
Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 1 | P a g e

CHAPTER 1

INTRODUCTION

Engineering problems can be defined as search for one near optimal description among many

possibilities, under real time constraints. Search techniques such as Bacterial foraging, Particle

swarm and Firefly based optimization algorithms are now among the latest research topics.

This work throws light on these bio-inspired evolutionary algorithms that are used to optimize

the objective function, under given constraints. Optimization as an engineering problem has

been exposed as their one application along with the several advancements made in this field.

These techniques are explained in detail along with work and research that has been done in

that area. It also provides the insight of modification and improvements, these algorithms

continue to enjoy thus performing better for a specified problem.

 Optimization has been an active area of research for several decades. As many real-world

optimization problems become increasingly complex, better optimization algorithms are

needed. Over the past few decades, many biologically inspired computational methodologies

have been invented, such as evolutionary algorithms which include genetic algorithms,

bacterial foraging, particle swarm firefly algorithms and many others. They tend to enjoy a

regular attention by scientist in several research areas of soft computing and others as well.

 Particle swarm optimization algorithm, first proposed by Dr. Kennedy and Dr. Eberhart

in 1995 is a new intelligent optimization algorithm developed in recent years [1], which

simulates the migration and aggregation of bird flock when they seek for food. This algorithm

adopts a strategy based on particle swarm and parallel global random search. PSO algorithm

determines search path according to the velocity and current position of particle without more

complicated evolution operation. Particle swarm optimization is a high-performance optimizer

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 2 | P a g e

that is very easy to understand and implement. It is similar in some ways to genetic algorithms

or evolutionary algorithms, but requires less computational bookkeeping and generally only a

few lines of code [1]. Particle swarm optimization originated in studies of synchronous bird

flocking and fish schooling, when the investigators realized that their simulation algorithms

possessed an optimizing characteristic[2]-[4].

 A particularly interesting group behaviour[8], which can be translated into efficient

optimization algorithms, has been demonstrated for several motile species of bacterial colonies

such as Samonellatyphimurium, where intricate stable spatio-temporal patterns based on

stimuli of cell-cell signalling and foraging are formed in semi-solid nutrient media.

 Natural selection tends to eliminate animals with poor ―foraging strategies‖ (methods for

locating, handling, and ingesting food) and favour the propagation of genes of those animals

that have successful foraging strategies since they are more likely to enjoy reproductive

success (they obtain enough food to enable them to reproduce) [8]. After many generations,

poor foraging strategies are either eliminated or shaped into good ones (redesigned). Vast

applications have been found where BFO has shown remarkable results and has been modified

for different problems according to the objective function. Initial applications of evolutionary

algorithm were meant for static optimization problems but in recent years the emergence of

another member of the EA family[15] bacterial foraging algorithm (BFA), the self-adaptability

of individuals in the group searching activities has attracted a great deal of interests including

dynamic problems. W. J. Tang and Q. H. Wu have contributed their work by proposing DBFA,

which is especially designed to deal with dynamic optimization problems, combining the

advantage of both local search in BFA and a new selection scheme for diversity generating.

They used the moving peaks benchmark (MPB) [13] as the test bed for experiments. The

performance of the DBFA is evaluated in two ways. The first is concerned with the

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 3 | P a g e

convergence of the algorithm in random periodical changes in an environment, which are

divided into three ranges from a low probability of changes to a higher one.

 Mechanisms of firefly communication via luminescent flashes and their synchronization

has been imitated effectively in various techniques of wireless networks design, dynamic

market pricing and mobile robotics [19], [25]-[27]. The flashing light of fireflies is an amazing

sight in the summer sky in tropical and temperate regions there are about two thousand firefly

species, and most firefly produce short and rhythmic flashes. Many bio-inspired algorithm

exist that use simple rules and local information to create a global consensus of a single

parameter, such as clock time in the flashing firefly algorithm, or location in the slime

algorithm. In this paper we identify a control loop as the core structure of several bio-inspired

algorithms. Thresholding is one of the most important techniques for performing image

segmentation. It is generally simple and computationally efficient. The MEFFT algorithm

simulates the behaviour of fireflies and the phenomenon of bioluminescent communication to

develop the algorithm to select the adequate thresholds for image segmentation. The

segmentation results of MEFFT algorithm are promising and it encourages further researches

for applying this algorithm to complex and real-time image analysis problems such as target

recognition, complex document analysis and biomedical image application [19]. The other

application include synchronisation of wireless network which be seen in [25]. An application

in pulse-coupled oscillator’s model addresses the issue of synchronization of the oscillators

with different frequencies [27]. As a continuation of this research, it is important to study how

the topology and communication delay of the distributed oscillators system affect the

synchronization process. Fireflies, also called lighting bugs, are one of the most special and

fascinating creatures in nature. These nocturnal luminous insects of the beetle family

Lampyridae (order Coleoptera), inhabit mainly tropical and temperate regions, and their

population is estimated at around 1900 species. Bioluminescent signals are known to serve as

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 4 | P a g e

elements of courtship rituals, methods of prey attraction, social orientation or as a warning

signal to predators (in case of immature firefly forms commonly referred to as glow worms).

The phenomenon of firefly glowing is an area of continuous research considering both its

biochemical and social aspects.

Problem statement: This work contains the study of meta-heuristic algorithms and their

performance on benchmark problems. Here Comparative Analysis on the performances of the

algorithms on the basis of parameters like elapsed time, mean and standard deviations is done;

this brings the best algorithm to light. BFA is used in indirect adaptive control of two control

applications, namely Liquid level nonlinear control system and DC servomotor. Here algorithm

aims to search the best member (in terms of controller) which tracks the desired trajectory.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 5 | P a g e

 CHAPTER 2

 REVIEW OF META-HEURISTIC ALGORITHMS

 In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary

computation, a generic population-based meta-heuristic optimization algorithm. An EA uses

some mechanisms inspired by biological evolution: reproduction, mutation, recombination, and

selection. Candidate solutions to the optimization problem play the role of individuals in a

population, and the fitness function determines the environment within which the solutions

"live" (see also cost function). Evolution of the population then takes place after the repeated

application of the above operators. Artificial evolution (AE) describes a process involving

individual evolutionary algorithms; EAs are individual components that participate in an AE.

 Evolutionary algorithms often perform well approximating solutions to all types of

problems because they ideally do not make any assumption about the underlying fitness

landscape; this generality is shown by successes in fields as diverse as engineering, art,

biology, economics, marketing, genetics, operations research, robotics, social sciences,

physics, politics and chemistry..

 Bio-inspired algorithms and systems are routinely applied to hard and large problems in a

variety of areas. Some examples are optimization problems solved with genetic algorithms,

routing strategies inspired by honey bee behaviour, resource discovery and data mining

computations in Grid, Cloud and P2P frameworks, achieved by ant-inspired algorithms, and so

on. Some other bio-inspired algorithms are bee algorithm, simulated annealing, harmony

search, bacterial foraging algorithms, ant colony optimization, particle swarm optimization and

firefly algorithm. Here in this work three algorithms have been taken for analysis.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 6 | P a g e

2.1 BACTERIAL FORAGING ALGORITHM

 Bacterial foraging algorithm is inspired by the pattern exhibited by bacterial foraging

behaviours [1]. They tend to maximise energy per unit time. Bacteria have the tendency to

gather to the nutrient-rich areas by an activity called ―chemotaxis‖. It is known that bacteria

swim by rotating whip-like flagella driven by a reversible motor embedded in the cell wall. E.

coli has 8-10 flagella placed randomly on a cell body. When all flagella rotate counter

clockwise, the move is called Run. When the flagella rotate clockwise, they all pull on the

bacterium in different directions, which causes the bacteria to Tumble as shown in figure 1.1

 Counter clockwise

 Rotation

 SWIM

 TUMBLE

 Clockwise rotation

 A. Swim B. Tumble

Fig. 2.1 Swim(A) and tumble(B) of a bacterium

 The foraging algorithm is based on the behaviour of the E. coli bacteria, which has tree

fundamental steps: chemo taxis, reproduction, and elimination and dispersion. Chemo taxis is

used in order to move and search for food, this step has much resemblance with a biased

random-walk model [2].

In order to maximise energy in minimum time bacteria tend to follow different search

strategies as described in figure 1.2

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 7 | P a g e

 Distance

 Time

Fig. 2.2 Search strategies for foraging bacteria

 The chemotactic operator employed in BFOA is supposed to guide the swarm to converge

toward optima. Reproduction is used to make an identical copy; and elimination and dispersion

is used to avoid noxious elements that can kill or spread a group of bacteria in the search space.

