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CHAPTER 1 

 

INTRODUCTION 

 

Engineering problems can be defined as search for one near optimal description among many 

possibilities, under real time constraints. Search techniques such as Bacterial foraging, Particle 

swarm and Firefly based optimization algorithms are now among the latest research topics. 

This work throws light on these bio-inspired evolutionary algorithms that are used to optimize 

the objective function, under given constraints. Optimization as an engineering problem has 

been exposed as their one application along with the several advancements made in this field. 

These techniques are explained in detail along with work and research that has been done in 

that area. It also provides the insight of modification and improvements, these algorithms 

continue to enjoy thus performing better for a specified problem. 

         Optimization has been an active area of research for several decades. As many real-world 

optimization problems become increasingly complex, better optimization algorithms are 

needed. Over the past few decades, many biologically inspired computational methodologies 

have been invented, such as evolutionary algorithms which include genetic algorithms, 

bacterial foraging, particle swarm firefly algorithms and many others. They tend to enjoy a 

regular attention by scientist in several research areas of soft computing and others as well. 

            Particle swarm optimization algorithm, first proposed by Dr. Kennedy and Dr. Eberhart 

in 1995 is a new intelligent optimization algorithm developed in recent years [1], which 

simulates the migration and aggregation of bird flock when they seek for food. This algorithm 

adopts a strategy based on particle swarm and parallel global random search. PSO algorithm 

determines search path according to the velocity and current position of particle without more 

complicated evolution operation. Particle swarm optimization is a high-performance optimizer 
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that is very easy to understand and implement. It is similar in some ways to genetic algorithms 

or evolutionary algorithms, but requires less computational bookkeeping and generally only a 

few lines of code [1]. Particle swarm optimization originated in studies of synchronous bird 

flocking and fish schooling, when the investigators realized that their simulation algorithms 

possessed an optimizing characteristic[2]-[4]. 

           A particularly interesting group behaviour[8], which can be translated into efficient 

optimization algorithms, has been demonstrated for several motile species of bacterial colonies 

such as Samonellatyphimurium, where intricate stable spatio-temporal patterns based on 

stimuli of cell-cell signalling and foraging are formed in semi-solid nutrient media.  

         Natural selection tends to eliminate animals with poor ―foraging strategies‖ (methods for 

locating, handling, and ingesting food) and favour the propagation of genes of those animals 

that have successful foraging strategies since they are more likely to enjoy reproductive 

success (they obtain enough food to enable them to reproduce) [8]. After many generations, 

poor foraging strategies are either eliminated or shaped into good ones (redesigned). Vast 

applications have been found where BFO has shown remarkable results and has been modified 

for different problems according to the objective function. Initial applications of evolutionary 

algorithm were meant for static optimization problems but in recent years the emergence of 

another member of the EA family[15] bacterial foraging algorithm (BFA), the self-adaptability 

of individuals in the group searching activities has attracted a great deal of interests including 

dynamic problems. W. J. Tang and Q. H. Wu have contributed their work by proposing DBFA, 

which is especially designed to deal with dynamic optimization problems, combining the 

advantage of both local search in BFA and a new selection scheme for diversity generating. 

They used the moving peaks benchmark (MPB) [13] as the test bed for experiments. The 

performance of the DBFA is evaluated in two ways. The first is concerned with the 
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convergence of the algorithm in random periodical changes in an environment, which are 

divided into three ranges from a low probability of changes to a higher one. 

          Mechanisms of firefly communication via luminescent flashes and their synchronization 

has been imitated effectively in various techniques of wireless networks design, dynamic 

market pricing and mobile robotics [19], [25]-[27]. The flashing light of fireflies is an amazing 

sight in the summer sky in tropical and temperate regions there are about two thousand firefly 

species, and most firefly produce short and rhythmic flashes.   Many bio-inspired algorithm 

exist that use simple rules and local information to create a global consensus of a single 

parameter, such as clock time in the flashing firefly algorithm, or location in the slime 

algorithm. In this paper we identify a control loop as the core structure of several bio-inspired 

algorithms. Thresholding is one of the most important techniques for performing image 

segmentation. It is generally simple and computationally efficient. The MEFFT algorithm 

simulates the behaviour of fireflies and the phenomenon of bioluminescent communication to 

develop the algorithm to select the adequate thresholds for image segmentation. The 

segmentation results of MEFFT algorithm are promising and it encourages further researches 

for applying this algorithm to complex and real-time image analysis problems such as target 

recognition, complex document analysis and biomedical image application [19]. The other 

application include synchronisation of wireless network which be seen in [25]. An application 

in pulse-coupled oscillator’s model addresses the issue of synchronization of the oscillators 

with different frequencies [27]. As a continuation of this research, it is important to study how 

the topology and communication delay of the distributed oscillators system affect the 

synchronization process.      Fireflies, also called lighting bugs, are one of the most special and 

fascinating creatures in nature. These nocturnal luminous insects of the beetle family 

Lampyridae (order Coleoptera), inhabit mainly tropical and temperate regions, and their 

population is estimated at around 1900 species. Bioluminescent signals are known to serve as 
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elements of courtship rituals, methods of prey attraction, social orientation or as a warning 

signal to predators (in case of immature firefly forms commonly referred to as glow worms). 

The phenomenon of firefly glowing is an area of continuous research considering both its 

biochemical and social aspects. 

Problem statement: This work contains the study of meta-heuristic algorithms and their 

performance on benchmark problems. Here Comparative Analysis on the performances of the 

algorithms on the basis of parameters like elapsed time, mean and standard deviations is done; 

this brings the best algorithm to light. BFA is used in indirect adaptive control of two control 

applications, namely Liquid level nonlinear control system and DC servomotor. Here algorithm 

aims to search the best member (in terms of controller) which tracks the desired trajectory. 
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        CHAPTER 2 

  REVIEW OF META-HEURISTIC ALGORITHMS 

        In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary 

computation, a generic population-based meta-heuristic optimization algorithm. An EA uses 

some mechanisms inspired by biological evolution: reproduction, mutation, recombination, and 

selection. Candidate solutions to the optimization problem play the role of individuals in a 

population, and the fitness function determines the environment within which the solutions 

"live" (see also cost function). Evolution of the population then takes place after the repeated 

application of the above operators. Artificial evolution (AE) describes a process involving 

individual evolutionary algorithms; EAs are individual components that participate in an AE. 

         Evolutionary algorithms often perform well approximating solutions to all types of 

problems because they ideally do not make any assumption about the underlying fitness 

landscape; this generality is shown by successes in fields as diverse as engineering, art, 

biology, economics, marketing, genetics, operations research, robotics, social sciences, 

physics, politics and chemistry.. 

         Bio-inspired algorithms and systems are routinely applied to hard and large problems in a 

variety of areas. Some examples are optimization problems solved with genetic algorithms, 

routing strategies inspired by honey bee behaviour, resource discovery and data mining 

computations in Grid, Cloud and P2P frameworks, achieved by ant-inspired algorithms, and so 

on. Some other bio-inspired algorithms are bee algorithm, simulated annealing, harmony 

search, bacterial foraging algorithms, ant colony optimization, particle swarm optimization and 

firefly algorithm. Here in this work three algorithms have been taken for analysis. 
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2.1 BACTERIAL FORAGING ALGORITHM  

          Bacterial foraging algorithm is inspired by the pattern exhibited by bacterial foraging 

behaviours [1]. They tend to maximise energy per unit time. Bacteria have the tendency to 

gather to the nutrient-rich areas by an activity called ―chemotaxis‖. It is known that bacteria 

swim by rotating whip-like flagella driven by a reversible motor embedded in the cell wall. E. 

coli has 8-10 flagella placed randomly on a cell body. When all flagella rotate counter 

clockwise, the move is called Run. When the flagella rotate clockwise, they all pull on the 

bacterium in different directions, which causes the bacteria to Tumble as shown in figure 1.1 

     

 

                   Counter clockwise 

                    Rotation 

 

    SWIM                           
   

                

      TUMBLE 

 Clockwise rotation           

 

         A. Swim               B. Tumble 

Fig. 2.1 Swim(A) and tumble(B) of a bacterium 

      The foraging algorithm is based on the behaviour of the E. coli bacteria, which has tree 

fundamental steps: chemo taxis, reproduction, and elimination and dispersion. Chemo taxis is 

used in order to move and search for food, this step has much resemblance with a biased 

random-walk model [2]. 

