
- 1 - 

 

 

CHAPTER 1 

 

INTRODUCTION  

 

 

 

 

 

 



- 2 - 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

DDOS attacks first came to public attention in the first quarter of 2000 when a number of 

prominent US web sites were attacked. In 2001 the first version of the Code Red worm was 

designed so that hosts compromised by the worm would perform a denial of service attack on 

the White House in USA. More recently, the Slapper worm, which targeted Linux machines in 

September 2002, was designed to create a massive denial of service network of infected 

machines controllable by the virus writer. 

  Given the wide availability of DDOS tools there is a significant risk that, if not 

properly protected, a large number of machines could be used to mount a DDOS attack. Too 

many machines have not been properly patched or protected and are exploitable as ‘zombies’. 

They are also vulnerable to the attentions of ‘script-kiddies’, whose aim is to infect as many 

machines as possible. The threat of DDOS attacks occurring however will then depend on the 

intentions of the attacker controlling the DDOS network. 

  To cite a few cases, on February 7,2000 the DDOS attack led to shutdown of 

major commercial websites like Amazon, buy.com, CNN, eBay, Yahoo etc. just at one go. On 

July 20, 2004 Russian and British police arrested an extortion group in St Petersburg for 

carrying out DOS attack for money for extortion. In the US, where DOS attacks is most 

common, the government has made DOS attack a serious federal crime under the National 

Information Infrastructure protection Act of 1996 with penalties that include years of 

imprisonment and many other countries are thinking of adopting similar Laws. Though the 

goal of this attack is not to take control of the computer like other virus attacks rather it is 

constraining a legitimate user from accessing a resource. DOS attacks get very little respect 

from the Hackers community because these attacks are relatively easier to implement but they 

can be highly effective. Damage due to DOS to organizations is very large, second only to 

damage due to theft of propriety information. Therefore it is currently the most expensive 

computer crime for victim organizations. 

 



- 3 - 

 

 
 

Figure 1.1: Report Indicating Loss Due to Computer Crimes [21] 

 

1.2 Motivation 

 

Network security breaches have become a major threat to business institutions providing online 

services and in the end costs in the tune of billions of dollars every year. As per statistical 

details by CERT, the rates of network attacks have gone up from a mere 171 vulnerabilities in 

1995 to 7236 in 2007 and the attack reached a staggering level of 4110 in the first half of 2008. 

The list might not represent the actual no. of breaches as most of them go unreported. Denial-

of-Service attacks are among the various forms of attacks with possibilities of highest level of 

harm in simplest possible form. This “Denial of Service” could impact the network in 

following forms. 

 

• Occupying the already scarce resources of network further limiting its availability for 

legitimate users. 

• Damaging the network configuration through overloading resulting malfunctioning of various 

software and hardware components of the network. 

• To systematically restrict the access of a particular individual to a service. 

• To interrupt a specific service or the system that provides that service. 

 



- 4 - 

 

Hence the main motive of all such attacks is to obstruct the functioning of a service provider as 

a potential competitor in online business or preventing an individual from getting the benefits 

of a given service. 

The design of the internet makes it more vulnerable and hence a heaven for DDOS attackers. 

Hence the complex part of this network falls at the two ends with one being the server and the 

other being the client. So, the misbehaviour at one end could easily affect the other end as the 

intermediate entities would do almost nothing to protect them from further damage. Tools like 

firewall can protect the victim but still it has to respond to be requests that are being sent from 

various units that include both legitimate as well as attacker and here DDOS attackers make 

their impact as this form of attack relies on intermediate component of the internet and hence 

easily impact the internet. As the significant change in the performance of the net as a whole. 

 
Figure 1.2: Illustration of DDOS attack scenario [22] 

 
This report concentrates on the fundamental understanding of router throttling as a mechanism 

against DDOS attacks. Further advancement has been made over control-theoretic model that 

makes it useful for better understanding of the system behaviour under the medley of limits as 

well as operating conditions. The implementation of an adaptive throttle algorithm that can 

enhance the security features of the server as well as protect it from further resource overload 

and makes it free enough for further requests from legitimate users.  

        



- 5 - 

 

1.3 Attack Network 

 

Many recent DOS attacks (also called DDOS attacks) were launched from distributed attacking 

hosts. A DDOS attack is launched in two phases. First, an attacker builds an attack network 

which is distributed and consists of thousands of compromised computers (called zombies, 

bots, or attacking hosts). Then, the attacking host flood a tremendous volume of traffic towards 

victims either under the command of the attacker or automatically. To build an attack network, 

the attacker looks for computers that are poorly secured, such as those not having been 

properly patched. In general, a vulnerable host can be compromised via two types of 

approaches. One is to entice users to run malicious programs, such as a virus, a spy ware or a 

Trojan horse carried in malicious emails, files, or web pages. The other approach is via 

automated malicious programs, such as worms that can automatically scan vulnerable remote 

computers. The vulnerability in these computers is then exploited to allow the attacker to break 

into and install DOS attacking programs that further scan other hosts, install backdoors and 

flood packets. The attacker is thus called the master of these compromised computers 

(zombies). Some DOS programs have the ability to register the compromised computers as a 

member in the attack network controlled by the attacker. In addition, the newly compromised 

computers will automatically repeat the scanning and exploiting process to look for other 

vulnerable computers. Because of self-propagation, a large attack network can quickly be built 

to include hundreds or thousands of computers. 

 

 

 

 

Figure 1.3: Attack Network (BotNet) [23] 



- 6 - 

 

BotNet is an example of attack networks (depicted in Figure1.3) in which an attacker controls a 

large number of zombies. In the attack network, zombies are called hosts. They can 

communicate with the attacker and synchronize their actions via covert channels. My Doom 

virus provides another example of building such a DOS attack network different from BotNets. 

The attack network was not solely built through technological vulnerabilities. The attacking 

program in compromised computers was designed to automatically and simultaneously flood 

towards www.sco.com on February 1, 2004 and www.microsoft .com on February 3, 2004.  

 

1.4 Attack Scenario 

 

Figure 1.4: Overview of attack scenario [24] 

 

A DDOS is a variant of the DOS attack, except that it involves the use of several attacking 

computers. In other words, in a DOS attack there is a single stream of attack traffic but in a 

DDOS attack there are multiple streams of attack traffic. Sometimes a single attacking in 

computer (i.e sync-flood, Land attack), these attacks are commonly referred to as DOS attacks. 

Although, the goal of the attack is primarily to consume resources of a victim, the attack will 

always be more effective with the use of multiple attacking computers. In this case, these 

attacks are referred to as DOS attacks. The primary goal of DOS attack is to overwhelm the 

victim server and its secondary goal is to consume bandwidth of the network surrounding the 

victim. A DDOS attack typically consists of an attacker (or multiple attackers), several handler 

computers and many attack zombies. During the DDOS attack setup phase, the attacker(s) will 

relentlessly probe many computers looking for various weaknesses in their systems and then 

make attempts to infiltrate them and convert them to handlers or zombies. When an attacker 



- 7 - 

 

gains control of the computer, it has the ability to communicate back with itself and other 

zombies. Recent attacks have shown that attackers are becoming more sophisticated recruiting 

zombies and how they are commanded following their conversion. It is conceivable that an 

attacker could recruit zombies over a period of several years and then when they have 

accumulated a large number begin flooding packets in the direction of the victim. 

  When the attack begins, the attackers notify the handlers to invoke the zombies 

to begin flooding useless data towards the victim. It should be noted that the traffic is not 

always useless data; an attacker may disguise their traffic to resemble legitimate traffic to avoid 

any filtering mechanism that is designed to detect attack packets. In Figure1.4 there is an image 

of typical DDOS attack scenario. The victim is the end host or the routers that are adjacent to 

the end host. Depending on the intensity of the attack, the end host may become overwhelmed 

with incoming traffic or the adjacent routers will become overwhelmed with traffic. 

Nonetheless, the victim in the attack is the server in addition to the countless number of users 

that are no longer able to communicate with the server due to the severe congestion. Due to the 

nature of the attack, this attack is commonly referred to as a flooding attack. 

 

1.5 DDOS Attack Architecture 

 
Fig 1.5: DDOS Agent-Handler Attack Model [25] 

 

The Agent-Handler model of a DDOS attack consists of clients, handlers and agents (Figure 

1.5). The client is where the attacker communicates with the rest of the DDOS attack system. 

The handlers are software packages located throughout the Internet that the attacker’s client 

uses to communicate with the agents. The attacker communicates with any number of handlers 



- 8 - 

 

to identify which agents are up and running, when to schedule attacks or when to upgrade 

agents. The owners and users of the agent systems typically have no knowledge that their 

system has been compromised and will be taking part in a DDOS attack. Depending on how 

the attacker configures the DDOS attack networks, agents can be instructed to communicate 

with a single handler or multiple handlers.  

 

 

 

 

 

 

 

 



- 9 - 

 

 

CHAPTER 2 

 

DISTRIBUTED DENIAL OF SERVICE – 

AN INTRODUCTION 

 

 

 

 

 

 



- 10 - 

 

2.1   Denial of Service Attack: An Overview 
In a denial-of-service (DOS) attack, an attacker attempts to prevent legitimate users from 

accessing information or services. By targeting your computer and its network connection or 

the computers and network of the sites you are trying to use. An attacker may also be able to 

prevent you from accessing email, web sites, online accounts (banking etc.) or other services 

that rely on the affected computer. 

 The most common and obvious type of DOS attack occurs when an attacker “floods” a 

network with information. The server can only process a certain number of requests at once, so 

if an attacker overloads the server with requests, it can’t process your request. This is a “denial-

of-service” because you can’t access that site. The Denial of Service attack is one of the major 

internet security threats. The other threat includes eavesdropping (snooping/sniffing), inserting 

messages, impersonation, and hijacking. The denial of service attack is considered to as 

threatening as other security attacks. 

 As the primary objective of DOS attack is “non availability of resources” to the 

legitimate user, it can be termed as an event in which a user or organization is deprived of the 

services of a resource they would normally expect to have. Typically, the loss of service is the 

inability of a particular network service, such as e-mail, to be available or the temporary loss of 

all network connectivity and services. Denial of Service Attack can also destroy programming 

and files in a computer system. 

 

2.2 Distributed denial-of-service (DDOS) attack: a DOS variant   
In a distributed denial-of-service (DDOS) attack, an attacker may use your computer to attack 

another computer. By taking advantage of security vulnerabilities or weaknesses, an attacker 

could take control of your computer. He or she could then force your computer to send huge 

amounts of data to a website or send spam to particular email address. The attack is 

“distributed” because the attacker is using multiple computers, including yours, to launch the 

denial-of-service attack. 

 

 

 

 



- 11 - 

 

 

 

Figure 2.1: Packets drop under DDOS attack [26] 

Zombies are called bots and the attack network is called botnet in hacker’s community. The 

zombie machines under control of handlers as shown in Fig 2.1 send attack packets which 

converge at victim or its network to exhaust either its communication or computational 

resources. DDOS is basically, a resource overloading problem. The resource can be bandwidth, 

memory, CPU cycles, file descriptors and buffers etc. The attackers bombard scarce resource 

either by flood of packets or a single logic packet which can activate a series of processes to 

exhaust the limited resource. Here in the Fig 2.1 packets drop due to congested access link in 

victim network and buffer overflow at victim due to large number of requests are depicted. 

 A denial of service, DOS attack is characterized by an explicit attempt by attackers to 

prevent legitimate users of a service from using that service. This service can be either a 

specific destination e.g. a host or the medium that connects the host to other hosts e.g. a 

network. It is an active threat in the sense that an attacker has to actively create these requests 

in contrast to e.g. traffic analysis and release of message contents. A distributed denial of 

service attack often abbreviated DDOS attack is a denial of service attack. Which instead of 

using one host as the base of attack uses multiple hosts, hence the name distributed. A DDOS 

or DOS attack differs from an attempt to break into a computer, this is often called a crack or 

often also falsely referred to as a hack, in several ways some of the most prevalent are: 



- 12 - 

 

 A DDOS or DOS attack doesn’t break into the computer attacked; it simply floods the 

target with so many requests to the service being attacked that it can’t handle the legitimate 

requests coming from legitimate users. There is no break in done during the actual attack but in 

the acquiring of a zombies a break in is needed. 

