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Abstract

Surveillance applications are gaining research importance day by day. Visual sen-

sor arrays form the backbone of any surveillance applications. Correct visual sensor

placement along with good lighting conditions is indispensable for the successful

execution of such applications. For given application specific restrictions, con-

straints, and visual occlusion it can be difficult to find optimal positions for sensor

placement. The complexity of these constraints suggests that automated methods

for sensor placement are likely to be useful, particularly when the workspace is

cluttered and application demands maximum coverage with minimum cost and

good quality of service. Illuminating the space under surveillance is also equally

important for good quality imaging.

We present a novel approach for placement of both cameras and light sources

for surveillance applications. Camera and light source placement depends on the

geometry of the space under surveillance, considering the factors such as occlusion

and shadowing effect due to presence of objects in the environment, reflection,

spatial resolution to assure better coverage of the most probable event locations,

et cetera . The deployment strategy places cameras for maximum coverage of the

multiple sensitive areas and light sources are placed for illuminating these areas to

enhance the quality of the vision system. Since, constrained discrete optimization

problems do not have efficient algorithmic solutions, use of evolutionary algorithms

is preferred. Thus, solution to the problem of finding optimal camera and light

source locations has been concluded using multi-objective genetic algorithm based

optimization.
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Chapter 1

Introduction

With the improvements in vision based algorithms and tracking using multiple

cameras, the use of multi-camera surveillance systems to monitor complex indoor

and outdoor environments has increased. Such applications require a camera net-

work, as it becomes difficult to monitor discrete events in a large space with a

single camera and also single camera cannot always take care of occlusion. An

important issue in designing such a network is the placement of these cameras,

which optimizes the coverage of the discrete spaces with optimum resolution. An-

other main limitation when applying vision system to industrial automation, is

the high cost of designing and installation of the vision system. Thus, while de-

signing a vision-based system it is important to define an optimization process to

automate the sensor placement and do better than a human designer. To address

these concerns, researchers have been investigating the relationship between a vi-

sion task and acceptable sensor configurations for executing it. Decreasing cost of

associated hardware and increasing practical need for such systems are among the

reasons attracting more and more researchers to focus in this area.

Different visual applications have different requirements. For instance, for an in-

truder detection system, complete visual coverage of the region of interest may

be needed. For a multi-view reconstruction task, it may be desirable to have a

minimum number of video sensors with some given angular separation. For some

systems the aggregate video sensor network, depending on the specific system de-

sign and architecture, should be made fault tolerant to the occasional failures of

cameras, temporarily obstructed camera views, etc. Similarly in video sensor net-

works, the layout of sensors should assure a minimum level of image quality needed

1
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to satisfy certain task specific requirements, e.g., sufficient image resolution, depth

of field, pan-tilt-zoom cameras, etc. Visual sensor arrays are used in many novel

multimedia applications such as video surveillance, sensing rooms, or smart con-

ference rooms. An important issue in designing sensor arrays is the appropriate

placement of the visual sensors such that they achieve a predefined goal.

1.1 Problem Definition

Our main objective is to find optimal locations for deployment of visual sensors

and light sources in large surveillance space. Placement of visual sensors for opti-

mal coverage is quiet complex due to the directionality of visual sensors and the

uncertainty of the event location in space. PTZ camera itself is complex due to

its pan tilt motion. Further the quality of image depends on zoom level of the

camera and the illumination of the area.

Many of the existing approaches assume constant zoom level. Thus, we need to

modify the camera model for incorporating zoom/depth-of-field as a constraint for

placing visual sensors. Due to the pan-tilt motion of the PTZ camera, the time for

which the sensing space is covered is not uniform. Hence, we require probabilistic

modelling of space assuring better coverage of most probable event location or the

priority areas.

The functioning of such a camera network can be effective only if the priority

areas are properly illuminated. Proper illumination means,no light ray from the

source should directly fall on the camera and the objects in the priority area should

reflect optimum light towards camera. Hence, we need an efficient approach for

light source placement to avoid failure in the vision system due to shadow and

occlusion.

The placement problem is an optimization problem with interrelated and compet-

ing constraints. The constraints being the geometry of sensing space, the camera

and light source models. Since, constrained discrete optimization problems do not

have efficient algorithmic solution, we propose to use an evolutionary algorithm.

Thus, the major motivation behind this work is the multi-objective nature of the

problem with discrete set of variables and constraints. We aim for simultaneous

optimization of camera and light source placement problem.
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1.2 Our Approach

We have developed a CAD tool for 3-D modelling of the space under surveillance.

The sensing space is modelled as voxels. The CAD tool allows the user to mark

regions that need to be monitored at a higher priority. It also permits user to

mark obstacles present in the space under surveillance and the feasible areas where

camera and light source can be placed, e.g. walls and ceilings. We have developed

a MATLAB based GUI for feeding these data. This 3-D model is used for finding

optimal camera and light source locations with appropriate pan and tilt angles and

minimum required zoom level for assuring the quality of service. The placement

problem demands a effective mathematical modelling of camera, light source and

sensing space.

We have used PTZ camera model. PTZ cameras can cover a larger volume com-

pared to pin hole cameras due to its pan-tilt motion and with better resolution.

For assuring better coverage of the sensitive areas, we need a probabilistic mod-

elling of sensing space in terms of coverage. Thus, each visible voxel is assigned

a probability measure depending on the camera location, pan-tilt angle and zoom

level. The probability of occlusion by randomly moving objects is minimised by

covering the priority areas by multiple sensors. Illumination of the sensing field

is equally important for good quality image. We use a conical light source model.

The light sources should be placed in such a way to avoid direct light falling in

any of the cameras, taking care of shadowing and occlusion. Hence, we need to

place more than one camera and light source for ensuring good quality imaging.

We have developed a light source placement scheme for addressing these issues.

Given a number of issues, the optimization problem of finding the optimum camera

and light source placement in a given environment has been solved using genetic

algorithm. To achieve this task we use the NSGA-II algorithm to perform the opti-

mization in a multi-objective environment. The objective functions being camera

coverage and appropriate illumination of the sensing region to be optimized con-

currently.

1.3 Looking Forward

The layout of the thesis is as follows :
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1. In Chapter 2 we present a brief literature survey related to the camera place-

ment problem. Next we talk about the efforts reported in literature by many

researchers to automate the camera and light source placement. We also in-

troduce a brief summary on the emergence of multi-objective optimization.

2. In Chapter 3 presents the camera and light source placement formulation.

The objective functions designed such that the camera are placed for max-

imum coverage while the light source are localized in such a way that the

space under surveillance is well illuminated nullifying the effect of shadows

or occlusion due to obstacles.

