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Empirical validation of metrics to predict the quality attributes is essential in order to gain insight about the quality of software in early phases of software development. The early indication of quality attributes is relevant to the software organization. In any software organization, there is always a demand for reducing the development cost, decreasing the development time, increasing the software reliability and making the software more efficient. In this paper, we predict a model to estimate fault proneness using Object Oriented CK metrics, QMOOD metrics and some more. We apply one statistical method and six machine learning methods to predict the models. The proposed models are validated using dataset collected from Open Source software. The results are analyzed using Area Under the Curve (AUC) obtained from Receiver Operating Characteristics (ROC) analysis. The results show that the machine learning methods outperformed the statistical method. Among the machine learning methods, random forest and bagging showed the best results. Thus, researchers and practitioners may use them in their future studies to predict the faulty classes. Based on these results it is reasonable to claim that quality models have a significant relevance with Object Oriented metrics and machine learning methods have comparable performance with statistical methods.
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CHAPTER 1


Introduction
1.1 Basics of the work

Software reliability is one of the most important fields in the software engineering. It is an important facet of software quality. Every software organisation wants to produce good quality maintainable software in time and within budget. Every organisation tries to have an idea of the quality of the software product as early as possible so that poor quality software design which will lead to low quality product could be detected and hence can be ignored. It is not acceptable to postpone the assurance of software quality until the product’s release. Thus, we need good quality prediction models for this purpose. Some of the important quality models proposed and studied in the literature are Mc Call’s quality model [1], Boehm’s quality model [2], FURPS/FURPS+ [3], Dromey’s quality model [4] etc. For early software quality prediction and in order to produce reliable software, the interest of the software community in program testing is increasing day by day. But as we know, any software consists of thousands of modules and it is not possible to test each and every module. Thus, lot of research has been done in the field of identifying the software modules that are likely to be fault prone. This is done prior to the testing phase so that early identification of fault prone modules will help in the program testing. Software metrics play a very important role in predicting the quality of the software. Software metrics provide a quantitative basis for the development and validation of models for the software development process [5]. Software metrics deals with the measurement of the software product. Software product can be any software system, which includes source and object code and the various forms of documentation produced during development. There are different ways of classifying the metrics such as product and process metrics, subjective vs. objective metrics and primitive vs. computed metrics (see section 1.1.3) [6]. 
1.1.1 Object Oriented Paradigm
Object oriented design and development is becoming very popular in today’s software development environment. Object oriented programming (OOP), is a paradigm where we focus on real life objects while programming any solution. By focusing on real life objects we mean that solutions revolve around different objects, which represent respective objects in real life situation. We not only write programs to process data, we actually write behaviours of our programming objects, those behaviours are called methods in object oriented programming [7]. The data elements on which those objects behave, are called data-members/ fields. The object oriented method increases the software reusability, programmer’s productivity and reduce the overall cost of the software.

There is an increasing need for metrics adapted to the Object-Oriented paradigm to help manage and foster quality in software development. Various object-oriented metrics have been proposed by various researchers. Object oriented metrics evaluate and predict the quality of the software. Thus, to deal with the object oriented analysis and design of the software; object oriented programming metrics is an aspect to be considered. Five characteristics of object oriented metrics are [7]:

· Localization operations used in many classes

· Encapsulation metrics for classes, not modules

· Information Hiding should be measured & improved

· Inheritance adds complexity, should be measured

· Object Abstraction metrics represent level of abstraction

We can signify nine classes of object oriented metrics. In each of them, an aspect of the software is measured:
1. Size

· Population (# of classes, operations)

· Volume (dynamic object count)

· Length (e.g., depth of inheritance)

· Functionality (# of user functions)

2. Complexity

· How classes are interrelated

3. Coupling

· # of collaborations between classes, number of method calls, etc.

4. Sufficiency

· Does a class reflect the necessary properties of the problem domain?

5. Completeness

· Does a class reflect all the properties of the problem domain? (for reuse)

6. Cohesion

· Do the attributes and operations in a class achieve a single, well-defined purpose in the problem domain?

7. Primitiveness (Simplicity)

· Degree to which class operations can’t be composed from other operations

8. Similarity

· Comparison of structure, function, behaviour of two or more classes

9. Volatility

· The likelihood that a change will occur in the design or implementation of a class

Many metrics have been proposed in literature. For e.g., [9],[10],[11],[12],[13],[14],[15],[16],[17]. But the Chidamber and Kemerer’s metric suite for object oriented design is the deepest research in object oriented metrics investigation, followed by MOOD [15] metrics (see section 1.1.4).  

1.1.2 Software Quality Models
i. Mc Call quality Model
Mc Call quality model is one of the popular models proposed by Jim McCall in the year 1977 [1]. McCall, in his model has tried to bridge the gap between users and developers by mapping the users’ views with the developers’ priorities. The McCall quality model has, as shown in Figure 1.1, three major perspectives for defining and identifying the quality of a software product [18,19]:
1.  product revision (ability to undergo changes),
2.  product transition (adaptability to new environments) and
3.  product operations (its operation characteristics).