 A DDOS or DOS attack doesn’t itself provide an attacker with information stored on 

the target system; it can of course be used as a part of an attack chain incidents leading to that 

global but is in itself not providing such information. 

This is a two phase attack, namely 

• Preparation phase 

• Attack phase 

In the preparation phase, an attack network is established by infecting poorly secured 

computers with a DOS agent, such as a Trojan horse. Highly vulnerable computers are those 

with out-of-date or non-existent antivirus software. They are termed as Zombies. In the second 

phase the intermediate computers are used to carry out the attack by instructing them to flood 

garbage data to the target. Zombies are generally unaware that are carrying on the attack on 

behalf of the attacker. 

 
Figure 2.2: DDOS Attack diagram [27] 

 

2.3 Characteristics of Distributed Denial of Service Attacks 

A denial of service attack is characterized by an explicit attempt by an attacker to prevent 

legitimate users of a service from using the desired resources. Examples of denial of service 

attack include: 

• Attempts to “flood” a network, thereby preventing legitimate network traffic. 



- 13 - 

 

• Attempts to disrupt connections between two machines, thereby preventing access to a service. 

• Attempts to prevent a particular individual from accessing a service. 

A distributed denial of service attack is composed of four elements, as shown in Fig 7. First, it 

involves a victim i.e. the target host that has been chosen to receive the brunt of the attack. 

Second, it involves the presence of the attack daemon agents. These are agent programs that 

actually conduct the attack on target victim. The third component of a distributed denial of 

service attack is the control master program. Its task is to coordinate the attack. Finally, there is 

the real attacker, the mastermind behind the attack. By using a control master program, the real 

attacker can stay behind the scenes of the attack. The following steps take place during a 

distributed attack: 

 

1. The real attacker sends an ‘execute” message to the control master program. 

2. The Control master program receives the “execute” message and propagates the Command to 

the attack daemons under its control. 

3. Upon receiving the attack command, the attack daemons begin the attack on the Victim. 

 

2.4 Types of Attacks 

The ultimate motive of a DDOS attack is to incapacitate a system’s ability to process requests 

for its legitimate users. The various forms of attack are as follows: 

 

2.4.1 Resource Starvation 

Its aim is to disrupt of physical network components such as a resource on a particular 

machine. The resource can be memory or CPU cycles etc. For example: 

• Starting some infinite loop. 

• Starting some process which consumes the CPU cycles completely. 

 

2.4.2 Bandwidth Consumption 

It involves flooding traffic for consumption of computational resources such as bandwidth and 

disk space. Its primary objective is to block all access to a network thereby preventing any 

relevant information to flow across the network. For example:  

• Websites may go down because an attacker is creating a large amount of requests to an HTTP 

server. 



- 14 - 

 

• A mail server (SMTP/POP etc) can fail if its “mail bombed”. This is the act of sending 

hundreds or thousands of bogus emails in a very short amount of time. 

 

2.4.3 Programming Flaws 

There exist some programming flaws which lead to exceptional conditions which cannot be 

handled by Operating Systems, resulting in failure of application. For example: 

• A very long data input 

• Unparseable data input 

 

2.4.4 Destruction of Configuration Information 

An attacker destroys or alerts configuration information, which prevents the victim from using 

the network. For example: 

• Changing routing tables or DNS catches. 

 

2.5 Various modes of Attack 

There are two categories of attacks possible in DOS: 

• Direct Attack 

• Indirect Attack 

 

2.5.1 Direct Attack 

In the Direct attack the attacker attacks the victim directly without hiding his identity. 

The various forms of direct attacks are: 

 

2.5.1.1 Land Attack 

In this attack IP packets with same source and destination address are used, which causes the 

machine enters into the loop, thereby consuming CPU cycles. 

 

 

 

 

 

 

                                               Figure 2.3 Land Attack [28]  



- 15 - 

 

2.5.1.2 Teardrop Attack 

Teardrop is a program that sends IP fragments to a machine connected to the internet or a 

network. Teardrop exploits the overlapping IP fragments bug present in Windows 95, 

Windows NT, and Windows 3.1 machines. The bug causes the TCP/IP fragmentation re-

assembly the code to improperly handle overlapping IP fragments. This attack has not shown 

any significant damage to system and a simple reboot may be a remedy. The Teardrop Attack 

uses IP’s packet fragmentation algorithm to send corrupted packets to the victim machine. This 

confuses the victim machine and may hang it. 

 

 

Figure 2.4 Teardrop Attack [29] 

 

2.5.1.3 Ping of Death 

This attack causes ICMP ping messages longer than TCP/IP specification of 65,536 octets to 

crash or freeze the system. This was a major cause of concern in early versions of various 

operating systems which would react in an unpredictable fashion when receiving these 

oversized IP packets. 

The Ping of Death attacks relies on a bug in the Berkley TCP/IP stack which also existed on 

most systems which copied the Berkley network code. The ping of death was simply sending 

ping packets larger than 65,535 bytes to the victim. This denial of service attack was as simple 

as:  ping -1 86600 victim.org 

    

 



- 16 - 

 

 

Figure 2.5: Ping of Death Attack [30] 

  

2.5.1.4 Flood Attack 

The earliest form of denial of service attack was the flood attack. The attacker simply sends 

more traffic than the victim could handle. This requires the attacker to have a faster network 

connection than the victim. This is the lowest technique of the denial of service attacks and also 

the most difficult to completely prevent. 

In a DDOS flood attack the zombies flood the victim system with IP traffic. The large volume 

of packets sent by the zombies to the victims system slows it down, crashes the system or 

saturates the network bandwidth. This prevents legitimate users from accessing the victim. 

 

Figure 2.6: Flood Attack [31] 

 

2.5.1.5 Synchronization Flood (SYN Attack) 

In this attack the attacker opens multiple half-open connections with the victim. The Victim 

keeps these connections open waiting for the acknowledgements to complete the connection. 

Hence the Kernel data structures get used up without opening any real connections. In the TCP 

protocol, handshaking of network connections is done with SYN and ACK messages. The 



- 17 - 

 

system that wishes to communicate sends a SYN message to the target system. The target 

system that responds with an ACK message. In a SYN attack, the attacker floods the target 

with SYN messages spoofed to appear to be from unreachable Internet addresses. 

 
Figure 2.6: Diagram Indicating Synchronization Flood [32] 

 

2.5.1.6 Amplification Attacks 

A DDOS amplification attack is aimed at using the broadcast IP address feature found on most 

routers to amplify and reflect the attack. This feature allows a sending system to specify a 

broadcast IP address as the destination address rather than a specific address. 

For this type of DDOS attack, the attacker can send the broadcast message directly to the 

attacker which can use the agents to send the broadcast message to increase the volume of 

attacking traffic. If the attacker decides to send the broadcast message directly, this attack 

provides the attacker with the ability to use the system within the broadcast network as zombies 

without needing to infiltrate them or install any agent software. 

 

Figure 2.7: Amplification Attack [33] 

 

 

 



- 18 - 

 

 

2.5.2 Indirect Attack 

The Indirect attacks are the attacks in which the attacker is able to attack the victim hiding his 

own identity, either by using intermediary machines or by spoofing packets. 

The Attacks are: 

• Smurf Attacks 

• Distributed DOS 

 

2.5.2.1 Smurf Attack 

This attack involves sending ping request with fake source IP address to IP broadcast address. 

The IP broadcast address may be a gateway to a LAN. This kinds of attacks relies on carelessly 

configured network devices that allow packets to be sent to all computer host on a particular 

network via the broadcast address of the network rather than a specific machine. The whole 

network then serves as a smurf amplifier. For one ping(ICMP echo) request, hundreds of ping 

replies can be generated which is in turn send to the victim. Hence the victim is overloaded 

with the ping replies. In the Smurf Attack, the attacker sends a ping request to a broadcast 

address at a third-party on the network. The ping request is spoofed to appear to come from the 

victims network. 

 
Figure 2.7: Diagram Demonstrating Smurf Attack [34] 

 

2.5.2.2 Distributed DOS 

In a Distributed Denial of Service (DDOS) Attack, the attacking computers are zombies with 

broadband connections that have been infected by viruses or Trojan horse programs that allow 



- 19 - 

 

the attacker to control the zombie machine and perform the attack. It is the newest and the most 

widely used mode of the DOS Attack. 

 

This is a two phase attack that involves: 

• Stealthy Preparation Phase 

• The Attack Phase 

 
Figure 2.8: Diagram Demonstrating DDOS Attack [28] 

 

 

 

 

 

 

 

 

 

 



- 20 - 

 

CHAPTER 3 

 

DDOS DEFENCE MECHANISMS 

 

 

 

 

 

 

 

 
 

 

 

 



- 21 - 

 

3.1 Recruitment of Agent Network 

Having understood the varied nature of DDOS attacks it would be useful to be aware of the 

whole process of a DDOS attack right from the recruitment of an agent network to the different 

tools used to wage an attack, the scale o an attack and the last but not the least defence 

mechanism to fend off attackers. Depending on the scale and type of attack, the attacker 

intends to initiate, he searches for vulnerable hosts (hosts with high network bandwidth and 

poor administration), manually, semi automatically, in a process known as scanning. Once the 

vulnerable nodes are identified DOS daemons are installed on these systems. Earlier it was the 

installation process that was automated but now there are scripts to automate the search for 

vulnerable hosts and installation of attack code. Examples of automated scanning tools are 

scan, bots and worms. 

The various stages of the DDOS attack model are: 

1. Attacker 

2. Communication Channel 

3. Attacking Host 

4. Victim 

Thousands of people connect to an IRC server and form the thousands of different chat 

channels. It is impossible to identify the attack channel in such a huge number of channels and 

therefore the identity of the attacker is left unknown. In the Agent Handler, Figure 13, the 

communication channel consists of one or more hosts that are attacker has compromised. The 

attacker issues commands to handler which in turn dispatches commands to the agent to launch 

an attack against the victim. 

 



- 22 - 

 

 

 

Figure 3.1: A Handler/Agent Control Structure [26] 

 

3.2 DDOS Agent Setup 

These are both active and passive methods that attackers use to install malicious code onto a 

secondary victim system in order to set up an Agent-handler based DDOS attack network. 

Active methods typically involve the attacker scanning the network or systems with known 

vulnerabilities. Upon identifying such vulnerable systems, he can stealthily install the DDOS 

Agent Software. Thus the system is compromised as a secondary victim and can be used as a 

zombie in a DDOS attack. Passive methods typically involve the attacker sharing corrupt files 

or building web sites that take advantage o known vulnerabilities in a secondary victim’s web 

browser. Upon accessing a file or website with an embedded DDOS Agent, the secondary 

victim system is compromised and the DDOS agent code may be installed. 

 

 

3.3 Defence Principles and Challenges 

As DDOS is a distributed attack and because of high volume and rate of attack packets 

distributed instead of centralized defence. Second, High Normal Packet Survival Ratio(NPSR) 

hence less collateral damage is the prime requirement for a DDOS defence. Third, a DDOS 

defence method should provide secure communication for control messages in terms of 



- 23 - 

 

confidentiality, authentication of sources, integrity and freshness of exchanged messages 

between defence nodes. Fourth, a partially and incrementally deployable defence model is 

successful as there is centralized control for autonomous systems (AS) in Internet. Fifth, a 

defence system must take into account future compatibility issues such as interfacing with 

other systems and negotiating different defence policies. However with the present technology, 

development and implementation of a DDOS defence model which can satisfy all of these 

defence principles in general is very difficult in practice due to several challenges such as: 

a) Large number of unwitting participants 

b) No common characteristics of DDOS streams 

c) Use of legitimate traffic models by attackers 

d) No administrative domain cooperation 

e) Automated tools 

f) Hidden identity of participants 

g) Persistent security holes on the Internet 

h) Lack of attack information 

 

3.4 Defence against Attacks  

Many observers have stated that there are currently no successful defence against a fully 

distributed denial of service attack. This may be true. Nevertheless, there are numerous safety 

measures that a host or network can perform to make the network and neighbouring networks 

more secure. These measures include: 

 

3.4.1 Filtering Routers 

Filtering all packets entering and leaving the network protects the network from attacks 

conducted from neighbouring networks and prevents the network itself from being an unaware 

attacker. This measure requires installing ingress and egress packet filters on all routers. 

