SIMULATION OF COVERAGE CONFIGURATION PROTOCOL FOR SELF ORGANISING WSN

A Major Project Report Submitted in partial fulfillment of the requirements

for the award of the degree of

MASTER of ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

DEEPAK YADAV

University Roll No: 8516

College Roll No: 07/E&C/2K9

Under the supervision and guidance of:

Mrs S. INDU

Associate Profesor, Delhi College of Engineering

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI - 110042

2009-2011

CERTIFICATE

This is to certify that the Dissertation/Project report entitled "**Simulation of Coverage Configuration Protocol for Self Organizing Sensor Networks"** is the work of **Deepak Yadav (07/ECE/ME/2K9)**, a student of Delhi Technological University (Formly Delhi College of Engineering). This work is completed under my direct supervision and guidance and forms a part of Master of Engineering (Electronics and Communication) course and curriculum. To the best of my knowledge, the matter embodied in this thesis has not been submitted to any other University/ Institute for the award of any other degree or diploma.

Place: DTU Delhi Date: Mrs S. Indu Associate Professor Department of ECE Delhi Technological University

ACKNOWLEDGEMENT

No thesis is created entirely by an individual, many people have helped to create this thesis and each of their contribution has been valuable. My deepest gratitude goes to my thesis supervisor, **Mrs S. Indu**, *Associate Professor, Department Electronics and Communication Engineering*, for her guidance, support, motivation and encouragement throughout the period this work was carried out. Her readiness for consultation at all times, her educative comments, her concern and assistance even with practical things have been invaluable.

I am grateful to **Dr. Rajiv Kapoor**, *Professor and Head, Department Electronics and Communication Engineering*, for his excellent support during my work.

I would also like to thank all professors and lecturers, and members of the department of Electronics and communication Engineering for their generous help in various ways for the completion of this thesis.

I am grateful to my parents for their moral support all the time. They have been always around to cheer me up, in the odd times of this work

A vote of thanks to our fellow students for their friendly co-operation and suggestions.

DEEPAK YADAV (07/ECE/ME/2K9)

ABSTRACT

This paper tackles the problems of localization and coverage in randomly deployed high density sensor networks. In particular, it presents a novel and integrated approach that performs at once localization and coverage. The most important factor to consider in the development of a coverage scheme is that of energy constraints. Sensor nodes usually depend upon a battery for their energy source and in most deployments battery replacement is not feasible. It therefore becomes very important to conserve energy and prolong battery life.

We introduce here an energy efficient approach based on a single mobile beacon (sink) aware of its position. Here sink nodes moves around broadcasting beacons. From beacon all nodes receive network information. Beacon is a MAC packet: RTS and CTS. Sensor nodes receiving beacon packets first calculates its ideal next-hop relay position on the straight line toward this sink based on the energy-optimal forwarding distance, and each forwarder selects the neighbor closest to its ideal next-hop relay position as the next-hop relay using the Request-To-Send/Clear-To-Send (RTS/CTS) handshaking mechanism. On the other hand, We exploit this relay selection to construct sets of active nodes that ensure as much as possible the zone coverage.

In our approach the mobile sink trajectory follows a Hilbert curve. The results of experiments conducted using the discrete event simulator Omnet++.

TABLE OF CONTENTS

ACKNOLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	vii
1. INTRODUCTION TO WSN AND THESIS OUTLINE	. 1
1.1. Overview of Wireless Sensor Network	2
1.1. Unique Features of WSN	3
1.2. Thesis Outline	5
1.3. Thesis Organization	6
2. COVERAGE IN WSN: ISSUES AND APPROCHES	8
2.1. Issues in Wireless Sensor Network Coverage	9
2.2. Approaches to Wireless Sensor Network Coverage	13
2.2.1 Art Gallery Problem	13
2.2.2 Voronoi diagram and Delaunay triangulation	14
2.2.3 Worst or Best Case Coverage	15
2.2.4 Probabilistic Sensing	16
2.2.5 Disjoint Sets	16
2.2.6 Coverage With Connectivity	16
3. SINK MOVEMENT: HILBERT CURVE	19
3.1 Sink Mobility	20
3.2 Hilbert Curve	21
3.2.1 Why Hilbert Curve	22

3.3 Dynamic Hilbert curve	24	
4. LOCALISATION AND COVERAGE APPROACH	26	
4.1 Localization Hilbert Trajectory Order	27	
4.2 Localization and coverage Hilbert trajectory order	31	
4.3 Mobile Beacon Communication	32	
4.3.1 Localization	33	
4.3.1.a Algorithm I: h key selection	33	
4.3.1.b Algorithm II : X_n , Y_n Estimation	36	
4.3.2 Coverage	37	
5. IMPLEMENTATION 5.1: The Omnet++ Framework	39 40	
5.2: Simulation Structure	41	
5.2.1 Physical module	41	
5.2.2 MAC module	43	
5.2.3 Routing module	43	
5.2.4 Application module	44	
5.2.5 mobility module	44	
6. SIMULATION RESULTS46		
7. CONCLUSION AND FUTURE WORK	53	
REFERENCES	55	

LIST OF FIGURES

Fig 2.1.A: Deterministic Placement of Nodes.	11
Fig 2.1.B: Random Placement of Nodes.	11
Fig 2.2.A: Homogenous Sensor.	12
Fig 2.2.B: Heterogeneous Sensor.	12
Fig 2.3.A: Centralized Algorithm.	13
Fig 2.3.B Distributed Algorithm.	13
Fig 2.4.A Voronoi Diagram.	15
Fig 2.5: Delauncy Triangulation.	15
Fig 3.1: Hilbert Curve of Order 1 and 2 with Hilbert Keys.	21
Fig 3.2: Scanline Curve.	23
Fig 3.3 Peano Curve.	23
Fig 3.4: Dynamic Hilbert Curve.	24
Fig 4.1: One Unit Square Sample.	29
Fig 4.2:Example of Region Of Monitoring With Nodes And Hilbert	
Beacon Trajectory.	31
Fig 4.3: Example of Node N with Three Selected H –Keys (h_0 , h_1 and h_2).	36
Fig 5.1: Modular Architecture of Network.	45
Fig 6.1: Simulation Snapshot Showing Position Of Sink As Simulation	
Advances	48
Fig 6.1: Simulation Snapshot Showing Inactive Nodes to Justify	
Energy Conservation.	49
Fig 6.3: Simulation Snapshot Showing Dead Nodes As Time Progress.	50-51