 When bacteria get food in sufficient amount, they increase in length, and in presence of

suitable temperature, they break in the middle to form an exact replica of themselves. This

phenomenon inspired Passino [1] to introduce an event of reproduction in BFOA. Due to the

occurrence of sudden environmental changes or attack, the chemotactic progress may halt, and

a group of bacteria may move to some other places. This constitutes the event of elimination–

dispersal in the real bacterial population, where all the bacteria in a region are killed or a group

is dispersed into a new part of the environment. As said, bacteria try to move to areas which are

rich in nutrients and free of noxious substances [4]. If is a position and is a function, the

more the negative the more the nutrients prevail over the noxious substances, then we can

imagine that bacteria naturally try to find those, where has its minima.

 A bacterium position after a tumble can be determined through equation (2.1), where the

position at a given instant is calculated in terms of the position at the previous instant and the

step size C(i) applied in a random direction , generated by the bacterium tumble

Cruise

search
Saltatory

search

Ambush

Search

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 8 | P a g e

 (2.1)

 Where i indicate the bacterium in a total population of S individuals, j the chemotactic step,

the reproductive step k, and the elimination and dispersal step l.

The health function is calculated at these positions of bacteria as (2.2)

 . (2.2)

 Here second expression shows the effect of attraction and repulsion among the bacteria. The

exact expression of

 is in [1].

And this then is compared with the previous health function as

 (2.3)

 If it’s true then the bacterium will keep moving in the same direction (―run‖ behaviour)

for a given maximum number of steps, after which a ―tumble‖ will occur anyway. The least

healthy bacteria eventually die while each of the healthier bacteria (those yielding lower value

of the objective function) asexually split into two bacteria, which are then placed in the same

location. This keeps the swarm size constant. This is done through reproduction step. Some

bacteria are liquidated at random with a very small probability while the new replacements are

randomly initialized over the search space.

 i. Pseudo code:

1. INITIALIZE PARAMETERS: n, N, Nc, Ns, Nre, Ned, Ped,

C(i)(i=1,2…N), i =1,2,---

Where,

n: Dimension of the search space,

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 9 | P a g e

N: The number of bacteria in the population,

NC : Chemotactic steps,

Nre: The number of reproduction steps,

Ned : the number of elimination-dispersal events,

Ped: Elimination-dispersal with probability,

C (i): the size of the step taken in the random direction specified by the tumble.

2. ELIMINATION-DISPERSAL LOOP: l=l+1

3. REPRODUCTION LOOP: k=k+1

4. CHEMO TAXIS LOOP: j=j+1

[a] For i =1,2…N, take a chemotactic step for bacterium i as follows.

[b] Compute fitness function, J (i, j, k, l).

Let,

 (i.e. add on the cell-to cell attractant–repellent profile to simulate the swarming behaviour)

.Where, Jcc is defined in .

[c] Let to save this value since we may find a better cost via a run.

[d] Tumble: generate a random vector with each element

 random number on [-1, 1].

[e] Move: Let ̇

√

This results in a step of size C (i) in the direction of the tumble for bacterium i.

[f] Compute) and

Let

[g] Swim

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 10 | P a g e

i) Let m=0 (counter for swim length).

ii) While (if have not climbed down too long).

• Let

• If <Jlast (if doing better), let

Jlast= and

Let ̇

√

And use this to compute the new as we did in [f]

Else, let m= Ns. This is the end of the while statement.

[h] Go to next bacterium (i, 1) if i ≠ N (i.e., go to [b] to process the next bacterium).

5. If j<Nc, go to Step 3. In this case, continue chemo taxis, since the life of the bacteria is not

over.

6. REPRODUCTION:

[a] For the given k and l, and for each i =1,2,...,N,

Let
 ∑

be the health of the bacterium i (a measure of how many nutrients it got over its lifetime and

how successful it was at avoiding noxious substances). Sort bacteria and chemotactic

parameters C (i) in order of ascending cost health J (higher cost means lower health).

[b] The Sr bacteria with the highest Jhealth values die and the remaining Sr bacteria with the best

values split (this process is performed by the copies that are made are placed at the same

location as their parent).

7. If k < Nre, go to Step 3. In this case, we have not reached the number of specified

reproduction steps, so we start the next generation of the chemotactic loop.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 11 | P a g e

8. ELIMINATION-DISPERSAL: For i=1, 2..., N, with probability Ped, eliminate and disperse each

bacterium, and this result in keeping the number of bacteria in the population constant. To do

this, if a bacterium is eliminated, simply disperse one to a random location on the optimization

domain. If l<Ned, then go to Step. 2; otherwise end

ii. Advancements and Applications of BFO

Vast applications have been found where BFO has shown remarkable results and has been

modified for different problems according to the objective function. Initial applications of

evolutionary algorithm were meant for static optimization problems but in recent years the

emergence of another member of the EA family[5]– bacterial foraging algorithm (BFA), the

self-adaptability of individuals in the group searching activities has attracted a great deal of

interests including dynamic problems. W. J. Tang and Q. H. Wu have contributed their work

by proposing DBFA, which is especially designed to deal with dynamic optimization

problems, combining the advantage of both local search in BFA and a new selection scheme

for diversity generating. They used the moving peaks benchmark (MPB) [6] as the test bed for

experiments. The performance of the DBFA is evaluated in two ways. The first is concerned

with the convergence of the algorithm in random periodical changes in an environment, which

are divided into three ranges from a low probability of changes to a higher one. The second is

testing a set of combinations of the algorithm parameters which are largely related to the

accuracy and stability of the algorithm. All results are compared with the existing BFA [1], and

show the effectiveness of DBFA for solving dynamic optimization problems.

 It is worth mentioning that the diversity of DBFA changes after each chemotactic process

rather than the dispersion adopted by the BFA after several generations. The DBFA utilizes not

only the local search but also applies a flexible selection scheme to maintain a suitable

diversity during the whole evolutionary process. It outperforms BFA in almost all dynamic

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 12 | P a g e

environments. The results are shown in [5]. They have further given solution for global

optimization given in [7].

 The novel BSA has been proposed for global optimization. In this algorithm, the adaptive

tumble and run operators have been developed and incorporated, which are based on the

understanding of the details of bacterial chemotactic process. The operators involve two parts:

the first is concerned with the selections of tumble and run actions, based on their probabilities

which are updated during the searching process; the second is related to the length of run steps,

which is made adaptive and independent of the knowledge of optimization problems. These

two parts are utilized to balance the global and local searching capabilities of BSA. Beyond the

tumble and run operators, attraction and mutation operations have also been developed.

 A.ABRAHAM, A. BISWAS, S. DASGUPTA AND S. DAS have shown [8] that the major

driving forces of Bacterial Foraging Optimization Algorithm (BFOA) is the reproduction

phenomenon of virtual bacteria each of which models one trial solution of the optimization

problem.

 BFO and PSO have been used in combination and their combined performance has been

utilised to incorporate the merits [19] of two bio-inspired algorithms to improve the

convergence for high-dimensional function optimization. It is assumed that the bacteria have

the similar ability like birds to follow the best bacterium (bacterium with the best position in

the previous chemotactic process) in the optimization domain. The position of each bacterium

after every move (tumble or run) is updated according to (3)

 (2.4)

if

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 13 | P a g e

where θ
b
(j,k,l) and Jmin(j,k,l) are the position and fitness value of the best bacterium in the

previous chemotactic process respectively, Ccc is a new parameter, called attraction factor, to

adjust the bacterial trajectory according to the location of the best bacterium.

2.2 PARTICLE SWARM OPTIMIZATION ALGORITHM

 The particle swarm concept originated as a simulation of a simplified social system.

The original intent was to graphically simulate the graceful but unpredictable choreography of

a bird flock. Initial simulations were modified to incorporate nearest-neighbour velocity

matching, eliminate ancillary variables, and incorporate multidimensional search and

acceleration by distance (Kennedy and Eberhart 1995, Eberhart and Kennedy 1995). At some

point in the evolution of the algorithm, it was realized that the conceptual model was, in fact,

an optimizer. Through a process of trial and error, a number of parameters extraneous to

optimization were eliminated from the algorithm, resulting in the very simple original

implementation (Eberhart, Simpson and Dobbins 1996).

 Particle swarm optimization is recently invented high-performance optimizer that is

very easy to understand and implement. The particle swarm optimizer shares the ability of

genetic algorithm to handle arbitrary non-linear cost functions, but with much simpler

implementation. Particle swarm optimization is inspired by the social behaviour of flocks of

birds and schools of fish. A number of simple entities, particles are placed in the domain of

definitions of some function or problem. The fitness- the value of optimization function – of

each particle is evaluated at its current location. The movement of each particle is determined

by its own fitness and of particles in its neighbourhood in the swarm.

 A particle represents a potential solution. The velocity Vi
d
 and position Xi

d
 of the d

th

dimension of the i
th

 particle are updated as follows (2.5) & (2.6).

