern.
5.3 Training model
A parametric model of the saliency features distribution is learnt by fitting a Gaussian Mixture Model (GMM) using the Expectation-Maximization (EM) algorithm on a hand labelled training data set. This approach is used because its properties are well-known and it is suitable for fast data processing with only three features. The resulting density probability model for each class is the sum of ng Gaussians with weight, mean and covariance matrices {(WI, μi, Si)} i=1...ng.
In order to capture the variability of the traffic states, the training set must contain data from all the traffic states defined. The labelling process is performed using a graphical interface developed in matlab which allows the selection of frames individually or in groups. We enforce a balanced labelled data set between the different traffic states. In order to keep the high frequency change in traffic from influencing the state classification, averaged features are computed over a fixed number of frames.
This labelling and model fitting is performed off-line and only once for each road link. Once a model is obtained, it can be used to classify road states in real time, the next section focuses on the same.
5.4 Classifier
Let Mk = {(wki,μki,Ski)}i=1...nkg be the GMM of the class. Let S = (Nsp,Vspt) be the saliency features of a road state to be classified. The conditional probability that the point belongs to the class is given by
 (5)
Where d is the number of saliency features. The class is chosen as
kmax = argmax {} (6)
Using equation (5) and (6), the class or the road state is suggested while observing η and ϒ.

Chapter 6
Hidden Morkov Model (HMM)

6.1 Introduction
Real world processes generally produce observable outputs which can be characterized as signals. The signals can be discrete in nature or continuous in nature. A problem of fundamental interest in characterizing such signals in terms of signal models. Reasons for applying signal models are;
(a) A signal model can provide the basis for a theoretical description of a signal processing system which can be used to process the signal so as to provide a desired output.
(b) A signal model is potentially capable of letting us learn a great deal about the signal source.
(c) A signal model works extremely well in practice and enables us to realize important practical systems.
There are several possible choices for what type of signal model is used for characterizing the properties of a given signal. Broadly there are two types of signal models, namely, deterministic models and statistical model. Deterministic models generally exploit some known specific properties of the signal whereas the Statistical model tries to characterize only the statistical properties of the signal.
For the application of interest, namely prediction of traffic, both deterministic and stochastic signal models have had good success. Here we concern strictly with one type of stochastic model, namely the hidden Morkov model (HMM) [18].
6.2 Theory
We will first review the theory of Markov chains and then extend the ideas to the class of hidden Markov models using several simple examples. We will then focus our attention on the three fundamental problems for HMM design, namely, the evaluation of the probability of a sequence of observations given a specific HMM; the determination of a best sequence of model states; and the adjustment of model parameters so as to best account for the observed signal.
Discrete Markov process:
Consider a system which may be described at any time as being in one of a set of N distinct states, S1, S2, -------SN as shown in Fig 1.

[image:]
At regularly spaced discrete times, the system undergoes a change of state according to a set of probabilities associated with the state. We denote the time instants associated with state changes as t = 1, 2, --------, and we denote the actual state at time t as qt. A full probabilistic description of the above system would require specification of the current state as well as the predecessor states. For the special case of a discrete, first order, Markov chain, this probabilistic description is truncated to just the current and the predecessor state i.e.

Further we consider only consider those processes in which the right - hand side of (1) is independent of time, thereby leading to the set of state transition probabilities of the form

With the state transition coefficients having the properties
 (3.a)

Since they obey standard stochastic constraints.
The above stochastic process could be called an observable Markov model since the output of the process is the set of states at each instant of time, where each state corresponds to a physical event. To set ideas, consider a simple 3 state Markov model of the weather. We assume that once a day (e.g., at noon), the weather is observed as being one of the following;
 State 1: rain or (snow)
 State 2: cloudy
 State 3: sunny.
We postulate that the weather on day t is characterized by a single one of the three states above, and that the matrix A of state transition probabilities is

Given that the weather on day 1 (t = 1) is sunny (state 3), we can ask the question: What is the probability (according to the model) that the weather for the next 7 days will be “sun-sun-rain-rain-sun-cloudy-sun”? Stated more formally, we define the observation sequence O as O = {, corresponding to t = 1, 2, 38 and we wish to determine the probability of O, given the model. The probability can be expressed as
P (O|Model) = P [
 = P [
 =
 = 1. (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2) =
 Where we use the notation
 To denote the initial state probabilities.
Another interesting is: Given that the model is in a known state, what is the probability it stays in threat state for exactly d days? This probability can be evaluated as the probability of the observation sequence

 Given the model, which is

The quantity is the (discrete) probability density function of duration d in state i. This exponential duration density is characteristic of the state duration in a Markov chain. Based on, we can readily calculate the expected number of observations in a state, conditioned on starting in that state as

 =
Thus the expected number of consecutive days of sunny weather, according to the model, is 1/0.2 =5; for cloudy it is 2.5; for rain it is 1.67.
A. Extension to Hidden Markov Models
So far we have considered Markov models in which each state corresponds to an observable event. This model is too restrictive to be applicable to many problems of interest. In this section we extend the concept of markov models to include the case where the observation is a probabilistic function of the state i.e., the resulting model which is called the Hidden markov Model is a doubly embedded stochastic process with an underlying stochastic process that is not observable (it is hidden), but can only be observed through another set of stochastic processes that produce the sequence of observations. To fix ideas, consider the following model of simple coin tossing experiments.
Coin Toss Models: Assume the following scenario. You are in a room with a barrier through which you cannot see what is happening. On the other side of the barrier is another person who is performing a coin tossing experiment. The other person will not tell you anything about what he is doing exactly; he will only tell you the result of each coin flip. Thus a sequence of hidden coin tossing experiments is performed, with the observation sequence consisting of a series of heads and tails; e.g., a typical observation sequence would be

 O =
 =HHTTTHTTH...........H
Where H stands for head and T stands for tail.

Given the above scenario, the problem of interest is how do we build an HMM to explain the observed sequence of heads and tails. The first problem one faces is deciding what the states in the model correspond to, and then deciding how many states should be in the model. One possible choice would be to assume that only a single biased coin was being tossed. In this case we could model the situation with a 2-state model where each state corresponds to a side of the coin. This model is depicted in Fig. 2(a). In this case the Markov model is observable, and the only issue for complete specification of the model would be to decide on the best value for the bias. Interestingly, an equivalent HMM to that of Fig.2 (a) would be a degenerate 1-state model, where the unknown parameter is the bias of the coin.

A second form of HMM for explaining the observed sequence of coin toss outcome is given in Fig.2 (b). In this case there are two states in the model and each state corresponds to a different, biased, coin being tossed. Each state is characterized by a probability distribution of heads and tails, and transition between states are characterized a state transition matrix. The physical mechanism which accounts for how state transitions are selected could itself be a set of independent coin tosses, or some other probabilistic event.

A third form of HMM for explaining the observed sequence of coin toss outcomes is given in Fig.2(c). This model corresponds to using 3 biased coins, and choosing from among the three, based on some probabilistic event.

[image:]

Given the choice among the three models shown in Fig.2 for explaining the observed sequence of heads and tails, a natural question would be which model best matches the actual observations. It should be clear that the simple 1-coin model of Fig.2 (a) has only one unknown parameter; the 2-coin model of Fig.2 (b) has four unknown parameters; and the 3-coin model of Fig.2(c) has 9 unknown parameters. Thus, with the greater degree of freedom, larger HMMs would seem to inherently be more capable of modeling a series of coin tossing experiments that would equivalently smaller models.
The Urn and Ball Model: To extend the ideas of the HMM to a somewhat more complicated situation, consider the urn and ball system of Fig.3. We assume that there are N glass urns in a room. Within each urn there are a large number of coloured balls. The physical process for obtaining observations is as follows. A genie is in the room, and according to some random process, he or she choose an initial urn. From this urn, a ball is chosen at random, and its colour is recorded as the observation. The ball is then replaced in the urn from which it was selected. A new urn is then selected according to the random selection process associated with the current urn, and the ball selection process generates a finite observation sequence of colours, which we would like to model as the observable output of an HMM.
It should be obvious that the simplest HMM that corresponds to the urn and ball process is one in which each state corresponds to a specific urn, and for which a color probability is defined for each state. The choice of urns is dictated by the state transition matrix of the HMM.
[image:]
Elements of an HMM
The above examples give us an idea of what an HMM is and it can be applied to some simple scenarios. We now define the elements of an HMM, and explain how the model generates observation sequences.
An HMM is characterized by the following:
1) N, the number of states in the model. Although the states are hidden, for many practical applications there is often some physical significance attached to the states or sets of states of the model. Hence, in the coin tossing experiments, each state corresponds to distinct biased coin. In the urn and ball model, the states corresponded to the urns. Generally the states are interconnected in such a way that any state can be reached from any other state. We denote the individual states as , and state at time t as
2) M, the number of distinct observation symbols per state, i.e., the discrete alphabet size. The observation symbols correspond to the physical output of the system being modeled. For the coin toss experiments the observation symbols were simply heads or tails; for the urn and ball model they were the colours of the balls selected from the urn. We denote the individual symbols as
3) The state transition probability distribution where

 For the special case where any state can reach any other state in a single step, we have for all i, j. For other types of HMMs, we would have for one or more (i, j) pairs.
4) The observation symbol probability distribution in state j, where

5) The initial state distribution 𝛱 = {, where

 Given appropriate values of N, M, A, B and 𝛱, the HMM can be used as a generator to give
 an observation sequence

(Where each observation is one of the symbols V, and T is the number of observations in the sequence) as follows;
1) Choose an initial state acoording to the initial state distribution 𝛱.
2) Set t = 1.
3) Choose according to the symbol probability distribution in state i.e.,
4) Transit to a new state according to the state transition probability distribution for state i.e.,
5) Set t = t+1; return to step (3) if T; otherwise terminate the procedure.
The above procedure can be used as both a generator of observations, and as a model for how a given observation sequence was generated by an appropriate HMM.
It can be seen from the above discussion that a complete specification of an HMM requires specification of two model parameters (N and M), specification of observation symbols, and specification of the three probability measures A, B and 𝛱. For convenience, we use the compact notation

