DECLARATION BY THE CANDIDATE

Date:_____

I hereby declare that the work presented in this dissertation entitled **COMPUTATIONAL STUDY OF TURBINE CASCADE**" has been carried out by me under the guidance of Dr. Samsher, Professor, Department of Mechanical Engineering, Delhi College of Engineering, Delhi and hereby submitted for the partial fulfilment for the award of degree of Master of Engineering in Mechanical Engineering (THERMAL) at Delhi College of Engineering (Delhi university), Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Dated:-----

Dr. SAMSHER

Professor

Mechanical Engineering Department

Delhi College of Engineering, Delhi-42

Acknowledgement

I would like to acknowledge those people and institute who have given me the knowledge and light of guidance which has helped me wade through the darkness. Here, I express my heartily and sincere gratitude and indebtedness to Dr. SAMSHER, Professor in Mechanical Engineering Department, Delhi College of Engineering, Delhi for his valuable guidance and wholehearted cooperation. He has a special place in my heart for many reasons but to be limited, he is the one who inspires me to move ahead in life with persistence and endurance.

My heartily thanks to all of my Professors for their expertise and rounded personality they have imparted to me.

My special thanks go to parents who have given me the strength, love and care to carry out this course successfully.

DEVENDRA SINGH

ABSTRACT

Roughness over the turbine blade is mainly caused by erosion corrosion and deposition. The roughness varies along the blade height and also over different stage of blade. To see the effect of roughness, three profiles have been taken and were checked for different roughness over only pressure surface, only suction surface and over both the surfaces together. The study has been carried out using Fluent software. It has been concluded that the loss coefficient increases with roughness. Roughness over pressure surface is more detrimental than suction surface. Study also reveals that roughness over reaction profile is more detrimental than that of impulse profile.

LIST OF CONTENTS

Certificate

Acknowledgement

Abstract

List of contents

List of figures

List of tables

Nomenclature

Chapter 1 INTRODUCTION

1.1	Background	1
1.2	Surface roughness	1
1.3	Existence of surface roughness- Why	2
1.4	Motivation	3
1.5	Problem statement	4
1.6	Expected outcome and actual achieved	4
1.7	Effect of roughness over performance	4

Chapter 2 LITERATURE REVIEW (BASIC CONCEPT) 2.1 Linear turbine cascade 5 2.2 Basic turbine blade concept 7 2.3 Coordinate system 9 Energy transfer 2.4 9 2.5 Blade loading 10 2.6 Blade forces 12

Delhi College of Engineering, UNIVERSITY OF DELHI, Delhi-42

COMPUTATIONAL STUDY OF TURBINE CASCADE 2011

2.6.1	Tangential force	12
2.6.2	Axial force	13
2.7	Zweifel's criterion	14
2.8	Effect of inlet and exit velocities	14
2.9	Terminology used in cascade analysis	15
2.10	Roughness characterization	18
2.11	Roughness pattern	18
2.12	Fluid dynamics of flow over blades	19
2.12.1	Boundary layer growth over blade surface	19
2.12.2	Effect of aspect ratio, pitch chord ratio, Mach	20
	number and inlet flow angle	

Chapter 3		LITERATURE REVIEW (BASIC CONCEPT)	
	3.1	Mechanism of roughness	21
	3.1.1	Erosion	22
	3.1.2	Deposition	22
	3.1.3	Corrosion	23
	3.2	Roughness Measurement	24

Chapter 4		MODELLING OF CASCADE	
	4.1	Description of computational domain	45
	4.2	Modelling with extra layer of thickness	49
	4.3	Governing equations	50
	4.3.1	Continuity equation	50
	4.3.2	Momentum equation	51

COMPUTATIONAL STUDY OF TURBINE CASCADE 2011

4.3.3	Energy equation	51
4.4	Turbulence models	53
4.4.1	Realizable k-ɛ model	54
4.5	Modelling of roughness	56
4.6	Boundary and operating conditions	58
4.6.1	Boundary conditions	58
4.6.2	Operating conditions	60
4.7	Profile loss calculation	61