In order to maximise energy in minimum time bacteria tend to follow different search 

strategies as described in figure 1.2  
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Fig. 2.2 Search strategies for foraging bacteria 

        The chemotactic operator employed in BFOA is supposed to guide the swarm to converge 

toward optima. Reproduction is used to make an identical copy; and elimination and dispersion 

is used to avoid noxious elements that can kill or spread a group of bacteria in the search space. 

       When bacteria get food in sufficient amount, they increase in length, and in presence of 

suitable temperature, they break in the middle to form an exact replica of themselves. This 

phenomenon inspired Passino [1] to introduce an event of reproduction in BFOA. Due to the 

occurrence of sudden environmental changes or attack, the chemotactic progress may halt, and 

a group of bacteria may move to some other places. This constitutes the event of elimination–

dispersal in the real bacterial population, where all the bacteria in a region are killed or a group 

is dispersed into a new part of the environment. As said, bacteria try to move to areas which are 

rich in nutrients and free of noxious substances [4]. If   is a position and      is a function, the 

more the negative the more the nutrients prevail over the noxious substances, then we can 

imagine that bacteria naturally try to find those, where       has its minima. 

         A bacterium position after a tumble can be determined through equation (2.1), where the 

position at a given instant is calculated in terms of the position at the previous instant and the 

step size C(i) applied in a random direction     , generated by the bacterium tumble 
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                                                     (2.1) 

    Where i indicate the bacterium in a total population of S individuals, j the chemotactic step, 

the reproductive step k, and the elimination and dispersal step l. 

The health function is calculated at these positions of bacteria as (2.2) 

                                                     .      (2.2) 

     Here second expression shows the effect of attraction and repulsion among the bacteria. The 

exact expression of  

     
                   is in [1]. 

And this then is compared with the previous health function as 

                                            (2.3) 

         If it’s true then the bacterium will keep moving in the same direction (―run‖ behaviour) 

for a given maximum number of steps, after which a ―tumble‖ will occur anyway. The least 

healthy bacteria eventually die while each of the healthier bacteria (those yielding lower value 

of the objective function) asexually split into two bacteria, which are then placed in the same 

location. This keeps the swarm size constant. This is done through reproduction step. Some 

bacteria are liquidated at random with a very small probability while the new replacements are 

randomly initialized over the search space. 

 i. Pseudo code: 

1. INITIALIZE PARAMETERS:     n, N, Nc, Ns, Nre, Ned, Ped, 

C(i)(i=1,2…N), i =1,2,--- 

Where, 

n: Dimension of the search space, 
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N: The number of bacteria in the population, 

NC : Chemotactic steps, 

Nre: The number of reproduction steps, 

Ned : the number of elimination-dispersal events, 

Ped: Elimination-dispersal with probability, 

C (i): the size of the step taken in the random direction specified by the tumble. 

2. ELIMINATION-DISPERSAL LOOP: l=l+1 

3. REPRODUCTION LOOP: k=k+1 

4. CHEMO TAXIS LOOP: j=j+1 

[a] For i =1,2…N, take a chemotactic step for bacterium i as follows. 

[b] Compute fitness function, J (i, j, k, l). 

Let,                              
                     

 (i.e. add on the cell-to cell attractant–repellent profile to simulate the swarming  behaviour ) 

.Where, Jcc is defined in . 

[c] Let                   to save this value since we may find a better cost via a run. 

[d] Tumble: generate a random vector            with each element          

            random number on [-1, 1]. 

[e] Move: Let            ̇              
    

√         
 

This results in a step of size C (i) in the direction of the tumble for bacterium i. 

[f] Compute               ) and  

Let                                                   

[g] Swim 
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i) Let m=0 (counter for swim length). 

ii) While      (if have not climbed down too long). 

• Let        

• If                <Jlast (if doing better), let 

Jlast=               and 

Let             ̇              
    

√         
 

And use this              to compute the new               as we did in [f] 

Else, let m= Ns. This is the end of the while statement. 

[h] Go to next bacterium (i, 1) if i ≠ N (i.e., go to [b] to process the next bacterium). 

5. If j<Nc, go to Step 3. In this case, continue chemo taxis, since the life of the bacteria is not 

over. 

6. REPRODUCTION: 

[a] For the given k and l, and for each i =1,2,...,N, 

Let          
  ∑           

  
    

be the health of the bacterium i (a measure of how many nutrients it got over its lifetime and 

how successful it was at avoiding noxious substances). Sort bacteria and chemotactic 

parameters C (i) in order of ascending cost health J (higher cost means lower health). 

[b] The Sr bacteria with the highest Jhealth values die and the remaining Sr bacteria with the best 

values split (this process is performed by the copies that are made are placed at the same 

location as their parent). 

7. If k < Nre, go to Step 3. In this case, we have not reached the number of specified 

reproduction steps, so we start the next generation of the chemotactic loop. 
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8. ELIMINATION-DISPERSAL: For i=1, 2..., N, with probability Ped, eliminate and disperse each 

bacterium, and this result in keeping the number of bacteria in the population constant. To do 

this, if a bacterium is eliminated, simply disperse one to a random location on the optimization 

domain. If l<Ned, then go to Step. 2; otherwise end 

ii.   Advancements and Applications of BFO 

Vast applications have been found where BFO has shown remarkable results and has been 

modified for different problems according to the objective function. Initial applications of 

evolutionary algorithm were meant for static optimization problems but in recent years the 

emergence of another member of the EA family[5]– bacterial foraging algorithm (BFA), the 

self-adaptability of individuals in the group searching activities has attracted a great deal of 

interests including dynamic problems. W. J. Tang and Q. H. Wu have contributed their work 

by proposing DBFA, which is especially designed to deal with dynamic optimization 

problems, combining the advantage of both local search in BFA and a new selection scheme 

for diversity generating. They used the moving peaks benchmark (MPB) [6] as the test bed for 

experiments. The performance of the DBFA is evaluated in two ways. The first is concerned 

with the convergence of the algorithm in random periodical changes in an environment, which 

are divided into three ranges from a low probability of changes to a higher one. The second is 

testing a set of combinations of the algorithm parameters which are largely related to the 

accuracy and stability of the algorithm. All results are compared with the existing BFA [1], and 

show the effectiveness of DBFA for solving dynamic optimization problems. 

         It is worth mentioning that the diversity of DBFA changes after each chemotactic process 

rather than the dispersion adopted by the BFA after several generations. The DBFA utilizes not 

only the local search but also applies a flexible selection scheme to maintain a suitable 

diversity during the whole evolutionary process. It outperforms BFA in almost all dynamic 
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environments. The results are shown in [5]. They have further given solution for global 

optimization given in [7]. 