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 14 | P a g e

 (2.5)

 (2.6)

Where Xi = (Xi
1
, Xi

2
, … , Xi

D
) is the position of i

th
 particle Vi = (Vi

1
, Vi

2
, … , Vi

D
) represents

velocity of the particle i. pbest =(pbesti
1
, pbesti

2
, … , pbesti

D
) is the best previous position

yielding the best fitness value for their i
th

 particle; and gbest = (gbesti
1
, gbesti

2
, … , gbesti

D
) is

the best position discovered by whole population[14]. C1 and C2 and are the acceleration

constants reflecting the weighting of stochastic acceleration terms that pull each particle toward

pbest and gbest positions, respectively. rand1i
d
 and rand2i

d
 are two random numbers in the

range [0, 1].

i. Pseudo code:

1. Generate the initial swarm by randomly generating the position and velocity for each

particle;

2. Evaluate the fitness of each particle;

3. Repeat

4. for each particle i do

5. Update particle i according to (1) and (2);

6. If then

7.

8. if) then

 9. := xi

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 15 | P a g e

 10. End if

 11. End if

 12. End for

 13. Until the stop criterion is satisfied

ii. Advancements and Applications of PSO

 APPSO (Agent based parallel PSO) is based on two types of agents: one coordination

agent and several swarm agents. The swarm is composed of various sub-swarms, one for each

swarm agent. The coordination agent has administrative and managing duties. All the

calculations are done by the swarm agents (see Figure 2.3).

 In order to gain benefit from the large knowledge and insights achieved in the research

field of sequential PSO it is important to modify the swarm’s behaviour as little as possible.

The inevitable changes to the algorithm due to the parallelization should also lead to positive

effects with respect to solution quality. This is realized by using strategically niching where

according to the requirements the sub-swarms either work together searching for one global

optimum or spread over the search space to find various global/local optima, e.g. on

multimodal functions.

 To address the problem of space locus searching, a slowdown particle swarm

optimization (SPSO) is proposed to improve the convergence performance of particle swarm

from the position viewpoint.

 The particle swarm in SPSO is divided into many independent sub-swarms to guarantee

that particles converge to different position, since space locus has multiple optimal solutions

and requires the convergence of both fitness and position of particle. Furthermore, particle

velocity is updated by half according to fitness to achieve the position convergence [14].

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 16 | P a g e

 Several PSO algorithms have been recently proposed to address DOPs of which using

multi swarms seems a good technique. The multi swarm method can be used to enhance the

diversity of the swarm, with the aim of maintaining multiple swarms on different peaks.

 One of the reasons that particle swarm optimization is attractive is that there are very few

parameters to adjust Particle swarm optimization has been used for approaches that can be used

across a wide range of applications, as well as for specific applications focused on a specific

requirement.

 In this brief section, we cannot describe all of particle swarm’s applications, or describe

any single application in detail. Rather, we summarize a small sample.

 Generally speaking, particle swarm optimization, like the other evolutionary computation

algorithms, can be applied to solve most optimization problems and problems that can be

converted to optimization problems. Among the application areas with the most potential are

system design, multi-objective optimization, classification, pattern recognition, biological

system modelling, scheduling (planning), signal processing, games, robotic applications,

decision making, simulation and identification.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 17 | P a g e

Fig. 2.3 Structure of APPSO network system [14]

Examples include fuzzy controller design, job shop scheduling, real time robot path planning,

image segmentation, EEG signal simulation, speaker verification, time-frequency analysis,

modelling of the spread of antibiotic resistance, burn diagnosing, gesture recognition and

automatic target detection, to name a few.

2.3 FIREFLY ALGORITHM

 The flashing light of fireflies is an amazing sight in summer sky in the tropical and

temperate regions. There are about two thousand firefly species, and most fireflies produce

short and rhythmic flashes. The pattern of flashes is often unique for a particular species. The

flashing light is produced by a process called bioluminescence. However, two fundamental

functions of such flashes are to attract mating partners and to attract potential prey. In addition

it may also serve as a protective warning mechanism to remind potential predators of the bitter

taste of fireflies.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 18 | P a g e

 We know that the light intensity at a particular distance r from the light source obeys the

inverse square law. That is to say, the light intensity I decreases as the distance r increases in

terms if I
 ⁄ . Furthermore, the air absorbs light which becomes weaker as the distance

increases. These two combined factors make most fireflies visual to a limit distance, usually

several hundred meters at night, which is good enough for fireflies to communicate.

 The flashing light can be formulated in such a way that it is associated with the objective

function to be optimized, which makes it possible to formulate new optimization algorithms.

Assumptions:

1. All fireflies are unisex so that one firefly will be attracted to the other fireflies regardless of

their sex.

2. The brighter one will move towards the less bright one. The attractiveness is proportional to

the brightness and they both decrease as the distance increase. And if there is no brighter one

than a particular firefly, it will move randomly;

3. The brightness of a firefly is affected or determined by the landscape of the objective

function.

Light intensity and the attractiveness:

 In the firefly algorithm, there are two important issues: the variation of light intensity and

formulation of the attractiveness. For simplicity, we can always assume that the attractiveness

of a firefly is determined by its brightness which in turn is associated with the encoded

objective function. In the simplest case particular location x can be chosen as I(x) is directly

proportional to f(x). However attractiveness β is relative.

In simplest form, the intensity I(r) varies according to inverse square law

I(r) =

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 19 | P a g e

 Where Is is the intensity at the source. For a given medium with light absorption coefficient

γ, the light intensity I varies with the distance r. That is

 , (2.7)

where I0 is the original light intensity. In order to avoid the singularity at r=0 in the expression

Is/r
2
, combined effect of both the inverse square law and the absorption can be approximated as

the following Gaussian form.

 =

 (2.8)

Thus of the firefly can be defined as

 (2.9)

 Where β0 is attractiveness at r=0

The movement of a firefly i is attracted to another more attractive firefly j is determined by

 = +

(xi - xj) +α , (2.10)

where second term is due to the attraction. The third term is randomization with α being the

randomization parameter, and ϵi is a vector of random numbers drawn from a Gaussian

distribution or uniform distribution. For e.g. the simplest form is ϵi and can be replaced by rand

(1/2).

 The algorithm presented here makes use of a synergic local search. Each member of the

swarm explores the problem space taking into account results obtained by others, still applying

its own randomized moves as well. The influence of other solutions is controlled by value of

attractiveness. It can be adjusted by modifying two parameters: its maximum value β0 and an

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 20 | P a g e

absorption coefficient γ. The first parameter describes attractiveness at rj = 0 i.e. when two

fireflies are found at the same point of search space S. In general β0 [0; 1] should be used.

Special cases:

 For γ→0, the attractiveness is constant β =β0, this is equivalent to say that the light intensity

does not decrease in an idealized sky.

When γ→∞ leads to β(r)→δ(r), which means that the attractiveness is almost zero in the sight

of other fireflies.

 i. Pseudo code:

1. Define objective function. F(x),

X = (x1 , … ,xd)
T

2. Generate initial population of fireflies xi (i = 1, 2, … , n)

3. Determine light intensity Ii at xi is determined by f(xi)

Also define light absorption coefficient γ

4. Repeat until maximum generation is reached

 For i = 1 to n= no. of fireflies

 For j = 1 to n

 If (Ii < Ij), move firefly I towards j; end if

 Vary attractiveness with distance r via exp(-γr).

Evaluate new solutions and update light intensity. End for i

End for j

5. Rank the fireflies and find the current global best g* goto step 4

6. end

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 21 | P a g e

ii. Advancements Application of FFA

Many bio-inspired algorithm exist that use simple rules and local information to create a global

consensus of a single parameter, such as clock time in the flashing firefly algorithm, or location

in the slime algorithm. In this paper we identify a control loop as the core structure of several

bio-inspired algorithms. Two ways of combining these loops are identified, serially, and

nested. These methods of combination can be used to combine algorithms to allow the control

of multiple parameters (one per algorithm) on a global level without the use of a centralised

point of control.