 

3.4.2 Disabling IP Broadcasts 

By disabling IP broadcasts, host computers can no longer be used as amplifiers in ICMP flood 

and smurf attacks. However, to defend against this attack, all neighbouring networks need to 

disable IP broadcasts. 

 

 

 



- 24 - 

 

3.4.3 Disabling Unused Services 

If UDP echo or charges services are not required, disabling them will help to defend against the 

attack. In general, if network services are unneeded or unused, the services should be disabled 

to prevent tampering and attacks. 

 

3.5 An Introduction to DOS Countermeasures  

A comprehensive countermeasure for DOS attacks has four distinct elements: 

Prevention, detection, mitigation and trace back. Before an attack occurs, there should be 

existing prevention mechanisms that are capable of eliminating the threat of the attack. When 

the attack does occur , only a successful and timely detection of attack will allow the 

appropriate mitigation mechanism to be deployed. During or following the attack, a method 

called tree back can be used to determine the source of the attack. In addition, trace back can 

help improve future methods for detecting and preventing a DOS attack. The dependence upon 

all four of these items is crucial for a successful DDOS countermeasures. 

In order to design the most effective countermeasures against DOS attacks, we must address 

the security vulnerabilities at each layer and introduce defence mechanisms that are capable of 

mitigating specific threats at the appropriate layer. The only way to defend a computer from 

attacks is to design and employ a number of protection mechanism that are designs to combat a 

specific threat. 

 

3.5.1 Prevention 

Prevention is the first step towards defending a machine from DOS/DDOS attack. The key to 

prevention is awareness and vigilance. System patches and updates are very important to 

protection but they only fix known problems. Thus systems are always vulnerable to unknown 

attacks and undiscovered weakness. Therefore, it is necessary for many to understand how 

attacks occur and to always remain aware and watching for new potential threats. 

 

3.5.2 Detection 

One of the most important components in designing a DOS countermeasure is to determine and 

establish the optimal methodology to detect an ongoing attack. Most detection mechanism rely 

on some form of an application or software that resides on a host system or within the network 

that can observe traffic patterns or resource usage. These programs typically are configured to 

detect anomalies or deviations from normal behaviour. When anomalies are detected, alerts are 

created so that either a system administrator or an automated program can quickly determine 



- 25 - 

 

the type of the attack and decide which actions to take to safely minimize the effects of the 

attack and return the system back to its original state. Most attacks are detected by an end host 

or server. However, in many cases a DDOS can affect the routers within the network. 

 

 

3.5.3 Mitigation 

Mitigation is the process of minimizing the effects of the ongoing attacks. The simplest and 

easiest form of mitigation is to simplify drop packets that belong to an attacker and allow 

packets that belong to a client to reach their destination. However, the main obstacle with this 

method is how to accurately determine if a packet belongs to an attacker or to a legitimate 

client. Attackers have shown great sophistication in their ability to disguise themselves as 

clients, making it virtually impossible to determine if a packet belongs to a legitimate client or 

an attacker. In this report, the mitigation techniques that are researched do not necessarily deal 

with making this distinction. Instead, the techniques presented in this report allow each client 

to prove itself as being legitimate before being granted access. 

 

 

3.5.4 Trace Back 

The process of trace back involves the methods used to determine the source of the attack. This 

technique is commonly referred to as IP trace back. In many previous DOS/DDOS attacks, the 

attackers have demonstrated the ability to spoof the identity of the attack packets by selecting a 

different source IP address than the IP address of the computer that is actually sending the 

packet. This technique is referred to as IP spoofing. Before a router forwards a packet, it 

verifies that the source IP address of the packet is valid. 

  Common trace back methods involve packet marking, a technique where routers 

place a unique mark within the header of each packet that it forwards. When a packet traverses 

all the way to server, each router will have already marked the packet in such a way that the 

combination of all of the marks creates a unique signature that is measured to identify the 

client. Thus, when the end host receives a packet, the total mark will be used to differentiate 

between a client and an attacker. 

 

 

 

 



- 26 - 

 

3.6 Mitigate or Stop the Effects of DDOS Attack 

 

3.6.1 Load Balancing 

For network providers there are a number of techniques used to mitigate the effects of a DDOS 

attack. Providers can increase bandwidth on critical connections to prevent them from going 

down in the event of an attack. Replicating servers can help provide additional failsafe 

protection in the event some go down during a DDOS attack. Balancing the load to each server 

in multiple-server architecture can improve both normal performance as well as mitigate the 

effect of a DDOS attack. 

 

3.6.2 Throttling 

One proposed method to prevent servers from going down is to use Max-min Fair server-

centric router throttles. This method sets up routers that access a server with logic to adjust 

(throttle) incoming traffic to levels that will be safe for the server to process. This will prevent 

flood damage to servers. Additionally, this method can be extended to throttle DDOS attacking 

traffic versus legitimate user traffic for better results. This method is still in experimental stage; 

however similar techniques to throttling are being implemented by network operators. The 

difficulty with implementing throttling is that it is still harder to decipher legitimate traffic 

from malicious traffic. In the process of throttling, legitimate traffic may sometimes be dropped 

or delayed and malicious traffic may be allowed to pass to the servers. 

 

3.6.3 Drop Requests 

Another method is to simply drop request when the load increases. This can be done by the 

router or the server. Alternatively, the requester may be induces to drop the request by making 

the requester system solve a hard puzzle that takes a lot of computer power or memory space 

before continuing with request. This causes the users of zombie systems to detect performance 

degradation and could possibly stop their participation in sending DDOS attack traffic. 

 

 

 

 



- 27 - 

 

CHAPTER 4 
 

LITERATURE REVIEW 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 28 - 

 

4.1 Literature Review 

Abraham Yaar [1] presented a new packet marking approach i.e. Pi (short for Path 

identifier) in which path fingerprint is embedded in each packet which enables a victim to 

identify packets traversing same paths. In this scheme each packet traversing the same path 

carries the same identifier. Path identifier fits in each single packet so the victim can 

immediately filter traffic after receiving just one attack packet .Xiuli Wang [16] proposed 

Pushback to mitigate DDoS attacks. It is based on improved Aggregate based congestion 

control (IACC) algorithm and is applied to routers to defend against bandwidth 

consumption attacks.  In this scheme we first match the attack signature of the packet, if it 

is matched packet is sent to the rate limiter which will decide whether to drop the packet or 

not. From the rate limiter the packet is sent to the Pushback daemon which will drop these 

packets with the help of upstream routers.  

 

Ruiliang Chen and Jung- Min Park [12] combined the packet marking and pushback 

concepts to present a new scheme called as Attack Diagnosis. In this scheme an Intrusion 

Detection System is installed at the victim that detects the attack. The victim instructs the 

upstream routers to start marking packets with trace back information based on which 

victim reconstructs the attack paths and finally upstream routers filter the attack packets. 

 

Antonis Michalas, Nikos Komninos, Neeli R. Prasad and Vladimir A. Oleshchuk [2] 

presented Client puzzle approach to prevent DDoS attacks in ad hoc network. In this 

approach every node that is trying to contact another node has to solve two puzzles. The 

first one is a discrete logarithm problem (DLP) and the solution of this puzzle will help the 

connection initiator to create and solve the second puzzle which is considered to be the 

most difficult. 

 

Biswa ranjan Swain and Bibhudatta Sahoo [4] presented Probabilistic Approach and HCF 

method to mitigate these attacks. In this approach the researchers have developed a 

probabilistic approach to find out the number of malicious packets arriving at the server. 

After calculating the Probability of the packets being malicious we filter the packets from 

the given no. of packets. They proposed a formula to calculate the Probability.  

 

Yinan Jing, Xueping Wang Xiao and Gendu Zhang [17] presented IP Traceback based Rate 

Limiting approach to mitigate DDOS attacks. Max-min fairness algorithm used by previous 



- 29 - 

 

researchers it is found that it punishes both attackers and legitimate users equally under a meek 

attack. The survival ratio(i.e the percentage of legitimate packets received by the victim in all 

legitimate packets) of IP Trace back is very high reaching over 90%, therefore, this algorithm 

not only regulates the traffic to ensure the victim’s load but also improves the survival ratio of 

legitimate packets. 

 

4.2 Related Works 

Countermeasures to bandwidth-exhaustion attacks 

It is a mechanism that enables the system to counter DOS yielded bandwidth-exhaustion 

attacks through the concepts of aggregate-based congestion control; trace back and filtering. 

Another mechanism being the Aggregate-based congestion control (ACC) that extends its 

scope to traditional flow based so that data packets could be managed to finer granules. An 

aggregate is defined as a collection of packets that share some property (signature). ACC 

provides mechanisms for detecting and controlling aggregates at a router using an attack 

signature, a mechanism to propagate aggregate control requests (and the attack signature) to 

upstream routers. ACC critically depends on the mechanism by which attacks are detected and 

an attack signature is formulated and this can be a source of difficulty against an intelligent 

adversary    that varies its traffic characteristics over time. A goal of Congestion Puzzles (CP) 

is to avoid the need to formulate attack signatures. 

 A related congestion control mechanism is level-k max-min fair router throttles. The 

mechanism differs from ACC in that a congested server is responsible for issuing congestion 

control requests to routers k hops away (denote the set of these routers by R(k) to help 

maximize the bandwidth allocated to those receiving the smallest allocation (max-min 

optimization). This approach does not depend on formulating attack signatures, but offers 

fairness only to the extent that the routers in R(k) can provide it. With a low deployment depth 

(small k), it is possible that legitimate clients’ flows may aggregate to a relatively high 

bandwidth flow before reaching a router in R(k), thus being subjected to rate limiting. Another 

limitation of the mechanism is the assumption that all routers are trusted, which makes it 

vulnerable to attacks from compromised routers. Several methods focus primarily on filtering 

or tracing spoofed traffic, such as ingress filtering, hop-count filtering, and numerous works on 

trace back. These approaches are of less utility against non-spoofed traffic and thus permit 

DDOS attacks from zombies using their real source addresses. In addition, many of these 

schemes rely upon some way of distinguishing attack packets from legitimate ones, thereby 

again raising the difficulties of generating attack signatures. Finally, some filtering schemes 



- 30 - 

 

consider coordination among routers. Our approach also supports such coordination within the 

context of the CP mechanism. Recently, an approach that uses overlay network is compromised 

of a set of nodes across the internet. A client who wants to connect to the web server has to first 

pass a reverse Turing test posed by an overlay node, which then tunnels the clients’ connection 

to an approval location so as to reach the web server. This approach, however does not solve 

the general bandwidth-exhaustation problem: First, adversaries might still be able to use other 

protocols or the traffic addressed to a less sensitive server to congest routers on paths to the 

web server. Second, this solution is tailored to protocols driven by human users, who can be 

called upon to pass a reverse Turing test. Third, once adversaries have implanted zombies at 

overlay nodes or routers, they might circumvent the defence mechanism. 

 

 4.3 Proposed Approach 

Our goal in this project is to protect a server system from having to deal with excessive service 

request arrivals over a global network. (However the approach can be easily generalized to 

protecting an intermediate routing point under overload). To do so, we adopt a proactive 

approach: Before aggressive packets can converge to overwhelm a server, we ask routers along 

forwarding paths to regulate the contributing packet rates to more moderate levels thus 

forestalling an impending attack. The basic mechanism is for a server under stress, say S, to 

install a router throttle at an upstream router several hops away. The throttle limits the rate at 

which packets destined for S will be forwarded by the router. Traffic that exceeds the rate limit 

can either be dropped or rerouted to an alternate server, although we will focus exclusively on 

dropping solution in this project. 