3. In Chapter 4 presents the multi-objective framework for optimization of

camera and light source arrangement for large surveillance space.

4. In Chapter 5 results are illustrated through our simulated environment, as

well as we illustrate the experimental set-up for multi-camera configuration.

5. Finally in Chapter 6 we conclude our work and outline the future work in

this area.



Chapter 2

Related Work

In this chapter we analyze the related work reported in literature and where ever

necessary we also draw comparisons with our work. We also highlight the inad-

equacies and deficiencies in the current techniques. We also introduce the work

done in the field of multi-objective optimization.

2.1 Camera Placement

Although significant amount of research exists in designing and calibrating video

sensor arrays, visual sensor placement using PTZ cameras in general has not been

addressed specifically for surveillance applications. The different research work

carried out for placement of cameras included photogrammetric networks, cam-

era networks based on scene reconstruction, task constraints, motion recognition,

multi-camera tracking etc.

In the initial stages the sensor planning is done based on occlusion pattern [1]. We

can broadly classify the research in this field into following main categories, (a) No

information about the surveillance field is known, (b) The models of some set of

information about the objects of the field are known, (c) Complete geometric in-

formation about the space is known, (d) Automatic placement of camera based on

the information obtained from images, and (e) Camera and light source placement

for specific task.

The Art Gallery Problem (AGP) was one among the initial research work similar

to the current work, where minimum numbers of Guards are determined so that

5
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all points of the polygon can be observed for their static positions. The exact

solution of the same is found to be NP-Hard, even though efficient algorithms

exist giving a lower bound for AGPs with simple polygons [2], [3], [4], [5]. Current

solutions to the AGP and its variants employ unrealistic assumptions about the

camera’s capabilities like unlimited field of view, infinite depth of field, infinite

servo precision and speed that make these algorithms unsuitable for most real

world computer vision applications.

Camera calibration was extensively studied by many researchers such as Christo-

pher R. Wren and et. al. for automatically retrieving contextual information from

different camera images [6], Ioannis Rekleitis and et. al. for obtaining 3D pose of

the cameras in a common reference frame using a mobile robot [7], E. Hoster and

et. al. for automatic position calibration of visual sensors without synchronization

[8], Marta Wilczkowiak and et. al. for 3D reconstruction [9]. Richard I Hartley

have proposed self calibration of camera from different views taken from a point

with different poses [10]. The camera calibration may be used along with camera

placement for on line optimization of the camera poses which can be considered

as an extension of our work.

Some others developed vision systems based on image information. Mohan.M.Trivedi

and et.al.[11] developed a distributed interactive video array for both tracking peo-

ple and identifying people, where as Huang Lee and et. al have addressed node

and target localization [12]. Ali Maleki Tabar and et. al. developed a smart home

care sensor network using different types of sensor nodes for event detection [13].

These three works are silent about camera placement. There are certain works in

which the next optimal camera parameter was found out on the basis of the visual

data history of the scene [2], [3], [4] by Krishnendu chakraborthy and et. al.

Developed Grid based placement for Omni directional circular range sensors [14].

Sensor planning methods using more realistic model is given by Tarabanis [15].

Siva Ram et.al explained a real time control of PTZ cameras using cheap motion

sensors [16]. They have addressed the placement of cameras using a performance

index which is calculated on a trial and error basis. They have neither considered

the quality of images and nor the optimization of pan angle and tilt angle of

cameras. Robot Bodor and et.al. [17], [18] find out optimal locations of the

camera after learning the activity. This method will be computationally intensive

and will not be suitable for large space. The off-line camera placement problem

considering random occlusion was initially addressed by Xing chen [19]. Later same
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work was extended by Larry Davis and Anurag Mittal [20]. They used pinhole

cameras. Anurag mittal [21] have presented a camera placement algorithm using a

probabilistic approach for 3D spaces considering occlusion due to randomly moving

dynamic objects. They used a pin-hole camera in their design which again can be

optimized by using PTZ cameras.

2.2 Camera and light source placement

Automatic placement of light source in general has developed research interest

recently. Among the few research papers available for placement of light source,

most / all of them depends on image information and are designed for specific

vision applications where as the proposed method is more general and completely

off line. Also it is based only on the geometry of the space and camera and light

source model.

S. Sakane and et. al [22] calculated location of multiple light source which will

avoid the shadow caused by the surroundings while the robot is moving. This

method assumed pin hole camera and point light sources and the method depends

on pixel intensity of the image which is obtained either by moving camera or the

light source. Creg.K. Cowan [23] compute the camera position and light position

after detecting the shape of the object by identifying edges of the object, using

CAD. Further in their work ”Edge based placement of light source” [24], [25], they

calculated locations of light source using a better edge detection algorithm. This

method may fail for a spherical object.

K.W. Khawaja developed a better system of camera placement and light source

placement [26]. They calculated camera location and light source location from

physical parameters of the environment and features, but the method is object

specific. Eric Marchand [27] have devised placement of light source or camera for

optimum illumination of object while tracking, using optical flow method. Either

camera or the light source should move for using optical flow.

We discuss a simple and efficient CAD tool for camera and light source placement

for surveillance applications. Using the proposed CAD tool the cameras can be

placed optimally for maximum coverage of the sensitive areas, and then light

sources can be placed for proper illumination of these sensitive areas which can

reflect optimum light to the camera. The existing methods of camera and light
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source placement are devised for specific application and involves light source or

camera movement, which will not be suited for large spaces. Whereas the the

proposed tool is neither real time nor object specific, and uses better camera and

light source model to enhance the accuracy of placement. Hence this tool is well

suited for surveillance applications.

2.3 Multi-Objective Framework for Optimization

Multiple evaluation criteria often arise when solving real-world problems, specially

when deciding on a set of constraints. While a given task goal may be evident

from the onset, these additional merit functions normally emerge as a product of

other high level considerations regarding task execution. A MO problem solving

approach attempts to address these scenarios in a general manner by studying

the performance trade-offs of different problem solutions and incorporating such

insight into the decision making process.