To indicate the complete parameter set of the model.
6.3 Traffic Prediction
The traffic on the road links can be universally mapped into any of the following states namely, Stopped (S), Heavy Congestion (HC), Mild Congestion (MC), Slight Traffic (ST), and Open (O) on a road link. Therefore it can be considered as a finite state machine transmitting from one traffic state to another with time. As the states are transiting with variation in space and time, we need to learn two dimensional finite state machines for traffic prediction. To avoid this complication and to make the system self evolving, we use Hidden Markov Model for traffic monitoring /prediction. The HMM so learnt, does soft classification after adjusting to lower minima for that road link and also evolve through time while learning online. In a Hidden Markov Model, the state is not directly visible, but output, dependent on the state, is visible. Each state has a probability distribution over the possible output tokens. Hence while expectation maximization or learning, the HMM trains itself to optimize the probability distribution of output over states to a local minima and also learning the transition probabilities [18].
6.4 HMM for Traffic Prediction
Let R-1, R, R+1 be the three neighbouring road links, linked together. , , be the traffic states defined at R-1, R, R+1 with by GMM based classification and denote the traffic state at time.
For learning the 2 dimensional relation (Spatial and temporal) of the traffic states, we use Hidden Markov Model with an assumption that for very short interval of time , the traffic condition at a given road link change only due to the traffic conditions on neighbouring road links.
We define HMM for road link to be . There are M3 states for a HMM for a road link. Using expectation Maximization, we learn the transition matrix of dimension given by
 (12)
Learning	
We take the learnt GMMs as our class definitions, or class distribution initially. Then the road is kept under observation by the system for sufficient time to generate data, for learning transitions and optimizing state distributions. The temporal flow of states on the road is recorded while it is under observation using state definitions described earlier. The data as generated is used to learn HMM parameters through Balm-Welch algorithm. A concept description of learning procedure is defined below;
· The initial state distributions represented as B (are given by GMMs described in the classification section.
· These state distributions are used to observe and record the temporal flow of observed features on a road, using cameras and features described earlier. Let this data or flow of features be represented by O
· The transition matrix for state distributions is initialized randomly and is represented by A.
· The initial state distribution is given by GMMs learnt previously and is represented by).
· is found by Baun – Welch algorithm where. The so obtained has tuned parameters as per the information available.
The same process can be followed periodically, making the system defined as self evolving and changing as the road conditions change. The transition matrix and state distributions are learnt periodically making the system adaptive.
Prediction
Using the transition matrix and the learnt HMM we sample the next state for the road link

The priors can be calculated by marginalizing any two road links, we can compute the probability of future states, using the formula
 (13)
And
 (14)
After calculating the probabilities of future traffic states road links, we calculate the priors for next HMM sampling
 (15)
Using the priors calculated, the next state is sampled using Monte Carlo method. The GMMs learnt during classification are used to initialize the HMM states or provide the HMM states an initial belief as the system runs, it learns online using expectation maximization to tune the GMMs learnt for local minima, thus making the system self evolving through online learning.

Chapter 7
Results

7.1 Classification
We evaluated the method suggested using the data collected from real traffic scenes. The data set includes various illumination conditions e.g. sunny, overcast and night time. The video data is low resolution (172X180) and is taken at 4 fps in gray scale. All testing clips are hand labeled to make a comparison with a ground truth. The training video data is chosen such that there is no overlap with the testing data. The total length of the training data is about 120 minutes.

 Figure 7.1 shows the four traffic states, that is open, slight traffic, mild congestion, and heavy congestion at a road link. The region of interest is marked by yellow boundary. The white points indicate the spatial interest points and the green points indicate the spatial temporal interest points generated using the STIP operator. Interestingly, as the traffic state changes from open to heavy congestion, the number of spatial interest points becomes more as compared to number of corresponding spatial temporal interest points. It is visible that all of the existing traffic states are successfully detected. The results are compared with the hand labeled ground truth. When the ‘false’ classifications given by the technique is examined an interesting fact is found that the system is more repetitive to traffic changes and suggests a continuous data change, which is more intuitive or common to observe in real traffic than the abrupt changes as suggested by the human operator. Even when all the states defined by the operator are considered to be true, the classifier shows around 84% accuracy in determing the correct state.

The optimum number of Gaussians used for modeling the data is learnt by testing for the classification rates for different number of Gaussians and most accurate results reaching saturation are obtained when 2 Gaussians are used to represent a single traffic state. Table 1 and table 2 show the confusion matrix of classification results of road at I T O and Pragati Maidan, Delhi.

[image: C:\NewFolder3\01==VTS_02_1.gif][image: C:\NewFolder3\81==VTS_02_1.gif][image: C:\NewFolder3\421==VTS_02_1.gif][image: C:\NewFolder3\224==VTS_02_1.gif]
[image: C:\NewFolder3\01==VTS_02_1.gif][image:][image:][image:]
(a) (b) (c) (d)

Figure 7.1 each column illustrates a road traffic state, spatial and spatial temporal interest points in white and green respectively. From left to right each column indicates open, slight traffic, mild congestion and heavy congestion road states.

Table 1: confusion matrix on the road at ITO, Delhi

	
	Open
	Slight Traffic
	Mild Congestion
	
Heavy Congestion

	Open
	81.23157
	4.41065
	14.30965
	
2.39845

	Slight Traffic
	3.04365
	80.85043
	0.30125
	
0.36943

	Mild Congestion
	6.56894
	8.89564
	70.3982
	
5.043218

	Heavy Congestion
	6.56783
	7.03458
	14.20467
	
89.90231

Table 2: Confusion matrix on the road at Pragati Maidan, Delhi

	

	Open
	Slight Traffic
	Mild Congestion
	
Heavy Congestion

	Open
	83.37
	10.05
	0
	
3.5

	Slight Traffic
	9.35
	71.39
	0.27
	
0

	Mild Congestion
	10.16
	17.19
	93.47
	
1.28

	Heavy Congestion
	2.03
	2.13
	0
	
97.29

7.2 Conclusion

A novel method for traffic monitoring / prediction using the camera network is presented. This method is simple, real time and computationally light. The detailed results on road state classification are presented. The method is robust to light changes, adaptive to varying road topologies under observation, camera set up independent and requires no pre-processing. The requirements of the method presented are very low with successful testing on resolution as low as 172X180 and frame rate of 4 fps.

The selection of states makes it possible to learn a 2 dimensional relation of road states using HMM. The HMM so used makes the system self evolving or self adjusting which could not have been the case with finite state machine model. The prediction results are satisfactory and indicative of the suitability of the method used. It is worth noting that the model used does not assume or draws analogies of traffic moving as particles. Also it does not impose restrictions on road conditions or road tributaries and distributaries. Thus the method presented is robust and adaptive framework of real time traffic classification and prediction.

Appendix A
Matlab

A.1 Introduction
MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation [19]. Using the MATLAB product, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and FORTRAN.
You can use MATLAB in a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling and analysis, and computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available separately) extend the MATLAB environment to solve particular classes of problems in these application areas.
MATLAB provides a number of features for documenting and sharing your work. You can integrate your MATLAB code with other languages and applications, and distribute your MATLAB algorithms and applications.
Key Features
· High-level language for technical computing
· Development environment for managing code, files, and data
· Interactive tools for iterative exploration, design, and problem solving
· Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, and numerical integration
· 2-D and 3-D graphics functions for visualizing data
· Tools for building custom graphical user interfaces
· Functions for integrating MATLAB based algorithms with external applications and languages.
A.1.1 the MATLAB® Language
The MATLAB® language supports the vector and matrix operations that are fundamental to engineering and scientific problems. It enables fast development and execution.

With the MATLAB language, you can program and develop algorithms faster than with traditional languages because you do not need to perform low-level administrative tasks, such as declaring variables, specifying data types, and allocating memory. In many cases, MATLAB eliminates the need for ‘for’ loops. As a result, one line of MATLAB code can often replace several lines of C or C++ code.

At the same time, MATLAB provides all the features of a traditional programming language, including arithmetic operators, flow control, data structures, data types, object-oriented programming (OOP), and debugging features.

[image: ml_commodulation]
Figure A.1 a communications modulation algorithm that generates 1,024 random bits, performs modulation, adds complex Gaussian noise, and plots the result--all in just 9 lines of MATLAB code.
MATLAB lets you execute commands or groups of commands one at a time, without compiling and linking, enabling you to quickly iterate to the optimal solution.
For fast execution of heavy matrix and vector computations, MATLAB uses processor-optimized libraries. For general-purpose scalar computations, MATLAB generates machine-code instructions using its JIT (Just-In-Time) compilation technology.
This technology, which is available on most platforms, provides execution speeds that rival those of traditional programming languages.
A.1.2 Development Tools
MATLAB includes development tools that help you implement your algorithm efficiently. These include the following:
MATLAB Editor - Provides standard editing and debugging features, such as setting breakpoints and single stepping
M-Lint Code Checker - Analyzes your code and recommends changes to improve its performance and maintainability
MATLAB Profiler - Records the time spent executing each line of code
Directory Reports - Scan all the files in a directory and report on code efficiency, file differences, file dependencies, and code coverage.
A.1.3 Designing Graphical User Interfaces
You can use the interactive tool GUIDE (Graphical User Interface Development Environment) to lay out, design, and edit user interfaces. GUIDE lets you include list boxes, pull-down menus, push buttons, radio buttons, and sliders, as well as MATLAB plots and ActiveX controls. Alternatively, you can create GUIs programmatically using MATLAB functions.

