ANALYSIS OF METAHEURISTIC ALGORITHMS ON NONLINEAR SYSTEMS

MAJOR THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR AWARD OF THE DEGREE OF

MASTERS OF ENGINEERING

IN CONTROL AND INSTRUMENTATION

SUBMITTED BY

VIPUL SINGHAL

(Roll No. 15/C&I/09)

University Roll No. 9030

Under the Esteemed Guidance

of

Mr BHARAT BHUSHAN

Associate Professor

Department of Electrical Engineering Delhi College of Engineering University of Delhi 2011 This is to certify that major thesis titled "ANALYSIS OF METAHEURISTIC ALGORITHMS ON NONLINEAR SYSTEMS" submitted by Ms. Vipul Singhal in partial fulfilment for the degree of Master of Engineering (Control and Instrumentation) of Electrical Engineering Department, Delhi College of Engineering, Delhi, is a bonafide record of work, carried out under my guidance and supervision.

Mr. BHARAT BHUSHAN

Associate Professor

Electrical Engineering Department Delhi College of Engineering Delhi-110042 I am greatly indebted to the guidance and the help I have received from numerous people during the course of my project. I would like to extend my sincere gratitude and sincere thanks to my respected guide **Mr. Bharat Bhushan**, under whose guidance I am able to successfully complete my work.

I am also thankful to **Prof. Narender Kumar,** Head of Electrical Engineering Department, for providing valuable comments and supporting my efforts.

My special Thanks to my friends and my parents for their timely help in form of love and encouragement

Date:

Ms. Vipul Singhal ME(C&I) University roll no: 9030

ABSTRACT

The process of optimization is one of the most challenging problems of engineering. Engineering problems can be defined as search for one near optimal description among many possibilities, under real time constraints. This requires several strategies and methodologies therefore lot of research has been done and is still going on to have desired outcomes. Search techniques such as Bacterial foraging, Particle swarm and Firefly based optimization algorithms are now among the latest research topics. Here this work throws light on these bio-inspired evolutionary algorithms that are used to optimize the objective function, under given constraints. Several meta-heuristic algorithms have been analysed and are later implemented on the benchmark problems. The performance of each algorithm is judged on the basis of three parameters elapsed time, mean and standard deviation. Bacterial Foraging Algorithm is further used in non-linear control applications. These Applications use the concept of indirect adaptive control. Nonlinear systems analysed are Liquid level system and DC servomotor.

Both the nonlinear systems track the reference trajectory and the error is found to be zero at steady state. The simulation results have been obtained using MATLAB.

TABLE OF CONTENTS

Certificat	2	ii
Acknowle	dgement	iii
Abstract		iv
Contents		v
List of fig	ures	vii
List of tables'		ix
Chapter 1	Introduction	1-4
Chapter 2	Review of Meta-heuristic algorithms	5-21
2.1 E	Bacterial foraging Algorithm	
	i. Pseudo code	
2.2 F	ii. Advancements and Application of PSO Particle swarm Algorithm	
	i. Pseudo code	
	ii. Advancements and Application of BFA	
2.3 F	Firefly Algorithm	
	i. Pseudo code	
	ii. Advancements and Applications of FFA	
Chapter 3	Comparative Analysis of BFO, PSO and F Problems	FA on Benchmark 22-35
3.1	Benchmark Problems	
	A. Spherical function	
	B. Rosenbrock's function	
	C. Michaelwicz's function	
	D. Six hump camel back function	
3.2	Simulation results of BFO, PSO and FFA on Benchm	nark Problems
3.3	Discussion on Results	

3.4 Conclusion

Chapter 4 Adaptive Control using Bacterial foraging algorithm 36-55

- 4.1 Adaptive Control
 - A. Classification of Adaptive Control
 - B. Strategies of Adaptive Control.
 - i. Indirect adaptive Control.
 - ii. Direct Adaptive Control.
- 4.2 Bacterial Foraging Algorithm based indirect adaptive control
- 4.3 Dynamics of Liquid level controlA. Simulation Results and discussion on results
- 4.4 Dynamics of DC Servomotor

A. Simulation Results and discussion on results

Chapter 5 CONCLUSIONS

REFERENCES

56-57

LIST OF FIGURES

Fig.2.1 Swim and tumble of a bacterium	6
Fig.2.2 Search strategies for foraging bacteria	7
Fig.2.3 Structure of APPSO network system	17
Fig.3.1 Sphere function	24
Fig.3.2 Rosenbrock's function	25
Fig.3.3 Michaelwicz's function	25
Fig.3.4 Six hump camel back function	26
Fig.3.5 Initial and final positions of particles on Spherical function	27
Fig.3.6 Initial and final positions of fireflies on Spherical function	27
Fig.3.7 Iinitial and final positions of bacteria on Spherical function	27
Fig.3.8 Initial and final positions of particles on Rosenbrock's function	28
Fig.3.9 Initial and final positions of fireflies on Rosenbrock's function	28
Fig.3.10 Initial and final positions of bacteria on Rosenbrock's function	29
Fig.3.11 Initial and final positions of particles on Michaelwicz's function	29
Fig.3.12 Initial and final positions of fireflies on Michaelwicz's function	30
Fig.3.13 Initial and final positions of bacteria on Michaelwicz's function	30
Fig.3.14 Initial and final positions of particles on Six hum camel back function	31
Fig.3.15 Initial and final positions of fireflies on Six hum camel back function	31
Fig.3.16 Initial and final positions of bacteria on Six hum camel back function	31
Fig. 4.1 Model reference adaptive control	37
Fig. 4.2 Model identification adaptive control (MIAC)	37
Fig. 4.3 Indirect adaptive control	39
Fig. 4.4 Direct adaptive control	40
Fig.4.5 Adaptive control using BFA	41
Fig.4.6 Dynamics Liquid level system	45
Fig.4.7 Liquid height vs. reference input	47
Fig.4.8 Plant non-linarites α and β and their estimates	47
Fig.4.9 Cost of the best member of population	48
Fig.4.10 Error between desired and actual height	48
Fig.4.11 DC servomotor	51

Fig.4.12 Trajectory of Servomotor vs. Reference trajectory	53
Fig.4.13 Estimation of non-linarites α and β of plant	53
Fig.4.14 Cost of best member w.r.t time	54
Fig.4.15 Error between Desired and Actual Output	54

LIST OF TABLES

Table 3.1 Performance results of algorithms on Sphere function in terms of elapsed time, mean		
and standard deviation		
Table 3.2: Performance of algorithms on Rosenbrock's function in terms of elapsed time, mean		
and standard deviation		
Table 3.3: Performance results of algorithms on Michaelwicz's function in terms of elapsed		
time, mean and standard deviation		
Table:3.4 Performance results of Algorithms on Six hump camel back function in terms of		
elapsed time, mean and standard deviation		