The study of the concurrent optimization of multiple objectives dates back to the

end of the XIX century in the works of Pareto [28] and Edgeworth on economic

theory. However, for many years the interest on these problems was limited to

specialized fields such as operations research and economics. In the second half

of the XX century, the works of Kuhn & Tucker [29] , Koopmans and Hurwicz

[30], established the theoretical principles for the emergence of multi-objective op-

timization as a mathematical discipline. Afterwards, the seminal work by Charnes

& Cooper [31] studied the algorithmic aspects of solving vector maximum prob-

lems, initiating the research on mathematical programming techniques for MO

problems. In order to incorporate such concepts into functional systems the is-

sue of preference articulation needed to be studied. In this respect, the works of

Keeney & Raiffa [32] on Multi-Attribute Utility Theory, the work of Roy on out-

ranking procedures and that of Saaty on the Analytic Hierarchy Process, initiated

the research on Multi-Criteria Decision Making (MCDM). The ongoing studies on

the generalization of single objective optimization techniques and theory for mul-

tiple objectives, have resulted in a wide variety of algorithmic approaches for MO

problems. However, the difficulties on approaching real world problems (i.e. high

non-linearities, constraint satisfaction, isolated minima, combinatorial aspects),

as well as the inherent conceptual complexity of MO optimization has resulted in

the development of specialized sub-fields such as Goal Programming, Fuzzy MO
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Programming, Data Envelopment Analysis, Combinatorial MO Optimization and

Evolutionary MO Techniques. In literature, use of evolutionary techniques focuses

on solving camera placement problems [40],[41]. [33] provides an extensive survey

on this field.





Chapter 3

Camera and Light Source

Placement

3.1 Introduction

Correct placement of cameras with appropriate illumination is an important issue

in vision based applications. Camera network in surveillance applications demand

maximum coverage of sensitive areas with minimum cost and good quality of

service. With given number of cameras and light sources the quality of the images

depend on their spatial arrangement and orientation (pan and tilt angles) of the

cameras. However, many vision based applications require camera and lighting

arrangement ensuring minimum acceptable quality of images.

In this chapter we define the objective functions used for the search of the optimal

camera and light source placement. The formulation of the objective function

considering the geometry of the space under surveillance is adopted from work

presented in [34], [35] and [36]. An extension of the formulation is presented in

this chapter.

To estimate optimal camera and light source location we model the space under

surveillance. For ensuring better coverage of the regions of interest, we perform

probabilistic modelling of sensing space. The probability of occlusion due to ran-

domly moving objects in the sensing space has been incorporated by covering the

priority areas by multiple sensors. Random placement of light sources may lead

to over or under illuminated regions. For optimum illumination of the sensing

11
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space, it is required to place the light sources appropriately to avoid occlusion and

shadowing instead of placing the light source randomly. To avoid occlusion and

shadow it is required to place more than one camera and light source.

In other words, it is required to compute camera locations with their respective

orientations and zoom levels for optimum coverage of sensing space and light source

locations for proper illumination with respect to the camera location.

3.2 Camera Placement Problem

Formally the camera placement problem is to determine optimal positions, orienta-

tion and zoom levels of N cameras which provide maximum coverage of the priority

areas in a predefined surveillance space satisfying the task based constraints which

may be static or dynamically varying according to the requirements. Before pre-

senting the camera coverage formulation we study the camera model as well as the

3-D model created for the space under surveillance.

3.2.1 Camera Model

We first define few important terms that are crucial parameters for the camera:

1. Spatial Resolution: Spatial resolution of a camera is defined as the ra-

tio between the total number of pixels on its imaging element excited by

the projection of a real world object and the object’s size. Higher spatial

resolution captures more details and produces sharper images.

2. Field of View (FoV): The maximum volume visible from a camera. The

FoV is determined by the apex angles (azimuth and latitude) of the visible

pyramidal region emanating from the optical center of the camera. This

pyramid is also known as the viewing frustum and can be skewed by oblique

projection.

3. Depth of Field (DoF): Depth of field is the amount of distance between

the nearest and farthest objects that appear in acceptably sharp focus in

an image. The nearest distance in focus is called near focus limit and the

farthest distance is called far focus limit. These limits are represented by near
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focal and far focal planes. If the subject image size remains the same, then

at any given aperture all lenses will give the same DoF. DoF is independent

of focal length of the visual sensor but depends on the magnification. For

surveillance applications since the camera is fixed, the DoF changes with

change zoom. Higher zoom level shallower will be the DoF and lesser will

be the number of points in the viewing frustum.

4. Floor plan: The term floor plan denotes a 3-D model sensing space. In

the space under surveillance, there are regions of high priority where the

occurrence of an event is high while the rest are non-priority regions. The

floor plan also indicates the presence of obstacles in the sensing space.

5. Zoom: Zoom level of any visual sensor is directly proportional to its focal

length. Two type of zoom levels are defined namely digital zoom and optical

zoom. Since we work on optimization of camera parameters thus we shall

deal with optical zoom of the camera being used for deployment. As zoom

level increases the focal length increases and the angle of view decreases.

And change in the viewing angle means change in the dimensions of the

viewing frustum of the visual sensor. Thus, with increasing zoom, angle of

view decreases and hence the field of view of the camera decreases.

We have employed PTZ (Pan Tilt Zoom)cameras. The Figure 3.1(a) shows the

model of a PTZ camera developed by E. Horster [37]. The pan and tilt motion of

PTZ camera is modelled as two idealized rotation around the origin along X-axis

and Y-axis aligned with image plane and through camera’s optical centre. The

field of view of the camera can be considered as a pyramid. Since these camera

rotate ±θ degrees about their axis along their pan and tilt axis so they have an

extended field of view as shown in Figure 3.1(b). Thus, they are preferred over

pin-hole camera.

The zoom level of a camera is directly proportional to its focal length. For a given

zoom level multiple focal planes have been considered. The concept of multiple

focal planes for a particular zoom level is similar to extended field of view. The

effective area covered in this case is the union of voxels covered by the camera

when focused at individual focal planes. Due to the continuous motion of the

camera, we sample the pan-tilt motion and the zoom levels at discrete positions.

The covered area of viewing frustum is calculated using modified camera model

shown in Figure 3.2(a) and Figure 3.2(b) with zoom as a constraint.
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(a) Camera Model (b) Extended Field-of-View(FoV)

Figure 3.1: Camera Modelling

(a) Depth of Field (DoF) (b) Showing the variation in zoom, black
vertical lines - higher zoom level, red
vertical lines-lower zoom level and green
vertical line - reference focal plane

Figure 3.2: Modified camera model

If a voxel lies in the extended field of a certain number of cameras say n, the voxel

is covered. The Figure 3.3 shows the intersection of field of view of 2 cameras.

Considering camera c1 and C2 are placed at optimal locations, then any voxel lying

in the region II is covered by n = 2 cameras. Therefore, as number of camera n

increases the probability of occlusion due to randomly moving object reduces.