 Thresholding is one of the most important techniques for performing image

segmentation. It is generally simple and computationally efficient. The MEFFT algorithm

simulates the behaviour of fireflies and the phenomenon of bioluminescent communication to

develop the algorithm to select the adequate thresholds for image segmentation. The

segmentation results of MEFFT algorithm are promising and it encourages further researches

for applying this algorithm to complex and real-time image analysis problems such as target

recognition, complex document analysis and biomedical image application [15]. The other

application include synchronisation of wireless network which be seen in [16]. An application

in pulse-coupled oscillator’s model addresses the issue of synchronization of the oscillators

with different frequencies. As a continuation of this research, it is important to study how the

topology and commu1nication delay of the distributed oscillators system affect the

synchronization process.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 22 | P a g e

 CHAPTER 3

COMPARATIVE ANALYSIS OF BFO, PSO AND FFA ON

BENCHMARK PROBLEMS

3.1 BENCHMARK PROBLEMS:

In the field of evolutionary computation, it is common to compare different algorithms using a

large test set, especially when the test involves function optimization. However, the

effectiveness of an algorithm against another algorithm cannot be measured by the number of

problems that it solves better. The ``no free lunch'' theorem shows that, if we compare two

searching algorithms with all possible functions, the performance of any two algorithms will

be, on average, the same. As a result of attempting to design a perfect test set where all the

functions are present in order to determine whether an algorithm is better than another for

every function, is a fruitless task.

 That is the reason why, when an algorithm is evaluated, we must look for the kind of

problems where its performance is good, in order to characterize the type of problems for

which the algorithm is suitable. In this way, we have made a previous study of the functions to

be optimized for constructing a test set with fewer functions and a better selection. This allows

us to obtain conclusions of the performance of the algorithm depending on the type of function.

 The test set has several well characterized functions that will allow us to obtain and

generalize, as far as possible, the results regarding the kind of function involved. Nevertheless,

we have added two functions to the test set with the aim of balancing the number of functions

of each kind. These two new functions are the function of Rosenbrock extended to dimensions

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 23 | P a g e

and the function of Schwefel; both of them have been widely used in evaluative optimization

literature.

 A function is multimodal if it has two or more local optima. A function of variables is

separable if it can be rewritten as a sum of functions of just one variable [Had64]. The

separability is closely related to the concept of epistasis or interrelation among the variables of

the function. In the field of evolutionary computation, the epistasis measures how much the

contribution of a gene to the fitness of the individual depends on the values of other genes.

 Non separable functions are more difficult to optimize as the accurate search direction

depends on two or more genes. On the other hand, separable functions can be optimized for

each variable in turn. The problem is even more difficult if the function is also multimodal. The

search process must be able to avoid the regions around local minima in order to approximate,

as far as possible, the global optimum. The most complex case appears when the local optima

are randomly distributed in the search space.

 The dimensionality of the search space is another important factor in the complexity of

the problem. A study of the dimensionality problem and its features was carried out by

Friedman

 Sphere function has been used in the development of the theory of evolutionary

strategies, and in the evaluation of genetic algorithms as part of the test set proposed by De

Jong Sphere, or De Jong's function is a simple and strongly convex function. Schwefel's double

sum function was proposed by Schwefel. Its main difficulty is that its gradient is not oriented

along their axis due to the epistasis among their variables; in this way, the algorithms that use

the gradient converge very slowly. Rosenbrock function, or De Jong's function is a two

dimensional function with a deep valley with the shape of a parabola of the form that leads to

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 24 | P a g e

the global minimum. Due to the non-linearity of the valley, many algorithms converge slowly

because they change the direction of the search repeatedly. The extended version of this

function was proposed by Spedicato. Other versions have been proposed. It is considered by

many authors as a challenge for any optimization algorithm. Its difficulty is mainly due to the

non-linear interaction among its variables.

Here in this text comparison of the performances of algorithms in terms of various parameters

w.r.t four benchmark functions have been taken as:

A. Sphere Function

Fig. 3.1 Sphere function

 ; -5.12 < x,y <5.12

Optimum point: 0 at (0, 0) (not a multimodal function but it is separable.)

The benchmark function mentioned above is 2-d spherical function and is unimodal and

convex. It has global optimum point at 0.

-10

-5

0

5

10

-10

-5

0

5

10
0

10

20

30

40

50

60

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 25 | P a g e

B. Rosenbrock’s function

Fig. 3.2 Rosenbrock’s function

f(x,y) = (x-1)
2

 + 100(y-x
2
)
2

; -5 < x,y < 5

Optimum point 0 at (1,1).

This is 2-d rosenbrock’s function having its global optima at fs = 0 which occurs at (1, 1).

C. Michaelwicz’s function

Fig. 3.3 Michaelwicz’s function

-5

0

5

-5

0

5
0

2

4

6

8

10

x 10
4

0

1

2

3

4

0

1

2

3

4
-2

-1

0

1

2

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 26 | P a g e

f(x) = (

)

) ; 0 < x,y < 4

The global optimum of this function is -1.8013 at (2.20310, 1.57049).

D. Six hump camel back function.

Fig. 3.4 Six hump camel back function

f(x,y) =(

 ; -3 < x < 3, -2 < y < 2

This has global optima fs =-1.0136 at (0.0808, -0.7120).

-4

-2

0

2

4

-2

-1

0

1

2
-50

0

50

100

150

200

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 27 | P a g e

3.2 SIMULATION RESULTS OF BFO, PSO and FFA on BENCHMARK PROBLEMS

A. Benchmark function: Spherical

Fig.3.5 Initial and final positions of particles on Spherical function

Fig.3.6 Initial and final positions of fireflies on Spherical function

Fig.3.7 Initial and final positions of bacteria on Spherical function

 Table 3.1 Performance results of algorithms on Sphere function in terms of elapsed time, mean and

standard deviation

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

 Algorithms Elapsed time Mean Standard deviation

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 28 | P a g e

The benchmark function mentioned above is 2-d spherical function and is unimodal and

convex. It has global optimum point at 0. The best performing algorithm is analysed in terms of

3 attributes, elapsed time, mean (calculated as mean (f(s
*
) – min f(x,y))) and standard deviation

(std(f(s
*
) – min f(x,y))). BFO seems to have the best result among the three.

B. Benchmark function: Rosenbrock’s function

Fig.3.8 Initial and final positions of particles on Rosenbrock’s function

Fig.3.9 Initial and final positions of fireflies on Rosenbrock’s function

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

 Firefly 2.589092 seconds -17.4946 0

 PSO 2.593764 seconds -1.3165e-004 0

 BFO 1.956597 seconds -0.0294 0

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 29 | P a g e

Fig.3.10 Initial and final positions of bacteria on Rosenbrock’s function

TABLE 3.2: Performance of algorithms on Rosenbrock’s function in terms of elapsed time, mean and

standard deviation

 Algorithms Elapsed time Mean Standard deviation

 Firefly 2.362486 seconds -7.3886e+003 0

 PSO 2.836760 seconds -0.0159 0

 BFO 1.439113 seconds -51 0

This is 2-d rosenbrock’s function having its global optima at fs = 0 which occurs at (1,1). Here

the best result seems to be that of particle swarm optimization.

C. Benchmark function: Michaelwicz’s function

Fig.3.11 Initial and final positions of particles on Michaelwicz’s function

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 30 | P a g e

Fig.3.12 Initial and final positions of fireflies on Michaelwicz’s function

Fig.3.13 Initial and final positions of bacteria on Michaelwicz’s function

Table 3.3: Performance results of algorithms on Michaelwicz’s function in terms of elapsed time,

mean and standard deviation

Algorithms Elapsed time Mean Standard deviation

 Firefly 2.685148 seconds -0.7455

0

 PSO 2.755020 seconds -0.0013 0

 BFO 1.483471 seconds -1.8013 0

The global optima of this function are -1.8013 at (2.20310, 1.57049). Here again PSO

performance better as compared to other two.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 31 | P a g e

D. Benchmark function: Six hump camel back function

Fig.3.14 Initial and final positions of particles on Six hum camel back function

Fig.3.15 Initial and final positions of fireflies on Six hum camel back function

Fig.3.16 Initial and final positions of bacteria on Six hum camel back function

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 32 | P a g e

Table:3.4 Performance results of Algorithms on Six hump camel back function in terms of

elapsed time, mean and standard deviation

 Algorithm Elapsed time Mean Standard deviation

 Firefly 2.600843 seconds -0.3604 0.2541

 PSO 3.329348 seconds 0.0141 0

 BFO 1.554232 seconds -1.0136 0

This has global optima fs =-1.0136 at (0.0808, -0.7120). Here again PSO has better

convergence results and outperforms other two though has slightly more elapsed time.

Firefly is less stable in terms of standard deviation.

3.3 DISCUSSION ON RESULTS

All the algorithms have been conducted for same no. of population which is 25 and for 20

iterations. Based on this they have been compared on the basis of their elapsed time, mean and

standard deviation to optimize the given benchmark function.