  A key element in the proposed defence system is to install appropriate throttling 

rates at the distributed routing points, such that, globally, S exports its full service capacity Us 

to the network, but no more. The “appropriate” throttles should depend on the current demand 

distributions and so must be negotiated dynamically between server and network. Our 

negotiation approach is server-initiated. A server operating below the designed load limit needs 

no protection and need not install any router throttles. As server load increases and crosses the 

designed load limit, Us however, the server may start to protect itself by installing and 

activating a rate throttle at a subset of its upstream routers. After that, if the current throttle fails 

to bring down the load at s to below Us, then the throttle rate is reduced. On the other hand, if 

the server load falls below a low-water mark Ls (where Ls<Us), then the throttle rate is 

increased (i.e., relaxed). If an increase does not cause the load to significantly increase over 



- 31 - 

 

some observation period, then the throttle is removed. The goal of the control algorithm is to 

keep the server load within [Ls, Us] whenever a throttle is in effect. 

  Although throttling is space-efficient, the total amount of state information 

needed at a router is nevertheless linear in the number of installed throttles. Hence, it may not 

be possible for the routers to maintain state about every Internet server. However, the approach 

can be feasible as an on-demand and selective protection mechanism. The premise is that 

DDOS attacks are the exception rather than the norm. At any given time, we expect at most 

only a minor portion of the network to be under attack, while the majority remaining portion to 

be operating in “good health”. Moreover, rouge attackers usually target “premium sites” with 

heavy customer utilization, presumably to cause maximal user disruption and to generate the 

most publicity. These selected sites may then elect t protect themselves in the proposed 

architecture, possibly by paying for the offered services. 

 Work in this report targets a network architecture for countering denial-of-service 

(DOS) attacks directed at an Internet server. The basic mechanism is for a server under stress to 

install a router throttle at selected upstream routers. The throttle mechanism would be highly 

effective in preferentially dropping attacker traffic over good user traffic. Also, this throttling 

can regulate the experienced server load to below its design limit in the presence of user 

dynamics so that the server can remain operational during a DOS attack. In our study, we are 

supposed to simulate a distributed denial of service attack using ns-2 network simulator. We 

examine how various queuing algorithm implemented in a network router perform during an 

attack and whether legitimate users can obtain desired bandwidth. We find that under persistent 

denial of service attacks, class based queuing algorithms can guarantee bandwidth for certain 

classes of input flows. 

 

4.5 The contributions 

The contributions in this Report are: 

•  Contributed to the fundamental understanding of router throttling as a mechanism 

against DDOS attacks. In particular, we advance a control-theoretic model useful for 

understanding system behaviour under a variety of parameters and operating 

conditions:- 

•  Presented a throttle algorithm that can effectively protect a server from resource 

overload and increase the ability of good user traffic to arrive at the intended server. 



- 32 - 

 

•  Showed how max-min fairness can be achieved across a potentially large number of 

flows and the implication of a notion of convergence on DDOS attacks. 

•  Studied how throttling may impact real application performance. Specifically, 

demonstrated via simulations the performance impact on an HTTP web server. 

 

Convention 1: All traffic rate and server load quantities stated in this paper are in unit of 

kb/s, unless otherwise stated. 

 

Modelled a network as a connected graph G= (V, E), where V is the set of nodes and E is the 

set of edges. All leaf nodes are hosts and thus can be a traffic source. An internal node is a 

router, a router cannot generate traffic but can forward traffic received from its connected hosts 

or peer routers. We denote by R the set of internal routing nodes. All routers are assumed to be 

trusted. The set of hosts, H=V-R, is partitioned into the set of ordinary “good” users, Hg, and 

the set of attackers i, E models the network links, which are assumed to be bi-directional. Since 

our goal is to investigate control against server resource overload, each link is assumed to have 

infinite bandwidth. The assumption can be relaxed if the control algorithm is also deployed to 

protect routers from overload. 

 

 In this report, we designate a leaf node V as the target Server S. A good user sends 

packets to S at some rate chosen from the range [0,rg]. An attacker sends packets to S at some 

rate chosen from the range [0,ra]. In principle, while rg can actually be set to a reasonable 

level according to how users normally access the service at S (and we assume rg <<Us), it is 

hard to prescribe constraints on the choice of ra. In practice, it is reasonable to assume that ra  

is significantly higher than rg. This is because if every attacker sends at a rate comparable to a 

good user then an attacker must recruit or compromise a large number of hosts to launch an 

attack with sufficient traffic volume. 

 

 When S is under attack, it initiates the throttle defense mechanism (for ease of 

presentation, we assume that an overloaded server is still capable of initiating the defense 

actions) The throttle does not have to deployed at every router in the network. Instead, the 

deployment points are parameterized by a positive integer k and are given by R(k). 

Specifically, R(k)  contains all the routers that are either k hops away from S or less than k 

hops away from S but are directly connected to a host. Fig4.1 shows an example network 



- 33 - 

 

topology. In the figure 4.1, a square node represents a host, while a round node represents a 

router. The host on the far left is the target server S. 

 

Figure 4.1: Network Topology illustrating R(3) deployment points of  routers throttle, 

and    offered traffic rates [35] 

  

The routers in R(3) are shaded in the figure. Notice that the bottom-most router in R(3) is only 

two hops away from S, but is included because it is directly connected to a host. Given our 

system model, an important research problem is how to achieve fair rate allocation of the 

server capacity among the routers in R(k). To that end, we define the following notion of 

convergence. 

 

4.6   Proposed Algorithm 

The following algorithm has been proposed to mitigate DDOS Attacks 
 Throttle Algorithm 

The report here presents an algorithm in which each router throttles traffic for S by forwarding 

only a fraction f(0 <=f<=1) of the traffic. The fraction f is taken to be one when no throttle for 

S is in effect. In adjusting f according to current server congestion, the algorithm mimics 

congestion control. Specifically, f is reduced by a multiplicative factor α when S is congested 

and sends the router a rate reduction signal. It is increased by an additive constant β- subject to 

the condition that f<1 – when S has extra capacity and sends te router a rate increase signal. 

 The algorithm that S runs is specified in Fig 15.It is to be invoked when either (i) the 

current server load (measured as traffic arrival rate to S) crosses Us or (ii) a throttle is in effect 

and the current server load drops below Ls. In case (i) S multicasts a rate  reduction signal to R 

(k), in case (ii) it multicasts a rate increase signal. The algorithm can take multiple rounds until 

a server load within [Ls, Us] is achieved. Also, if the server load is below Ls and the next rate 



- 34 - 

 

increase signal raises the server load by an insignificant amount (i.e by less than �), we 

remove 

the throttle. The monitoring window should be set to be somewhat larger than the maximum 

round trip time between S and a router in R (k). 

  In the throttle based algorithm we install at each router in R(k) a uniform leaky bucket rate 

(i.e the throttle rate) at which the router can forward traffic for S. Fig. 15 specifies the 

algorithm by which S determines the throttle rate to be installed. In the specification, rs  is the 

current throttle rate to be used by S. It s initialized to (Ls, Us) / f (k), where f (k) is either some 

small constant, say 2, or an estimate of the number of 

Algorithm 

ρ last :   = -∞; 
 
Hv      :   =  Us; 

 
Lv       :   =   0; 

 
Rs       :    = (Ls + Us)/f(k) ; /*initialize throttle rate*/ 

 
While(1) 
 
If (ρ >= Us) 
 
  Hv  : =  Rs; 
 
If (ρ last - ρ < €) 

 
               Lv  := 0; 
 

.       end if 
 
    else if (  ρ <= Ls) 
 
              Lv  := Rs ; 
 
                If (ρ  - ρ last < €) 
 
                      Hv  : =  Us; 
 
                 end if; 
 

       end if; 
 
        ρ last :   = ρ;   
       
       Rs   :  = (Hv + Lv)/2); 

end while; 



- 35 - 

 

 

Iteration Rs ρ 

1. 11 34.78 

2. 5.5 18.38 

3. 14.7 45.88 

4. 7.3 24.68 

5. 6.4 20.98 

 
Table 1:  TRACE OF THROTTLE AND ACHIEVED 

                                                 SERVER LOAD FOR THE ALGORITHM 

 

throttle points typically needed in R(k).  

 

 The throttle algorithm when called multicast a rate rs throttle to R (k). This will cause a 

router in R (k) to regulate traffic destined for S to a leaky bucket with rate rs. The algorithm 

may then continue in the while loop that it iteratively adjusts rs to an appropriate value. 

 

 Notice that the iterative process aims to keep the server load in [Ls,Us] whenever a 

throttle is in effect. 

  

In the example network shown in Fig 4.1, let the number above each host(except S) 

denote the current rate at which the host sends traffic to S.  

The number above each router denotes the offered rate of traffic at the router, destined for S. 

Also, let Ls= 20,Us=24. Initially, the total offered load to S exceeds Us, and hence the 

algorithm is invoked at S. 

  

We apply the algorithm to the given example scenario in Fig.4.1. We initialize rs to (Ls 

+ Us)/2 = 11. Table 1 shows how rs and the aggregate server load evolve. When the algorithm 

is first invoked with throttle rate 11, the aggregate load at S drops to 34.78. Since the server 

still exceeds Us, the throttle rate is made 5.5 and the server load drops below Ls to 18.38. As a 

result the throttle rate is increased to 14.7 and the server load becomes 45.88. Since the server 

still exceeds Us, the throttle rate is decreased to 7.3 and the server load becomes 24.68. Since 

this still exceeds Us, the throttle rate is further decreased to 6.4 and the server load becomes 

20.98. Since, 20.98 is within the target range [20,24], the throttle algorithm terminates. When 

that happens, the forwarding rates of traffic for S at the deployment routers (from top to bottom 

in the figure) are 6.4, 0.22, 6.4, 6.4, 0.61 and 0.95 respectively.  

 



- 36 - 

 

4.7 Specific Knowledge Required  

This project demands the working knowledge of the following. 

 

4.7.1 Tool Command Language 

Tool Command Language (TCL) is regarded as the “best-kept secret in the software industry”. 

It has many uses, namely, Web and Desktop Applications, Network Programming, Embedded 

Development, Testing, General Purpose Programming, System Administration and for 

Databases The advantage of using this language is flexible integration, elegant networking 

model and thread support. 

 

4.7.2 Using Network Simulator 

We have used the Network Simulator version 2.29 for the simulation of the various attacks and 

the counter mechanisms. The operating system used is Linux fedora Core 4. TCL version 8.0.5 

release 1 was used as the scripting language. The post-analysis bandwidth consumption graph 

was drawn using X-Graph version 12.1. Some other simulator like ‘Opnet’ is also used for 

simulation of a network. But Network Simulator along with the Linux operating system holds 

the pride of being capable enough to support almost all the protocols available that are used in 

the wide network of computers. 

 

4.7.3 X-Graph 

X-Graph is a graph plotting application that is included within the Network Simulator. It 

supports drawing trace graphs of wired, wireless, satellite, new trace and networks. Its features 

includes 238 2D graph, 12 3D graph, delay, jitter, processing time, round trip time, throughput 

graph and statistics. 

 

 

 

 

 

 

 

 



- 37 - 

 

CHAPTER 5 

 

OBSERVATIONS AND RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 38 - 

 

5.1 Implementation 

The work of the topic” A Throttle Based Approach to mitigate the Distributed Denial of 

Service Attacks” has been implemented in Network Simulator (NS2) Version 2.29 in Linux 

operating System. 

 There are various nodes which have been created with the help of network simulator 

then actual flow of data packets among the nodes which shows the actual traffic rates between 

the server and end users. 

 

5.2 Simulations 

Performance evaluation is a critical component of systems research that allows the evaluation 

of new ideas, identification of problems and bottlenecks and optimization of existing systems. 

There are three general approaches to performance evaluation: (1) prototyping: build it (or a 

scaled down version of it) and see how it works; (2) analytical modeling: build a mathematical 

model of it and use it to analyze the system; and (3) Simulation: build a software model of the 

system. Prototyping is often not feasible, or time consuming especially for large scale systems; 

it also provides limited controllability and observability. Similarly, analytical modeling cannot 

capture highly complex systems. Thus, simulation has emerged as an attractive alternative that 

is heavily used in performance evaluation of computer systems. Network simulation enables us 

to predict behavior of a large-scale and complex network system such as the Internet at low 

cost under different configurations of interest and over long periods. Many network simulators, 

such as NS-2, SSFNet, Opnet, Qualnet, etc., are widely available. We will use NS-2 for this 

project. NS-2 is a discrete event simulator written in C++, with an OTcl interpreter shell as the 

user interface that allows the input model files (Tcl scripts) to be executed. Most network 

elements in NS-2 are developed as classes, in object-oriented fashion. The simulator supports a 

class hierarchy in C++, and a very similar class hierarchy in OTcl. The root of this class 

hierarchy is the TclObject in OTcl. Users create new simulator objects through the OTcl 

interpreter, and then these objects are mirrored by corresponding objects in the class hierarchy 

in C++. NS2 provides substantial support for simulation of TCP, routing algorithms, queuing 

algorithms, and multicast protocols over wired and wireless (local and satellite) networks, etc. 