3.2.2 3-D space Modelling

A 3-D model of the area under surveillance is defined. The space to be monitored

is logically divided into cubical blocks, voxels. Each voxel is marked as one of the
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Figure 3.3: Intersection of Field-of-View

following:

• Priority area (most probable event locations, e.g. multiple entry points to a

large hall)

• Non-Priority area

• Obstacle

• Feasible area (areas where camera and light sources can be placed except

the floor)

Figure 3.4 shows a 3-D space model of the sensing space considered for arranging

cameras and light sources. The priority areas are marked by blue color, the obsta-

cles by red and the feasible areas by pink. The feasible locations of camera, the

size and shape of obstacles and the sensitive areas with their respective assigned

priority can be fed as inputs to the system through GUI. The dimensions of the

3-D model for the sensing space is defined as (m × n × s), where m is the width,

n is the length and s is the height of the sensing space (e.g. room). In 3-D model

shown in figure 3.4, m = 10, n = 5 and s = 5.

The mathematical modelling for 3-D surveillance space, is outlined as follows.

Any point in space is said to be covered if it is captured with a minimum required

resolution i.e. when it lies in the DoF and within the extended field of view of

n cameras. The inputs to this model are converted to priority matrix P , feasible

matrix F and obstacle matrix O with dimension m × m × m, where m is the

largest value of dimension among m, n and s of the 3-D space to be covered. These

matrices are defined in equation 3.1, 3.2 and 3.3 respectively.

The priority matrix is defined as

P = [Pijk]m × m × m (3.1)
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Figure 3.4: 3-D space model

Where

Pijk =

{
1, if(i, j, k) point is a priority point

0, if(i, j, k) point is not a priority point

The feasible matrix is defined as

F = [Fijk]m × m × m (3.2)

Where

Fijk =

{
1, if(i, j, k) point is a feasible point

0, if(i, j, k) point is not a feasible point

The concept of line of sight has been used to model the effect of obstacles on the

coverage area of the sensors. Areas which come under the shadow of the obstacles

from the line of sight have been removed from the covered area of that sensor as

shown in Figure 3.5. The obstacle matrix is defined as

O = [oijk]m × m × m (3.3)

Where

oijk =

{
1, if(i, j, k) lies in obstacle region

0, if(i, j, k) does not lies in obstacle region
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Figure 3.5: Field of view with obstacle

We have used PTZ cameras to enhance the coverage. Due to rotation along X

and Y direction, the time of coverage of each priority point will not be the same.

Hence, probabilistic modelling of the space is required. The voxels covered by at

least one camera is considered as visible. The following parameters are therefore

defined for computing the visibility measure.

1. The probability of covering the space in the field of view of the camera

placed at an optimal location is more as compared to the other portions

of the priority area during the camera motion (Refer Figure 3.6). Relative

time for which a point is under coverage is measured in terms of parameter

b, Where b is an average of b1 and b2 (see equation 3.4). Here α is the pan

angle and αmax is maximum pan angle. Similarly, β is the tilt angle and

βmax is maximum tilt angle.

Figure 3.6: Extended FoV along the optimum camera axis
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b1 = 1− α

αmax
, b2 = 1− β

βmax
(3.4)

b = 1 indicates that the voxel is located at the centre of the FoV of the

camera. 0 < b < 1, depending on the offset of the pan and tilt angles from

there optimum positions.

2. The probability of an object being placed in the priority region is higher

compared to the object being placed anywhere else. Such regions should

be covered with higher resolution, i.e. cameras should be placed in such a

way that the priority regions lie close to their focal planes. Relative position

of priority area with reference to the focal plane is measured in terms of

parameter a (refer equation 3.5).

a = 1− q

qo
(3.5)

Where q is the distance of priority region or voxel under consideration from

the focal plane of the camera and q0 is the maximum distance from the focal

plane within the depth of field. 0 < a < 1, depending on the distance of the

point under consideration from the focal plane.

We define visibility matrix A to represent the visibility measure computed for

particular camera location, orientation (pan ad tilt) and zoom level. This matrix

is generated using the priority, feasible and obstacle matrices defined above. The

visibility matrix is sufficient to tackle the optimization of camera coverage. A sim-

ple concatenation of all three matrices (P , F and O) will output a 9-dimensional

matrix. Thus, to ease the computation complexity we compute a 4-dimensional

matrix. Every point covered in 3-D space is mapped to particular location, pose

and zoom level as per equation 3.7, 3.8, 3.9 respectively.

position(i, j, k) = (j − 1)×N ×N + (i− 1)×N + k (3.6)

where N is the largest value of dimension among m, n and s of the 3-D space
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pose(α, β) = M × (β − 1) + α (3.7)

where M is the no of discrete pan(α) or tilt(β) angles the camera can assume

Zoom(z) = (highestzl − lowestzl)× z

zl
(3.8)

where zl is the no discrete zoom levels the camera can assume. 1 ≤ z ≤ zl

A point in 3-D model is said to be visible by a camera located at point i, with pose

j and zoom level z, if it lies in the field of view of that camera. If a point is visible,

it is represented by visibility measure in the visibility matrix. The performance

measure due to the camera poses of all visible points are calculated and represented

in the visibility matrix A. The visibility matrix A is defined in eqaution 3.9.

A = [aijkz]m3×M2×m3×z1 (3.9)

The visibility measure of each voxel is defined as aijk = a + b for given camera

location(ijk). In other words, the visibility matrix provides a visibility measure

for the camera being placed at point i, with pose j and zoom level z covering point

k. Thus, if a priority point K is covered by one camera the visibility measure is

defined as A1(i, j, k, z) = a1 + b1. Similarly, if a priority point is covered by two

cameras placed at different locations with different pose and zoom levels, then the

visibility measure is defined as A2(i, j, k, z) = a1 + a2 + b1 + b2 and so on. Also, if

k is a non-priority point then measure is given as An(i, j, k, z) = an + bn.

3.2.3 Coverage Metric

A coverage metric incorporates all the above said constraints and formulated based

on following assumptions:

(a) A simple, single lens element has been used to represent the optical sensor .
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(b) Aperture of the lens of the optical sensor has been assumed to be constant

throughout the algorithm.

(c) Effect of geometric distortion or blurring of objects has been neglected.

We approximate the continuous motion of cameras into discrete poses by sampling,

due to which the cameras can adopt only those particular poses. The coverage

metric is computed for all the visible points. For every visible point, the probability

measure is added accordingly if the point is covered by one camera, or two cameras

or more. The probability measure is defined in equation 3.9. The coverage metric

(C) formulation is given in equation 3.10.

C = w′
∑
2cam

A2(i, j, k, z) + v′
∑
1cam

A1(i, j, k, z) + u′
∑

non−priority

An(i, j, k, z)

(3.10)

Where w′ v′ and u′ are weights and A2(i, j, k, z), A1(i, j, k, z) and An(i, j, k, z)

are described above. The assigned weights are such that the following constraints

hold:

• w′ > v′ > u′. Higher weight is attached to points that are covered by

two cameras while the non-priority points are assigned minimum weights.