         The novel BSA has been proposed for global optimization. In this algorithm, the adaptive 

tumble and run operators have been developed and incorporated, which are based on the 

understanding of the details of bacterial chemotactic process. The operators involve two parts: 

the first is concerned with the selections of tumble and run actions, based on their probabilities 

which are updated during the searching process; the second is related to the length of run steps, 

which is made adaptive and independent of the knowledge of optimization problems. These 

two parts are utilized to balance the global and local searching capabilities of BSA. Beyond the 

tumble and run operators, attraction and mutation operations have also been developed. 

             A.ABRAHAM, A. BISWAS, S. DASGUPTA AND S. DAS have shown [8] that the major 

driving forces of Bacterial Foraging Optimization Algorithm (BFOA) is the reproduction 

phenomenon of virtual bacteria each of which models one trial solution of the optimization 

problem. 

             BFO and PSO have been used in combination and their combined performance has been 

utilised to incorporate the merits [19] of two bio-inspired algorithms to improve the 

convergence for high-dimensional function optimization. It is assumed that the bacteria have 

the similar ability like birds to follow the best bacterium (bacterium with the best position in 

the previous chemotactic process) in the optimization domain. The position of each bacterium 

after every move (tumble or run) is updated according to (3) 

                                                         (2.4) 

if                           
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where θ
b
(j,k,l) and Jmin(j,k,l) are the position and fitness value of the best bacterium in the 

previous chemotactic process respectively, Ccc is a new parameter, called attraction factor, to 

adjust the bacterial trajectory according to the location of the best bacterium. 

 

2.2 PARTICLE SWARM OPTIMIZATION ALGORITHM 

            The particle swarm concept originated as a simulation of a simplified social system. 

The original intent was to graphically simulate the graceful but unpredictable choreography of 

a bird flock. Initial simulations were modified to incorporate nearest-neighbour velocity 

matching, eliminate ancillary variables, and incorporate multidimensional search and 

acceleration by distance (Kennedy and Eberhart 1995, Eberhart and Kennedy 1995). At some 

point in the evolution of the algorithm, it was realized that the conceptual model was, in fact, 

an optimizer. Through a process of trial and error, a number of parameters extraneous to 

optimization were eliminated from the algorithm, resulting in the very simple original 

implementation (Eberhart, Simpson and Dobbins 1996). 

           Particle swarm optimization is recently invented high-performance optimizer that is 

very easy to understand and implement. The particle swarm optimizer shares the ability of 

genetic algorithm to handle arbitrary non-linear cost functions, but with much simpler 

implementation. Particle swarm optimization is inspired by the social behaviour of flocks of 

birds and schools of fish. A number of simple entities, particles are placed in the domain of 

definitions of some function or problem. The fitness- the value of optimization function – of 

each particle is evaluated at its current location. The movement of each particle is determined 

by its own fitness and of particles in its neighbourhood in the swarm. 

           A particle represents a potential solution. The velocity Vi
d
 and position Xi

d
 of the d

th
 

dimension of the i
th

 particle are updated as follows (2.5) & (2.6). 
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     (2.5) 

  
    

     
            (2.6) 

Where Xi = (Xi
1
, Xi

2
, … , Xi

D
) is the position of i

th
 particle Vi = (Vi

1
, Vi

2
, … , Vi

D
) represents 

velocity of the particle i. pbest =( pbesti
1
, pbesti

2
, … , pbesti

D
) is the best previous position 

yielding the best fitness value for their i
th

 particle; and gbest = (gbesti
1
, gbesti

2
, … , gbesti

D
) is 

the best position discovered by whole population[14]. C1 and C2 and are the acceleration 

constants reflecting the weighting of stochastic acceleration terms that pull each particle toward 

pbest and gbest positions, respectively. rand1i
d
 and rand2i

d
 are two random numbers in the 

range [0, 1]. 

 

i. Pseudo code: 

1. Generate the initial swarm by randomly generating the position and velocity for each 

particle;  

2.  Evaluate the fitness of each particle; 

3. Repeat 

4.  for each particle i do 

5. Update particle i according to (1) and (2); 

6.  If                     then 

7.              

8.  if                 ) then  

       9.         :=  xi 
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      10.     End if 

      11.     End if 

      12.     End for 

      13.     Until the stop criterion is satisfied 

ii. Advancements and Applications of PSO 

          APPSO (Agent based parallel PSO) is based on two types of agents: one coordination 

agent and several swarm agents. The swarm is composed of various sub-swarms, one for each 

swarm agent. The coordination agent has administrative and managing duties. All the 

calculations are done by the swarm agents (see Figure 2.3). 

         In order to gain benefit from the large knowledge and insights achieved in the research 

field of sequential PSO it is important to modify the swarm’s behaviour as little as possible. 

The inevitable changes to the algorithm due to the parallelization should also lead to positive 

effects with respect to solution quality. This is realized by using strategically niching where 

according to the requirements the sub-swarms either work together searching for one global 

optimum or spread over the search space to find various global/local optima, e.g. on 

multimodal functions. 

            To address the problem of space locus searching, a slowdown particle swarm 

optimization (SPSO) is proposed to improve the convergence performance of particle swarm 

from the position viewpoint. 

           The particle swarm in SPSO is divided into many independent sub-swarms to guarantee 

that particles converge to different position, since space locus has multiple optimal solutions 

and requires the convergence of both fitness and position of particle. Furthermore, particle 

velocity is updated by half according to fitness to achieve the position convergence [14]. 
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           Several PSO algorithms have been recently proposed to address DOPs of which using 

multi swarms seems a good technique. The multi swarm method can be used to enhance the 

diversity of the swarm, with the aim of maintaining multiple swarms on different peaks. 

         One of the reasons that particle swarm optimization is attractive is that there are very few 

parameters to adjust Particle swarm optimization has been used for approaches that can be used 

across a wide range of applications, as well as for specific applications focused on a specific 

requirement. 

       In this brief section, we cannot describe all of particle swarm’s applications, or describe 

any single application in detail. Rather, we summarize a small sample. 

        Generally speaking, particle swarm optimization, like the other evolutionary computation 

algorithms, can be applied to solve most optimization problems and problems that can be 

converted to optimization problems. Among the application areas with the most potential are 

system design, multi-objective optimization, classification, pattern recognition, biological 

system modelling, scheduling (planning), signal processing, games, robotic applications, 

decision making, simulation and identification. 
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Fig. 2.3 Structure of APPSO network system [14] 

Examples include fuzzy controller design, job shop scheduling, real time robot path planning, 

image segmentation, EEG signal simulation, speaker verification, time-frequency analysis, 

modelling of the spread of antibiotic resistance, burn diagnosing, gesture recognition and 

automatic target detection, to name a few. 

2.3 FIREFLY ALGORITHM 

        The flashing light of fireflies is an amazing sight in summer sky in the tropical and 

temperate regions. There are about two thousand firefly species, and most fireflies produce 

short and rhythmic flashes. The pattern of flashes is often unique for a particular species. The 

flashing light is produced by a process called bioluminescence. However, two fundamental 

functions of such flashes are to attract mating partners and to attract potential prey. In addition 

it may also serve as a protective warning mechanism to remind potential predators of the bitter 

taste of fireflies. 



Vipul Singhal, Control and Instrumentation, Electrical Dept. 
Delhi College of Engg.    18 | P a g e  

 

        We know that the light intensity at a particular distance r from the light source obeys the 

inverse square law. That is to say, the light intensity I decreases as the distance r increases in 

terms if I   
  ⁄ . Furthermore, the air absorbs light which becomes weaker as the distance 

increases. These two combined factors make most fireflies visual to a limit distance, usually 

several hundred meters at night, which is good enough for fireflies to communicate. 

        The flashing light can be formulated in such a way that it is associated with the objective 

function to be optimized, which makes it possible to formulate new optimization algorithms. 