Chapter 5		RESULT AND DISCUSSION	
	5.1	Effect of roughness applied over different profile	es
		on loss Coefficient	66
	5.2	Effect of change in roughness over profile 6030	67
	5.3	Effect of roughness over profile 5530	67
	5.4	Roughness over profile 352	67
	5.5	Compression of effect roughness across the profi	les
			67
Chapter 6		CONCLUSIONS	
Chapter 7		RECOMMENDATION OF FUTURE WORK	
		REFERENCES	
		APPENDIX	

LIST OF FIGURES

Figure: 2.1	Turbine cascade wind tunnel	6
Figure:2.2	Turbine Cascade Terminology	8
Figure:2.3	Cascade Velocity diagram & Surface Static pressure distribution.	11
Figure: 3.1	Roughness caused by deposits on turbine blades M/s Encodes	23
Figure: 3.2	Roughness caused by solid particle erosion of turbine diaphragm	NTPC
	Vindhyachal).	24
Figure: 3.3	Roughness Trace from Erosion Panel Bennett [5]	25
Figure: 3.4	the effect of corrosion at various turbine blades	33
Figure :3.5	Experimental set up of rectilinear cascade of blade Samsher [1]	35
Figure :3.6	material removal due to erosion at the trailing edge of the blade	40
Figure: 4.1	Shape of turbine blade 6030 cascade model Samsher [1].	45
Figure: 4.2	Shape of turbine blade 5530 cascade model Samsher [1]	46
Figure: 4.3	Shape of turbine blade 3525 cascade model Samsher [1].	47
Figure :4.4	Meshing of the curved surface of Profile 3525 at location A.	49
Figure: 4.5	Profile 6030 original and with 0.35 mm of extra layer on surface	49
Figure :4.6	Profile 6030 original and with 0.35 mm of extra layer on 1/3 rd at	50
	Trailing edge of the pressure surface.	
Figure: 4.7	Measurement plane at 15% of the chord.	61
Figure :4.8	Profile loss coefficient versus relative pitch.	64
Figure: 5.1	Total pressure distributions in wake region for smooth blade in Pa	a 68

Figure: 5.2	Variation in loss coefficient for profile 6030 for roughness over Pre	essure
	surface only (ps 0.001. and ss 0.00)	69
Figure: 5.3	Variation in loss coefficient for profile 6030 for roughness over pres	ssure
	surface only (ps 0.005 and ss 0.00)	69
Figure: 5.4	Variation in loss Coefficient for profile 6030 for roughness over	
	suction surface only (ps 0.005 and ss 0.00)	70
Figure: 5.5	Variation in loss Coefficient for profile 6030 for roughness over suc	ction
	surface Only (ps 0.00 and ss 0.001)	70
Figure: 5.6	Variation in loss Coefficient for profile 6030 for roughness over bot	h
	pressure surface and suction surface(ps 0.001 and ss 0.001)	71
Figure : 5.7	Variation in loss coefficient for profile 6030 for roughness over bo	th
	pressure surface and suction surface (ps 0.005 and ss 0.005)	71
Figure:5.8	Variation in loss Coefficient for profile 5530 for roughness over	
	pressure surface only (ps 0.005 and ss 0.00)	72
Figure: 5.9	Variation in loss coefficient for profile 5530 for roughness over	
	pressur surface only (ps 0.001 and ss 0.00)	72
Figure: 5.10	Variation in loss coefficient for profile 5530 for roughness over	
	suction surface only (ps 0.00 and ss 0.005)	73
Figure: 5.11	Variation in loss Coefficient for profile 5530 for roughness over	
	Suction surface only (ps 0.00 and ss 0.001)	73
Figure: 5.12	Variation in loss Coefficient for profile 5530 for roughness over b	oth
	pressure surface and suction surface(ps 0.005 and ss 0.005)	74
Figure: 5.13	Variation in loss Coefficient for profile 5530 for roughness over bo	th
	pressure surface and suction surface (ps 0.001 and ss 0.001)	74
Figure: 5.14	Variation in loss Coefficient for profile 3525 for roughness over	