 The firefly algorithm presented here makes use of a synergic local search. Each member

of the swarm explores the problem space taking into account results obtained by others, still

applying its own randomized moves as well. The influence of other solutions is controlled by

value of attractiveness. It can be adjusted by modifying two parameters: its maximum value βo

and an absorption coefficient γ. The first parameter describes attractiveness at rj = 0 i.e. when

two fireflies are found at the same point of search space S. In general should be

used and two limiting cases can be defined: when = 0, that is only non-cooperative

distributed random search is applied and when = 1 which is equivalent to the scheme of

cooperative local search with the brightest firefly strongly determining other fireflies positions,

especially in its neighbourhood. On the other hand, the value of determines the variation of

attractiveness with increasing distance from communicated firefly. Using = 0 corresponds to

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 33 | P a g e

no variation or constant attractiveness and conversely setting 1 results in attractiveness

being close to zero which again is equivalent to the complete random search. In general γ ε

[0,10] could be suggested. It is more convenient, however, to derive value specifically for the

considered problem. Such customized absorption coefficient should be based on the

characteristic length of the optimized search space. It is proposed here to use:

Where and:

 ()

 The third parameter α can also be varied which here shows randomness. It is at α = 0.01

where we get best result of firefly algorithm.

 Also for varied population in each algorithm the response varies. This not only increases

complexity but takes larger amount of time. Bacterial foraging has least elapsed time for most

of the benchmark functions. While that of firefly is maximum and also comes out to be least

stable in terms of standard deviation. PSO proves to be the most efficient in terms of its

convergence to the optimum point.

 It is noticeable that Firefly is repeatedly outperformed by bacterial foraging algorithm and

Particle Swarm Optimizer. It is also found that firefly is less stable in terms of standard

deviation. Firefly Algorithm described here could be considered as an unconventional swarm-

based heuristic algorithm for constrained optimization tasks. The algorithm constitutes a

population-based iterative procedure with numerous agents (perceived as fireflies) concurrently

solving a considered optimization problem. Agents communicate with each other via

bioluminescent glowing which enables them to explore cost function space more effectively

than in standard distributed random search. Most heuristic algorithms face the problem of

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 34 | P a g e

inconclusive parameters settings. Still the algorithm could benefit from additional research in

the adaptive establishment of absorption coefficient and random step size. Furthermore some

additional features like decreasing random step size and more sophisticated procedure of initial

solution generation could bring further improvements in the algorithm performance. The

algorithm could be hybridized together with other heuristic local search based technique like

Adaptive Simulated Annealing. Thus by hybridising or providing certain modification to such

less efficient algorithm can be made better performing algorithms.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 35 | P a g e

3.4 CONCLUSION

 Particle swarm optimization has shown the best results among the three taken algorithms.

Though the results are not universal and may vary according to the objective function taken,

yet it can be said that for the four functions taken with respect to each parameter PSO seems to

have optimum results. Also it is noticeable that Firefly is repeatedly outperformed by bacterial

foraging algorithm and Particle Swarm Optimizer. It is also found that firefly is less stable in

terms of standard deviation. Firefly Algorithm described here could be considered as an

unconventional swarm-based heuristic algorithm for constrained optimization tasks. The results

of firefly can be improved by tuning several parameters along with slight modifications in it.

This has been observed also while changing the value of absorption coefficient and its variation

with the distance. Thus we can say that performance of any technique is objective dependent.

There are various parameters that define the aptness of the algorithm so it depends on the

requirements of the objective function and on the constraints imposed. For example if we take

several benchmark problems and compare the results of three algorithms then it has been seen

each would perform differently. Not only their individual performance vary even they tend to

become less or more stable in terms of the parameters defining the quality of performance such

as elapsed time, convergence rate, optimum value (maximised/minimized), mean and standard

deviation etc. So depending upon our requirement we may define our objective function and

the performance of algorithm for that particular function is based on how aptly the required

objective is received, which could be in terms of final value, elapsed time, mean etc. Thus

having witnessed these variations one can generalise the performance on overall terms and

state any of the algorithm as best among the three taken.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 36 | P a g e

 CHAPTER 4

 ADAPTIVE CONTROL USING BACTERIAL FORAGING

ALGORITHM

4.1 ADAPTIVE CONTROL

Adaptive control is the control method used by a controller which must adapt to a controlled

system with parameters which vary, or are initially uncertain. For example, as an aircraft flies,

its mass will slowly decrease as a result of fuel consumption; a control law is needed that

adapts itself to such changing conditions. Adaptive control is different from robust control in

that it does not need a priori information about the bounds on these uncertain or time-varying

parameters; robust control guarantees that if the changes are within given bounds the control

law need not be changed, while adaptive control is concerned with control law changes

themselves.

A. Classification of adaptive control techniques

In general one should distinguish between:

1. Feed forward Adaptive Control

2. Feedback Adaptive Control

There are several broad categories of feedback adaptive control (classification can vary):

 Dual Adaptive Controllers

 Optimal Dual Controllers

 Suboptimal Dual Controllers

 Non dual Adaptive Controllers

 Gain scheduling

 Model Reference Adaptive Controllers (MRACs)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 37 | P a g e

Fig.4.1 Model reference adaptive control

 Model Identification Adaptive Controllers (MIACs)

Fig.4.2 Model identification adaptive control (MIAC)

 Cautious Adaptive Controllers [use current SI to modify control law, allowing for

SI uncertainty]

 Certainty Equivalent Adaptive Controllers [take current SI to be the true system,

assume no uncertainty]

 Nonparametric Adaptive Controllers

 Parametric Adaptive Controllers

 Explicit Parameter Adaptive Controllers

 Implicit Parameter Adaptive Controllers

Some special topics in adaptive control can be introduced as well:

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 38 | P a g e

1. Adaptive Control Based on Discrete-Time Process Identification

2. Adaptive Control Based on the Model Reference Technique

3. Adaptive Control based on Continuous-Time Process Models

4. Adaptive Control of Multivariable Processes

5. Adaptive Control of Nonlinear Processes.

B. Strategies for adaptive control

i. Indirect adaptive control

 There are at least two general approaches to adaptive control and in the first one we

use online identification method to estimate the plant input-output mapping and a

―controller designer‖ module to subsequently specify the parameters of the controller.

Generally indirect adaptive controller can be taken as automating the mode-building and

control design process that we use for fixed controller.

 If the plant input-output mapping changes, the identifier will provide estimates of

these changes and the controller design will subsequently time the controller. It is

inherently assumed that we are certain that the estimated plant mapping is equivalent to the

actual one at all times (―this is called certainity equivalence principle.‖). Then if controller

designer can specify a controller for each set of plant parameter estimates, it will succeed

controlling the plant. The overall approach is called ―indirect adaptive control‖ since we

tune the controller indirectly by first estimating the plant parameters

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 39 | P a g e

Fig.4.3 Indirect Adaptive Control

 The structure used for the identifier model could be linear with adjustable coefficients.

Alternatively, it could be a neural or fuzzy system with tuneable parameters that enter in a

linear or non-linear fashion. Since the plant is assumed to be unknown, the non-linear mapping

it implements is unknown. To do so, gradient or least square methods are used to tune neural or

fuzzy systems for indirect adaptive control.

 Alternatively, optimization method such as bio-mimicry of an individual foraging animal

can be used.

ii. Direct adaptive control

Here ―adaptation mechanism‖ observes the signals from the control system and adapts the

parameters of the controller to maintain the performance even if there are changes in the plant.

Sometimes, in either the direct or indirect adaptive controllers, the desired performance is

characterised with a ―reference model,‖ and the controller then seeks to make the closed-loop

called ―model reference adaptive control‖ (MRAC).

Controller
parameter

s

Controller
designer

System
identification

Controller Plant

r(t) u(t) y(t)

plant

parameters

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 40 | P a g e

Fig.4.4 Direct adaptive control

 In neural control or adaptive fuzzy control, the controller is implemented with neural or

fuzzy system respectively. Normally, gradient or least squares methods are used to tune the

controller. Also, many heuristic direct adaptive control methods have been developed, for

instance based on reinforcement learning control.

 Alternatively, bio mimicry method based on foraging, in this case, can be used to optimize

and adjust controller parameter.

4.2 BACTERIAL FORAGING ALGORITHM BASED INDIRECT

ADAPTIVE CONTROL

Here, foraging algorithm has been used as the basis for adaptive control. In indirect adaptive

control one seeks to learn a plant model during the operation of a system. Learning is viewed

as foraging for good model information (i.e. information that is truthful and useful for meeting

goals). An identifier model is used which is a parameterized model of the plant, and consider

foraging algorithm searching in the parameter space that corresponds to finding nutrients.