Assumptions: 

1. All fireflies are unisex so that one firefly will be attracted to the other fireflies regardless of 

their sex. 

2. The brighter one will move towards the less bright one. The attractiveness is proportional to 

the brightness and they both decrease as the distance increase. And if there is no brighter one 

than a particular firefly, it will move randomly; 

3. The brightness of a firefly is affected or determined by the landscape of the objective 

function. 

Light intensity and the attractiveness: 

       In the firefly algorithm, there are two important issues: the variation of light intensity and 

formulation of the attractiveness. For simplicity, we can always assume that the attractiveness 

of a firefly is determined by its brightness which in turn is associated with the encoded 

objective function. In the simplest case particular location x can be chosen as I(x) is directly 

proportional to f(x). However attractiveness β is relative. 

In simplest form, the intensity I(r) varies according to inverse square law 

I(r) = 
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     Where Is is the intensity at the source. For a given medium with light absorption coefficient 

γ, the light intensity I  varies with the distance r. That is  

      
    

 ,             (2.7) 

where I0 is the original light intensity. In order to avoid the singularity at r=0 in the expression 

Is/r
2
, combined effect of both the inverse square law and the absorption can be approximated as 

the following Gaussian form. 

     =     
    

           (2.8) 

Thus   of the firefly can be defined as  

      
    

             (2.9) 

 Where β0  is attractiveness at r=0 

The movement of a firefly i is attracted to another more attractive firefly j is determined by 

   =    +    
     

 

(xi - xj) +α   ,                   (2.10) 

where second term is due to the attraction. The third term is randomization with α being the 

randomization parameter, and ϵi is a vector of random numbers drawn from a Gaussian 

distribution or uniform distribution. For e.g. the simplest form is ϵi and can be replaced by rand 

(1/2). 

        The algorithm presented here makes use of a synergic local search. Each member of the 

swarm explores the problem space taking into account results obtained by others, still applying 

its own randomized moves as well. The influence of other solutions is controlled by value of 

attractiveness. It can be adjusted by modifying two parameters: its maximum value β0 and an 
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absorption coefficient γ. The first parameter describes attractiveness at rj = 0 i.e. when two 

fireflies are found at the same point of search space S. In general β0  [0; 1] should be used. 

Special cases: 

 For γ→0, the attractiveness is constant β =β0, this is equivalent to say that the light intensity 

does not decrease in an idealized sky. 

When γ→∞ leads to β(r)→δ(r), which means that the attractiveness is almost zero in the sight 

of other fireflies. 

 i. Pseudo code: 

1. Define objective function. F(x), 

X = (x1 , … ,xd)
T 

2. Generate initial population of fireflies xi (i = 1, 2, … , n) 

3. Determine light intensity Ii at xi is determined by f(xi) 

Also define light absorption coefficient γ 

4. Repeat until maximum generation is reached 

   For i = 1 to n= no. of fireflies 

     For j = 1 to n 

 If (Ii < Ij), move firefly I towards j; end if  

  Vary attractiveness with distance r via exp(-γr). 

Evaluate new solutions and update light intensity. End for i 

End for j 

5. Rank the fireflies and find the current global best g* goto step 4 

6. end  



Vipul Singhal, Control and Instrumentation, Electrical Dept. 
Delhi College of Engg.    21 | P a g e  

 

ii. Advancements Application of FFA 

Many bio-inspired algorithm exist that use simple rules and local information to create a global 

consensus of a single parameter, such as clock time in the flashing firefly algorithm, or location 

in the slime algorithm. In this paper we identify a control loop as the core structure of several 

bio-inspired algorithms. Two ways of combining these loops are identified, serially, and 

nested. These methods of combination can be used to combine algorithms to allow the control 

of multiple parameters (one per algorithm) on a global level without the use of a centralised 

point of control. 

         Thresholding is one of the most important techniques for performing image 

segmentation. It is generally simple and computationally efficient. The MEFFT algorithm 

simulates the behaviour of fireflies and the phenomenon of bioluminescent communication to 

develop the algorithm to select the adequate thresholds for image segmentation. The 

segmentation results of MEFFT algorithm are promising and it encourages further researches 

for applying this algorithm to complex and real-time image analysis problems such as target 

recognition, complex document analysis and biomedical image application [15]. The other 

application include synchronisation of wireless network which be seen in [16]. An application 

in pulse-coupled oscillator’s model addresses the issue of synchronization of the oscillators 

with different frequencies. As a continuation of this research, it is important to study how the 

topology and commu1nication delay of the distributed oscillators system affect the 

synchronization process. 
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          CHAPTER 3 

  

COMPARATIVE ANALYSIS OF BFO, PSO AND FFA ON 

BENCHMARK PROBLEMS 

 

3.1 BENCHMARK PROBLEMS: 

In the field of evolutionary computation, it is common to compare different algorithms using a 

large test set, especially when the test involves function optimization. However, the 

effectiveness of an algorithm against another algorithm cannot be measured by the number of 

problems that it solves better. The ``no free lunch'' theorem shows that, if we compare two 

searching algorithms with all possible functions, the performance of any two algorithms will 

be, on average, the same. As a result of attempting to design a perfect test set where all the 

functions are present in order to determine whether an algorithm is better than another for 

every function, is a fruitless task. 

       That is the reason why, when an algorithm is evaluated, we must look for the kind of 

problems where its performance is good, in order to characterize the type of problems for 

which the algorithm is suitable. In this way, we have made a previous study of the functions to 

be optimized for constructing a test set with fewer functions and a better selection. This allows 

us to obtain conclusions of the performance of the algorithm depending on the type of function. 

         The test set has several well characterized functions that will allow us to obtain and 

generalize, as far as possible, the results regarding the kind of function involved. Nevertheless, 

we have added two functions to the test set with the aim of balancing the number of functions 

of each kind. These two new functions are the function of Rosenbrock extended to dimensions 
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and the function of Schwefel; both of them have been widely used in evaluative optimization 

literature.  

         A function is multimodal if it has two or more local optima. A function of  variables is 

separable if it can be rewritten as a sum of functions of just one variable [Had64]. The 

separability is closely related to the concept of epistasis or interrelation among the variables of 

the function. In the field of evolutionary computation, the epistasis measures how much the 

contribution of a gene to the fitness of the individual depends on the values of other genes. 

         Non separable functions are more difficult to optimize as the accurate search direction 

depends on two or more genes. On the other hand, separable functions can be optimized for 

each variable in turn. The problem is even more difficult if the function is also multimodal. The 

search process must be able to avoid the regions around local minima in order to approximate, 

as far as possible, the global optimum. The most complex case appears when the local optima 

are randomly distributed in the search space. 

           The dimensionality of the search space is another important factor in the complexity of 

the problem. A study of the dimensionality problem and its features was carried out by 

Friedman 

         Sphere function has been used in the development of the theory of evolutionary 

strategies, and in the evaluation of genetic algorithms as part of the test set proposed by De 

Jong Sphere, or De Jong's function is a simple and strongly convex function. Schwefel's double 

sum function was proposed by Schwefel. Its main difficulty is that its gradient is not oriented 

along their axis due to the epistasis among their variables; in this way, the algorithms that use 

the gradient converge very slowly. Rosenbrock function, or De Jong's function is a two 

dimensional function with a deep valley with the shape of a parabola of the form that leads to 
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the global minimum. Due to the non-linearity of the valley, many algorithms converge slowly 

because they change the direction of the search repeatedly. The extended version of this 

function was proposed by Spedicato. Other versions have been proposed. It is considered by 

many authors as a challenge for any optimization algorithm. Its difficulty is mainly due to the 

non-linear interaction among its variables. 