It is freely distributed, and all source code is available. 

 

 

 

 



- 39 - 

 

5.2.1 Attack Simulation 

In Distributed Denial of Service Attack, the whole attack revolves around four main Parties 

• Vicious Attacker 

• Intended Attacker 

• Legitimate User 

• Innocent Zombies 

The flooding technique used for ‘bandwidth consumption’ at the intended victim is buffer 

overflow. 

 

5.3 System Performance 

 

Aggregate Server Load Vs Time 

 

 

 

Figure 5.1 : System Performance for Us= 24 , Ls = 20     

 

 

 



- 40 - 

 

Here Co-ordinates are 

 

    X- Axis--------> Time 

    Y Axis--------> Aggregate Server Load 

Here X axis represents time in Seconds and y axis represents aggregated traffic rate in Kb. We 

have analyzed system performance for various watermark values. Blue curve represents system 

performance. Here upper traffic load is defined as Us = 24Kb and lower load Ls = 20kb. Here 

system is not more stable and lie between upper limit and lower limits. As traffic increases 

beyond the maximum capacity of router, throttle algorithm is applied on the routers as 

described and traffic will be decreased for that routers. 

 

For green colour graph system is more stable than previous one because after applying throttle 

algorithm the rate of flow of packets will be constant.    

 

Throughput   Vs   Time 

 

 

Figure 5.2 : System Performance between throughput and Time 

  

 

 



- 41 - 

 

Here Co-ordinates are 

 

    X- Axis-----� Time 

    Y- Axis------�Throughput 

Here X axis represents time in Seconds and y axis represents throughput. We have analyzed 

system performance. Red curve, Blue curve, yellow curve and green curve represents various 

system states at different time intervals. 

The Distributed Denial of Service (DDOS) attack is a two phase attack, which involves: first, 

infecting Zombie computer and then, causing them to flood the target. Hence the original 

attacker is able to mark his identity. Due to the two phases of attack the network has complex 

topology and the network congestion is high. Hence a countering mechanism which involves 

addition of extra packets in the network for trace back is unsuitable. Packet marking therefore 

can be used as a trace back mechanism, as it involves simple marking of packets instead of 

creating new packets. A mark is a random number added by the router between the header and 

payload of the IP packet. Each router on marking a packet sends a random number to the 

Network Manager. 

 

5.5 Observations 

Several observations are in order about the practical deployment of our defence mechanism. 

First, we must achieve reliability in installing router throttles otherwise,  the throttle 

mechanism can itself be a point of attack. To ensure reliability, throttle messages must be 

authenticated before an edge router (assumed to be trusted) admits them into the network. 

Notice that only edge routers that have made arrangement with the (relatively few) server sites 

that desire protection have to do authentication. Also, throttle requests must be efficiently and 

reliably delivered from source to destination, which can be achieved by high network priority 

for throttle messages and retransmissions in case of loss. Since throttle messages are infrequent 

and low in volume, the cost of authentication and priority transmissions should be acceptable. 

Second, because of the feedback nature of the control strategy, it is possible that the server will 

transiently experience resource overload. To ensure that the throttle mechanism remains 

operational during these times, we can either use a coprocessor on the server machine that is 

not concerned with receive-sie network processing, or deploy a helper machine, whose job is to 

periodically ping the server and initiate defence actions when the server is not responsive. 

Third, the throttle mechanism may not be universally supported in a network. Our solution 

remains applicable provided at least one router supports the mechanism on a network path that 



- 42 - 

 

sees substantial attacker traffic. Depending on the position of such a router, the feasible range 

of k may be more restricted. 

Fourth, we have adopted a generic notion of max-min optimization in our study, which makes 

it easy to manage and deploy. 

5.6 Summary 

DDOS is a complex problem involving hosts distributed all over the Internet and affecting 

numerous networks. While localized defences alleviate damage from small-scale, easily 

charecterizable attacks, more sophisticated threats can only be handled through a cooperative, 

Internet-wide defence. With the right direction of attack dissection strategy discussed which is 

Detection, Segregation and mitigation has made it easy for the researchers move forward in 

three directions. Various IDS based systems has been studied which are geographically 

distributed has been proposed. Secure Overlay Networks has been proposed as part of Active 

networks where the trace back is mitigated to other nodes in the overlay network. The main 

phase is detection and readiness after an attack is detected forms the complete security chain. 

 

 

 

 

 

 

 

 

 

 

 

 



- 43 - 

 

CONCLUSION(S) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 44 - 

 

Conclusions 

A number of conclusions can be drawn from understanding DDOS attacks and from looking at 

some of the defensive measures that are being researched or implemented. DDOS attacks are 

quiet advanced methods of attacking a network system to make it unusable to legitimate 

network users. These attacks are an annoyance at a minimum and if they are against a critical 

system, they can be severely damaging. Loss of network resources costs money, delays work 

and cuts off communication between network users. The negative effects of a DDOS attack 

make it important that solutions and security measures be developed to prevent these types of 

attacks. 

The project presents a server-centric approach to protect a server system under DDOS 

attacks. The approach limits the rate at which an upstream router can forward packets to the 

server, so that the server exposes no more than its designed capacity to the global network. In 

allocating the server capacity among the upstream routers, we studied a notion of level –k  

max – min fairness, which is policy free and hence easy to deploy and manage. 

In addition, algorithm effectiveness was evaluated using a realistic global network 

topology and various models for attacker and good user distributions and behaviours. Our 

results indicate that the proposed approach can offer significant relief to the server that is being 

flooded with malicious attacker traffic. First, for aggressive attackers, the throttle mechanism 

can preferentially drop attacker traffic over good user traffic, so that a larger fraction of good 

user traffic can make it to the server as compared with no network protection. In particular, 

level-k max-min fairness performs better than recursive pushback of max-min fair rate limits 

previously proposed in the literature. This is especially the case when attackers are evenly 

distributed over the network. Second, for both aggressive and “meek” attackers, throttling can 

regulate the experienced server load to below its design limit, so that the server can remain 

operational during a DDOS attack. Moreover, our related implementation results show that 

throttling has low computation and memory overheads at a deployment router. Our results 

indicate that server-centric router throttling is a promising approach to countering DDOS 

attacks. Our focus has been on DDOS attacks in which attackers try to overwhelm a victim 

server by directing an excessive volume of traffic to the server. Other forms of attacks are 

possible that do not depend on the sheer volume of attack traffic. However, more sophisticated 

attack analysis (e.g. intrusion detection) is usually feasible to deal with these other forms of 

attacks. 

 



- 45 - 

 

Limitations and Future Scope 

 

My contribution in the work is two-fold. First, I have identified the problem of proving DDOS, 

discussed a potential usage scenario where it could be important and applicable and proposed a 

solution to the problem. Second, I have proposed a DDOS attack identification algorithm that 

estimates the DDOS attacks magnitude and with very high accuracy even in the presence of 

more than 2000 attackers and 60% legacy routers in the network. As future work on this, I 

would like to relax some restrictive assumptions that I have made and also try optimizing some 

algorithm. Here is the summary of future work items, along with the approach I propose to 

adopt: 

 

• Relax the assumption on upstream router map.  

• Optimize the packet verification algorithm. 

• Relax the assumption on a unique path from PPM routers to victim. Add a few bits of 

bath identification information in packet marking. 

• Design a practical key management scheme between the validator and PPM routers. 

Explore using the time-released key chain approach. 

 

 

 

 

 

 

 

 

 

 



- 46 - 

 

APPENDIX 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 47 - 

 

APPENDIX1: COMPARISON OF VARIOUS 

MITIGATION TECHNIQUES 

TABLE A: COMPARISON OF MITIGATION TECHNIQUES 

S.
No 

Technique Formula Used Description 

1.  

HCI-MPR 

P(m, l) = ( ) /m!.  

( / l! 

This is based on mathematical equations to find the 
malicious packets and proposes an inspection algorithm 
to mitigate DDOS attack. 

2.  

Client Puzzle 

Π(n) = .[ ].n+ .(- - .[ ] In this method cryptographic puzzles are generated that 
a client must answer correctly before it is given services, 
which pushback the load to the source of an attack in 
case of overload. 

3.  

Egress 
Filtering 

d

 

 

The IP header of packet leaving are checked for filtering 
criteria, if criteria is met packet is routed otherwise it is 
not sent to destination host. 

4.  

Ingress 
Filtering 

d  = (1-  )+ 

 

In this method filters identify the packets entering the 
domain and drops the traffic with IP address that does 
not match the domain prefix connected to a ingress 
router. 

5.  

Preferential 
Dropping 

 = (1-  + 

 

This method simply drops the request when the load 
increases either by server or router with the requester 
making the request system to solve a hard puzzle. 

6.  

Probabilistic 
HCF 

P{Nı=n, =m} = 

 

In this method the average arrival rate of packets and 
error probability of packets is used to calculate the 
number of malicious packets then filtering is done using 
the HCI-Algorithm. 

7.  

Pushback 

 

 

------- 

In this method when the congestion level reaches a 
certain threshold, sending router starts dropping the 
packets and illegitimate traffic can be calculated by 
counting the number of packets dropped for a particular 
IP address as attackers change their IP address 
constantly. 

8.  

Distributed 
Throttling 

 

 := ( + ) / f(k) 

This method sets the routers that access the server with a 
logic to adjust the incoming traffic to levels that are safe 
and prevent flood attacks. 

9.  

IP Trace 
Back- Rate 
Limiting 

+ ) x  

 
 

In this Internet traffic is trace back to the true source 
rather spoofed IP address which helps in identifying 
attackers traffic and possibly the attacker. 



- 48 - 

 

 

    λ – poisson’s distribution of packets arrival rate at the server 

    p – probability of malicious packets arriving at the server 

    1-p – probability of non-malicious packets arriving at the server 

    n – joint probability of malicious packets among total traffic 

   m - joint probability of non-malicious packets among total traffic     

    M – total no. of packets arrived with poisson’s distribution λ 

   d  - dropping probability for egress filtering 

 - no. of packets from ISP 

 – no. of packets to the ISP 

 – maximum packet symmetry during normal case 

    d - dropping probability for ingress filtering 

 - minimum packet symmetry during normal case 

- throttle rate 

 - Lower water mark  

 - upper water mark 

    f(k) – estimate of no. of throttle points 

    - no. of packets in hash table 2 

 - no. of packets in hash table 2 

    M (Ri) – n-bit marking that router Ri inserts 

 - dropping probability for n+1 time 

 - no. of packets in hash table 1 

 - pieces of legitimate flows 

- rate of flow of packets 

 - pieces of attack flows 

   B – bandwidth 

    N₂- no. of non malicious packets 

    N₁- no. of malicious packets 

 

 

10.  

Path 
Fingerprint 

P[M( →R1)=M( →R2))� 

(M(R1→R3)=M(R2→R3)) ]=  

Path Fingerprint represents the route an IP packet takes 
and is embedded in each IP packet, IP packet with 
incorrect path fingerprint are considered spoofed. 

11.  

 

Simple HCF 

 

 

------ 

Hop Count value i.e. difference between initial TTL and 
final TTL of the spoofed IP packets is not consistent 
with legitimate IP packet is used to build HCF table 
which helps in mitigating DDOS attacks. 



- 49 - 

 

APPENDIX 2: TCL SCRIPT 

 

In many points TCL is similar to C, especially for loop structures, function definitions 

and mathematical or conditional expressions. In other points such as expressions 

evaluation and list data structures TCL has inherited the benefits from Scheme 

Language. 

In TCL all data is represented as Strings. 

Each Tcl command call is a sentence of the form : command arg1 arg2 arg3 

The Tcl evaluator take each word of this sentence and evaluate it. After evaluation of 

each word, the first word (command) is considered to be a function name and this 

function is executed with as arguments the following words. 