This is done so that the visibility measure for the priority area covered by 2

camera is maximized and for the covered non-priority areas it is minimized.

In our experiments the chosen values for the weights are w′ = 0.75, v′ =

0.15 and u′ = 0.1.

• w′ + v′ + u′ = 1

3.3 Light Placement Problem

To determine the light source positions such that the priority areas are well illu-

minated for enhancing the quality of images. For surveillance applications, the

sensitive areas should be scanned continuously and hence proper illumination of

sensitive areas is very important. Human beings are considered as objects as the

application is surveillance of public places. Before proceeding to the actual calcu-

lation of light source locations, let us describe the effect of light source location
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with respect to the geometry of the specified area regarding illumination, shadow

due to the object itself or surroundings and reflected light to the camera. We have

used a conical Light model as shown in figure 3.7.

Figure 3.7: Conical Light Source Model

1. The first factor is defined as Illumination. This factor takes into account the

fact that if any light source is placed facing the camera the vision system

fails. To avoid that the following condition should hold true.

(
π − (β +

Φ

2
) >

Ψ

2

)
Where Φ and Ψ are the light source cone angle and camera FOV and β is

the angle between the camera FOV and light source cone (Refer figure 3.8).

Figure 3.8: Light source location w.r.t. camera

Based on this we define an illumination score Sillum defined in equation 3.11,

Sillum =
Pijβij

Φ
(3.11)

Where Pij is given as,

Pij =

{
1, if(π − (β + Φ

2
) > Ψ

2
)

0, otherwise

2. The next factor contributes for Shadow avoidance. For even distribution of

light and to avoid showing effect due to the objects in the environment, we
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identify the regions near the camera, for the the placement of light sources.

The regions immediately near the camera are given higher preference than

the regions far from the camera (refer figure 3.9). Hence we define a score

Sshadow as,

Sshadow = ωijlij (3.12)

Where ωij is the distance between ith camera and jth light source, and lij = 1

for ω < τ , and zero otherwise.

Figure 3.9: High preference regions surrounding the camera for light source
placement

3. Next factor is the Reflection. Knowing the fact that the I ∝ 1
d
. Where I is

the intensity of illumination and d is the distance between the light source

and the object (see Figure 3.10). We restrict the possible locations for light

sources to a virtual sphere around the object, assuming the object is placed

at the mean position in the priority region of the 3-D space. The mean

position is defined as the point lying along the axis of camera FOV such

that a line when projected from the centre of the light source passes through

it (Refer figure 3.9).

Since we are working with a cuboidal space model with limited expanse,

therefore, we need to find optimal light source location for avoiding over-

illumination rather than under-illumination. So the locations farther from

mean position are preferred. For experimentation we have used a monochro-

matic light source and assuming reflection coefficient R for human skin to
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Figure 3.10: Distance between object and light source, assuming the objects
are humans present in sensing space

be 0.52. To consider these constraints reflection score is defined in equa-

tion 3.13.

Sreflection = (
0.52

d2
) (3.13)

4. Another factor to be considered for correct positioning of light sources is to

avoid Occlusion. It is observed that placing light source on one side of the

camera, partly illuminates the object as shown in figure 3.11(a). This can

be done by placing light source on both sides of the camera, minimising the

uncovered area shown in figure 3.11(b). The Occlusion avoidance score is

defined as,

Socc = rj
Ωj

π
(3.14)

Where, if Ωj < π, rj = 0, otherwise 1 for reducing priority progressively

with increase in uncovered area.

Illumination Index defined in equation 3.15 takes into account the effect of light

source location w.r.t. the 3-D space model as well as it considers the effect of the

above defined factors. It is a minimization function defined to obtain the best

possible locations of the light sources.
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(a) (b)

Figure 3.11: (a) Showing the occluded area Ω with the possible placement of
camera and light source (b) Possible light source placement for better illumina-

tion and avoiding occlusion

I =
m∑
i=1

n∑
j=1

(
Pijβij

Φ
)W1 + (ωijlij)W2 +

n∑
j=1

m∑
i=1

(
0.52

d2
ij

)W3 + (rj
Ωj

π
)W4 (3.15)

Where m and and n is the number of cameras and light sources respectively. In

equation 3.15, the term
∑m

i=1

∑n
j=1(

Pijβij
Φ

) is computed for every camera position

and every light source position. For a given camera position it checks each light

source location such that the light does not fall directly into the camera. Similarly

in the term
∑n

j=1

∑m
i=1(0.52

d2ij
)W3, for a given light source location it check if the

light is reflected from the object to the camera. It is done for each camera location

given a light source location.

The effect of illumination and reflection terms are summed for each camera and

light position. While the effect of the shadow and occlusion are computed for

a particular light source position. The illumination index being dependent on

the number of cameras and the light sources, the importance of different factor

discussed above vary. Each term should be associated with weight such that

highest weight is given to the first term, since no light source should face the

camera, hence W1 is the highest. Similarly weights are assigned to other terms

also W2,W3 and W4 respectively. Let there be m cameras and n light sources.

When the number of light sources is less than number of cameras (m > n), each

light source should illuminate the sensitive areas being covered by more than one

camera, hence higher weight is attached to occlusion term compared to the term

contributing for shadow i.e. W4 > W2. For same number of camera and light
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source, for instance for one camera and one light source, W2 > W4. When m < n,

to relate each camera with a light source and then deploying extra light source for

occlusion avoidance and hence W1 > W2 > W3 > W4. Similarly for extra light

sources the weights are arranged in the following precedence for avoiding occlusion

W1 > W4 > W3 > W2. The experiments have been performed for equal number

of camera and light source location, we have assigned following values to different

weights W1 = 10,W3 = 5,W2 = 2,W4 = 1.

Hence, the weight assignment can be summarized as follows for m cameras and n

light sources:

1. For m > n, W1 > W3 > W4 > W2.

2. For m = n, W1 > W3 > W2 > W4.

3. For m < n, W1 > W2 > W3 > W4

4. For m << n, W1 > W4 > W2 > W3





Chapter 4

Multi-Objective Optimization

Using Genetic Algorithm

As described in previous chapter, the objective function formulation for camera

and light source placement depends on the multiple factors such as geometry of

the space under surveillance, most probable event locations also called priority or

sensitive areas, obstacles present in these sensitive areas. Other factors include

modified camera model with zoom as a constraint, light source model, reflection,

occlusion, shadowing due to objects in the sensing space etc. Hence, the placement

problem is an optimization problem with inter related and competing constraints.

Considering the discrete nature of optimization problem in such constrained pa-

rameter space, conventional gradient based approaches are not applicable. There-

fore, we formulate our optimization problem in evolutionary algorithm paradigm

to obtain feasible solution.