Multiple identifier models and social foraging (i.e. multiple models are tuned simultaneously,

with foragers possibly sharing information to try to improve foraging success). The BFA

searches location in the parameter space, which corresponds to getting low identification errors

between the model and the plant. Then, according to the sum of the squared identifier errors, at

y(t) u(t) r(t)

Adaptation
mechanism

Controller Plant

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 41 | P a g e

each time instant the model that is the best and uses it in a standard certainty equivalence

approach to specify a controller is chosen. Each identifier model is an affine mapping to match

plant nonlinearities. The identifier model parameters represent the forager’s position. The cost

function for each forager, which defines the nutrient profile, is defined to be the sum of squares

of past identifier error values for each identifier model. For parameter adjustment, a foraging

algorithm is used that is based on E. coli chemotactic behaviour. Here a plant model is tuned in

order to specify the controller parameters. A set (population) of approximators is used to tune

and the optimization method used to tune the set is bacterial foraging optimization algorithm.

Fig.4.5 shows the adaptive control using BFA.

`

 Fig.4.5 Adaptive control using BFA

Class of plant used is represented by

 () () (4.1)

Plant

Reproduction

Elimination/

Dispersal

Multiple- Model

Identification

Strategy

r(t) u(t)

Control
 Parameters

y(t)

Pick

Best

model

Chemotactic

Adjustment

To identifier

Model

Parameters

1

2

$

Certainity

Equivalence

Control law

 Controller

Plant

parameters

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 42 | P a g e

 () are unknown smooth functions of the state while is a

nonlinear function of past values of . is requiring to be bounded away from zero.

 ≥ 1 is the delay between the input and output. For =1, ()

 () () () (4.2)

 () () () (4.3)

Functions () and () represent the unknown nonlinear dynamics of the

plant. It is these functions which require to be estimated so that a controller can be specified.

 and are defined to be as known parts of the plant dynamics, these can be set to

zero. () is assumed to satisfy

 () for some known for all .

Estimation of an unknown ideal controller: An ideal controller is given by

 ()

 (4.4)

This linearizes the dynamics of equation (15) such that . substituting

 in equation (15) we obtain so that tracking of reference input

have been achieved within d steps.Since () () are unknown, an estimator is

developed for these plant nonlinearities and used them to form an approximation to .

Using a ―Certainty equivalence controller‖, the control input can be defined as

 ̃()

 ̃()

 (4.5)

 ̃() and ̃() are estimates of () and respectively.

The certainty equivalence controller can be defined with the following estimates

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 43 | P a g e

 ̃() () (4.6)

 and ̃() () (4.7)

Error is not a linear function of the parameters.

 Also

 ̃ ,

 where ̃ is estimate of . A set of approximators for α and β where the ones are

denoted by

 (
) (

)

 for i=1,2,....,S.

 From a foraging perspective, is viewed as the location of the foragers in the

environment. In foraging method position of the forager is used to minimize the fitness

function . Let the estimate of the output and identification error be

 ̃ (
) (

) and ̃ for

i=1,2..., S. Individual (bacteria) at time k can be given by

 *

 + , i=1,2,..., S. (4.8)

Fitness function can be defined as

 () ()

 (̃)

 =((
) (

))

 (4.9)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 44 | P a g e

which measures the size of the estimation error for the estimate. It is required to minimize

 () .

Forager’s position in one dimension is given by and in the other dimension by so that

forager’s position is

 S is the population size of the bacteria.

Foraging strategy is based on E.coli chemotaxis, but without swarming, elimination-dispersal,

and reproduction. Here chemotactic hill-climbing strategy is used to adjust the parameters. At

each time step, one foraging step is used, that means either one tumble-tumble step. Foraging

occurs while the control system operates with foraging (searching) for parameters occurring at

each time step. For instance, if over one time step the cost did not decrease for an individual,

then there is a tumble, and by this, a random direction is generated which update the

parameters (location of the forager) in that direction. If, cost is improved from the last step,

then another step in the same direction taken last time is made. In such case, forager is on a run

in a good direction, down the cost function.

4.3 DYNAMICS OF LIQUID LEVEL SYSTEM

Design Problem: In this problem we will study the development of indirect adaptive

controllers for the liquid level process control problem. From the foraging perspective, we

view θ
i
 as the location of the i

th
 forager in its environment. In a foraging method, we will move

the position of the forager θ
i
so as to minimize J (θ

i
). The particular manner used to adjust the θ

i

(k-1) to find θ
i
(k) will depend on the choice of the foraging algorithm steps. In an indirect

adaptive control strategy, we view foraging as searching for good model information. If a

foraging strategy is used, we view θ
i

(k) as the forager who has found the best model

information. With foraging strategy, we could view the fixed- position members, ―information

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 45 | P a g e

centres‖, if foragers were endowed with communication capabilities. If such centres have good

model information they will tend to attract foragers.

Planning for a process control problem in this section we will develop a planning strategy ofr

every simple yet representative process control system and then we design and test a planning

strategy.

Level Control in Surge Tank: Consider the ―Surge tank‖, shown in figure that can be

modelled by

 ̅√

 ()

 ̅

 ()
 (4.10)

Where u(t) is the input flow (control input), which can be positive or negative (it can both pull

liquid out of the tank and put in it), h(t) is the liquid level (the output of the plant);

 ̅ is the cross sectional area of the tank and and ̅ > 0; g = 9.8 ;

 is a ―clogging factor‖ for a filter in pump actuator where if , there is some

clogging of filter and if c = 1, the filter is clean so there is no clogging ; and , parameter

is related to diameter of the output pipe. We think of all these plant parameters as being fixed

for a particular surge tank; however, we could consider other values for these parameters and

test the controller for these.

Fig. 4.6 Liquid level System

u(t)

h(t)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 46 | P a g e

Let r(t) be desired level of the liquid(reference i/p) and e(t) = r(t) – h(t) be the tracking error.

Assume the knowledge of reference trajectory and priori and assumes that r(t) ϵ [0.1, 8] and

that we will not have h(t) > 10, Assume that h(0) = 1.

To convert to a discrete time approach we use Euler’s approximations to the continuous

dynamics to obtain

h(k+1) = h(k) + T
 ̅√

 ̅

 ̅

 ̅
] (4.11)

where T = 0.1. We assume that the plant input saturates at ± 50 so that if the controller

generates on i/p ̅(k), then

 ̅

 ̅ ̅ (4.12)

 ̅

Also, to ensure that the liquid level never goes negative, we simulate our plant using

h(k+1) = max{0.001, h(k) + T
 ̅√

 ̅

 ̅

 ̅
]} (4.13)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 47 | P a g e

A. Simulation results and discussion on results

Fig.4.7 Liquid height vs. reference input

Fig. 4.8 Plant non-linearities α and β and their estimates

5 10 15 20 25 30 35 40 45 50
-50

-40

-30

-20

-10

0

10

20

30

40

50

L
iq

u
id

 h
e
ig

h
t,

 h

Liquid level h (solid) and reference input r

Time(sec)

0 10 20 30 40 50
-10

0

10

20

30
Plant nonlinearity  and its estimate (solid)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

Time(sec)

Plant nonlinearity  and its estimate (solid)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 48 | P a g e

Fig. 4.9 Cost of the best member of population

Fig. 4.10 Error between desired and actual height

 Our forager’s position in one dimension is given by θα and in the other dimension by θβ so

our i
th

 forager’s position is θ
i
= [θα

i
 θβ

i
]

T
, i=1,2,3,…,S . We choose S= 600 as the population

size of bacteria. Foraging strategy employed is based on e.coli chemotaxis, but without

swarming, elimination-dispersal, and reproduction. Hence, we only use the chemotactic hill-

climbing strategy to adjust the parameters. At each time step, we take one foraging step, which

for our foraging strategy means that we use either one tumble-tumble step or part of a ―run‖. In

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700
Cost for best member

Time(sec)

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4

6

8
error between desired and actual h

Time(sec)

e
rr

o
r

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 49 | P a g e

this way, the foraging occurs while the control system operates with foraging (searching) for

parameters occurring at each time step. For instance, if over one time step the cost did not

decrease for an individual, then there is a tumble, and to do this, we generate a random

direction and update the parameters in that direction. If, however the cost improved from the

last step, then another step is taken in the same direction, as taken in last step. In this case the

forager is on a ―run‖ in a good direction, down the cost function.

 The step size C (i,k) is set to be 0.05 for all bacteria for all times. The maximum number of

steps along a good direction is Ns = 4 and θ
i
α (1) = 2, θ

i
β (1) = 0.5, i=1, 2, 3… S. We use the

cost evaluation procedure with Js (θ
i
(k-1),N) with N=100, with chemotactic steps = 800.

 The performance of closed loop system is illustrated in fig.4.7 where we see that, after an

initial transient period that results in part due to the poor initialization of the estimators and the

controller’s start-up method. To further illustrate some properties of adaptive controller we plot

the cost of best individual in the population and the index i of the best individual in population

for every time step.