To evaluate a word, the interpretor has to do the following substitutions in the word 

string : 

• If the word is surrounded by " ", this word may contain spaces, but substitution is still 

applicable inside the quotations. Inside the quotation, there may be spaces and carriage 

returns. 

• If a word is surrounded by { }, this word is unaffected (substitution is thus not 

applicable on this word). Inside the braces, there may be spaces and carriage returns. 

Moreover, the { } braces may be nested. 

• If a part of the word is surrounded by [ ], this part is considered as a command sentence 

: the text within the brackets is evaluated as a Tcl command and replaced with the 

result. 

• where substitution is applicable, every string beginning with $ is replaced with the 

variable represented by this string. This string is ended by a space, a '-' or a ','. 

Some TCL Features 

 

All operations are commands, including language structures. They are written in prefix 

notation. 



- 50 - 

 

� Commands are commonly variadic. 

� Everything can be dynamically redefined and overridden. 

� All data types can be manipulated as strings, including source code. 

� Event-driven interface to sockets and files. Time-based and user-defined events are also       

possible. 

� Variable visibility restricted to lexical (static) scope by default, but uplevel and upvar     

allowing procs to interact with the enclosing functions' scopes. 

� All commands defined by Tcl itself generate error messages on incorrect usage. 

� Extensibility, via C, C++, Java, and Tcl. 

� Interpreted language using bytecode 

� Full Unicode (3.1) support, first released 1999. 

� Cross-platform: Windows API; Unix, Linux, Macintosh, etc. 

� Close integration with windowing (GUI) interface Tk. 

� Multiple distribution mechanisms exist: 

� Full development version (e.g., ActiveState Tcl) 

� tclkit (kind of single-file runtime, only about 1 megabyte in size) 

� starpack (single-file executable of a script/program, derived from the tclkit technology) 

� freewrapTCLSH turns TCL scripts into single-file binary executable programs. 

� BSD licenses, freely distributable source.[20][21] 

 

 

 

 

 

 

 

 

 



- 51 - 

 

APPENDIX 3: CODING 

 

#Create a simulator object 

 

set ns [new Simulator] 

$ns rtproto DV 

 

#Open the output files 

 

set f0 [Open g0.tr w] 

set  f1 [Open g1.tr w] 

set  f2 [Open g2.tr w] 

 

#Adding these four lines. 

#Open the output files 

 

set f0 [Open n0.tr w] 

set f1 [Open n10.tr w] 

set f2 [Open n6.tr w] 

set f3 [Open n12.tr w] 

 

#Adding these four lines. 

#Open the output files 

 

set f0 [Open r0.tr w] 

set f1 [Open r10.tr w] 

set f2 [Open r6.tr w] 

set f3 [Open r12.tr w] 

 

#Define different colors for data flows 

 

$ns color 1 Blue 

$ns color 1 Red 

$ns color 1 Black 

$ns color 1 green 



- 52 - 

 

 

#Open the nam trace file 

 

set nf [open  out. nam w] 

$ns namtrace-all $nf 

 

#define different stepsizes 

 

set stepsizea 0.1 

set stepsizeb 0.9 

set stepsizec 6.0 

set stepsized 10.0 

 

#define function for throughout vs time 

 

proc throughputTime { }  { 

set packet_delivered 0 

set packet_sent 0 

set throughput 0.0 

 

#Get the current time 

 

 set now [$ns now] 

 

#Calculate the bandwidth (in MBit/s) 

 

 puts   “$now  [expr $bw0/$time*8/1000000] “ 

 puts   “$now  [expr $bw1/$time*8/1000000] “ 

 puts   “$now  [expr $bw2/$time*8/1000000] “ 

 

throughput  [expr  ($packet_delivered/$packet_sent)*100] 

 

#Re-schedule the procedure 

 

 $ns at [expr  $now+$time]  “record” 

Trace_file.out -> throughput.data 

 

#Call xgraph plotting program to plot throughput vs time 



- 53 - 

 

 

exec xgraph throughput.data  & 

exit 0 

 

} 

 

#Define a ‘finish’ procedure 

 

proc finish { }  { 

 global ns nf 

 $ns flush-trace 

           #Close the trace file 

 

 close $nf 

 

          #Execute nam on the trace file 

  

exec nam out.nam & 

#Adding these 8 lines 

 global f0 f1 f2 f3 

 #Close the output files 

 close $f0 

 close $f1 

 close $f2 

 close $f3 

#Call xgraph to display the results 

 

 exec xgraph n0.tr n10.tr n6.tr n12.tr –geometry 600x400 & 

  exit 0 

} 

 

#Define a ‘finish1’ procedure 

 

proc finish1 { }  { 

 global ns nf 

 $ns flush-trace 

           #Close the trace file 



- 54 - 

 

 close $nf 

          #Execute nam on the trace file 

 exec nam out.nam & 

 

global f0 f1 f2 

#Close the output files 

 

 close $f0 

 close $f1 

 close $f2 

#Call xgraph to display the results 

 

exec xgraph g0.tr g10.tr g6.tr g12.tr –geometry 800x400 & 

  exit 0 

} 

#Create 27 nodes 

 

set n0 [$ns node] 

$n0 set X_10 

$n0 set Y_10 

$n0 set Z_0 

 

set n1 [$ns node] 

$n1 set X_15 

$n1 set Y_12 

$n1 set Z_5 

 

set n2 [$ns node] 

$n2 set X_20 

$n2 set Y_17 

$n2 set Z_0 

 

set n3 [$ns node] 

$n3 set X_25 



- 55 - 

 

$n3 set Y_22 

$n3 set Z_0 

 

set n4 [$ns node] 

$n4 set X_200 

$n4 set Y_60 

$n4 set Z_0 

 

set n5 [$ns node] 

set n6 [$ns node] 

set n7 [$ns node] 

set n8 [$ns node] 

 

# node n9 to n14 will later have throttle router. 

set n9 [$ns node] 

set n10 [$ns node] 

set n11 [$ns node] 

set n12 [$ns node] 

set n13 [$ns node] 

set n14 [$ns node] 

 

#node n15 is a good user. 

set n15 [$ns node] 

 

#node n16 is an attacker. 

set n16 [$ns node] 

set n17 [$ns node] 

 

#node n18 is a good user. 

set n18 [$ns node] 

set n19 [$ns node] 

 

#node n20 is a good user. 

set n20 [$ns node] 



- 56 - 

 

set n21 [$ns node] 

set n22 [$ns node] 

 

#node n23 and n24 are attackers. 

set n23 [$ns node] 

set n24 [$ns node] 

 

#node n25 is a good user. 

set n25 [$ns node] 

 

#node n26 is an attacker. 

set n26 [$ns node] 

 

#node n27 is a good user. 

set n27 [$ns node] 

 

#Create links between the nodes 

$ns duplex-link $n1 $n0 1Mb 10ms DropTail 

$ns duplex-link $n2 $n0 1Mb 10ms DropTail 

$ns duplex-link $n3 $n0 1Mb 10ms DropTail 

$ns duplex-link $n4 $n0 1Mb 10ms DropTail 

$ns duplex-link $n5 $n1 1Mb 10ms DropTail 

$ns duplex-link $n6 $n2 1Mb 10ms DropTail 

$ns duplex-link $n7 $n2 1Mb 10ms DropTail 

$ns duplex-link $n8 $n3 1Mb 10ms DropTail 

$ns duplex-link $n9 $n4 1Mb 10ms DropTail 

$ns duplex-link $n10 $n5 1Mb 10ms DropTail 

$ns duplex-link $n11 $n6 1Mb 10ms DropTail 

$ns duplex-link $n12 $n7 1Mb 10ms DropTail 

$ns duplex-link $n13 $n8 1Mb 10ms DropTail 

$ns duplex-link $n14 $n8 1Mb 10ms DropTail 

$ns duplex-link $n15 $n9 1Mb 10ms DropTail 

$ns duplex-link $n16 $n10 1Mb 10ms DropTail 

$ns duplex-link $n17 $n10 1Mb 10ms DropTail 



- 57 - 

 

$ns duplex-link $n18 $n11 1Mb 10ms DropTail 

$ns duplex-link $n19 $n12 1Mb 10ms DropTail 

$ns duplex-link $n20 $n12 1Mb 10ms DropTail 

$ns duplex-link $n21 $n13 1Mb 10ms DropTail 

$ns duplex-link $n22 $n14 1Mb 10ms DropTail 

$ns duplex-link $n23 $n17 1Mb 10ms DropTail 

$ns duplex-link $n24 $n19 1Mb 10ms DropTail 

$ns duplex-link $n25 $n19 1Mb 10ms DropTail 

$ns duplex-link $n26 $n21 1Mb 10ms DropTail 

$ns duplex-link $n27 $n22 1Mb 10ms DropTail 

$ns duplex-link $n10 $n6 1Mb 10ms DropTail 

$ns duplex-link $n8 $n4 1Mb 10ms DropTail 

 

#set the value of buffer size by user 

puts “Enter buffer value, and then press Enter: “; 

 gets stdin myUserInput; 

 

#setting a limit on the maximum buffer size of the queue in the link 

Between nodes <n1> and <n2>. 

#$ns _ queue-limit <n1> <n2> <limit> 

 

$ns queue-limit $n16 $n10 myUserInput  

$ns queue-limit $n23 $n17 myUserInput  

$ns queue-limit $n17 $n10 myUserInput  

$ns queue-limit $n16 $n10 myUserInput  

$ns queue-limit $n10 $n5 myUserInput  

$ns queue-limit $n10 $n6 myUserInput  

$ns queue-limit $n5 $n1 myUserInput  

$ns queue-limit $n6 $n2 myUserInput  

$ns queue-limit $n2 $n0 myUserInput  

$ns queue-limit $n1 $n0 myUserInput  

$ns queue-limit $n18 $n11 myUserInput  

$ns queue-limit $n11 $n6 myUserInput  

$ns queue-limit $n25 $n19 myUserInput  



- 58 - 

 

$ns queue-limit $n24 $n19 myUserInput  

$ns queue-limit $n20 $n12 myUserInput  

$ns queue-limit $n19 $n12 myUserInput  

$ns queue-limit $n12 $n7 myUserInput  

$ns queue-limit $n7 $n2 myUserInput  

$ns queue-limit $n27 $n22 myUserInput  

$ns queue-limit $n22 $n14 myUserInput  

$ns queue-limit $n14 $n8 myUserInput  

$ns queue-limit $n26 $n21 myUserInput  

$ns queue-limit $n21 $n13 myUserInput  

$ns queue-limit $n13 $n8 myUserInput  

$ns queue-limit $n8 $n3 myUserInput  

$ns queue-limit $n8 $n4 myUserInput  

$ns queue-limit $n3 $n0 myUserInput  

$ns queue-limit $n15 $n9 myUserInput  

$ns queue-limit $n9 $n4 myUserInput  

$ns queue-limit $n4 $n0 myUserInput  

 

#Monitoring the queue-length in each node 

 

$ns duplex-link-op $n16 $n10 queuePos 0.5 

$ns duplex-link-op $n23 $n17 queuePos 0.5 

$ns duplex-link-op $n17 $n10 queuePos 0.5 

$ns duplex-link-op $n16 $n10 queuePos 0.5 

$ns duplex-link-op $n10 $n5 queuePos 0.5 

$ns duplex-link-op $n10 $n6 queuePos 0.5 

$ns duplex-link-op $n5 $n1 queuePos 0.5 

$ns duplex-link-op $n6 $n2 queuePos 0.5 

$ns duplex-link-op $n1 $n0 queuePos 0.5 

$ns duplex-link-op $n1 $n0 queuePos 0.5 

$ns duplex-link-op $n18 $n11 queuePos 0.5 

$ns duplex-link-op $n11 $n6 queuePos 0.5 

$ns duplex-link-op $n25 $n19 queuePos 0.5 

$ns duplex-link-op $n24 $n19 queuePos 0.5 



- 59 - 

 