In this chapter we present the multi-objective framework for camera and light

source placement. Considering a large surveillance space, camera placement for

effective coverage with proper lighting conditions are two objectives incorporated

into our methodology for concurrent optimization. The multi-objective nature

of the problem is based on the assumption of conflict among the considered ob-

jectives. Hence, the optimal compromises will be those camera and light source

placement configurations which comply with the concept of Pareto Optimality.

27
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4.1 Optimization Framework : Overview

The camera placement and light source placement problem has been addressed

sequentially by S. Indu et. al in [36]. The framework first computes optimal

camera locations to ensure maximum coverage of the user defined areas and then

using these camera location light sources are placed for optimum illumination

of the sensitive areas. The camera and light source placement are two separate

optimization problems solved using Genetic algorithm. GA’s are usually slow, but

always find best solution. Here, the optimal camera and light source locations

are obtained sequentially so the approach tends to be more time consuming as

compared to the multi-objective framework. Moreover, it is an off-line process

and cannot be extended for real-time applications.

An approach for linear combination of objective function for optimization has been

addressed in [38]. Simplification of multiple objective problem as a linear com-

bination of different objectives present a possible approach to solve the problem.

However it is not justifiable because of the non-conforming parameter space of both

the objectives. Additionally, both the objectives are defined for distinct solution

spaces. In this direction a logical approach would be to define a parametrized

linear combination of objective where the weights would be learned through some

learning technique. Learning optimal weights is the major disadvantage. If the

weights are too high and too low, then one of the objective function will be in-

adequately represented as compared to the other function. The authors in [38]

have presented a min-max approach for computation of weights. The Fibonacci

search technique proposed in [39] is a good choice as the total cost is a unimodal

function.

Many realistic optimization problems require the simultaneous optimization of

more than one objective function. In our case multi-objective optimization tech-

nique has proved to be a suitable approach for camera and light source placement

for large surveillance space. In many real world problem objective functions are de-

fined such that the objectives are non-commensurable and also the decision maker

is not clear if the objectives are related to each other. Usually for many multi-

objective problems the objectives are generally conflicting preventing simultaneous

optimization of each objective. Hence, optimizing the solution space x with respect

to a single objective gives unacceptable results with respect to other objectives,

i.e. there exists no unique solution to the problem. A reasonable solution for
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simultaneous optimization of multiple objective functions is to investigate a set of

solution, each of which satisfies the objectives at an acceptable level without being

dominated by any other solution. Thus, the concept of Pateto optimality is used

to characterize the objectives. We want our evolutionary optimization method to

be able to concurrently search for camera and light source network of different

complexity. In order to achieve this an approach based on Genetic Algorithm is

adopted.

4.2 Multi-Objective Optimization Formulation

Our MO optimization module is based on the Non Dominated Sorting Genetic

Algorithm (NSGA-II) proposed in [42]. Here, the concept of ranking the popu-

lation according to dominance relations is employed. Hence, the worthiness of a

single solution is proportional to its rank among the population. Diversity among

the population is maintained by crowding penalization. Additionally, generational

elitism is enforced based on rank.

A multi-objective problem with K objectives is defined as follows: Given an n-

dimensional decision variable vector x = x1, x2, ...., xn in a solution space X,

find a vector x? that minimizes a given set of K objective functions z(x?) =

z1(x?), z2(x?), ...., zn(x?). The solution space X is generally restricted by a series

of constraints, such as gj(x
? = bj for j = 1, 2, .....,m, and bounds on the decision

variables.

In our problem we have already mentioned a viewpoint based specification, where

depending on the specification of the sensing space, we have adopted two objective

function i.e. K = 2. The number of decision variable is calculated as follows, for

1 camera and 1 light source the number of decision variable is 6 variables for

camera (xc1 , yc1 , zc1 , αc1 , βc1) and 3 variables for light source (xl1 , yl1 , zl1), totalling

to 9 decision variables. Similarly, for 2 camera and light source there will be 18

decision variables, and so on. The solution space X is defined by the upper and

lower bounds related to each variable. These variables are coded as real values.

Therefore, N camera and light source network is represented by X = xi∀i =

(1, ...., n), xi ∈ R. The values of the coordinates for the camera and light source

locations lie in the following range: 1 ≤ x ≤ m, 1 ≤ y ≤ n and 1 ≤ z ≤ s, where
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(m,n, s) are the dimensions of the space under surveillance. Similarly, we have

assumed 8 zoom levels and 4 focal planes for each zoom level.

4.2.1 Pareto Dominance Based Ranking

The population is initialized as usual, based on the problem range or solution space

and constraints if any. Fitness for each solution is evaluated. Once the popula-

tion in initialized the population is sorted based on non-domination using Pareto

Ranking Technique into each front. Pareto ranking approach explicitly utilizes the

concept of Pareto Dominance in evaluating fitness or assigning selection probabil-

ity to solutions. The population is ranked according to a dominance rule, and then

each solution is assigned a fitness value based on its rank in the population, not

its actual objective function value. Since, in our case all objective functions are

for minimization, a feasible solution x is said to dominate another feasible solution

y, if and only if, zi(x) ≤ zi(y) for all objective functions and zj(x) < zj(y) for at

least one of the objective function j. A solution is said to be pareto optimal if it

is not dominated by any other solution in the solution space. A pareto optimal

solution cannot be improved with respect to any objective without worsening at

least one other objective. The set of all feasible non-dominated solutions in X is

referred to as the Pareto optimal set, and for a given Pareto optimal set, the cor-

responding objective function values in the objective space are called the Pareto

front. Therefore, lower rank corresponds to a better solution. The first front being

completely non-dominant set in the current population and the second front being

dominated by the individuals in the first front only and the front goes so on. Each

individual in the each front are assigned rank (fitness) values or based on front in

which they belong to. Individuals in first front are given a fitness value of 1 and

individuals in second are assigned fitness value as 2 and so on. The algorithm for

Pareto ranking is defined in Figure 4.1.

4.2.2 Diversity : Crowding Distance

In addition to fitness value a new parameter called crowding distance is calculated

for each individual. The crowding distance is a measure of how close an individual

is to its neighbours. Large average crowding distance will result in better diversity

in the population. Crowding distance approach aim to obtain a uniform spread
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Pareto Ranking Technique
• For each individual p in main population P do the following:

– Initialize Sp = ∅. This set would contain all the individuals that are
being dominated by p.