Here in this text comparison of the performances of algorithms in terms of various parameters 

w.r.t four benchmark functions have been taken as: 

A. Sphere Function 

 

Fig. 3.1 Sphere function 

             ; -5.12 < x,y <5.12 

Optimum point: 0 at (0, 0) (not a multimodal function but it is separable.) 

The benchmark function mentioned above is 2-d spherical function and is unimodal and 

convex. It has global optimum point at 0. 
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B. Rosenbrock’s function 

 

Fig. 3.2 Rosenbrock’s function 

f(x,y)  =  (x-1)
2 

 + 100(y-x
2
)
2   

; -5 < x,y < 5 

Optimum point 0 at (1,1). 

This is 2-d rosenbrock’s function having its global optima at fs = 0 which occurs at (1, 1). 

C. Michaelwicz’s function 

 

Fig. 3.3 Michaelwicz’s function 
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f(x) =            (
  

 
)               

   

 
)  ;  0 < x,y < 4 

The global optimum of this function is -1.8013 at (2.20310, 1.57049). 

D. Six hump camel back function. 

 

Fig. 3.4 Six hump camel back function 

f(x,y) =(         
 

 
                    ; -3 < x < 3, -2 < y < 2 

This has global optima fs =-1.0136 at (0.0808, -0.7120). 
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3.2  SIMULATION RESULTS OF BFO, PSO  and  FFA on BENCHMARK PROBLEMS 

A. Benchmark function: Spherical 

 
Fig.3.5 Initial and final positions of particles on Spherical function 

 

 

Fig.3.6 Initial and final positions of fireflies on Spherical function 

      
Fig.3.7 Initial and final positions of bacteria on Spherical function  

    Table 3.1 Performance results of algorithms on Sphere function in terms of elapsed time, mean and 

standard deviation 
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The benchmark function mentioned above is 2-d spherical function and is unimodal and 

convex. It has global optimum point at 0. The best performing algorithm is analysed in terms of 

3 attributes, elapsed time, mean (calculated as mean (f(s
*
) – min f(x,y))) and standard deviation 

(std(f(s
*
) – min f(x,y))). BFO seems to have the best result among the three. 

B. Benchmark function: Rosenbrock’s function 

 
Fig.3.8 Initial and final positions of particles on Rosenbrock’s function 

           
Fig.3.9 Initial and final positions of fireflies on Rosenbrock’s function 
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         Firefly 2.589092 seconds -17.4946            0 

          PSO 2.593764 seconds -1.3165e-004            0 

          BFO 1.956597 seconds -0.0294            0 
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Fig.3.10 Initial and final positions of bacteria on Rosenbrock’s function 

TABLE 3.2: Performance of algorithms on Rosenbrock’s function in terms of elapsed time, mean and 

standard deviation 

    Algorithms Elapsed time       Mean Standard deviation 

         Firefly 2.362486 seconds     -7.3886e+003                 0 

          PSO 2.836760 seconds       -0.0159                 0 

          BFO 1.439113 seconds          -51                 0 

This is 2-d rosenbrock’s function having its global optima at fs = 0 which occurs at (1,1). Here 

the best result seems to be that of particle swarm optimization. 

C. Benchmark function: Michaelwicz’s function 

        

Fig.3.11 Initial and final positions of particles on Michaelwicz’s function 
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Fig.3.12 Initial and final positions of fireflies on Michaelwicz’s function  

                

Fig.3.13 Initial and final positions of bacteria on Michaelwicz’s function  

Table 3.3: Performance results of algorithms on Michaelwicz’s function in terms of elapsed time, 

mean and standard deviation 

Algorithms    Elapsed time           Mean  Standard deviation 

         Firefly 2.685148 seconds         -0.7455 
                          

0 

          PSO 2.755020 seconds         -0.0013                   0  

          BFO 1.483471 seconds         -1.8013                   0 

The global optima of this function are -1.8013 at (2.20310, 1.57049). Here again PSO 

performance better as compared to other two.  
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D. Benchmark function: Six hump camel back function 

 

Fig.3.14 Initial and final positions of particles on Six hum camel back function 

 

Fig.3.15 Initial and final positions of fireflies on Six hum camel back function 

      

Fig.3.16 Initial and final positions of bacteria on Six hum camel back function 
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Table:3.4 Performance results of  Algorithms on Six hump camel back function in terms of 

elapsed time, mean and standard deviation 

    Algorithm          Elapsed time            Mean Standard deviation 

       Firefly 2.600843 seconds      -0.3604         0.2541 

        PSO 3.329348 seconds       0.0141          0 

        BFO 1.554232 seconds      -1.0136          0 

 

This has global optima fs =-1.0136 at (0.0808, -0.7120). Here again PSO has better 

convergence results and outperforms other two though has slightly more elapsed time. 

Firefly is less stable in terms of standard deviation. 

3.3 DISCUSSION ON RESULTS 

All the algorithms have been conducted for same no. of population which is 25 and for 20 

iterations. Based on this they have been compared on the basis of their elapsed time, mean and 

standard deviation to optimize the given benchmark function. 

          The firefly algorithm presented here makes use of a synergic local search. Each member 

of the swarm explores the problem space taking into account results obtained by others, still 

applying its own randomized moves as well. The influence of other solutions is controlled by 

value of attractiveness. It can be adjusted by modifying two parameters: its maximum value βo 

and an absorption coefficient γ. The first parameter describes attractiveness at rj = 0 i.e. when 

two fireflies are found at the same point of search space S. In general             should be 

used and two limiting cases can be defined: when    = 0, that is only non-cooperative 

distributed random search is applied and when    = 1 which is equivalent to the scheme of 

cooperative local search with the brightest firefly strongly determining other fireflies positions, 

especially in its neighbourhood. On the other hand, the value of   determines the variation of 

attractiveness with increasing distance from communicated firefly. Using   = 0 corresponds to 
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no variation or constant attractiveness and conversely setting     1 results in attractiveness 

being close to zero which again is equivalent to the complete random search. In general γ ε 

[0,10] could be suggested. It is more convenient, however, to derive   value specifically for the 

considered problem. Such customized absorption coefficient should be based on the 

characteristic length of the optimized search space. It is proposed here to use: 

  
  

    
 

  
  

    
 

 

Where            and: 

            (      )               

         The third parameter α can also be varied which here shows randomness. It is at α = 0.01 

where we get best result of firefly algorithm. 

       Also for varied population in each algorithm the response varies. This not only increases 

complexity but takes larger amount of time. Bacterial foraging has least elapsed time for most 

of the benchmark functions.  While that of firefly is maximum and also comes out to be least 

stable in terms of standard deviation. PSO proves to be the most efficient in terms of its 

convergence to the optimum point. 

        It is noticeable that Firefly is repeatedly outperformed by bacterial foraging algorithm and 

Particle Swarm Optimizer. It is also found that firefly is less stable in terms of standard 

deviation. Firefly Algorithm described here could be considered as an unconventional swarm-

based heuristic algorithm for constrained optimization tasks. The algorithm constitutes a 

population-based iterative procedure with numerous agents (perceived as fireflies) concurrently 

solving a considered optimization problem. Agents communicate with each other via 

bioluminescent glowing which enables them to explore cost function space more effectively 

than in standard distributed random search. Most heuristic algorithms face the problem of 



Vipul Singhal, Control and Instrumentation, Electrical Dept. 
Delhi College of Engg.    34 | P a g e  

 

inconclusive parameters settings. Still the algorithm could benefit from additional research in 

the adaptive establishment of absorption coefficient and random step size. Furthermore some 

additional features like decreasing random step size and more sophisticated procedure of initial 

solution generation could bring further improvements in the algorithm performance. The 

algorithm could be hybridized together with other heuristic local search based technique like 

Adaptive Simulated Annealing. Thus by hybridising or providing certain modification to such 

less efficient algorithm can be made better performing algorithms. 
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3.4 CONCLUSION 

 Particle swarm optimization has shown the best results among the three taken algorithms. 