$ns duplex-link-op $n20 $n12 queuePos 0.5 

$ns duplex-link-op $n19 $n12 queuePos 0.5 

$ns duplex-link-op $n12 $n7 queuePos 0.5 

$ns duplex-link-op $n7 $n2 queuePos 0.5 

$ns duplex-link-op $n27 $n22 queuePos 0.5 

$ns duplex-link-op $n22 $n14 queuePos 0.5 

$ns duplex-link-op $n14 $n8 queuePos 0.5 

$ns duplex-link-op $n26 $n21 queuePos 0.5 

$ns duplex-link-op $n21 $n13 queuePos 0.5 

$ns duplex-link-op $n13 $n8 queuePos 0.5 

$ns duplex-link-op $n8 $n3 queuePos 0.5 

$ns duplex-link-op $n8 $n4 queuePos 0.5 

$ns duplex-link-op $n3 $n0 queuePos 0.5 

$ns duplex-link-op $n15 $n9 queuePos 0.5 

$ns duplex-link-op $n9 $n4 queuePos 0.5 

$ns duplex-link-op $n4 $n0 queuePos 0.5 

 

# Create a UDP agent and attach it to node n16 

 

set udp1 [new Agent/UDP] 

$udpl set class_ 1 

$ns attach-agent $n16 $udp1  

 

#Create a CBR traffic source and attach it to udp1 

set cbr1 [new Application/Traffic/ CBR] 

$cbr1 set packetSize_ 500 

$cbr1 set interval_ 0.005 

$cbr1 attach-agent $udp1 

 

#Create a UDP agent and attach it to node n23 

set udp2 [new Agent/UDP] 

$upd2 set class_ 2 

$ns attach-agent $n23 $udp2 

 



- 60 - 

 

#Create a CBR traffic source and attach it to udp2 

set cbr2 [new Application/Traffic/CBR] 

$cbr2 set packetsize_  500 

$cbr2 set interval_ 0.005 

$cbr2 attach-agent $udp2     

 

#Create a TCP agent and attach it to node n18 

set tcp0 [new Agent/TCP] 

$tcp0 set class_ 0 

$ns attach-agent $n18 $tcp0 

 

#Create a CBR traffic source and attach it to tcp0 

set cbr3 [new Application/Traffic/CBR] 

$cbr3 set packetsize_  80 

$cbr3 set interval_ 0.005 

$cbr3 attach-agent $tcp0     

 

#Create a TCP agent and attach it to node n24 

ser tcp1 [new Agent/TCP] 

$tcp1 set class_ 1 

$ns attach-agent $n24 $tcp1 

set sink [new Agent/TCPSink] 

$ns attach-agent $ns24 $sink 

$ns connect $tcp1 $sink 

#$tcp set fid_ 19 

 

#Create a CBR traffic source and attach it to tcp1 

set cbr4 [new  Application/Traffic/CBR] 

$cbr4 set packetsize_ 200 

$cbr4 set interval_ 0.005 

$cbr4 attach-agent $tcp1 

 

#Create a UDP agent and attach it to node n20 

set udp5 [new Agent/TCP] 



- 61 - 

 

$udp5 set class_ 5 

$ns attach-agent $n20 $udp5 

 

#Create a CBR traffic source and attach it to udp5 

set cbr5 [new Application/Traffic/CBR] 

$cbr5 set packetsize_  150 

$cbr5 set interval_ 0.005 

$cbr5 attach-agent $udp5 

 

#Create a UDP agent and attach it to node n15 

set udp6 [new Agent/TCP] 

$udp6 set class_ 6 

$ns attach-agent $n15 $udp6 

 

#Create a CBR traffic source and attach it to udp6 

set cbr6 [new Application/Traffic/CBR] 

$cbr6 set packetsize_  150 

$cbr6 set interval_ 0.005 

$cbr6 attach-agent $udp6 

 

#Create a UDP agent and attach it to node n26 

set udp7 [new Agent/UDP] 

$udp7 set class_ 7 

$ns attach-agent $n26 $udp7 

 

#Create a CBR traffic source and attach it to udp7 

set cbr7 [new Application/Traffic/CBR] 

$cbr7 set packetsize_  200 

$cbr7 set interval_ 0.005 

$cbr7 attach-agent $udp7 

 

#Create a UDP agent and attach it to node n27 

set udp8 [new Agent/UDP] 

$udp8 set class_ 8 



- 62 - 

 

$ns attach-agent $n27 $udp8 

 

#Create a CBR traffic source and attach it to udp8 

set cbr8 [new Application/Traffic/CBR] 

$cbr8 set packetsize_ 135 

$cbr8 set interval_ 0.005 

$cbr8 attach-agent $udp8 

 

#Create a UDP agent and attach it to node n25 

set udp9 [new Agent/UDP] 

$udp9 set class_9 

$ns attach-agent $n25 $udp9 

 

#Create a CBR traffic source and attach it to udp9 

set cbr9 [new Application/Traffic/CBR] 

$cbr9 set packetsize_ 50 

$cbr9 set interval_ 0.005 

$cbr9 attach-agent $udp9 

 

#Create a UDP agent and attach it to node n16 

set udp10 [new Agent/UDP] 

$udp10 set class_ 1 

$ns attach-agent $n16 $udp10 

 

#Create a CBR traffic source and attach it to udp10 

set cbr10 [new Application/Traffic/CBR] 

$cbr10 set packetsize_  500 

$cbr10 set interval_ 0.005 

$cbr10 attach-agent $udp10 

 

#Create a TCP agent and attach it to node n23 

set tcp2 [new Agent/TCP] 

$tcp2 set class_ 2 

$ns attach-agent $n23 $tcp2 



- 63 - 

 

 

#Create a CBR traffic source and attach it to tcp2 

set cbr11 [new Application/Traffic/CBR] 

$cbr11 set packetsize_  500 

$cbr11 set interval_ 0.005 

$cbr11 attach-agent $tcp2 

 

#Create a UDP agent and attach it to node n24 

set udp12 [new Agent/UDP] 

$udp12 set class_ 4 

$ns attach-agent $n24 $udp12 

 

#Create a CBR traffic source and attach it to udp12 

set cbr12 [new Application/Traffic/CBR] 

$cbr12 set packetsize_  200 

$cbr12 set interval_ 0.005 

$cbr12 attach-agent $udp12 

 

#Create a UDP agent and attach it to node n26 

set udp13 [new Agent/UDP] 

$udp13 set class_ 7 

$ns attach-agent $n26 $udp13 

 

#Create a CBR traffic source and attach it to udp13 

set cbr13 [new Application/Traffic/CBR] 

$cbr13 set packetsize_  80 

$cbr13 set interval_ 0.005 

$cbr13 attach-agent $udp13 

 

#Create a UDP agent and attach it to node n16 

set udp14 [new Agent/UDP] 

$udp14 set class_ 7 

$ns attach-agent $n16 $udp14 

 



- 64 - 

 

#Create a CBR traffic source and attach it to udp14 

set cbr14 [new Application/Traffic/CBR] 

$cbr14 set packetsize_  80 

$cbr14 set interval_ 0.005 

$cbr14 attach-agent $udp14 

 

#Create a UDP agent and attach it to node n10 

set udp15 [new Agent/UDP] 

$udp15 set class_ 7 

$ns attach-agent $n10 $udp15 

 

#Create a CBR traffic source and attach it to udp15 

set cbr15 [new Application/Traffic/CBR] 

$cbr15 set packetsize_  80 

$cbr15 set interval_ 0.005 

$cbr15 attach-agent $udp15 

 

#Create a UDP agent and attach it to node n6 

set udp16 [new Agent/UDP] 

$udp16 set class_ 7 

$ns attach-agent $n6 $udp16 

 

#Create a CBR traffic source and attach it to udp16 

set cbr16 [new Application/Traffic/CBR] 

$cbr16 set packetsize_  80 

$cbr16 set interval_ 0.005 

$cbr16 attach-agent $udp16 

 

#Create a UDP agent and attach it to node n10 

ser udp17 [new Agent/UDP] 

$udp17 set class_ 7 

$ns attach-agent $n10 $udp17 

 

#Create a CBR traffic source and attach it to udp17 



- 65 - 

 

set cbr17 [new Application/Traffic/CBR] 

$cbr17 set packetsize_  80 

$cbr17 set interval_ 0.005 

$cbr17 attach-agent $udp17 

 

proc throttle { }  { 

 

#min load of the server 

set Ls 100 

#max load of the server 

set Us 300 

#small constant 

set fk 2 

#d represent constant additive step 

set d 0.1 

#here p represent traffic arrival step 

set p 10 

set rs [expr $Ls + $Us/$fk] 

while {$1} { 

#multicast current rate-throttle to Rk; 

#monitor traffic arrival rate p for time window w; 

#throttle rate not string enough 

If ($p > $Us) 

{ 

   Set rs [ expr $rs / $2] 

} 

#throttle too string 

else if ($p < $Ls) 

   { 

    if ([expr $p - $ Plast] < e) 

   { 

   #remove rate throttle from Rk; 

   break; 

   } 



- 66 - 

 

   else 

   { 

 #try relaxing throttle by additive step 

 set Plast = $P 

 set rs [expr $rs + $d] 

  } 

} 

 

else 

{ 

    break; 

} 

 

} 

} 

 

 

#adding this function 

 

#Define a procedure that attaches a UDP agent to a previously created node 

# ‘node’ and attaches an Expoo traffic generator to the agent with the Ls=100 and Us=300 

#characteristic values ‘size’ for packet size ‘burst’ for burst time  

#’idle’ for the idle time and ‘rate’ for burst peak rate. The procedure connects 

# the source with the previously defined traffic sink ‘sink’ and returns the 

#source odject. 

proc attach-expoo-traffic {node sink size burst idle rate }  { 

 # Get an instance of the simulator  

 set ns [Simulator instance] 

 

 #Create a UDP agent and attach it to the node 

 set source [new agent/UDP] 

 $ns attach-agent $node $ source 

 

 #Create and Expoo traffic agent and set its configuration parameters 



- 67 - 

 

 set traffic [new Application/Traffic/Exponential] 

 $traffic set packetSize_ $size 

 $traffic set burst_time_ $burst 

$traffic set idle_time_ $idle 

$traffic set rate_ $rate 

 

  #Attach traffic source to the traffic generator  

  $traffic attach-agent $source 

 #Connect the source and the sink 

 $ns connect $source $sink 

return $traffic 

#Define a procedure which periodically records the bandwidth received by the  

#three traffic sinks sink0/1/2 and writes it to the three files f0/1/2. 

proc record {} { 

  global sink 0 sink 1 sink 2 f0 f1 f2 

 #Get an instance of the simulator 

 set ns [Simulator instance] 

 #Set the time after which the procedure should be called again  

                            set time 0.5 

 # How many bytes have been received by the traffic sinks? 

  set bw0 [$sink0 set bytes_] 

  set bw1 [$sink1 set bytes_] 

  set bw2 [$sink2 set bytes_] 

 #Get the current time 

  set now [$ns now] 

#Calculate the bandwidth (in MBit/s) and write it to the files 

  puts $f0 “$now [expr $bw0/$time*8/1000000]” 

  puts $f1 “$now [expr $bw1/$time*8/1000000]” 

  Puts $f2 “$now [expr $bw2/$time*8/1000000]” 

 #Reset the bytes_values on the traffic sinks 

  $sink0 set bytes_ 0 

  $sink1 set bytes_ 0 

  $sink2 set bytes_ 0 

 #Re-schedule the procedure 



- 68 - 

 

  $ns at [expr $now+$time] “record” 

} 

 

# Create three traffic sinks and attach them to the node0 , node0 , node 0 

set sink0 [new Agent/LossMonitor] 

set sink1 [new Agent/LossMonitor] 

set sink2 [new Agent/LossMonitor] 

$ns attach-agent $n0 $sink0 

$ns attach-agent $n0 $sink1 

$ns attach-agent $n0 $sink2 

 

#Create three traffic sources 

set source0 [attach-expoo-traffic $n0 $sink0 200 2s 1s 100k] 

set source1 [attach-expoo-traffic $n1 $sink1 200 2s 1s 200k] 

set source2 [attach-expoo-traffic $n2 $sink2 200 2s 1s 300k] 

 

#Create  a Null agent (a traffic sink) and attach it to node n3 

set null0 [new Agent/Null ] 