[image: ml_guidelayout]
Figure A.2 GUIDE layout of a wavelet analysis GUI (top) together with the completed interface (bottom).
A.2 Analyzing and Accessing Data
MATLAB® supports the entire data analysis process, from acquiring data from external devices and databases, through preprocessing, visualization, and numerical analysis, to producing presentation-quality output.
A.2.1 Data Analysis
The MATLAB product provides interactive tools and command-line functions for data analysis operations, including:
· Interpolating and decimating
· Extracting sections of data, scaling, and averaging
· Thresholding and smoothing
· Correlation, Fourier analysis, and filtering
· 1-D peak, valley, and zero finding
· Basic statistics and curve fitting
· Matrix analysis
[image: ml_atmosphereplot 7159]
Figure A.3 Plot showing curve fitted to the monthly averaged atmospheric pressure differences between Easter Island and Darwin, Australia.
A.2.2 Data Access
MATLAB is an efficient platform for accessing data from files, other applications, databases, and external devices. You can read data from popular file formats, such as Microsoft Excel; ASCII text or binary files; image, sound, and video files; and scientific files, such as HDF and HDF5. Low-level binary file I/O functions let you work with data files in any format. Additional functions let you read data from Web pages and XML.
You can call other applications and languages, such as C, C++, COM objects, DLLs, Java, FORTRAN, and Microsoft Excel, and access FTP sites and Web services. Using the Database Toolbox™, you can also access data from ODBC/JDBC-compliant databases.
You can acquire data from hardware devices, such as your computer‘s serial port or sound card. Using the Data Acquisition Toolbox™ , you can stream live, measured data directly into MATLAB for analysis and visualization. The Instrument Control Toolbox™ (available separately) enables communication with GPIB and VXI hardware.

[image: ml_hdfdata]
Figure A.4 HDF data from a satellite, selected and imported into MATLAB using the MATLAB HDF
A.3 Visualizing Data
All the graphics features that are required to visualize engineering and scientific data are available in MATLAB®. These include 2-D and 3-D plotting functions, 3-D volume visualization functions, tools for interactively creating plots, and the ability to export results to all popular graphics formats. You can customize plots by adding multiple axes; changing line colors and markers; adding annotation, LaTEX equations, and legends; and drawing shapes.
A.3.1 2-D Plotting
You can visualize vectors of data with 2-D plotting functions that create:
· Line, area, bar, and pie charts
· Direction and velocity plots
· Histograms
· Polygons and surfaces
· Scatter/bubble plots
· Animations
[image: ml_lineplotemissions]
Figure A.5 Line plots of multiple engine emission test results, with a curve fitted to the raw data.
A.3.2 3-D Plotting and Volume Visualization
The MATLAB product provides functions for visualizing 2-D matrices, 3-D scalar, and 3-D vector data. You can use these functions to visualize and understand large, often complex, multidimensional data. You can specify plot characteristics, such as camera viewing angle, perspective, lighting effect, light source locations, and transparency. 3-D plotting functions include:
· Surface, contour, and mesh
· Image plots
· Cone, slice, stream, and isosurface
[image: ml_buckyball]
Figure A.6 a 3-D isosurface plot revealing the geodesic dome structure of a carbon-60 fullerene molecule.
A.3.3 Creating and Editing Plots Interactively
MATLAB provides interactive tools for designing and modifying graphics. From a MATLAB figure window, you can perform the following tasks:
· Drag and drop new data sets onto the figure
· Change the properties of any object on the figure
· Zoom, rotate, pan, and change camera angle and lighting
· Add annotations and data tips
· Draw shapes
· Generate a function that can be reused with different data
[image: ml_graphs]
Figure A.7 a collection of graphs, constructed interactively by dragging data sets onto the plot window, creating new subplots, changing properties such as colors and fonts, and adding annotation.
A.3.4 Importing and Exporting Graphic Files
MATLAB lets you read and write common graphical and data file formats, such as GIF, JPEG, BMP, EPS, TIFF, PNG, HDF, AVI, and PCX. As a result, you can export MATLAB plots to other applications, such as Microsoft Word and Microsoft PowerPoint, or to desktop publishing software. Before exporting, you can create and apply style templates, covering characteristics such as layout, font, and line thickness, to meet publication specifications.
A.4 Performing Numeric Computation
MATLAB® contains mathematical, statistical, and engineering functions to support all common engineering and science operations. These functions, developed by experts in mathematics, are the foundation of the MATLAB language. The core math functions use the LAPACK and BLAS linear algebra subroutine libraries and the FFTW Discrete Fourier Transform library. Because these processor-dependent libraries are optimized to the different platforms that MATLAB supports, they execute faster than the equivalent C or C++ code.

MATLAB provides the following types of functions for performing mathematical operations and analyzing data:
· Matrix manipulation and linear algebra
· Polynomials and interpolation
· Fourier analysis and filtering
· Data analysis and statistics
· Optimization and numerical integration
· Ordinary differential equations (ODEs)
· Partial differential equations (PDEs)
· Sparse matrix operations
· MATLAB can perform arithmetic on a wide range of data types, including doubles, singles, and integers.

· Add-on toolboxes (available separately) provide specialized mathematical computing functions for areas including signal processing, optimization, statistics, symbolic math, partial differential equation solving, and curve fitting.
·
[image: ml_gammafunction]
Figure A.8 Plot showing the complex valued gamma function on the complex plane, where the height of the surface is the modulus, or absolute value, and the contour lines are modulus and phase.

[image: ml_atanfunctiongui]
Figure A.9 Plot of complex function a tan (z). Contour lines for the real and imaginary parts are
A.5 Publishing Results and Deploying Applications
MATLAB® provides a number of features for documenting and sharing your work. You can integrate your MATLAB code with other languages and applications and deploy your MATLAB algorithms and applications as stand-alone programs or software modules.
A.5.1 Publishing Results
The MATLAB product lets you export your results as plots or as complete reports. You can export plots to all popular graphics file formats and then import the plots into other packages, such as Microsoft Word or Microsoft PowerPoint. Using the MATLAB Editor, you can automatically publish your MATLAB code in HTML, Word, LaTEX, and other formats.

[image: ml_htmlpublish]
Figure A.10 MATLAB program (left) published to HTML (right) using the MATLAB Editor.
A.5.2 Integrating MATLAB Code with Other Languages and Applications
MATLAB provides functions for integrating C and C++ code, FORTRAN code, COM objects, and Java code with your applications. You can call DLLs, Java classes, and ActiveX controls. Using the MATLAB engine library, you can also call MATLAB from C, C++, or FORTRAN code.
A.5.3 Deploying Applications
You can create your algorithm in MATLAB and distribute it to other MATLAB users directly as MATLAB code. Using the MATLAB Compiler (available separately), you can deploy your algorithm, as a stand-alone application or as a software module that you include in your project, to users who do not have MATLAB.

Additional products let you convert your algorithm into a software module that is callable from COM or Microsoft Excel.

[image: ml_helicopterapp]
Figure A.11 Helicopter sound identification application, deployed and running outside MATLAB. The application, developed in MATLAB, directly acquires signals from measurement
A.6 Video and Image Processing Blockset
 A.6.1 Product Description
· Introduction and Key Features
· Stream Processing in MATLAB and Simulink
· Video I/O, Visualization, and Graphics
· Image Processing Primitives
· Video Processing and Computer Vision
· System Design for Real-Time Video Processing
A.6.2 Introduction
Video and Image Processing Blockset™ provides algorithms and tools for the design and simulation of video processing, image processing, and computer vision systems. You can process video and image data to solve problems such as noise, low contrast, out-of-focus optics, and artifacts resulting from interlaced video. You can then perform tasks such as motion analysis, object detection and tracking, video stabilization, and disparity estimation for stereo vision. Most algorithms and tools are available as both System objects (for use in MATLAB®) and blocks (for use in Simulink®).
Tools for multimedia file I/O, video display, drawing graphics, and compositing enable you to visualize, simulate, and evaluate design alternatives. For embedded system design and rapid prototyping, the blockset supports fixed-point arithmetic, C-code generation, and implementation on embedded hardware.
A.6.3 Key Features
· System objects for use in MATLAB and blocks for use in Simulink
· Video processing algorithms, including block matching, deinterlacing, and optical flow
· Image processing algorithms, including filtering, geometric transformations, and transforms
· Image analysis algorithms, including blob analysis, edge detection, morphology, and segmentation
· Computer vision algorithms, including object tracking, stereo vision, video mosaicking, and video stabilization
· Multimedia file I/O, video display, graphic overlays, and compositing
· Support for floating-point, integer, and fixed-point data types of arbitrary word length
· Support for automatic C-code generation
A.6.4 Stream Processing in MATLAB and Simulink
Most real-time video processing and computer vision systems require a stream processing architecture, in which video frames from a continuous stream are processed one (or more) at a time. This is critical in systems with live video, or when the video data is so large that loading the entire set into the workspace is inefficient. Video and Image Processing Blockset supports a stream processing architecture in both MATLAB and Simulink.
Simulink handles stream processing by managing the flow of data through the blocks that make up a Simulink model. Simulink, an interactive graphical environment for multidomain modeling and simulating dynamic systems, uses hierarchical diagrams to represent a system model. It includes a library of general-purpose, predefined blocks to represent algorithms, sources, sinks, dynamics, and system hierarchy. Video and Image Processing Blockset provides a library of Simulink blocks specifically for the design of video processing, image processing, and computer vision systems.
In MATLAB, stream processing is enabled by System objects, which use MATLAB objects to represent time-based and data-driven algorithms, sources, and sinks. System objects implicitly manage many details of stream processing, such as data indexing, buffering, and algorithm state management. You can mix System objects with standard MATLAB functions and operators. All System objects have a corresponding Simulink block with the same capabilities. Most algorithms and tools in Video and Image Processing Blockset are available as System objects for use in MATLAB.
All algorithms in the blockset, whether implemented as System objects or Simulink blocks, support double-precision and single-precision floating-point data types. Most also support integer and fixed-data point data types (requires Fixed-Point Toolbox™ or Simulink Fixed Point™).
[image: An abandoned object detection model. The lower three frames show steps in the process of detecting and tracking an abandoned object in a live video stream from a camera in a train station.]
Figure A.12 an abandoned object detection model. The lower three frames show steps in the process of detecting and tracking an abandoned object in a live video stream
A.7 Video I/O, Visualization, and Graphics
A.7.1 Sources and Sinks
Video and Image Processing Blockset can read and write multimedia files in a wide range of formats, such as AVI, MPEG, and WMA. You can stream video to or from MMS sources over the Internet or a local network. You can acquire video directly from Web cameras, frame grabbers, DCAM-compatible cameras, and other imaging devices using Image Acquisition Toolbox™. Simulink users can also use the MATLAB workspace as a video source or sink.
A.7.2 Visualization
The blockset includes a flexible video viewer with many features. You can:
· View video streams in-the-loop as the data is being processed
· View any video signal within your simulation
· Use multiple video viewers at the same time
· Start, stop, pause, and step through simulations one frame at a time
· Freeze the display and evaluate the current frame
· Display pixel information for a region in the frame
· Pan and zoom for closer inspection as the simulation is running
[image: A model with viewers for four videos: original, background estimate, segmentation results, and model output.]