Product revision includes maintainability (the effort required to locate and fix a fault in the program within its operating environment), flexibility (the ease of making changes required by changes in the operating environment) and testability (the ease of testing the program, to ensure that it is error-free and meets its specification).

Product transition is all about portability (the effort required to transfer a program from one environment to another), reusability (the ease of reusing software in a different context) and interoperability (the effort required to couple the system to another system).

Quality of product operations depends on correctness (the extent to which a program fulfils its specification), reliability (the system’s ability not to fail), efficiency (further categorized into execution efficiency and storage efficiency and generally meaning the use of resources, e.g. processor time, storage), integrity (the protection of the program from unauthorized access) and usability (the ease of the software).
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Figure 1.1: The McCall quality model (a.k.a. McCall’s Triangle of Quality) organized around three types of quality characteristics [1].
In total there are 11 quality factors broken down by 3 perspectives as shown in figure 1.1. For each quality factor, Mc Call defined one or more quality criteria as shown in figure 1.2. Each quality factor on the left hand side of the figure represents an aspect of quality that is not directly measurable. On the right hand side are the measurable properties that can be evaluated in order to quantify the quality in terms of the factors. McCall proposes a subjective grading scheme ranging from 0 (low) to 10 (high). In total, there are 23 quality criteria .The quality factors describe different types of system behavioural characteristics, and the quality criterions are  attributes to one or more of the quality factors. In this way, an overall assessment of a software product can be made by evaluating the criteria for each factor.  The idea behind McCall’s Quality Model is that the quality factors synthesized should provide a complete software quality picture.

[image: image11.emf]
Figure 1.2: McCall’s Quality Model illustrated through a hierarchy of 11 quality factors (on the left hand side of the figure) related to 23 quality criteria (on the right hand side of the figure) [1].
ii. Boehm’s Quality Model (1978)
The second of the basic and founding predecessors of today’s quality models is the quality model presented by Barry W. Boehm in the year 1978 [2]. Boehm's quality model improves upon the work of McCall and his colleagues. Boehm addresses the contemporary shortcomings of models that automatically and quantitatively evaluate the quality of software. Like McCall quality model, Boehm’s model also presents a hierarchical quality model in which software quality is defined by a given set of attributes and metrics (measurements). The hierarchical quality model is structured around high-level characteristics, intermediate level characteristics, primitive characteristics - each of which contributes to the overall quality level. At the highest level of his model, Boehm defined three primary uses (or basic software requirements), these three primary uses are [20]:-
· As-is utility, the extent to which the as-is software can be used (i.e. ease of use, reliability and efficiency). 
· Maintainability, ease of identifying what needs to be changed as well as ease of modification and retesting.

· Portability, ease of changing software to accommodate a new environment.

These three primary uses had quality factors associated with them, representing the next level (intermediate level) of Boehm's hierarchical model. Boehm identified seven quality factors, namely:-

a. Portability, the extent to which the software will work under different computer configurations (i.e. operating systems, databases etc.).

b. Reliability, the extent to which the software performs as required, i.e. the absence of defects.

c. Efficiency, optimum use of system resources during correct execution.

d. Usability, ease of use.

e. Testability, ease of validation, that the software meets the requirements.
f. Understandability, the extent to which the software is easily comprehended with regard to purpose and structure.

g. Flexibility, the ease of changing the software to meet revised requirements.

These quality factors are further broken down into primitive constructs that can be measured, for example testability is broken down into accessibility, communicativeness, structure and self descriptiveness. As with McCall's Quality Model, the intention is to be able to measure the lowest level of the model. The primitive characteristics provide the foundation for defining quality metrics which was one of the goals when Boehm constructed his quality model. Consequently, the model presents one or more metrics measuring a given primitive characteristic.
[image: image12.emf]
Figure 1.3: Boehm's Software Quality Characteristics Tree [20]. 
As-is Utility, Maintainability, and Portability are necessary (but not sufficient) conditions for General Utility. As-is Utility requires a program to be Reliable and adequately Efficient and Human-Engineered. Maintainability requires that the user be able to understand, modify, and test the program, and is aided by good Human-engineering
iii. FURPS/FURPS+

A later, and perhaps somewhat less renown, model that is structured in basically the same manner as the previous two quality models is the FURPS model originally presented by Robert Grady [3] (and extended by Rational Software [21-23] - now IBM Rational Software – into FURPS+3). FURPS stands for:

· Functionality – which may include feature sets, capabilities and security

· Usability - which may include human factors, aesthetics, consistency in the user interface, online and context sensitive help, wizards and agents, user documentation, and training materials

· Reliability - which may include frequency and severity of failure, recoverability, predictability, accuracy, and mean time between failure (MTBF)