$ns attach-agent $n0 $null0 

 

set null1 [new Agent/Null ] 

$ns attach-agent $n10 $null1 

 

set null2 [new Agent/Null ] 

$ns attach-agent $n6 $null2 

 

Set null3 [new Agent/Null ] 

$ns attach-agent $n12 $null3 

 

#Connect the traffic sources with the traffic sink 

$ns connect $upd1 $null0 

$ns connect $upd2 $null0 

$ns connect $tcp0 $null0 

$ns connect $tcp1 $null0 



- 69 - 

 

$ns connect $upd5 $null0 

$ns connect $upd6 $null0 

$ns connect $upd7 $null0 

$ns connect $upd8 $null0 

$ns connect $upd9 $null0 

$ns connect $upd10 $null1 

$ns connect $tcp2 $null1 

$ns connect $upd12 $null3 

$ns connect $upd13 $null0 

$ns connect $upd14 $null1 

$ns connect $upd15 $null2 

$ns connect $upd16 $null0 

$ns connect $upd17 $null0 

 

#Schedule events for the CBR agents 

$ns at 0.3 “$cbr1 start” 

$ns at 0.4 “$cbr2 start” 

$ns at 0.5 “$cbr3 start” 

$ns at 0.6 “$cbr4 start” 

$ns at 0.7 “$cbr5 start” 

$ns at 0.8 “$cbr6 start” 

$ns at 0.6 “$cbr7 start” 

$ns at 0.9 “$cbr8 start” 

$ns at 1.0 “$cbr9 start” 

$ns at 2.0 “$cbr10 start” 

$ns at 2.0 “$cbr11 start” 

$ns at 5.0 “$cbr12 start” 

$ns at 2.2 “$cbr13 start” 

$ns at 6.0 “$cbr2 start” 

$ns at 6.0 “$cbr4 start” 

$ns at 6.0 “$cbr7 start” 

$ns at 2.0 “$cbr17 start” 

 

#Start logging the received bandwidth  



- 70 - 

 

 

$ns at 0.0 “record” 

 

#Start the traffic sources 

$ns at 10.0 “$source0 start” 

$ns at 10.0 “$source1 start” 

$ns at 10.0 “$source2 start” 

$ns at 2.1 “$cbr14 start” 

$ns at 2.01 “$cbr15 start” 

$ns at 2.02 “$cbr16 start” 

 

$ns at 2.0 “$cbr1 stop” 

$ns at 2.0 “$cbr2 stop” 

$ns at 7.0 “$cbr3 stop” 

$ns at 5.0 “$cbr4 stop” 

$ns at 7.0 “$cbr5 stop” 

$ns at 7.0 “$cbr6 stop” 

$ns at 2.0 “$cbr7 stop” 

$ns at 7.0 “$cbr8 stop” 

$ns at 7.0 “$cbr9 stop” 

$ns at 7.0 “$cbr10 stop” 

$ns at 6.0 “$cbr11 stop” 

$ns at 7.0 “$cbr12 stop” 

$ns at 7.0 “$cbr13 stop” 

$ns at 7.0 “$cbr14 stop” 

$ns at 7.0 “$cbr2 stop” 

$ns at 7.0 “$cbr4 stop” 

$ns at 7.0 “$cbr7 stop” 

$ns at 7.0 “$cbr17 stop” 

$ns at 7.0 “$cbr15 stop” 

$ns at 7.0 “$cbr16 stop” 

 

#Stop the traffic sources 

$ns at 50.0 “$source0 stop” 



- 71 - 

 

$ns at 50.0 “$source1 stop” 

$ns at 50.0 “$source2 stop” 

 

#node failure at node n3 at time 1.0 sec 

$ns rtmodel- at 1.0 down $n3 

$ns stmodel-at 2.0 up $n3 

 

#link failure between node n6 & n2 at time 3.0sec 

 

$ns rtmodel-at 3.0 down $n6 $n2 

$ns rtmodel-at 4.0 up $n6 $n2 

 

#define throttle rate vs no. of packets 

proc throttlerate { }  { 

set noofpackets 10 

set t 0.0 

set n 10.0 

set ti 1.2 

set ri 1.0 

set Ti expr [$ti * $ri] 

#Get the current time 

  set now [$ns npw] 

 

For {set i 0} {$i < $n} {incr i} { 

    If([expr ($t-$ti)] < $Ti) 

     { 

  set Ti [expr ($t - $ti] 

      } 

noofpackets = $noofpackets+10 

} 

 

#Calculate the bandwidth (inMBit/s) 

 puts  “$now [expr $bw0/$time*8/1000000]” 

 puts  “$now [expr $bw1/$time*8/1000000]” 



- 72 - 

 

 puts  “$now [expr $bw2/$time*8/1000000]” 

#Re-schedule the procedure 

 $ns at [expr $now+$time] “record” 

# Call xgraph plotting program to plot throttle rate vs no. of packets 

exec  xgraph throttle.data & 

exit 0  

} 

 

#Define a ‘finish2’ procedure 

proc  finish2 {} { 

 global ns nf 

 $ns flush-trace 

          #Close the trace file 

 close $nf 

         #Execute nam on the trace file 

 exec nam out.nam & 

#Adding these 8 lines 

 global f0 f1 f2 f3 

 #Close the output files 

close $f0 

close $f1 

close $f2 

close $f3 

 

#Call xgraph to display the results 

 exec xgraph r0.tr r10.tr r6.tr r12.tr –geometry 600x400 & 

 exit 0 

} 

 

#Call the finish procedure after 60 seconds of simulation time 

$ns at 60.0 “finish” 

 

#Call the finish procedure after 8 seconds of simulation time 

$ns at 8.0 “finish1” 



- 73 - 

 

 

#Call the finish procedure after 10 seconds of simulation time 

$ns at 10.0 “finish2” 

 

#Run the simulation 

$ns run [36] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 74 - 

 

APPENDIX 4: PUBLICATION 

 

Conference Name: International Conference on Advanced Computing , Communication and 

Networks’11  

Paper Title: DDOS Mitigation Techniques – A Survey 

Authors: Dhwani Garg 

Location: CHANDIGARH, INDIA 

 

Conference Name: National Conference on Advances in Computational Intelligence 

Paper Title: DDOS Attacks Router Throttling Mitigation Technique (Paper Accepted) 

Authors: Dhwani Garg 

Location: ROHTAK,INDIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 75 - 

 

APPENDIX 5: REFERENCES 

 
 

[1] Abraham Yaar, Adrian Perrig, Dawn Song “Pi: A Path Identification Mechanism to Defend 

against DDOS Attacks” IEEE 2003. 

 

[2] Antonis Michalas, Nikos Komninos, Neeli R. Prasad, Vladimir A. Oleshchuk”New Client 

Puzzle Approach for DoS Resistance in Ad hoc Networks” IEEE 2010. 

 

[3] Antonio Challita, Mona El Hassan, Sabine Maalouf, Adel Zouheiry “A Survey of DDOS 

Defense Mechanisms”  

 

[4] Biswa Ranjan Swain, Bibhudatta Sahoo “Mitigating DDoS attack and Saving 

Computational Time using a Probabilistic approach and HCF method” IEEE International 

Advance Computing Conference, March 2009. 

 

[5] Fasheng Yi, Shui Yu, Wanlei Zhou, Jing Hai and Alessio Bonti,”Source based Filtering 

Scheme Against DDOS Attacks” International Journal Database of Theory and Application. 

 

[6] Gal Badishi, Amir Herzberg, Idit Keidar, Oleg Romanov, Avital Yachin “An Empirical 

Study of Denial of Service Mitigation Techniques” IEEE  2008. 

 

[7] Nicholas A. Fraser, Douglas J. Kelly, Richard A. Raines, Rusty O.  Baldwin and Barry E. 

Mullins “Using Client Puzzles to Mitigate Distributed Denial of Service Attacks in the Tor 

Anonymous Routing Environment” ICC,2007. 

 

[8] Palvinder Singh Mann, Dinesh Kumar  “A Reactive Defense Mechanism based on an 

Analytical Approach to Mitigate DDoS Attacks and Improve Network Performance” 

International Journal of Computer Applications, January 2011. 

 

[9] Ping Du, Akihiro Nakao “Mantlet Triology: DDOS Defense Deployable with Innovative 

Anti-Spoofing, Attack Detection and Mitigation” IEEE 2010. 

 



- 76 - 

 

[10] Rajesh Sharma, Krishan Kumar, Kuldip Singh, R.C. Joshi “Shared Based  Rate Limiting; 

An ISP level Solution to deal DDOS Attacks” IEEE 2006. 

 

[11] Raktim Bhattacharjee, S. Sanand, and S.V. Raghavan. “Path Attestation Scheme to avert 

DDoS Flood Attacks” International Federation for Information Processing,2010. 

 

[12] Ruiliang Chen, Jung-Min Park, Randolph Marchany “A Divide –and-Conquer Strategy or 

Thwarting Distributed Denial-of-Service Attacks”     IEEE 2007. 

 

[13] Ruiliang Chen, Jung-Min Park “Attack Diagnosis: Throttling Distributed Denial of 

Service Attacks Close to the Attack Sources” IEEE 2005. 

 

[14] V.Praveena, N.Kiruthika “New Mitigating Technique to Overcome DDOS Attack” World 

Academy of Science, Engineering and Technology 2008. 

 

[15] W.J. Blackert, D.M. Gregg, A.K. Castner,  E.M. Kyle, R.L. Hom, R.M. Jokerst 

“Analyzing Interaction Between Distributed Denial Of Service Attacks and Mitigation 

Technologies” IEEE 2003. 

[16] Xiuli wang “Mitigation of DDOS Attacks through Pushback and Resource Regulation” 

International Conference on Multimedia and Information Technology 2008. 

 

[17]Yinan Jing, Xueping Wang, Xiaochun Xiao, Gendu    Zhang”Defending Against Meek 

DDOS Attacks By IP Trace-back based Rate Limiting”IEEE  2006. 

 

[18] Yinghong Fan, Hossam Hassanein and Patrick Martin “Proactive  Control of  Distributed 

Denial of Service Attacks with Source Router Preferential Dropping” IEEE,2005. 

 

[19] http://en.wikipedia.org/wiki/Tcl 

[20] http://users.belgacom.net/bruno.champagne/tcl.html 

[21] http://www.acunetix.com/general/images/websitesecurity/web-hacks.jpg 

[22]  http://www10.org/cdrom/papers/409/scenario-overview.gif 

[23] http://global.crazyengineers.com/wp-content/uploads/2011/03/botnet.jpg 

[24]http://4.bp.blogspot.com/_TWV_4RpG9Lo/TTF9kfhUMAI/AAAAAAAAAa0/cdJCjhQwyBk/s1600/vie      

wer2.png 



- 77 - 

 

[25]http://t3.gstatic.com/images?q=tbn:ANd9GcRaPZnkmt3Kez3V2M_p3K32t1g_ZBVqJFzyY_wam9mk

YCIxDUWjjbPiuoX3 

[26] http://www.huawei.com/products/datacomm/dm/datacomm/enus/gc/1035_img/2.JPG 

[27] http://blog.goodvikings.com/wp-content/uploads/dos-attack-index2.gif 

[28] http://www.blogymate.com/BlogPost/BlogyMate.com-BlogTH2612011111741.jpg.. 

[29] http://www.blogymate.com/BlogPost/BlogyMate.com-BlogTH2612011111741.jpg. 

[30] http://www.securitydocs.com/images/papers/dosfaq-1.png. 

[31] http://tula.bofh.ru/articles/539/2005-dos3.gif. 

[32] http://www.isi.edu/nsnam/ns/tutorial/ 

[33] http://www.blogymate.com/BlogPost/BlogyMate.com-BlogTH2612011111741.jpg. 

[34] http://tula.bofh.ru/articles/539/2005-dos3.gif. 

[35] http://www.isi.edu/nsnam/ns/tutorial/ 

[36] David K.Y Yau, John C.S Lui, Feng Liang and Yeung Yam,“Defending Against Distributed Denial-of 

Service Attacks With Max-Min Fair Server-Centric Router Throttles” IEEE Transactions on Parallel and 

Distributed Systems, July 2001 