Figure A.13 a model with viewers for four videos: original, background estimate, segmentation results, and model output.
A.7.3 Graphics
Adding graphics to video often helps with visualizing extracted information or debugging problems with a system design. You can insert text in order to count objects or keep track of other key information. You can insert graphics such as markers, lines, and polygons to delineate objects, important boundaries, or other key features. Inserted text and graphics are incorporated into the data itself rather than as a separate layer. You can also combine two video sources in a composite that can highlight objects or focus attention on a key region.
[image: Images with text and graphics inserted. Adding these elements can help you visualize extracted information and debug your design.]
Figure A.14 Images with text and graphics inserted. Adding these elements can help you visualize extracted information and debug your design.
A.8 Image Processing Primitives
A.8.1 Pre-processing and Post processing
Video and Image Processing Blockset provides image processing primitives for solving frequent system problems, such as interfering noise, low dynamic range, and out-of-focus optics. Preprocessing and post processing primitives include:
· 2D spatial filtering (FIR, convolution, median)
· 2D frequency domain filtering (FFT, DCT)
· Gamma correction, contrast adjustment, and histogram equalization
A.8.2 Morphological Operators
Morphological operators have a wide variety of uses, including correcting non uniform illumination, enhancing contrast, removing noise, and thinning regions. Morphological operators in Video and Image Processing Blockset include:
· Erosion and dilation
· Opening and closing
· Labeling of connected components
· Top-hat and bottom-hat filtering
A.8.3 Geometric Transformations
Geometric transformations alter the spatial relationships between pixels in an image. Video and Image Processing Blockset provides primitives for simple operations such as resizing and rotation as well as more general affine and projective transformations. These primitives provide the foundation for applications such as stereo vision, video mosaicking, and video stabilization.
[image: Using corner detection to find features in each video frame (left). A geometric transformation is estimated between consecutive frames using RANSAC and applied to create a mosaic image (right).]
Figure A.15 using corner detection to find features in each video frame (left). A geometric transformation is estimated between consecutive frames using RANSAC and applied to create a mosaic image (right).
A.8.4 Colour Operations
Color operations enable you to represent and manipulate color signals and convert between different video formats. Video and Image Processing Blockset includes color primitives such as:
· Color space conversion for widely used color formats
· Down sampling or up sampling of chrominance components
· Bayer pattern demosaicking
A.8.5 Segmentation and Feature Detection
Algorithms for segmentation and feature detection provide the foundation for systems that extract information from images and video, such as those that perform object detection, recognition, and tracking. Image segmentation algorithms determine region or object boundaries in an image and are sometimes used to separate foreground objects from the background. The blockset includes feature detection algorithms for matching, registration, recognition, and other tasks. Video and Image Processing Blockset contains primitives such as:
· Edge detection, including Canny, Sobel, Prewitt, and Roberts methods
· Automatic thresholding using Otsu’s method
· Hough transform and finding lines
· Corner detection
· Template matching
·
[image: Video frame from a lane departure warning system. The system uses autothresholding and a Hough transform to find lane markings.]

Figure A.16 Video frame from a lane departure warning system. The system uses autothresholding and a Hough transform to find lane markings.
A.8.6 Analysis
Using objects or detected features, you can extract information from images using image analysis primitives. Video and Image Processing Blockset includes primitives for:
· Blob analysis to measure properties of image regions, such as area, centroid, and bounding box
· Statistical analysis, such as maximum, minimum, mean, median, variance, correlation, and standard deviation
· Tracing object boundaries to extract coordinate lists
· Labeling of connected components
·
[image: A video frame displaying how morphological operators and blob analysis are used to count the number of E. coli bacteria.]

Figure A.17 a video frame displaying how morphological operators and blob analysis are used to count the number of E. coli bacteria.
A.9 Video Processing and Computer Vision
A.9.1 Video Processing
Video and Image Processing Blockset contains video-specific algorithms, including motion analysis techniques such as optical flow, block matching, and template matching. With the blockset, you can:
· Deinterlace video coming from interlaced cameras
· Implement video compression algorithms
· Convert between standard video formats
· Stabilize video from a moving camera
[image: Output of a video stabilization model in Simulink. Camera motion is removed by searching for a target in a region of interest and shifting the frame appropriately.]

Figure A.18 Output of a video stabilization model in Simulink. Camera motion is removed by searching for a target in a region of interest and shifting the frame appropriately.
A.9.2 Computer Vision
Video and Image Processing Blockset includes a number of algorithms, workflows, and tools for computer vision. In-product demos show how to build systems for specific topics in computer vision. With the blockset, you can:
Develop systems for people detection and tracking
· Perform scene reconstruction using a pair of stereo images
· Perform video mosaicking to form a comprehensive view of a scene
· Develop lane departure warning algorithms for automotive safety systems
· Inspect parts on an assembly line
[image: Reconstructing a scene using a pair of stereo images. In order to visualize the disparity, the right channel (top left) is combined with the left channel to create a composite (top right). A depthmap of the scene (bottom left) is then derived, and a 3D rendering of the scene (bottom right) reconstructed from depth information.]
Figure A.19 Reconstructing a scene using a pair of stereo images. In order to visualize the disparity, the right channel (top left) is combined with the left channel to create a composite (top right). A depth map of the scene (bottom left) is then derived, and a 3D rendering of the scene (bottom right) reconstructed from depth information.

A.10 Statistics Toolbox
 A.10.1 Product Description
· Introduction and Key Features
· Data Management and Descriptive Statistics
· Probability Distributions and Analysis of Variance
· Linear and Nonlinear Modeling and Multivariate Statistics
· Design of Experiments
· Hypothesis Testing and Statistical Process Control
 A.10.2 Introduction
Statistics Toolbox™ provides a comprehensive set of tools to assess and understand data. Statistics Toolbox includes functions and interactive tools for modeling data, analyzing historical trends, simulating systems, developing statistical algorithms, and learning and teaching statistics.
The toolbox supports a wide range of tasks, from calculating basic descriptive statistics to developing and visualizing multidimensional nonlinear models. It offers a rich set of statistical plot types and interactive graphics, such as polynomial fitting and response surface modeling.
All toolbox functions are written in the open MATLAB® language so that you can inspect the algorithms, modify the source code, and create your own custom functions.
 A.10.3 Key Features
· Data organization and management
· Descriptive statistics
· Statistical plotting and data visualization
· Probability distributions
· Analysis of variance (ANOVA)
· Linear and nonlinear modeling
· Multivariate statistics
· Design of Experiments (DOE)
· Hypothesis testing
· Statistical Process Control (SPC)
[image: st_dftool]

Figure A.20 Fitting univariate distributions to data. The Distribution Fitting Tool lets you easily import, analyze, and plot your data.
 A.10.4 Data Organization and Management
Statistics Toolbox provides two specialized arrays for statistical data: dataset arrays and categorical arrays.
Dataset Arrays
Dataset arrays enable convenient organization and analysis of heterogeneous statistical data and metadata. Dataset arrays have columns that represent measured variables and rows that represent observations. With dataset arrays, you can:
· Collect variables of different data types and sizes in a single array
· Use metadata to describe variables and observations and to access them by name
· View summary statistics and display data in an intuitive tabular format
· Create, manage, and operate on dataset arrays using a variety of supporting methods
Categorical Arrays
Categorical arrays let you organize and process categorical data that takes on values from a finite set of discrete levels or categories. With categorical arrays, you can:
· Store nominal data using descriptive labels, such as "red," "green," and "blue" for an unordered set of colors
· Store ordinal data using descriptive labels, such as "cold," warm," and "hot" for an ordered set of temperature measurements
· Manipulate categorical data using familiar array operations and indexing methods
· Index into other variables or create subsets of data based on the category of observation
· Group observations of the same category for computing statistics and creating visualizations
 A.10.5 Descriptive Statistics
Descriptive statistics methods enable you to quickly understand and describe potentially large sets of data. Statistics Toolbox includes functions for calculating:
· Measures of central tendency (measures of location), including average, median, and various means
· Measures of dispersion (measures of spread), including range, variance, standard deviation, and mean or median absolute deviation
· Linear and rank correlation (partial and full)
· Results based on data with missing values
· Percentile and quartile estimates
· Density estimates (using a kernel-smoothing function)
These functions help you summarize the values in a data sample with a few highly relevant numbers. Although descriptive statistics are typically generated using parametric techniques, you can also use bootstrap methods to derive descriptive statistics.
 A.10.6 Statistical Plotting and Interactive Graphics
Statistics Toolbox includes numerous functions that help you represent your data graphically. In addition to the standard set of MATLAB plot types, Statistics Toolbox includes box plots, probability plots, histograms and 3-D histograms, control charts, quantile-quantile plots, and several multivariate plots. It also provides interactive graphics that enhance analysis in areas such as:
· Nonlinear and polynomial fitting and prediction
· Exploration of distribution functions and distribution fitting and analysis
· Interactive random number generation
· Response surface modeling
· Interactive process experimentation and analysis
· Stepwise regression analysis
·
[image: Statistics Toolbox Stepwise Regression]