– Initialize np = 0. This would be the number of individuals that
dominate p

– For each individual q in P

∗ If p dominates q, then

· Add q to the set Sp i.e. Sp = Sp ∪ {q}.
∗ Else, if q dominates p then

· Increment the domination counter for p i.e. np = np + 1

– If np = 0 i.e. no individuals dominate p then p belongs to the first
front; Set rank of individual p to one i.e prank = 1. Update the first
front set by adding p to front one i.e F1 = F1 ∪ {p}.

• This is carried out for all the individuals in main population P .
• Initialize the front counter to one, i = 1.
• Following is carried out while the ith front is non-empty i.e. Fi = ∅.

– Q = ∅, the set for storing the individuals for (i+ 1)th front.

– For each individual p in front Fi

∗ For each individual q in Sp (Sp is the set of individuals domi-
nated by p).

· nq = nq− 1, decrement the domination count for individual
q.

· If nq = 0 then none of the individuals in the subsequent
fronts would dominate q. Hence set qrank = i + 1. Update
the set Q with individual q i.e. Q = Q ∪ q.

– Increment the front counter by one.

– Now the set Q is the next front and hence Fi = Q.

Figure 4.1: Algorithm for Pareto Ranking

of solutions along the best-known Pareto front. Crowding distance is finding the

euclidean distance between the individuals in a front. The crowing distance is

calculated as below in figure 4.2.

The main advantage of the crowding approach is that a measure of population

density around a solution is computed without requiring a user-defined parameter.

In NSGA-II, this crowding distance measure is used as a tiebreaker in a selection

technique called the crowded tournament selection operator : Randomly select

two solutions x and y; if the solutions are in the same non-dominated front, the

solution with a higher crowding distance is the winner. Otherwise, the solution
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Crowding Distance Computation
• For each front Fi, n is the number of individuals.

– Initialize the distance to be zero for all the individuals i.e. Fi(dj) =
0, where j corresponds to the jth individual in front Fi.

– For each objective function m
∗ Sort the individuals in front Fi based on objective m i.e. I =
sort(Fi,m).
∗ Assign infinite distance to boundary values for each individual

in Fi i.e. I(d1) =∞ and I(dn) =∞
∗ For k = 2, ..., (n− 1)

· I(dk) = I(dk) + I(k+1).m−I(k−1).m
fmax
m −fmin

m

· I(k).m is the value of the mth objective function of the kth

individual in I.

Figure 4.2: Steps for Crowding Distance computation

with the lowest rank is selected.

4.2.3 Selection

Parents are selected from the population by using binary tournament selection

based on the rank and crowding distance. An individual is selected in the rank

is lesser than the other or if crowding distance is greater than the other 1. The

selection is carried out using a crowded-comparison-operator (≺). The comparison

is carried out as below based on the following criterion:

1. non-domination rank prank i.e. individuals in front Fi will have their rank as

prank = i.

2. crowding distance Fi(dj)

• p ≺ q if,

– prank < qrank

– or if p and q belong to the same front Fi then Fi(dp) > Fi(dq) i.e.

the crowing distance should be more.

1Crowding distance is compared only if the rank for both individuals are same
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4.2.4 Recombination and Selection

The choice of genetic operators is also a crucial factor. In our work, simulated

binary crossover (SBX) [44], [45] and polynomial mutation [44], [46] has been

used for real coded variables. The crossover probability of pc = 0.9 and mutation

probability of pm = 1
n
, where is n the number of decision variables for real-coded

GA’s. For real-coded NSGA-II, we use distribution indexes for crossover and mu-

tation operators as ηc = 20 and ηm = 20, respectively. The offspring population is

combined with the current population and selection is performed to set the indi-

viduals of the next generation. Since all the previous and current best individuals

are added in the population, elitism is ensured. Population is now sorted based on

non-domination. The new generation is filled by each front subsequently until the

population size exceeds the current population size. If by adding all the individu-

als in front Fj the population exceeds N then individuals in front Fj are selected

based on their crowding distance in the descending order until the population size

is N . And hence the process repeats to generate the subsequent generations.

The validation of the multi-objective framework defined for camera and light

source arrangement for large surveillance space is presented in the chapter 5.

Chapter 5 demonstrates simulated as well as experimental results.





Chapter 5

Results and Discussion

The main motivation of this study is to provide a framework for camera and light

source placement in a large surveillance space. This framework allows concurrent

optimization of the objective function considering different constraints of the given

surveillance space in the multi-objective optimization paradigm. The detailed

discussion of the framework is presented in Chapter 3 and Chapter 4. In this

chapter we present the results for camera and light source placement, generated

in a simulated environment. Experiment results for camera placement in a real

environment is also presented in this chapter.

5.1 Simulation Results

The problem of camera and light source placement has been done sequentially

in [36]. The cameras are placed for maximum coverage of the priority areas. In

case of sequential placement of camera and light source, we require to compute

mean position as a reference for light placement. The mean position is computed

from the camera parameters (location and orientation) and center of the priority

area. Since the process is sequential therefore a small error in camera placement

will lead to erroneous mean position computation which in-turn will make light

source placement calculation incorrect. In the proposed method the camera and

light position are simultaneously calculated therefore the error in computing light

source position is minimized. The results of the sequential approach are presented

in Figure 5.1 and Figure 5.2.
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S. No. x y z
Cam 1 1 5 10
Light 1 1 5 6

Figure 5.1: Results of sequential approach for one camera and one light source
placement

S. No. x y z
Cam 1 3 6 6
Cam 2 8 3 7
Cam 3 8 5 6
Light 1 5 2 8
Light 2 5 6 7
Light 3 6 6 8

Figure 5.2: Result of sequential approach for three camera and three light
source

In case of sequential placement, the mean position is considered as a reference

and hence as shown in Figure 5.1, the mean is illuminated. Where as the case of

multi-objective framework, the light source is placed such that the entire priority

area is illuminated uniformly as shown in Figure 5.3.

We tried out the following experiments using our set-up and multi-objective real-

coded GA. For all the runs of the GA we used cross-over probability as 0.9 and

mutation probability as 0.0125.

The results presented here ensure that the priority regions are well illuminated and

camera are placed such that the priority areas are covered. Figure 5.3 shows one

camera and one light position. The light source illuminating the priority region.

Figure 5.4 shows three camera and two light positions.

Placement of two cameras and two light sources is shown in Figure 5.5 and for

three camera and three light source is shown in Figure 5.6. The light sources are

illuminating the sensitive areas, in both cases.
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S. No. x y z
Cam 1 6 6 8
Light 1 4 7 6

Figure 5.3: One Camera & one Light Source

S. No. x y z
Cam 1 14 2 8
Cam 2 2 2 7
Cam 3 2 6 7
Light 1 1 6 6
Light 2 7 2 7

Figure 5.4: Three Camera & Two Light Source

5.2 Experimental Set-up and Results

We were given a task for deploying six PTZ camera in Multimedia Lab of IIT Delhi.