COMPUTATIONAL STUDY OF TURBINE CASCADE **2011**

	pressure surface only (ps 0.005 and ss 0.00)	75
Figure: 5.15	Variation in loss Coefficient for profile 3525 for roughness over	
	pressure surface only (ps 0.001 and ss 0.00)	75
Figure: 5.16	Variation in loss Coefficient for profile 3525 for roughness over	
	suction surface only (ps 0.00 and ss 0.005)	76
Figure: 5.17	Variation in loss Coefficient for profile 3525 for roughness over	
	suction surface only (ps 0.00 and ss 0.001)	76
Figure: 5.18	Variation in loss Coefficient for profile 3525 for roughness over both	า
	pressure surface and suction surface(ps 0.005 and ss 0.005)	77
Figure:5.19	Variation in loss Coefficient for profile 3525 for roughness over both	า
	pressure surface and suction surface (ps 0.001 and ss 0.001)	77

LIST OF TABLES

APPENDIX -1

Coordinates of the profile 3525 of Samsher [1]

Coordinates of the profile 6030 of Samsher [1]

Coordinate of the profile 5530 of Samsher [1]

NOMENCLATURE

Nomenclature

E	Both suction and pressure surface of blade rough
PE	Entire pressure surface of blade rough
PL	1/3 rd of pressure surface of blade rough at leading edge
PM	1/3 rd of pressure surface of blade rough at mid chord
РТ	1/3 rd of pressure surface of blade rough at trailing edge
RKE	Realizable k-ɛ model
RNG	Renormalized group model
S	Both suction and pressure surface of blade smooth
SE	Entire suction surface of blade rough
SL	1/3 rd of suction surface of blade rough at leading edge
SM	1/3 rd of suction surface of blade rough at mid chord

Symbols

а	Local velocity of sound
С	Chord length of blade
C_p	Specific heat at constant pressure
D _H	Hydraulic diameter
E	Energy of the system
Fi	External body force in 'i' direction
g_i	Acceleration due to gravity in i direction

k _s	Equivalent sand grain roughness
K _{adm}	Admissible surface roughness
I	Length /span of blade
L	Characteristic length
m	Mass flow of the system
Μ	Mach number
Р	Pressure of system
R _e	Reynolds number
S	Pitch
S _m	Source term
т	Temperature of the system
<i>u</i> _i	Velocity component in i direction
$\overline{u_i}$	Average velocity in turbulent flow in i direction
V	Velocity of fluid
C _{x1}	Inlet velocity
Cx ₂	outlet velocity
α ₁	Inlet angle (air angle)
α2	Exit angle, Blade angle

Greek symbols

ρ	Density of air
μ	Dynamic viscosity
К	Turbulent kinetic energy
Е	Rate of dissipation of turbulent kinetic energy
γ	Ratio of specific heats
ϕ	Scalar variable
η	Efficiency
$\sigma_{\scriptscriptstyle k}$	Prandtl number for turbulent kinetic energy
$\sigma_{_{arepsilon}}$	Prandtl number for dissipation

- Wall shear stress τ_{ω}
- ζ Mass averaged value of profile loss coefficient
- Local profile loss coefficient ζ_y
- Local exit flow angle β_{2y}
- $\delta_{_{1k}}$ Boundary layer thickness
- δ_{ii} Kronecker's delta
- au_{ij} Stress tensor

Subscripts

y

- 1 Inlet to cascade 2 Outlet to cascade Total value 0 Static value
- S Local value in pitch-wise direction