Though the results are not universal and may vary according to the objective function taken, 

yet it can be said that for the four functions taken with respect to each parameter PSO seems to 

have optimum results. Also it is noticeable that Firefly is repeatedly outperformed by bacterial 

foraging algorithm and Particle Swarm Optimizer. It is also found that firefly is less stable in 

terms of standard deviation. Firefly Algorithm described here could be considered as an 

unconventional swarm-based heuristic algorithm for constrained optimization tasks. The results 

of firefly can be improved by tuning several parameters along with slight modifications in it.    

This has been observed also while changing the value of absorption coefficient and its variation 

with the distance. Thus we can say that performance of any technique is objective dependent. 

There are various parameters that define the aptness of the algorithm so it depends on the 

requirements of the objective function and on the constraints imposed. For example if we take 

several benchmark problems and compare the results of three algorithms then it has been seen 

each would perform differently. Not only their individual performance vary even they tend to 

become less or more stable in terms of the parameters defining the quality of performance such 

as elapsed time, convergence rate, optimum value (maximised/minimized), mean and standard 

deviation etc. So depending upon our requirement we may define our objective function and 

the performance of algorithm for that particular function is based on how aptly the required 

objective is received, which could be in terms of final value, elapsed time, mean etc. Thus 

having witnessed these variations one can generalise the performance on overall terms and 

state any of the algorithm as best among the three taken. 
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          CHAPTER 4 

 ADAPTIVE CONTROL USING BACTERIAL FORAGING 

ALGORITHM 

4.1 ADAPTIVE CONTROL 

Adaptive control is the control method used by a controller which must adapt to a controlled 

system with parameters which vary, or are initially uncertain. For example, as an aircraft flies, 

its mass will slowly decrease as a result of fuel consumption; a control law is needed that 

adapts itself to such changing conditions. Adaptive control is different from robust control in 

that it does not need a priori information about the bounds on these uncertain or time-varying 

parameters; robust control guarantees that if the changes are within given bounds the control 

law need not be changed, while adaptive control is concerned with control law changes 

themselves. 

A. Classification of adaptive control techniques 

In general one should distinguish between: 

1. Feed forward Adaptive Control 

2. Feedback Adaptive Control 

There are several broad categories of feedback adaptive control (classification can vary): 

 Dual Adaptive Controllers 

 Optimal Dual Controllers 

 Suboptimal Dual Controllers 

 Non dual Adaptive Controllers 

 Gain scheduling 

 Model Reference Adaptive Controllers (MRACs) 
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Fig.4.1 Model reference adaptive control 

 Model Identification Adaptive Controllers (MIACs) 

 

Fig.4.2 Model identification adaptive control (MIAC) 

 Cautious Adaptive Controllers [use current SI to modify control law, allowing for 

SI uncertainty] 

 Certainty Equivalent Adaptive Controllers [take current SI to be the true system, 

assume no uncertainty] 

 Nonparametric Adaptive Controllers 

 Parametric Adaptive Controllers 

 Explicit Parameter Adaptive Controllers 

 Implicit Parameter Adaptive Controllers 

Some special topics in adaptive control can be introduced as well: 
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1. Adaptive Control Based on Discrete-Time Process Identification 

2. Adaptive Control Based on the Model Reference Technique 

3. Adaptive Control based on Continuous-Time Process Models 

4. Adaptive Control of Multivariable Processes 

5. Adaptive Control of Nonlinear Processes. 

B. Strategies for adaptive control 

i. Indirect adaptive control  

       There are at least two general approaches to adaptive control and in the first one we 

use online identification method to estimate the plant input-output mapping and a 

―controller designer‖ module to subsequently specify the parameters of the controller. 

Generally indirect adaptive controller can be taken as automating the mode-building and 

control design process that we use for fixed controller. 

          If the plant input-output mapping changes, the identifier will provide estimates of 

these changes and the controller design will subsequently time the controller. It is 

inherently assumed that we are certain that the estimated plant mapping is equivalent to the 

actual one at all times (―this is called certainity equivalence principle.‖). Then if controller 

designer can specify a controller for each set of plant parameter estimates, it will succeed 

controlling the plant. The overall approach is called ―indirect adaptive control‖ since we 

tune the controller indirectly by first estimating the plant parameters 
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Fig.4.3 Indirect Adaptive Control 

 

         The structure used for the identifier model could be linear with adjustable coefficients. 

Alternatively, it could be a neural or fuzzy system with tuneable parameters that enter in a 

linear or non-linear fashion. Since the plant is assumed to be unknown, the non-linear mapping 

it implements is unknown. To do so, gradient or least square methods are used to tune neural or 

fuzzy systems for indirect adaptive control. 

      Alternatively, optimization method such as bio-mimicry of an individual foraging animal 

can be used.  

ii. Direct adaptive control 

Here ―adaptation mechanism‖ observes the signals from the control system and adapts the 

parameters of the controller to maintain the performance even if there are changes in the plant. 

Sometimes, in either the direct or indirect adaptive controllers, the desired performance is 

characterised with a ―reference model,‖ and the controller then seeks to make the closed-loop 

called ―model reference adaptive control‖ (MRAC). 
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Fig.4.4 Direct adaptive control 

 

         In neural control or adaptive fuzzy control, the controller is implemented with neural or 

fuzzy system respectively. Normally, gradient or least squares methods are used to tune the 

controller. Also, many heuristic direct adaptive control methods have been developed, for 

instance based on reinforcement learning control. 

     Alternatively, bio mimicry method based on foraging, in this case, can be used to optimize 

and adjust controller parameter. 

4.2 BACTERIAL FORAGING ALGORITHM BASED INDIRECT 

ADAPTIVE CONTROL  

     

Here, foraging algorithm has been used as the basis for adaptive control. In indirect adaptive 

control one seeks to learn a plant model during the operation of a system. Learning is viewed 

as foraging for good model information (i.e. information that is truthful and useful for meeting 

goals). An identifier model is used which is a parameterized model of the plant, and consider 

foraging algorithm searching in the parameter space that corresponds to finding nutrients. 

Multiple identifier models and social foraging (i.e. multiple models are tuned simultaneously, 

with foragers possibly sharing information to try to improve foraging success). The BFA 

searches location in the parameter space, which corresponds to getting low identification errors 

between the model and the plant. Then, according to the sum of the squared identifier errors, at 
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each time instant the model that is the best and uses it in a standard certainty equivalence 

approach to specify a controller is chosen. Each identifier model is an affine mapping to match 

plant nonlinearities. The identifier model parameters represent the forager’s position. The cost 

function for each forager, which defines the nutrient profile, is defined to be the sum of squares 

of past identifier error values for each identifier model. For parameter adjustment, a foraging 

algorithm is used that is based on E. coli chemotactic behaviour. Here a plant model is tuned in 

order to specify the controller parameters. A set (population) of approximators is used to tune 

and the optimization method used to tune the set is bacterial foraging optimization algorithm. 

Fig.4.5 shows the adaptive control using BFA.  
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 Fig.4.5 Adaptive control using BFA 
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  (    )               are unknown smooth functions of the state      while        is a 

nonlinear function of past values of    .        is requiring to be bounded away from zero. 

   ≥ 1 is the delay between the input and output. For   =1,         (    )  

 (    )                        (    )   (    )                                (4.2) 

         (    )           (    )    (    )         (4.3)  

Functions      (    )      and     (    ) represent the unknown nonlinear dynamics of the 

plant. It is these functions which require to be estimated so that a controller can be specified.  

      and         are defined to be as known parts of the plant dynamics, these can be set to 

zero.  (    ) is assumed to satisfy 

       (    )  for some known        for all     .  