Figure A.21 Regression analysis to determine the most important ingredients for cement-mixture curing. Stepwise regression capabilities in Statistics Toolbox provide automated procedures for identifying models from several potential explanatory variables.
A.10.7 Probability Distributions
Statistics Toolbox includes an extensive library of probability distribution functions that let you fit probability distributions to your data, compute functions from them, and generate random samples. From the command line you have access to more than 150 functions for:
· Generating random and quasi-random point sets
· Calculating the probability density function (pdf)
· Calculating the cumulative distribution function (cdf) and its inverse
· Computing mean and variance
· Estimating distribution parameters
Statistics Toolbox includes three interactive graphical user interfaces (GUIs) that simplify common analysis tasks. The Distribution Fitting Tool GUI lets you fit data using 23 predefined probability distributions, a nonparametric (kernel-smoothing) estimator, or a custom distribution that you define yourself. It supports both complete and censored (reliability) data and lets you exclude data, save and load sessions, and generate MATLAB code.
The Distribution Tool GUI lets you learn about a variety of probability distributions and explore how various parameters affect their position and shape.
The Random Number Tool GUI provides a random number generator to simulate behavior associated with particular distributions. You can use this random data to test hypotheses or models under different conditions, as well as perform Monte Carlo simulations.
Statistics Toolbox also includes functions for generating random samples from multivariate distributions, such as t, normal, copulas, and Wishart; sampling from finite populations; performing Latin hypercube sampling; and generating samples from Pearson and Johnson systems of distributions.
Statistics Toolbox can also fit parametric copulas to data, providing a link between models that describe marginal distribution and models that describe data correlations.
A.10.8 Analysis of Variance
Analysis of variance (ANOVA) lets you determine whether data sets from different groups have different characteristics. You can classify groups using discrete predictor variables. A follow-up multiple comparison analysis can pinpoint which pairs of groups differ from each other.
Statistics Toolbox includes algorithms for ANOVA and related techniques, including:
· One-way ANOVA with graphics
· Two-way ANOVA for balanced data
· Multiway ANOVA for balanced and unbalanced data (both fixed and random effects)
· Multivariate ANOVA
· Nonparametric one- and two-way ANOVA (Kruskal-Wallis, Friedman)
· Analysis of covariance (ANOCOVA)
· Multiple comparison of group means, slopes, and intercepts
·
[image: st_anova]
Figure A.22 Analysis of covariance (ANOCOVA) tool, which plots data to assess group-to-group differences and the impact of a predictor variable on a response variable.
A.10.9 Linear and Nonlinear Modeling
The linear and nonlinear models provided in Statistics Toolbox let you model a response variable as a function of one or more predictor variables. These models make predictions, establish relationships between variables, or simplify a problem. For example, linear and nonlinear regressions models help establish which variables have the most impact on a response. Robust regression methods can help you find outliers and reduce their effect on the fitted model.
The toolbox provides linear algorithms for:
· Polynomial, stepwise, ridge, robust, and multiple linear regression
· Generalized linear models, including multinomial (discrete-choice) models
· Response surface fitting
The toolbox also provides nonlinear fitting functions. Using nonlinear least squares functions, you can:
· Estimate parameters
· Interactively visualize and predict multidimensional nonlinear fitting
· Set confidence intervals for parameters and predicted values
Statistics Toolbox supports a variety of techniques for classification analysis, including:
· Discriminate analysis
· Classification and regression trees
Nonlinear mixed-effect (NLME) models provide a flexible mechanism to model correlations within subgroups contained within a larger data sample.
Statistical learning techniques such as cross-validation and sequential feature selection can be applied to both linear and nonlinear fitting methods.
You can also use the toolbox to work with Hidden Markov models. You can estimate the parameters of a model using the Baum-Welch algorithm, calculate the most likely path through a model using the Viterbi algorithm, and generate random sequences from a given model.
A.10.10 Multivariate Statistics
Multivariate statistics methods let you analyze your data by evaluating groups of variables together. You can:
· Segment data in clusters for further analysis
· Visualize and assess the group-to-group differences in a data set
· Reduce a large set of variables to a more manageable but still representative set
·
[image: st performance]
Figure A.23 Nonlinear mixed-effects model of drug absorption and elimination showing intrasubject concentration-versus-time profiles. The nlmefit function in Statistics Toolbox generates a population model using fixed and random effects.
Matrix of scatter plots and histograms comparing automobile performance over three model years. Statistics Toolbox makes it easy to plot multiple variables and compare data.
Multivariate statistics tasks supported by Statistics Toolbox include:
· Factor analysis
· Factor rotation and biplots
· Cluster analysis (both hierarchical and k-means)
· Multidimensional scaling (classical, metric, and nonmetric)
· Multivariate plotting (parallel coordinates, glyph plots, and Andrews plots)
Statistics Toolbox also supports data transformation and dimensionality reduction techniques like principal component analysis and partial least squares.
[image: Stat Toolbox Plots]
Figure A.24 Plots showing how data with similar characteristics can be clustered into groups. Statistics Toolbox includes functions for multivariate analysis and clustering.
A.10.11 Design of Experiments
Functions for Design of Experiments (DOE) help you create and test practical plans to gather data for statistical modeling. These plans show you how to manipulate your data inputs in tandem to generate information about their effect on the outputs. Supported design types include:
· Full factorial
· Fractional factorial
· Response surface (central composite and Box-Behnken)
· D-optimal
· Latin hypercube
You can use the toolbox to define, analyze, and visualize a customized DOE. For example, you can estimate input effects and input interactions using ANOVA, linear regression, and response surface modeling, and then visualize results through main effect plots, interaction plots, and multi-vari charts.
[image: st_rmsplots]
Figure A.25 Fitting a decision tree to data. The fitting capabilities in Statistics Toolbox let you visualize a decision tree by drawing a diagram of the decision rule and group assignments.
[image: st_doe]
Figure A.26 Model of a chemical reaction of an experiment using Design-of-Experiments (DOE) and surface-fitting capabilities of Statistics Toolbox.
A.10.12 Hypothesis Testing
Random variation often makes it difficult to determine whether samples taken under different conditions really are different. Hypothesis testing is an effective tool for analyzing whether sample-to-sample differences are significant and require further evaluation or are consistent with random and expected data variation.
Statistics Toolbox supports the most widely used parametric and nonparametric hypothesis testing procedures, such as:
· One- and two-sample t-tests
· One-sample z-test
· Nonparametric tests for one sample, paired samples, and two independent samples
· Distribution tests (Chi-square, Jarque-Bera, Lilliefors, and Kolmogorov-Smirnov)
· Comparison of distributions (two-sample Kolmogorov-Smirnov)
· Autocorrelation and randomness tests
· Linear hypotheses tests on regression coefficients
·
A.10.13 Statistical Process Control
Statistics Toolbox provides a set of functions that support Statistical Process Control (SPC). These functions enable you to monitor and improve products or processes by evaluating process variability. SPC functions let you:
· Perform gage repeatability and reproducibility studies
· Estimate process capability
· Create 11 control charts
· Apply Western Electric and Nelson control rules to control chart data
·
[image: Statistics Toolbox Shewhart Control Chart]
Figure A.27 Control charts showing process data and violations of Western Electric control rules. Statistics Toolbox provides a variety of control charts and control rules for monitoring and evaluating products or processes.
Appendix B
Software

Matlab Programmes used in the Project

a=mmreader('C:\NewFolder1\video2.avi');
for i=1:25
 b=read(a,i);
 b=rgb2gray(b);
 frames(:,:,i)=b;
end
for t = 2:10

clear A
clear sp
clear E
 for i =2:size(frames,1)-1
 for j = 2:size(frames,2)-1
 A(:,1) = frames(i-1:i+1,j,t);
 A(:,2) = frames(i,j-1:j+1,t);
 A(:,3) = frames(i,j,t-1:t+1);
 E = cov(double(A),1);
 sp(i,j,t) = det(E);
 end
 end
 close all;
 mesh(abs(sp(:,:,t)));

end

function [] = filteredMovie(video_name,num,new_MaxPos,pipeSize,cubeSize)

% read the video frames into MATLAB movie structure nv
nv = aviread(video2)
pos1 = findstr(video2, '\')
vpos = pos1(1,length(pos1))

% video path is before vpos
vpath1 = substr(video2, 0, vpos)
% video name is after vpos	
vname = substr(video2, vpos)

% The name of the output video which has spatial temporal points showing has
% 'f_' prefixed to the input video name, but same video path
aviname = strcat(vpath1, 'f_', vname)
aviobj = avifile(aviname);

for i = 1 : size(nv,2)
 frame = nv(1,i);
 frame = frame2im(frame);
 new_frames(i,:,:,:) = frame;
end

for i = 1 : size(new_MaxPos,1)
 if((new_MaxPos(i,3) > (pipeSize+ 1)) && (new_MaxPos(i,3) < (size(nv,2) - pipeSize)) &&...
 (new_MaxPos(i,1) > (cubeSize+1)) && (new_MaxPos(i,1) < (size(new_frames,2) - (cubeSize))) &&...
 (new_MaxPos(i,2) > (cubeSize+1)) &&(new_MaxPos(i,2) < (size(new_frames,3) - (cubeSize + 1))))
 l1 = 1;
 for j = new_MaxPos(i,1) - cubeSize : new_MaxPos(i,1) + cubeSize
 l2 = 1;
 for k = new_MaxPos(i,2) - cubeSize : new_MaxPos(i,2)+ cubeSize
 p = 1;
 for pipe = new_MaxPos(i,3)- pipeSize : new_MaxPos(i,3) + pipeSize
 new_frames(pipe,j,k,1) = 255;
 new_frames(pipe,j,k,2) = 255;
 new_frames(pipe,j,k,3) = 255;
 p = p+1;
 end
 l2 = l2 + 1;
 end
 l1 = l1 + 1;
 end
 end
end

 This m-file implements the frame difference algorithm for background
% subtraction.
clear all
% source = aviread('C:\Video\Source\traffic\san_fran_traffic_30sec_QVGA');
source = aviread('video2.avi');

thresh = 25;

bg = source(1).cdata; % read in 1st frame as background frame
bg_bw = rgb2gray(bg); % convert background to greyscale

% ----------------------- set frame size variables -----------------------
fr_size = size(bg);
width = fr_size(2);
height = fr_size(1);
fg = zeros(height, width);