Firstly, note that early in simulation cost is zero due to how we start up the controller. Then we

start the controller at t=5 sec the cost jumps to a relatively high value, this represents that we

have a poor initialization for the population. After some time, however, the foraging strategy is

somewhat successful at adjusting the population members so that the estimation error decreases

and hence, the beet cost decreases. Note, however that cost does not always decrease over

time. It can also increase and one cause of this can be the change in the reference input.

4.4. DYNAMICS OF DC SERVOMOTOR

Design problem: In this problem we will study the development of indirect adaptive

controllers for the DC Servomotor. Here we intend to use foraging perspective to follow the

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 50 | P a g e

desired trajectory by dc servomotor by tuning the parameters and using the chemotaxis step of

BFO. Reproduction and elimination-dispersal are not used here.

A high performance drive system consists of a motor and a controller integrated to perform a

precise mechanical maneuverer. This requires the shaft speed and/or position of the motor to

clearly follow a specified trajectory regardless of unknown load variations and other parameter

uncertainties.

BFO is used to emulate the unknown nonlinear plant dynamics by presenting a suitable set of

input/output patterns generated by the plant. Once system dynamics have been identified using

a BFO conventional control techniques can be applied to achieve the desired objective

trajectory tracking.

DC Motor model

The DC motor dynamics are given by the following equations

va(t) = Raia(t) + La

 + eb(t) (4.14)

 eb(t) = Kbw(t) (4.15)

TM(t)= KT ia(t) (4.16)

 = J

 + Bw(t) +TL(t)+TF (4.17)

where

va(t) = applied a armature voltage (volts);

eb = back emf (volts);

ia(t) = armature current(amps);

 Ra = armature winding resistance (ohms);

 La = armature winding inductance (henrys);

W(t) = armature velocity of the motor rotor (rad/sec);

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 51 | P a g e

Fig. 4.11 DC Servomotor

TM = Torque developed by Motor in N-m

Kt = Torque constant in N-m/A

J = Moment of inertia of Motor in Kg-m2/ rad

B = Frictional Coefficient of motor N-m/ (rad/sec)

Kb = Back emf Constant in Volt / (rad/sec)

TL(t) = Disturbance Load torque(newton-m).

The load torque TL(t) can be expressed as

TL(t) = ψ(w) (4.18)

Where ψ(.) depends on the nature of the load.

For the most propeller driven system or fan type loads, the function ψ(.) takes the following

form

TL(t) = μψ
2
(t)[sgn w(t))]

Where μ is constant.

DC motor drive system can be expressed as single-input, single-output, system by combining

equations (4.4) and (4.8):

LaJ

 + (RaJ+LaB)

 + (RaB + KbKT)w(t) + La

 + Ra[TL(t) + TF] +

 KTva(t)=0 (4.19)

The discrete-time model is derived by replacing all continuous diffrentials with finite

diffrences.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 52 | P a g e

LaJ[

 + (RaJ + LaB)[

 + (RaB +KbKT)w(k) +

La[

 + RaTL(k) +RaTF + KTva(k) = 0 (4.20)

TL(k) = μw
2
(k)[sgn w(k)] (4.21)

TL(k-1) = μw
2
(k-1)[sgn w(k)] (4.22)

T = sampling period

w(k) = w(t=kT); k = 0,1,2,…

manipulating 4.11-4.13 yields

w(k+1)= K1w(k) + K2w(k-1) + K3[sgn w(k)] w
2
(k) + K4[sgn w(k)]w

2
(k-1) + K5va(k) +K6

J = 0.068 kg-m
2

B = 0.03475N-m(rad/sec)

Ra = 7.56Ω

La = 0.055H

KT = 3.475 N-m/amp

Kb = 3.475 volts/(rad/sec)

Μ = 0.0039 N-m/(rad/sec)
2

TF = 0.212 N=m

T = 40 msec= 0.04 sec

With these parameters, the constants K1, K2, K3, K4, K5 and K6 become

K1 = 0.34366

K2 = -0.1534069

K3 = -2.286928 x 10
-3

K4 = 3.5193358K5 x 10
-4

K5 = 0.2280595

K6 = -0.105184

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 53 | P a g e

A. Simulation results and discussion on results

Fig. 4.12 Trajectory of Servomotor vs. Reference trajectory

Fig. 4.13 Estimation of Non-linearities α and β of plant

0 10 20 30 40 50 60 70 80
-50

0

50

tr
aj

ec
to

ry
 o

f
se

rv
om

ot
or

,
w

trajectory of servomotor w (solid) and reference trajectory wr

10 20 30 40 50 60 70 80
-200

-100

0

100

200
servomotor input, u

Time instant k

0 10 20 30 40 50 60 70 80
-100

-50

0

50

100
Plant nonlinearity  and its estimate (solid)

0 10 20 30 40 50 60 70 80
-0.2

0

0.2

0.4

0.6

Time instant k

Plant nonlinearity  and its estimate (solid)

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 54 | P a g e

Fig. 4.14 Cost of best member w.r.t time

Fig. 4.15 Error between desired and actual output

Our forager’s position in one dimension is given by θα and in the other dimension by θβ so our

i
th

 forager’s position is θ
i
= [θα

i
 θβ

i
]

T
 , i=1,2,3,…,S. We choose S= 1000 as the population size

of bacteria. Foraging strategy employed is based on e.coli chemotaxis, but without swarming,

elimination-dispersal, and reproduction. Hence, we only use the chemotactic hill-climbing

strategy to adjust the parameters. At each time step, we take one foraging step, which for our

0 10 20 30 40 50 60 70 80
0

2000

4000

6000

8000

10000

12000
Cost for best member

Time instant k

0 10 20 30 40 50 60 70 80
-70

-60

-50

-40

-30

-20

-10

0

10

20
error between desired and actual w

Time instant k

e
rr

o
r

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 55 | P a g e

foraging strategy means that we use either one tumble-tumble step or part of a ―run‖. In this

way, the foraging occurs while the control system operates with foraging (searching) for

parameters occurring at each time step. For instance, if over one time step the cost did not

decrease for an individual, then there is a tumble, and to do this, we generate a random

direction and update the parameters in that direction. If, however the cost improved from the

last step, then another step is taken in the same direction, as taken in last step. In this case the

forager is on a ―run‖ in a good direction, down the cost function.

The step size C (i, k) is set to be 0.05 for all bacteria for all times. The maximum

number of steps along a good direction is Ns = 4 and θ
i
α (1) = 2.1, θ

i
β (1) = 0.5, i=1, 2, 3,…, S.

We use the cost evaluation procedure with Js (θ
i
(k-1), N) with N=100, with chemotactic steps

= 800.

 The performance of closed loop system is illustrated in fig. 4.12 where we see that,

after an initial transient period that results in part due to the poor initialization of the estimators

and the controller’s start-up method. To further illustrate some properties of adaptive controller

we plot the cost of best individual in the population and the index i of the best individual in

population for every time step.

 Firstly, note that early in simulation cost is zero due to how we start up the controller.

Then we start the controller at t = 10 sec the cost jumps to a relatively high value, this

represents that we have a poor initialization for the population. After some time, however, the

foraging strategy is somewhat successful at adjusting the population members so that the

estimation error decreases and hence, the beet cost decreases. Note, however that cost does not

always decrease over time. It can also increase and one cause of this can be the change in the

reference input.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 56 | P a g e

CHAPTER 5

CONCLUSION

 Study of evolutionary algorithm to bio-inspired algorithms has shown how optimization

has become an important area of research in every field of engineering. BFA, PSO and FFA

have been studied in detail along with their application areas, through research papers,

published in several streams of soft computing, controls and image processing etc.

Analysis of Algorithms has thrown light on several aspects of optimization and has also

given the direction to carry the work ahead. It has been observed that the effectiveness of an

algorithm against another algorithm cannot be measured by the number of problems that it

solves better. The ``no free lunch'' theorem shows that, if we compare two searching algorithms

with all possible functions, the performance of any two algorithms will be, on average, the

same. As a result of attempting to design a perfect test set where all the functions are present in

order to determine whether an algorithm is better than another for every function, is a fruitless

task.

 But depending upon the priority and constraints as imposed on the problem we can

find the best algorithm in terms of the parameters that are important for any specified problem.

Thus the same has been observed with respect to three parameters, elapsed time, mean and

standard deviation for the three algorithms on four benchmark problems. The best as per these

parameters was found to be particle swarm optimization and even bacterial foraging algorithm

had equivalent performance

BFA has been taken further to deal with indirect adaptive control problems, where in

only one basic step of the algorithm (Chemotaxis) to choose the best member among

controllers is used. Non-linearities of plant have been estimated and trajectory followed by the

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 57 | P a g e

system is also observed. Results obtained are satisfactory and can be further improved by the

changing the parameters of system and algorithms as well (such as chemotactic steps, step size,

population etc.) Other techniques can also be used to do the same and depending upon the

objective function modifications can be made in the algorithms as performance of any

technique is objective dependent. There are various parameters that define the aptness of the

algorithm so it depends on the requirements of the objective function and on the constraints

imposed.