Estimation of an unknown ideal controller: An ideal controller is given by 

      
  (    )       

       
                                                        (4.4) 

This linearizes the dynamics of equation (15) such that            . substituting      

      in equation (15) we obtain                  so that tracking of reference input 

have been achieved within d steps.Since  (    )     (    ) are unknown, an estimator is 

developed for these plant nonlinearities and used them to form an approximation to      . 

Using a ―Certainty equivalence controller‖, the control input can be defined as 

     
  ̃(    )       

 ̃(    )
                                                           

  (4.5) 

 ̃(    ) and  ̃(    ) are estimates of  (    ) and         respectively. 

The certainty equivalence controller can be defined with the following estimates 
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 ̃(    )    (          )                                         (4.6)   

   and   ̃(    )    (          )                                      (4.7) 

Error                 is not a linear function of the parameters. 

 Also 

       ̃         , 

 where  ̃    is estimate of     . A set of approximators for α and β where the     ones are 

denoted by  

  (    
 )         (    

 )   

 for i=1,2,....,S. 

 From a foraging perspective,    is viewed as the location of the      foragers in the 

environment. In foraging method position of the forager     is used to minimize the fitness 

function        . Let the     estimate of the output and identification error be 

 ̃         (       
    )    (       

    )     and          ̃           for 

i=1,2..., S.      Individual (bacteria) at time k can be given by 

      *  
 
 
      

 
 
   + , i=1,2,..., S.                                (4.8) 

Fitness function can be defined as 

 (       )  (     )
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        (4.9) 
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which measures the size of the estimation error for the     estimate. It is required to minimize  

 (       ) .  

Forager’s position in one dimension is given by    and in the other dimension by    so that 

forager’s position is       
    

               S is the population size of the bacteria. 

Foraging strategy is based on E.coli chemotaxis, but without swarming, elimination-dispersal, 

and reproduction. Here chemotactic hill-climbing strategy is used to adjust the parameters. At 

each time step, one foraging step is used, that means either one tumble-tumble step. Foraging 

occurs while the control system operates with foraging (searching) for parameters occurring at 

each time step. For instance, if over one time step the cost did not decrease for an individual, 

then there is a tumble, and by this, a random direction is generated which update the 

parameters (location of the forager) in that direction. If, cost is improved from the last step, 

then another step in the same direction taken last time is made. In such case, forager is on a run 

in a good direction, down the cost function.   

4.3 DYNAMICS OF LIQUID LEVEL SYSTEM 

Design Problem: In this problem we will study the development of indirect adaptive 

controllers for the liquid level process control problem. From the foraging perspective, we 

view θ
i
 as the location of the i

th
 forager in its environment. In a foraging method, we will move 

the position of the forager θ
i 
so as to minimize J (θ

i
). The particular manner used to adjust the θ

i 

(k-1) to find θ 
i
(k) will depend on the choice of the foraging algorithm steps. In an indirect 

adaptive control strategy, we view foraging as searching for good model information. If a 

foraging strategy is used, we view θ
i 

(k) as the forager who has found the best model 

information. With foraging strategy, we could view the fixed- position members, ―information 
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centres‖, if foragers were endowed with communication capabilities. If such centres have good 

model information they will tend to attract foragers. 

Planning for a process control problem in this section we will develop a planning strategy ofr 

every simple yet representative process control system and then we design and test a planning 

strategy.  

Level Control in Surge Tank:  Consider the ―Surge tank‖, shown in figure that can be 

modelled by 

     

  
   

 ̅√   

 (    )
 

 ̅

 (    )
                      (4.10) 

Where u(t) is the input flow (control input), which can be positive or negative (it can both pull 

liquid out of the tank and put in it ), h(t) is the liquid level (the output of the plant); 

                    ̅  is the cross sectional area of the tank and       and  ̅ > 0; g = 9.8 ; 

             is a ―clogging factor‖ for a filter in pump actuator where if        , there is some 

clogging of filter and if c = 1, the filter is clean so there is no clogging ; and      , parameter 

is related to diameter of the output pipe. We think of all these plant parameters as being fixed 

for a particular surge tank; however, we could consider other values for these parameters and 

test the controller for these.               

  

                     

  

  

 

 

 

 

Fig. 4.6 Liquid level System 

 

u(t) 

h(t) 
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Let r(t) be desired level of the liquid(reference i/p) and e(t) = r(t) – h(t) be the tracking error. 

Assume the knowledge of reference trajectory and priori and assumes that r(t) ϵ [0.1, 8]  and 

that we will not have h(t) > 10, Assume that h(0) = 1. 

To convert to a discrete time approach we use Euler’s approximations to the continuous 

dynamics to obtain 

h(k+1) = h(k) + T 
  ̅√        

  ̅       
 

 ̅

  ̅       
    ]             (4.11) 

where T = 0.1. We assume that the plant input saturates at ± 50 so that if the controller 

generates on i/p  ̅(k), then  

              ̅         

           ̅              ̅                         (4.12) 

           ̅          

Also, to ensure that the liquid level never goes negative, we simulate our plant using 

h(k+1) = max{0.001, h(k) + T 
   ̅√        

  ̅       
 

 ̅

  ̅       
    ]}           (4.13) 
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A. Simulation results and discussion on results 

 

Fig.4.7 Liquid height vs. reference input 

 

  

Fig. 4.8 Plant non-linearities α and β and their estimates 
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Fig. 4.9 Cost of the best member of population 

 

 

Fig. 4.10 Error between desired and actual height 
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size of bacteria. Foraging strategy employed is based on e.coli chemotaxis, but without 

swarming, elimination-dispersal, and reproduction. Hence, we only use the chemotactic hill-
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this way, the foraging occurs while the control system operates with foraging (searching) for 

parameters occurring at each time step. For instance, if over one time step the cost did not 

decrease for an individual, then there is a tumble, and to do this, we generate a random 

direction and update the parameters in that direction. If, however the cost improved from the 

last step, then another step is taken in the same direction, as taken in last step. In this case the 

forager is on a ―run‖ in a good direction, down the cost function. 

      The step size C (i,k) is set to be 0.05 for all bacteria for all times. The maximum number of 

steps along a good direction is Ns = 4 and θ
i
α (1) = 2, θ

i
β (1) = 0.5, i=1, 2, 3… S. We use the 

cost evaluation procedure with Js (θ
i
(k-1),N) with N=100, with chemotactic steps = 800. 

       The performance of closed loop system is illustrated in fig.4.7 where we see that, after an 

initial transient period that results in part due to the poor initialization of the estimators and the 

controller’s start-up method. To further illustrate some properties of adaptive controller we plot 

the cost of best individual in the population and the index i of the best individual in population 

for every time step. 

Firstly, note that early in simulation cost is zero due to how we start up the controller. Then we 

start the controller at t=5 sec the cost jumps to a relatively high value, this represents that we 

have a poor initialization for the population. After some time, however, the foraging strategy is 

somewhat successful at adjusting the population members so that the estimation error decreases 

and hence, the beet cost decreases.  Note, however that cost does not always decrease over 

time. It can also increase and one cause of this can be the change in the reference input. 

4.4. DYNAMICS OF DC SERVOMOTOR 

Design problem: In this problem we will study the development of indirect adaptive 

controllers for the DC Servomotor. Here we intend to use foraging perspective to follow the 
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desired trajectory by dc servomotor by tuning the parameters and using the chemotaxis step of 

BFO. Reproduction and elimination-dispersal are not used here. 