% --------------------- process frames -----------------------------------

for i = 2:length(source)

 fr = source(i).cdata; % read in frame
 fr_bw = rgb2gray(fr); % convert frame to grayscale

 fr_diff = abs(double(fr_bw) - double(bg_bw)); % cast operands as double to avoid negative overflow

 for j=1:width % if fr_diff > thresh pixel in foreground
 for k=1:height
 if ((fr_diff(k,j) > thresh))
 fg(k,j) = fr_bw(k,j);
 else
 fg(k,j) = 0;
 end
 end
 end

 bg_bw = fr_bw;

 figure(1),subplot(3,1,1),imshow(fr)
 subplot(3,1,2),imshow(fr_bw)
 subplot(3,1,3),imshow(uint8(fg))

 M(i-1) = im2frame(uint8(fg),gray); % put frames into movie

end

% movie2avi(M,'frame_difference_output', 'fps', 30);
% save movie as avi

% Function to calculate Local Maxima
% - it returns the maxima and its position
% It calls MinimaMaxima3D function
% It has a threshold setting. Currently it is at 0.7
function [final_maxima,final_maxpos] = calcLocalMaxima(R)
final_maxima = []; final_maxpos = [];
for i = 1 :15: size(R,3) - 15
 [Maxima,MaxPos]=MinimaMaxima3D(R(:,:,i:i+14),1,1,1,1)
 MaxPos(:,3) = MaxPos(:,3) + i - 1;
 [new_Maxima,new_MaxPos] = threshold(Maxima,MaxPos,0.7);
 final_maxima = [final_maxima; new_Maxima];
 final_maxpos = [final_maxpos; new_MaxPos];
end

% GMMB_DEMO01 Demostrate GMMBayes mixture learning and data classification.
% This demo generates some Gaussian mixture distributed data,
% divides it into training and test set, runs Figueiredo-Jain
% algorithm on the training set and classifies the test set.

function [] = gmmb_demo01;

disp('Generating data from three classes with 3, 1 and 2 Gaussian components...');

% generate test data
alldata = [...
 mvnrnd([2 1], covrot(1, 0.7, 1), 200) ;...
 mvnrnd([-2 1], covrot(0.4, 1.2, pi/3), 200) ;...
 mvnrnd([0 1.5], covrot(0.5, 0.5, 0), 150) ;...
 mvnrnd([-3 -1.5], covrot(0.5, 0.5, 0), 150) ;...
 mvnrnd([3 -1.5], covrot(0.5, 0.5, 0), 150) ;...
 mvnrnd([0 -2.5], covrot(2.5, 1.5, 0), 200) ;...
];

alltype = [...
 1*ones(200,1); ...
 1*ones(200,1); ...
 2*ones(150,1); ...
 3*ones(150,1); ...
 3*ones(150,1); ...
 1*ones(200,1); ...
];

disp('Separating test set (30%) and training set (70%)...');

[Ptrain Ttrain Ptest Ttest] = subset(alldata, alltype, round(size(alltype, 1)*0.70));

figH = figure;
plot_data(Ptrain, Ttrain, ['xr'; 'xb'; 'xg']);

disp('Now we have this kind of training set, three classes.');
disp('Next we will use the FJ algorithm to learn those classes.');
input('<press enter>');

FJ_params = { 'Cmax', 25, 'thr', 1e-3, 'animate', 1 }
disp('Running FJ...');
bayesS = gmmb_create(Ptrain, Ttrain, 'FJ', FJ_params{:});
disp('Training complete.');
disp('There are now 3 more figures open, in those you can see how the FJ learned the distribution.');
input('<press enter>');

figure(figH);
disp('This is our test set. Let''s forget the class labels and classify the samples.');
plot_data(Ptest, Ttest, ['xr'; 'xb'; 'xg']);
input('<press enter>');

result = gmmb_classify(bayesS, Ptest);
disp('Done classifying. We used the Bayesian classifier (default).');

rat = sum(result == Ttest) / length(Ttest);
disp(['We got ' num2str(rat*100) ' percent correct.']);
disp('The misclassified points are circled.');

miss = Ptest(result ~= Ttest, :);
hold on
plot(miss(:,1), miss(:,2), 'ok');

input('<press enter>');
disp('The End.');

function [tdata, ttype, left_data, left_type] = subset(data, type, n);
% [tdata ttype left_data left_type] = SUBSET(data, type, n)
% Get a subset of size n points from [data, type] into [tdata ttype].
% The rest of the points go into [left_data left_type].
% Preserves class portions, selects random points.

tdata = zeros(n, size(data,2));
ttype = zeros(n, 1);
left_data = [];
left_type = [];

N = size(data,1);
if n>N
 tdata = data;
 ttype = type;
 return;
end

left_data = zeros(N-n, size(data,2));
left_type = zeros(N-n, 1);

done=0;
over=0;
e=0;
unkst = unique(type)';
for k = unkst
 cdata = data(type==k, :);
 cN = size(cdata,1);
 sn = min(round(n*cN/N), n-done);
 e = e + sn - n*cN/N;
 if e >= 1
 e = e-1;
 sn = sn -1;
 end
 if e <= -1
 e = e+1;
 sn = sn +1;
 end
 perm = randperm(cN);
 tdata((done+1):(done+sn), :) = cdata(perm(1:sn), :);
 left_data((over+1):(over+cN-sn), :) = cdata(perm((sn+1):cN), :);
 ttype((done+1):(done+sn), 1) = k;
 left_type((over+1):(over+cN-sn), :) = k;
 done = done + sn;
 over = over + cN - sn;
end

function C = covrot(x, y, th);
% Create rotated covariance matrix.
% C = covrot(x, y, th)
% x, y are standard deviations and th is rotation angle
O = [x 0; 0 y];
R = [cos(th) -sin(th); sin(th) cos(th)];
M = R * O;
C = M * M';

function plot_data(data, type, colors);

for k = 1:max(type)
 x = data(type==k,1);
 y = data(type==k,2);
 h = plot(x, y, colors(mod(k-1,size(colors,1))+1,:));
 %set(h, 'MarkerSize', msize);
 hold on
end
hold off

function [Maxima,MaxPos]=MinimaMaxima3D(Input,Robust,LookInBoundaries,numbermax,numbermin)

% function [Maxima,MaxPos,Minima,MinPos]=MinimaMaxima3D(Input,Robust,LookInBoundaries,numbermax,numbermin)
% V 1.0 Dec 13, 07

% This function finds the local minima and maxima in a 3D Cartesian data.
% It's assumed that the data is uniformly distributed.
% The minima and maxima are calculated using a multi-directional derivation.
%
 [Maxima,MaxPos,Minima,MinPos]=MinimaMaxima3D(Input,[Robust],[LookInBoundaries],[numbermax],[numbermin])
%
% where Input is the 3D data and Robust (optional and with a default value
% of 1) indicates if the multi-directional derivation should include the
% diagonal derivations.
%
% Input has to have a size larger or equal than [3 x 3 x 3]
%
% If Robust=1, the total number of derivations taken into account are 26: 6
% for all surrounding elements colliding each of the faces of the unit cube;
% 10 for all the surrounding elements in diagonal.
%
% If Robust =0, then only the 6 elements of the colliding faces are considered
%
% The function returns in Maxima and MaxPos, respectively,
% the values (numbermax) and subindexes (numbermax x 3) of local maxima
% and position in Input. Maxima (and the subindexes) are sorted in
% descending order.
% Similar situation for Minima and MinimaPos witn a numbermin elements but
% with the execption of being sorted in ascending order.
%
% IMPORTANT: if numbermin or numbermax are not specified, ALL the minima
% or maxima will be returned. This can be a useless for highly
% oscillating data
%
% LookInBoundaries (default value of 0) specifies if a search of the minima/maxima should be
% done in the boundaries of the matrix. This situation depends on the
% the desire application. When it is not activated, the algorithm WILL NOT
% FIND ANY MINIMA/MAXIMA on the 6 layers of the boundaries.
% When it is activated, the finding minima and maxima on the boundaries is done by
% replicating the extra layer as the layer 2 (or layer N-1, depending of the boundary)
% By example (and using a 2D matrix for simplicity reasons):
% For the matrix
% [4 1 3 7
% 5 7 8 8
% 9 9 9 9
% 5 6 7 9]
%
% the calculation of the partial derivate following the -x direction will be done by substrascting
% [5 7 8 8
% 4 1 3 7
% 5 7 8 8
% 9 9 9 9]
% to the input. And so on for the other dimensions.
% Like this, the value "1" at the coordinate (1,2) will be detected as a
% minima. Same situation for the value "5" at the coordinate (4,1)

a=mmreader('C:\Newfolder1\video1.avi_segment1_1.avi');
for i=1:10
 video1=read(a,i);
 video1=rgb2gray(video1);
 frames(:,:,i)=video1;
end
if nargin <1
 test=load(video1);
 pf=test.uresTot(test.EvalLims(2,1):test.EvalLims(2,2));
 pf=reshape(pf,length(test.EvalCoord{2}.Ry),length(test.EvalCoord{2}.Rx),length(test.EvalCoord{2}.Rz));
 Input = abs(pf)*1.5e6;
 clear test;
 clear pf;
 Robust =1;
end

Asize=size(Input);

if length(Asize)<3
 error('MinimaMaxima3D can only works with 3D matrices ');
end

if (Asize(1)<3 || Asize(2)<3 || Asize(3)<3)
 error('MinimaMaxima3D can only works with matrices with dimensions equal or larger to [3x3x3]');
end

if ~isreal(Input)
 warning('ATTENTION, complex values detected!!, using abs(Input)');
 Input=abs(Input);
end

if ~exist('Robust','var')
 Robust=1;
end

if ~exist('LookInBoundaries','var')
 LookInBoundaries=0;
end

if ~exist('numbermax','var')
 numbermax=0;
end

if ~exist('numbermin','var')
 numbermin=0;
end

[xx_base,yy_base,zz_base]=ndgrid(1:Asize(1),1:Asize(2),1:Asize(3));