The dimensions of the lab were 30× 60× 20 in feet. To ease the computation we

scale down the dimensions to 5×10×4. The matlab based GUI is used to generate

a 3-dimensional model of the lab. The ceiling is used for camera deployment as all

walls are mostly covered by windows. The model of the lab is sown in figure 5.7.

A total of 78 feasible points were identified. Optimum positions, poses and zoom

levels of the six cameras were determined using the proposed camera placement

formulation and genetic algorithm based optimization. The cameras were made

to rotate ±15 degrees about their optimum position along pan and tilt axes. The

visibility matrix and the priority matrix help the Genetic Algorithm to evaluate the
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S. No. x y z
Cam 1 1 2 6
Cam 2 10 6 6
Light 1 4 4 6
Light 2 8 7 6

Figure 5.5: Two Camera & Two Light Source

S. No. x y z
Cam 1 1 1 5
Cam 2 10 5 6
Cam 3 4 7 5
Light 1 8 3 6
Light 2 9 7 6
Light 3 3 6 5

Figure 5.6: Three Camera & Three Light Source

fitness function of various generations. All the coding and matrix representations

have been implemented in MATLAB. The simulation results showing the camera

placement at optimal locations is shown in Figure 5.8.

The Experimental setup shown in Figure 5.9 and the results showing the covered

priority area are shown in the Figure 5.11.

It has been observed that if a region being focused lies at a small distance as shown

in Figure 5.10(a), the camera had a higher zoom level to capture a detailed image.

This ensures fewer non-priority points are covered.

Whereas the cameras that focused at regions lying far as shown in Figure 5.11(a)

and (b) had comparatively lower zoom level to increase the number of points in the
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Figure 5.7: 3-D model of the IIT Lab for camera deployment

Camera No. x y z
1 2 2 5
2 3 7 5
3 4 8 4
4 4 3 5
5 5 10 5
6 5 2 5

Figure 5.8: Simulates Results for deploying six cameras (The points marked
by green indicate the optimal camera location calculated using our approach)

covering the marked priority areas (P1 - P5)

camera viewing frustum. Such placement ensures maximum coverage i.e. covering

maximum priority points maintaining a reasonable resolution. It is also observed

that the regions with large number of priority points is covered two cameras and

the regions with fewer priority points were covered by only one camera.
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(a) Image taken from cam6 showing placement of cam1, cam2 and cam3

(b) Image taken from cam3 showing placement of cam4, cam5 and cam6

Figure 5.9: Camera Set-up at Multimedia Lab IIT Delhi
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(a) Camera 2 covering priority area P2

(b) Priority area P1 covered by camera 4

Figure 5.10: Results showing the priority areas (P1- P5) being covered by
cameras



Chapter 5. Results and Discussion 42

(a) Image showing priority areas (P3 and P4) covered

(b) Priority area P5 cpvered by camera 1

Figure 5.11: Results showing the priority areas (P1- P5) being covered by
cameras
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Conclusion

6.1 Summary

Surveillance applications have gained significant importance recently. A well

equipped camera network forms the backbone of such applications. Large net-

works of cameras are employed to capture dynamic events distributed throughout

a large area. We started our discussion with an introduction to camera and light

source placement problem, where we identified the key features associated with

the problem. Traditional approaches have addressed camera placement for vari-

ous applications in the domain of tracking and surveillance assuming sensing space

properly illuminated. Camera placement approaches have not considered variation

in zoom parameter rather assumed constant zoom. Thus, It has been observed

that proper illumination and computing optimal zoom plays an important role in

improving the quality of images captured by the camera. Moreover, we require

such an approach that uses limited number of camera and light sources judiciously.

Here we investigate the problem of placement of camera and light sources in large

surveillance spaces. Ensuring an optimal placement of the cameras and light

sources is an essential step in the development of vision systems. Indeed good

lighting conditions ensure good image quality and thus improving the reliability

of vision algorithms. We study the placement problem under a multi-objective

framework. Our approach is based on the initial assumption of conflict among

the considered objectives. Hence, the expected results are in the form of Pareto

Optimal compromise solutions. In order to solve our optimization problem an

evolutionary based technique is implemented.
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6.2 Conclusion

In this thesis we addressed an optimization framework that ensures simultaneous

optimization of camera and light sources, considering the geometry of surveillance

space and other factors such as reflection, clutter, etc.

The proposed framework is scalable and efficient. We formulated the placement

of visual sensors such that we obtain optimal locations that maximize the cover-

age of highly active areas (Refer Chapter 3). Illumination of the sensitive area

is also equally important for good quality images. Hence, the light source place-

ment algorithm for optimum illumination of the sensing space is also discussed in

Chapter 3.

The scheme proposed here provides optimal camera locations, pan-tilt angle, zoom

level and light source locations. We have used PTZ camera as visual sensors as

it can cover larger volume compared to pin hole cameras. We have modified the

camera model for incorporating zoom or depth-of-field. Since, the camera covers

a larger volume, the time of coverage of every point in the sensing region is not

uniform due to the pan tilt motion of the camera. To address such issues we

have a proposed a probabilistic model for space, and used for determining camera

locations for optimizing coverage, so that the most probable event location is

covered for longer time and with better resolution.

Proper illumination of the sensitive area is equally important for a good vision

system. Hence, the light source placement formulation has been proposed here.

The light sources are placed such that, the light directly falling on the camera can

be avoided from any of the light sources and to avoid shadow due to illumination of

one side of the object. This approach described here entirely depends on geometry

of the space and hence computationally very light. We validated the tool by

simulation and experiment.

A Multi-Objective approach based on evolutionary techniques has been applied to

the camera and light source placement problem for large surveillance space like

halls, airports etc. Multiple objective optimization is considerably more elaborate

than single criteria optimization. The major discrepancy lies in the concept of op-

timality under multiple criteria. Here, optimality is based on dominance relations

among solutions in a multidimensional objective function space. This is in con-

trast to single objective optimization, where a solution is mapped by the criterion
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function into a point along the real number line, where the decision of an optimal

point is trivial. Experimental results validate the assumption of conflicting objec-

tives within given criteria of execution. Such an approach indeed provides insight

into the complex interdependencies of our planning.

6.3 Future Work

Although the current work is complete in itself, various issues need to be addressed

in further research efforts such as:

1. Experimentation with more number of camera and light sources for different

dimensions of surveillance space covering most of the real world cases.

2. Modifying the light source placement formulation by incorporating the effect

of presence of object other than humans in the environment.

3. Converting the off-line process to real-time processing.
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