A high performance drive system consists of a motor and a controller integrated to perform a 

precise mechanical maneuverer. This requires the shaft speed and/or position of the motor to 

clearly follow a specified trajectory regardless of unknown load variations and other parameter 

uncertainties. 

BFO is used to emulate the unknown nonlinear plant dynamics by presenting a suitable set of 

input/output patterns generated by the plant. Once system dynamics have been identified using 

a BFO conventional control techniques can be applied to achieve the desired objective 

trajectory tracking. 

DC Motor model 

The DC motor dynamics are given by the following equations 

va(t) = Raia(t) + La

   

  
 + eb(t)             (4.14) 

 eb(t)  = Kbw(t)               (4.15) 

TM(t )= KT ia(t)               (4.16) 

         = J
     

  
 + Bw(t) +TL(t)+TF                  (4.17) 

where 

va(t) = applied a armature voltage (volts); 

eb = back emf (volts); 

ia(t) = armature current(amps); 

 Ra = armature winding resistance (ohms); 

 La = armature winding inductance (henrys); 

W(t) = armature velocity of the motor rotor (rad/sec); 
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Fig. 4.11 DC Servomotor 

 

TM = Torque developed by Motor in N-m 

Kt = Torque constant in N-m/A 

J = Moment of inertia of Motor in Kg-m2/ rad 

B = Frictional Coefficient of motor N-m/ (rad/sec) 

Kb = Back emf Constant in Volt / (rad/sec) 

TL(t) = Disturbance Load torque(newton-m). 

The load torque TL(t) can be expressed as  

TL(t) = ψ(w)                (4.18) 

Where ψ(.) depends on the nature of the load. 

For the most propeller driven system or  fan type loads, the function ψ(.) takes the following 

form 

TL(t) = μψ
2
(t)[sgn w(t))] 

Where μ is constant. 

DC motor drive system can be expressed as single-input, single-output, system by combining 

equations (4.4) and (4.8): 

LaJ
      

   
 + (RaJ+LaB)

     

  
 + (RaB + KbKT)w(t) + La

      

  
  + Ra[TL(t) +  TF] + 

 KTva(t)=0                      (4.19) 

The discrete-time model is derived by replacing all continuous diffrentials with finite 

diffrences. 
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LaJ[
                    

  
  + (RaJ + LaB)[

           

 
  + (RaB +KbKT)w(k) + 

La[
             

 
  + RaTL(k) +RaTF + KTva(k) = 0                (4.20) 

TL(k) = μw
2
(k)[sgn w(k)]                  (4.21) 

TL(k-1) = μw
2
(k-1)[sgn w(k)]                   (4.22) 

T = sampling period 

w(k) = w(t=kT); k = 0,1,2,… 

manipulating 4.11-4.13 yields 

w(k+1)= K1w(k) + K2w(k-1) + K3[sgn w(k)] w
2
(k) + K4[sgn w(k)]w

2
(k-1) + K5va(k) +K6 

J = 0.068 kg-m
2
 

B = 0.03475N-m(rad/sec) 

Ra = 7.56Ω 

La = 0.055H 

KT = 3.475 N-m/amp 

Kb = 3.475 volts/(rad/sec) 

Μ = 0.0039 N-m/(rad/sec)
2
 

TF = 0.212 N=m 

T = 40 msec= 0.04 sec 

With these parameters, the constants K1, K2, K3, K4, K5  and K6 become 

K1 =  0.34366 

K2 = -0.1534069 

K3 = -2.286928 x 10
-3 

K4 = 3.5193358K5  x 10
-4

 

K5 = 0.2280595 

K6 = -0.105184  
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A. Simulation results and discussion on results 

 

Fig. 4.12 Trajectory of Servomotor vs. Reference trajectory 

 

 

Fig. 4.13 Estimation of Non-linearities α and β of plant 
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Fig. 4.14 Cost of best member w.r.t time 

 

 

Fig. 4.15 Error between desired and actual output 
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foraging strategy means that we use either one tumble-tumble step or part of a ―run‖. In this 

way, the foraging occurs while the control system operates with foraging (searching) for 

parameters occurring at each time step. For instance, if over one time step the cost did not 

decrease for an individual, then there is a tumble, and to do this, we generate a random 

direction and update the parameters in that direction. If, however the cost improved from the 

last step, then another step is taken in the same direction, as taken in last step. In this case the 

forager is on a ―run‖ in a good direction, down the cost function. 

The step size C (i, k) is set to be 0.05 for all bacteria for all times. The maximum 

number of steps along a good direction is Ns = 4 and θ
i
α (1) = 2.1, θ

i
β (1) = 0.5, i=1, 2, 3,…, S. 

We use the cost evaluation procedure with Js  (θ
i 
(k-1), N) with N=100, with chemotactic steps 

= 800. 

 The performance of closed loop system is illustrated in fig. 4.12 where we see that, 

after an initial transient period that results in part due to the poor initialization of the estimators 

and the controller’s start-up method. To further illustrate some properties of adaptive controller 

we plot the cost of best individual in the population and the index i of the best individual in 

population for every time step. 

 Firstly, note that early in simulation cost is zero due to how we start up the controller. 

Then we start the controller at t = 10 sec the cost jumps to a relatively high value, this 

represents that we have a poor initialization for the population. After some time, however, the 

foraging strategy is somewhat successful at adjusting the population members so that the 

estimation error decreases and hence, the beet cost decreases.  Note, however that cost does not 

always decrease over time. It can also increase and one cause of this can be the change in the 

reference input. 
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CHAPTER 5 

CONCLUSION 

 

 Study of evolutionary algorithm to bio-inspired algorithms has shown how optimization 

has become an important area of research in every field of engineering. BFA, PSO and FFA 

have been studied in detail along with their application areas, through research papers, 

published in several streams of soft computing, controls and image processing etc. 

Analysis of Algorithms has thrown light on several aspects of optimization and has also 

given the direction to carry the work ahead. It has been observed that the effectiveness of an 

algorithm against another algorithm cannot be measured by the number of problems that it 

solves better. The ``no free lunch'' theorem shows that, if we compare two searching algorithms 

with all possible functions, the performance of any two algorithms will be, on average, the 

same. As a result of attempting to design a perfect test set where all the functions are present in 

order to determine whether an algorithm is better than another for every function, is a fruitless 

task. 

 But depending upon the priority and constraints as imposed on the problem we can 

find the best algorithm in terms of the parameters that are important for any specified problem. 

Thus the same has been observed with respect to three parameters, elapsed time, mean and 

standard deviation for the three algorithms on four benchmark problems. The best as per these 

parameters was found to be particle swarm optimization and even bacterial foraging algorithm 

had equivalent performance  

BFA has been taken further to deal with indirect adaptive control problems, where in 

only one basic step of the algorithm (Chemotaxis) to choose the best member among 

controllers is used. Non-linearities of plant have been estimated and trajectory followed by the 
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system is also observed. Results obtained are satisfactory and can be further improved by the 

changing the parameters of system and algorithms as well (such as chemotactic steps, step size, 

population etc.) Other techniques can also be used to do the same and depending upon the 

objective function modifications can be made in the algorithms as performance of any 

technique is objective dependent. There are various parameters that define the aptness of the 

algorithm so it depends on the requirements of the objective function and on the constraints 

imposed.   

FUTURE SCOPE AND AREA OF RESEARCH: Various other control applications could also 

be implemented using these algorithms. Depending upon the application Algorithm can be 

modified and its parameters could be tuned to have better results. Algorithm like Harmony 

search, Simulated Annealing, Bee Algorithm and Firefly Algorithm can be further studied and 

applied to these applications. 
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