IndBase=sub2ind(Asize,xx_base(:),yy_base(:),zz_base(:));

if Robust ~= 0
 Numbder_dd=26;
else
 Numbder_dd=6;
end

if LookInBoundaries==0
 lx=1:Asize(1);
 lx_p1=[2:Asize(1),Asize(1)];
 lx_m1=[1,1:Asize(1)-1];
 ly=1:Asize(2);
 ly_p1=[2:Asize(2),Asize(2)];
 ly_m1=[1,1:Asize(2)-1];
 lz=1:Asize(3);
 lz_p1=[2:Asize(3),Asize(3)];
 lz_m1=[1,1:Asize(3)-1];
else
 lx=1:Asize(1);
 lx_p1=[2:Asize(1),Asize(1)-1]; %We replicate the layer N-1 as the layer N+1
 lx_m1=[2,1:Asize(1)-1]; %We replicate the layer 2 as the layer -1
 ly=1:Asize(2);
 ly_p1=[2:Asize(2),Asize(2)-1]; %We replicate the layer N-1 as the layer N+1
 ly_m1=[2,1:Asize(2)-1]; %We replicate the layer 2 as the layer -1
 lz=1:Asize(3);
 lz_p1=[2:Asize(3),Asize(3)-1]; %We replicate the layer N-1 as the layer N+1
 lz_m1=[2,1:Asize(3)-1];%We replicate the layer 2 as the layer -1
end

for n_dd=1:Numbder_dd
 switch n_dd
 case 1
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1)
 [xx,yy,zz]=ndgrid(lx_p1,ly,lz);

 case 2
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1)
 [xx,yy,zz]=ndgrid(lx_m1,ly,lz);

 case 3
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(y)-elem(y+1)
 [xx,yy,zz]=ndgrid(lx,ly_p1,lz);

 case 4
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(y)-elem(y-1)
 [xx,yy,zz]=ndgrid(lx,ly_m1,lz);

 case 5
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(z)-elem(z+1)
 [xx,yy,zz]=ndgrid(lx,ly,lz_p1);

 case 6
 %%%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(z)-elem(z-1)
 [xx,yy,zz]=ndgrid(lx,ly,lz_m1);
 case 7
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y+1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz);
 case 8
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y-1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz);
 case 9
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y-1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz);
 case 10
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y+1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz);
 case 11
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,z+1)
 [xx,yy,zz]=ndgrid(lx_p1,ly,lz_p1);
 case 12
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,z-1)
 [xx,yy,zz]=ndgrid(lx_p1,ly,lz_m1);
 case 13
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,z-1)
 [xx,yy,zz]=ndgrid(lx_m1,ly,lz_m1);
 case 14
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,z+1)
 [xx,yy,zz]=ndgrid(lx_m1,ly,lz_p1);
 case 15
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(y+1,z+1)
 [xx,yy,zz]=ndgrid(lx,ly_p1,lz_p1);
 case 16
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(y+1,z-1)
 [xx,yy,zz]=ndgrid(lx,ly_p1,lz_m1);
 case 17
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(y-1,z-1)
 [xx,yy,zz]=ndgrid(lx,ly_m1,lz_m1);
 case 18
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(y-1,z+1)
 [xx,yy,zz]=ndgrid(lx,ly_m1,lz_p1);
 case 19
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y+1,z+1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz_p1);
 case 20
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y+1,z-1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_p1,lz_m1);
 case 21
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y-1,z+1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz_p1);
 case 22
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x+1,y-1,z-1)
 [xx,yy,zz]=ndgrid(lx_p1,ly_m1,lz_m1);
 case 23
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y+1,z+1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz_p1);
 case 24
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y+1,z-1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_p1,lz_m1);
 case 25
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y-1,z+1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz_p1);
 case 26
 %%%%%%%%%%%%%%%%%% %% This index is used to calculated elem(x)-elem(x-1,y-1,z-1)
 [xx,yy,zz]=ndgrid(lx_m1,ly_m1,lz_m1);

 end

 Ind_dd=sub2ind(Asize,xx(:),yy(:),zz(:));

 part_deriv = Input(IndBase)-Input(Ind_dd);

 if n_dd >1
 MatMinMax= (sign_Prev_deriv==sign(part_deriv)).*MatMinMax;
 else
 MatMinMax=sign(part_deriv);
 end

 sign_Prev_deriv=sign(part_deriv);
end

%Well , now the easy part, all values MatMinMax ==1 are local maximum and
%the values MatMinMax ==-1 are minimun

AllMaxima=find(MatMinMax==1);
AllMinima=find(MatMinMax==-1);

if numbermax ==0
 nmax=length(AllMaxima);
else
 nmax=numbermax;
end
nmax=min([nmax,length(AllMaxima)]);
smax=1:nmax;

if numbermin ==0
 nmin=length(AllMinima);
else
 nmin=numbermin;
end

nmin=min([nmin,length(AllMinima)]);

smin=1:nmin;

[Maxima,IndMax]=sort(Input(AllMaxima),'descend');
Maxima=Maxima(smax);
IndMax=AllMaxima(IndMax(smax));

MaxPos=zeros(nmax,3);
[MaxPos(:,1),MaxPos(:,2),MaxPos(:,3)]=ind2sub(Asize,IndMax);

[Minima,IndMin]=sort(Input(AllMinima));
Minima=Minima(smin);
IndMin=AllMinima(IndMin(smin));

MinPos=zeros(nmin,3);
[MinPos(:,1),MinPos(:,2),MinPos(:,3)]=ind2sub(Asize,IndMin);

% function to create cubes around spatio-temporal interest points generated
% from local maximas. cubes are created leaving the boundaries in all the 3
% dimensions
% output : complete cube for a spatio temporal interest point

function[cubes] = create_cubes(R,new_MaxPos,frameSize,cubeSize,pipeSize,i)
cubes = [];
if((new_MaxPos(i,3) > (pipeSize+ 1)) && (new_MaxPos(i,3) < (frameSize(1) - pipeSize)) && ...
 (new_MaxPos(i,1) > (cubeSize+1)) && (new_MaxPos(i,1) < (frameSize(2) - (cubeSize))) && ...
 (new_MaxPos(i,2) > (cubeSize+1)) &&(new_MaxPos(i,2) < (frameSize(3) - (cubeSize + 1))))
 l1 = 1;
 for j = new_MaxPos(i,1) - cubeSize : new_MaxPos(i,1) + cubeSize %x coord
 l2 = 1;
 for k = new_MaxPos(i,2) - cubeSize : new_MaxPos(i,2)+ cubeSize%y coord
 p = 1;
 for pipe = new_MaxPos(i,3)- pipeSize : new_MaxPos(i,3) + pipeSize%t coordinate
 cubes(l1,l2,p) = R(j,k,pipe);
 p = p+1;
 end
 l2 = l2 + 1;
 end
 l1 = l1 + 1;
 end
end

function [] = create_movie(path, aviname)

% try

 [path,names] = lsfiles (path,'.jpg');

 for i = 1 : size(names, 1)
 im = imread(strcat (path, names(i,:)));
 imshow(im,[]);
 F = getframe();
 frames(i,1) = F;
 end

 movie2avi(frames,aviname,'compression','None');
% catch
% display(path)
% end

function [gaussKernel] = gauss3d()
twiceSigmaSquared = 2.5;
amplitude = 100;
tic;
for x = 1:7
for y=1:7
for z=1:7
radiusSquared = (x-4)^2 + (y-4)^2 + (z-4)^2;
gaussKernel(x, y, z) = amplitude * exp(-radiusSquared/twiceSigmaSquared);
end
end
end

function[]=getclusters(NumOfClusters,path1,clusterFileName,feat1)
if(nargin == 0)
 NumOfClusters = 50
 path1='E:\ICD_matlab\actionRecognition';
 clusterFileName = '..\data\center.mat';
 %feat1 = 'features';
 feat1 = 'LocalMaximaFeatures';
end
if(nargin == 1)
 path1='E:\ICD_matlab\actionRecognition';
 clusterFileName = '..\data\center.mat';
 %feat1 = 'features';
 feat1 = 'LocalMaximaFeatures';
end
if(nargin == 2)
 clusterFileName = '..\data\center.mat';
 %feat1 = 'features';
 feat1 = 'LocalMaximaFeatures';
end
if(nargin == 3)
 %feat1 = 'features';
 feat1 = 'LocalMaximaFeatures';
end
feat_path = strcat(path1,'\',feat1)

%Picking all action folders
%folders = strvcat('a_circleleft','a_circleright','a_headmovement','a_krishnapose','a_leftbend','a_lefthand','a_rightbend','a_righthand','a_sitting','a_teermanam');

% Picking only those folders which have a_ as prefix, we can select folders

folders = subdirlist(feat_path,'a_')

% Picking only folders which have at least 10 videos
%folders = strvcat('a_bothsidebend', 'a_circleleft','a_circleright','a_headmovement','a_lefthand','a_rightbend','a_teermanam')

l=1;
ext = 'mat';
combine=[];
% Do for each action sub-folder
for i = 1 : size(folders,1)
 featurepath1 = strcat(feat_path,'\',folders(i,:))

 %[feature_names] = lsfiles (featurepath1,ext);
 [feature_names] = fileNames(featurepath1,ext)

 %Pick first FEW files in a folder for clustering, depending on
 %partFolder. If partFolder=1, all files, If partFolder=2, Half files,
 %and so on
 partFolder = 1;
 %partFolder = 2;
 %partFolder = 3;

 sizeFolder = round(size(feature_names,1)/partFolder);

 % For each .mat file in the action subfolder, transpose the feat vector
 % and add it to the 'combine' vector. Basically this vector has columns
 % of features, which are used by the mpi_kmeans function to cluster

 for j = 1:sizeFolder
 clear feat
 %feature_names(j,:)
 %loadFileName = strcat(featurepath1,'\',feature_names(j,:).name)
 loadFileName = strcat(featurepath1,'\',feature_names(j,:))
 load(loadFileName)
 feat=feat';
 [m n]=size(feat);
 for k=1:n
 combine(:,l)=feat(:,k);
 l=l+1
 end
 end
 %clear feature_names
end
save('..\data\combineUnclassified_251109.mat','combine');
load('..\data\combineUnclassified_251109.mat');
[Cx,se] = mpi_kmeans(combine,NumOfClusters);
save(clusterFileName, 'Cx');