FUTURE SCOPE AND AREA OF RESEARCH: Various other control applications could also

be implemented using these algorithms. Depending upon the application Algorithm can be

modified and its parameters could be tuned to have better results. Algorithm like Harmony

search, Simulated Annealing, Bee Algorithm and Firefly Algorithm can be further studied and

applied to these applications.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 58 | P a g e

REFERENCES

[1] J. Kennedy and R. Eberhart, ―Particle swarm optimization,‖ Proc.of IEEE Int. Conf.

Neural Networks, vol. 4, pp. 1942–1948, 1995.

[2] R. Eberhart and J. Kennedy, ―A new optimizer using particle swarm theory.‖ Proc.of

6th Int. Symp. Micro Machine and Human Science (MHS ’95), pp. 39–43, 1995.

[3] B. D. Hughes, Random Walks and Random Environments. London, U.K.: Oxford Univ.

Press, 1996.

[4] J. R. Koza, F. H Bennett 111, D. Andre, and M. A. Keane, ―Automated WYWIWYG

design of both the topology and component values of electrical circuits using genetic

programming.‖ Proc. of the First Annual Conference at Cambridge, MA, pp. 123-131,

1996. The MIT Press.

[5] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, and A. Stauffer. ―A

phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems.‖

Trans of IEEE on Evolutionary Computation, 1997.

[6] R. W. Morrison and K. A. De Jong, ―A test problem generator for non-stationary

environments‖, Proc. of IEEE Congress on Evolutionary Computation, IEEE Press, pp.

2047–2053, 1999.

[7] WANG Ling, ―Intelligent Optimization Algorithms with Applications.‖ Beijing:

Tsinghua University Press, 2001.

[8] K. M. Passino, ―Bio mimicry of bacterial foraging for distributed optimization and

control,‖ IEEE Control Syst., vol. 22, no. 3, pp. 52–67, Jun. 2002.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 59 | P a g e

[9] Daniel W. Boeringer and Douglas H. Werner, ―Particle Swarm Optimization versus

Genetic Algorithms for Phased Array Synthesis.‖ Trans. Of IEEE on Antennas and

Propagation, vol. 52, no. 3, pp. 771-779, Mar. 2004.

[10] F. Van den Bergh and A.P. Engelbrecht , ―A Cooperative Approach to Particle Swarm

Optimization‖ , IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.

225—239 , June 2004.

[11] PY. Yin, ―A discrete particle swarm algorithm for optimal polygonal approximation of

digital curves,‖ J. Vis. Commun. Image R. vol. 15, pp. 241-260, 2004.

[12] J. J. Liang and A. K. Qin, ―Comprehensive Learning Particle Swarm Optimizer for

Global Optimization of Multimodal Functions.‖ Trans of IEEE on Evolutionary

Computation, vol. 10, no. 3, Jun., 2006.

[13] W. J. Tang and Q. H. Wu, ―Bacterial Foraging Algorithm For Dynamic

Environments.‖ Proc. of IEEE Congress on Evolutionary Computation, Sheraton

Vancouver Wall Centre Hotel, Vancouver, BC, Canada, pp. 1324-1330, July 16-21,

2006.

[14] T.K. Das and G.K. Venayagamoorthy, ―Bio- inspired Algorithms for the design of

Multiple Optimal Power system stabilizer: SPPSO and BFA,‖ IEEE conf. on Industry

Applications, pp. 635-641, 2006.

[15] W. J. Tan and Q. H. Wu, ―A Bacterial Swarming Algorithm For Global Optimization.‖

Proc. of IEEE Congress on Evolutionary Computation, pp. 1207-1212, 2007.

[16] L. Dos Santos Coelho, C. Da Costa Silveria, C.A. Sierakowski and P. Alotto,

―Improved Bacterial Foraging Strategy Applied to TEAM Workshop Benchmark

Problem.‖ IEEE Trans. On Magnetics, Vol. 46, no. 8, pp. 2903-2906, Aug. 2008.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 60 | P a g e

[17] A. Abraham, A. Biswas, S. D and Swagatam Das, ―Analysis of Reproduction Operator

in Bacterial Foraging Optimization Algorithm.‖ Proc. of IEEE Congress on

Evolutionary Computation, pp. 1476-1483, 2008.

[18] Ying Chu, Hua Mi, Huilian Liao, Zhen Ji, and Q. H. Wu, ―A Fast Bacterial Swarming

Algorithm For High-dimensional Function Optimization.‖ Proc. of IEEE Congress on

evolutionary computation, pp. 3135-3140, 2008.

[19] Janyl Jumadinova and Prithviraj Dasgupta, ―Firefly-inspired Synchronization for

Improved Dynamic Pricing in Online Markets.‖ Proc of Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, 2008

[20] Swagatam Das, Ajith Abraham, and Amit Konar, ―Particle Swarm Optimization and

Differential Evolution Algorithms Technical Analysis, Applications and Hybridization

Perspectives‖, Studies in Computational Intelligence, (SCI) 116, 1-38 2008.

[21] Wang Ling, Liu Bo, ―Particle Swarm Optimization and Scheduling Algorithms‖,

Beijing: Tsinghua Publishing Company, ch.2, 2008.

[22] W.J. Tang, M.S. Li, Q.H. Wu and J.R. Saunders, ―Bacterial Foraging Algorithm for

Optimal Power Flow in Dynamic Environments‖ , IEEE Trans. on Circuits and

Systems I, vol.55, pp. 2433-2442, Sep. 2008.

[23] S. Das, S. Dasgupta, A. Biswas and A. Abraham, ―On Stability of the Chemotactic

Dynamics in Bacterial-Foraging Optimization Algorithm.‖ IEEE Trans. on Systems,

Man, and cybernetics, part: A: Systems and Humans, vol. 39, no. 3, pp. 670-679, May

2009.

[24] LI Zhi-Jie, Liu Xiang-Dong, Duan Xiao-Dong, Wang Cuhn-Rui, ―An Improved

Particle Swarm Algorithm for Search Optimization.‖ Proc. of IEEE Global Congress

on Intelligent System, pp.154-158, 2009.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 61 | P a g e

[25] Lin Cui, Hongpeng Wang, ―Reach back Firefly Synchronicity with Late Sensitivity

Window in Wireless Sensor Networks.‖ Proc. of IEEE Ninth International Conference

on Hybrid Intelligent Systems, pp. 451-456, 2009.

[26] Yang, X. S, ―Firefly algorithms for multimodal optimization. Stochastic Algorithms

Foundation and Applications.‖ SAGA 2009, Lecture Notes in Computer Sciences, 5792,

pp.169-178, 2009.

[27] Jiang, T.W, ―The application of image thresholding and vector quantization using

honey bee mating optimization.‖ Master thesis of National Ping Tung Institute of

Commerce, 2009.

[28] S. Das, S. Dasgupta, A. Biswas, A. Abraham and A. Konar, ―On Stability of the

Chemotactic Dynamics in Bacterial-Foraging Optimization Algorithm‖, IEEE Trans.

on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39, pp. 670-679,

May. 2009.

[29] Anders Lyhne Christensen, Rehan O’Grady, and Marco Dorigo, ―From Fireflies to

Fault-Tolerant Swarms of Robots.” Trans. of IEEE on Evolutionary Computation, Vol.

13, No. 4, Aug. 2009.

[30] Ming-Huwi Horng and Ting-Wei Jiang, ―Multilevel Image Thresholding Selection

based on the Firefly Algorithm.” Symposia and Workshops on Ubiquitous, Autonomic

and Trusted Computing, pp. 58-63, 2010.

[31] Juan Luis Fernandez-Martınez and Esperanza Garc´ıa-Gonzalo, ―Stochastic Stability

Analysis of the Linear Continuous and Discrete PSO Models‖, IEEE Trans. on

Evolutionary Computation, 2010.

Vipul Singhal, Control and Instrumentation, Electrical Dept.
Delhi College of Engg. 62 | P a g e

[32] I.A. Farhat and M.E. El-Hawary, ―Dynamic adaptive bacterial foraging algorithm for

optimum economic dispatch with valve-point effects and wind power‖, IET Trans. on

Generation, Transmission & Distribution, vol.4, pp. 989-999, Sep. 2010.

PAPER PUBLISHED:

1. National Conference on Converging Technologies beyond 2020(CTB-2020), April 6,7 2011,

Organized by: University Institute of Engineering and Technology, Kurukshetra University,

Kurukshetra

2. Paper communicated to IEEE transactions on evolutionary computation.