% Function to generate the filtered movies for all action movies in folder
% videos. Filtered movie is one with Spatio-temporal points showing.
function [] = genFilteredMovie(path1)

% path where videos are stored, name of the folder is videos which has
% videos are stored in sub folders each for one action; subfolder name is
% that of the action with prefix 'a_', e.g a_circle
new_path1 = strcat(path1,'\','videos');

% read in names of the subfolders which represent all the actions
folders = subdirlist(new_path1,'a_');
video_names=[];

% loop for each folder containing different actions
for i = 1 : size(folders,1)
 ext = 'avi';
 videopath1 = strcat(new_path1,'\',folders(i,:))
% featurepath1 = strcat(feat_path,'\',folders(i,:));

 % list of files in that particular folder
 [video_names] = fileNames (videopath1,ext)
% ext1 = 'mat';
% [feature_names] = fileNames (featurepath1,ext1);

 % spatio-temporal features patarameters
 tmpframes = 5; % number of temporal frames
 cubeSize = 5; % cube size
 neighbourSize = 10; % neighbourhood size
 pipeSize = 4; % number of frames in the pipe

 % for each video in the folder
 for videoNo =1: size(video_names,1)
 videoNo
 vpath1 = strcat(videopath1,'\',video_names(videoNo,:))

 % to club the frames of the complete video together
 [new_video] = input_video(vpath1);

 [R] = filter_function(new_video,tmpframes,cubeSize,neighbourSize,pipeSize);

 % Calculate Local Maxima
 [new_Maxima,new_MaxPos] = calcLocalMaxima(R);

 % call the function to generate the filtered movie, i.e. movie with
 % the Spatio-temporal interest points showing
 filteredMovie(vpath1,int2str(videoNo),new_MaxPos,pipeSize,cubeSize);
 end
end

function [R] = filter_function(frames,tmpframes,cubeSize,neighbourSize,pipeSize)
display('extracting features')
% gaussian parameters
gauss = [2 4 5 4 2;4 9 12 9 4;5 12 15 12 5;4 9 12 9 4;2 4 5 4 2];%guassian 5 * 5 window
gauss = 1/159 * gauss;

% gabor filter parameters
% tow = 2.5;

% from Behaviour Recognition paper by Dollar et al, where optimal omega is
% taken as 0.9, that happens when tow = 4.4, and omega = 4/tow
tow = 4.4;
omega = 4/tow;

%guassian 3 * 3 window
gaussScale1 = [1 2 1;2 4 2;1 2 1];
gaussScale1 = 1/16 * gaussScale1;
gaussScale2 = [2 4 5 4 2;4 9 12 9 4;5 12 15 12 5;4 9 12 9 4;2 4 5 4 2];%guassian 5 * 5 window
gaussScale2 = 1/159 * gaussScale2;

for i = 1 : tmpframes
 %even 1d gabor
 hev(i) = - cos(2 * pi * i * omega) * exp(-((i*i))/(tow * tow));%prev frame

 %odd 1d gabor
 hod(i) = - sin(2 * pi * i * omega) * exp(-(i*i)/(tow *tow));
end

for i = 1 : size(frames,1)
 frame(:,:) = frames(i,:,:);
 [m,n] = size(frame);

 %2d guassian
 rtemp(i,:,:) = conv2(single(frame),single(gauss),'same');
end

gabor_hev = zeros(size(frames,2),size(frames,3),size(frames,1));
gabor_hod = zeros(size(frames,2),size(frames,3),size(frames,1));

for i = 1 : size(frames,1)
 for x = 1 : size(frame,1)
 for y = 1 : size(frame,2)
 temp(1:size(frames,1)) = rtemp(1:size(frames,1),x,y);

 gabor_hev(x,y,:) = conv2(temp,hev,'same');
% gabor_hev(x,y,:) = gabor_temp;

 gabor_hod(x,y,:) = conv2(temp,hod,'same');

% gabor_hod(x,y,:) = gabor_temp1;

 end
 end
end

function [feat] = features(frames,video_name,num)

% spatio-temporal features patarameters
tmpframes = 5; % number of temporal frames
cubeSize = 5; % cube size
neighbourSize = 10; % neighbourhood size
pipeSize = 4; % number of frames in the pipe

[R] = filter_function(frames,tmpframes,cubeSize,neighbourSize,pipeSize);

%[new_Maxima,new_MaxPos] = motionSegmentation(frames);

[new_Maxima,new_MaxPos] = calcLocalMaxima(R);

%filteredMovie(video_name,num,new_MaxPos,pipeSize,cubeSize);

feat = [];

for i = 1 : size(new_Maxima,2)
 [cubes] = create_cubes(R,new_MaxPos,size(frames),cubeSize,pipeSize,i);
 if ~isempty(cubes)
 [new_feat] = smoothening(cubes);
 feat = [feat;new_feat];
 end
end

function [] = createMatFiles(path)

folders = strvcat('Hand','Rightbend_final','circle_final','Leftbend_final','Righthand_final','side_final','Bothhand_final','Lefthand_final','sitting_final');

for i = 1 : size(folders,1)

 new_path = strcat(path,'\',folders(i,:))
 ext = 'avi';
 [video_names] = lsfiles (new_path,ext);

 for videoNo =1:size(video_names,1)
 videopath = strcat(new_path,'\',video_names(videoNo).name)
 videoNo
 mov = aviread(videopath);
 save(strcat('matFiles\',folders(i,:),'_',int2str(videoNo)),'mov');
 end
end

References

[1] Sivic, J.,Zisserman,A:Video Google: A text retrieval approach to object matching in
 videos.In:ICCV. Volume 2.(October 2003) 1470 – 1477.
[2] S Indu, Sankalp Arora, Santanu Choudhary, Ashok Bhattacharya: Road Traffic Model using
 distributed camera network, ICVGIP 2010, December 12-15,2010,Chennai.
[3] P.Cheng, Z. Qiu,W.Qiu, and B.Ran: A particle filter based model for traffic state estimation using
 simple wireless network data. IEEE International Conference on Service Operation and logistic,
 and informatics,2005.
[4] R.Boel and L.Mihaylova: A particle filter for freeway traffic estimation. IEEE Symposium,
 June 2004
[5] X.Li and F.M.Porikli: A hidden markov model framework for traffic event detection using video
 features. IEEE International Conference on Image Processing, 2004.
[6] Y.Sou, G.Shi, H.Shi, and H.Zhao: Traffic Incident Classification at intersections based on image
 sequences by HMM/SVM classifiers. IEEE International Conference on Hybrid Intelligent
 Systems, August 2009.
[7] Laptev,I. : On Space-time interest points.IJCV 64(2) (2005) 107-123.
[8] Dollar,P, Rabaud,V., Cottrell,G., Belongie,S.: Behaviour recognition via sparse spatio-temporal
 features. .Visual Surveillance and Performance Evaluation of Tracking and Surveillance (2005)
 65-72.

[9] Oikinomopoulos, A., Patras, I., Pantic, M.: Spatiotemporal salient points for visual recognition of
 human actions. IEEE Transactions on Systems, Man, and Cybernetics – part B: Cybernetics 36 (3)
 (2006) 710 -719.
[10] Wong, S.F., Cipolla, R.: Extracting spatiotemporal interest points using global information.
 In: ICCV, Rio de Janeiro, Brazil (2007) 1 – 8.
[11] Ke, Y., Sukthnkar, R., Hebert, M.: Efficient visual event detection using volumetric features.
 In: ICCV, Volume, 1 (2005) 166 – 173.
[12] G.Willems, T.Tuytelaars, and L.V.Gooll: An efficient dense and scale invariant spatio temporal
 interest point detector. 22nd International Conference on Advanced Information Networking and
 Applications, pages 56 -63, June 2008.
[13] W.Kienzlel, B., Schlolkopfl, F.A. Wichmann and M.O.Franzl: How to find interesting locations
 in video a spatiotemporal interest point detector learned from human eye movements. 22nd
 international Conference on Advanced Information Networking and Applications, pages 56 -63,
 June 2005.
[14] K.Mikolajczyk and C.Schmid: Scale and affine invariant interest point detectors. International
 Journal of Computer Vision, 60(1):63 – 86,2004.
[15] Fang Qian, Mingjing Li, Lei Zhang, Hong – Jiang Zhang, Bo Zhang: Gaussian Mixture model
 for Relevance Feedback in Image Retrieval.
[16] J.A.Blimes: A gentle tutorial of the EM algorithm and its application to parameter estimation for
 Gaussian Mixture and hidden Markov Models.TR – 97 – 021, international Computer Science
 Institute Berkeley CA, 94704, April 1998.

[17] R.Duda, P.Hart, and D.Stork: Pattern Classification. Wiley Interscience, 2000.
[18] L.R.Rabiner: A tutorial on Hidden Markov Models and selected applications in speech
 recognition. In proceedings of the IEEE, 77:257-286, 1989.
[19] Qian Wang: “MATLAB Tutorial”.

16
Dept of Electronics & Communication Engineering, Delhi College of Engineering
image3.png
teration =0 teration =1

image4.emf

image5.emf

image6.emf

image7.emf

image8.gif
m%ﬁ;
oo
BN

image9.gif

image10.gif

image11.gif

image12.png

image13.png

image14.jpeg

image15.gif

image16.gif

image17.gif

image18.jpeg

image19.gif
DsEskacNeW B 80

s Toss

image20.jpeg

image21.gif

image22.gif
0s@sb@ans w08 a0

[

image23.jpeg
DEE6(: aa 0 0880

image24.gif

image25.gif

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg
Frase 14, Coune 227

image32.jpeg

image33.jpeg

image1.png
"y,

8

Ccie

B o, 13 [P

image34.gif

image35.gif

image36.gif

image37.jpeg

image38.jpeg

image2.png

image39.gif

image40.gif

image41.gif