· Performance - imposes conditions on functional requirements such as speed, efficiency, availability, accuracy, throughput, response time, recovery time, and resource usage

· Supportability - which may include testability, extensibility, adaptability, maintainability, compatibility, configurability, serviceability, installability, localizability (internationalization)

The FURPS-categories are of two different types: Functional (F) and Non-functional (URPS). These categories can be used as both product requirements as well as in the assessment of product quality.

iv. Dromey's Quality Model
An even more recent model similar to the McCall’s, Boehm’s and the FURPS(+) quality model, is the quality model presented by R. Geoff Dromey [4,24]. Dromey proposes a product based quality model that recognizes that quality evaluation differs for each product and that a more dynamic idea for modelling the process is needed to be wide enough to apply for different systems. Dromey is focusing on the relationship between the quality attributes and the sub-attributes, as well as attempting to connect software product properties with software quality attributes. 
As Figure 1.4 illustrates, there are three principal elements to Dromey's generic quality model:
1) Product properties that influence quality: According to Dromey, the software products possess intrinsic properties that are used to evaluate the quality of the products. They can be classified into four categories: 

· Correctness: Evaluates if some basic principles are violated. 

· Internal: Measure how well a component has been deployed according to its intended use. 

· Contextual: Deals with the external influences by and on the use of a component. 

· Descriptive: Measure the descriptiveness of a component (for example, does it have a meaningful name?). 
2) High level quality attributes

3) Means of linking the product properties with the quality attributes.
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Figure 1.4: Dromey’s Quality model
Dromey's Quality Model is further structured around a five step process:

1) Chose a set of high-level quality attributes necessary for the evaluation.

2) List components/modules in your system.

3) Identify quality-carrying properties for the components/modules (qualities of the component that have the most impact on the product properties from the list above).

4) Determine how each property effects the quality attributes.

5) Evaluate the model and identify weaknesses.

Drawbacks of the model:

For Dromey, the high level characteristics of quality will manifest themselves if the components of the software product, from the individual requirements to the programming language variables, exhibit quality-carrying properties. Dromey's hypothesis should be questioned. If all the components of all the artifacts produced during the software lifecycle exhibit quality-carrying properties, will the resulting product manifest characteristics such as maintainability, functionality, and others? 

The following analogy will be useful in answering this question: 

If you buy the highest quality flour, along with the highest quality apples and the highest quality cinnamon, will you automatically produce an apple pie that is of the highest quality? 
The answer is obviously negative. In addition to quality ingredients, at least three more things are needed in order to produce an apple pie of the highest quality: 

· A recipe (i.e. an overall architecture and an execution process). Dromey acknowledges this by identifying process maturity as a desirable high level characteristic. However, it is only briefly mentioned in both his publications on the subject (Dromey, 1995; Dromey, 1996). 

· The consumer's tastes must be taken into account. In order for the result to be considered of the highest quality by the consumer, it needs to be tuned to his tastes. This is akin to what is commonly called user needs in software engineering. User needs are completely ignored by Dromey. However, as it was demonstrated in the introduction, they are an integral and non-negligible part of software quality. 

· Someone with the qualifications and the tools to properly execute the recipe. 

While Dromey's work is interesting from a technically inclined stakeholder's perspective, it is difficult to see how it could be used at the beginning of the lifecycle to determine user quality needs. Dromey (1995) states that software quality “must be considered in a systematic and structured way, from the tangible to the intangible”. By focusing too much on the tangible, Dromey fails to build a model that is meaningful for stakeholders typically involved at the beginning of the lifecycle. Do end users care about the variable naming convention or module coupling? In most cases, it is doubtful that this question can be answered affirmatively. Therefore, this model is rather unwieldy to specify user quality needs. This does not mean that it cannot be useful later on as a checklist for ensuring that product quality is up to standards. It can definitely be classified as a bottom to top approach to software quality. 

Furthermore, as was illustrated at the beginning of this section, this quality model has its roots in the product perspective of quality, to the detriment of other perspectives. Therefore, it fails to qualify as a foundation for Software Quality Engineering according to the established requirements.
1.1.3 Classification of Metrics
There are different ways of classifying the metrics [6]:

i. Software metrics can be classified as product metrics or process metrics. Product metrics measure properties of the software products and the process metrics measure properties of the process used to obtain these products such as the overall development time, type of methodology used or the average level of experience of the programming staff.
ii. Besides this classification, metrics can also be classified as objective and subjective metrics. Objective metrics always give identical values for a given metric, when measured by two or more observers. For subjective metrics, observers may measure different values for a given metric. For e.g., size of the product measured in LOC is an objective measure for product metrics. Since same definition of LOC will always give same results. The example of subjective product metric is classification of the software as “organic”, “semi-detached”, or “embedded”, as used in the COCOMO cost estimation model. Different observers will give different classification when the programs fall on the borderline between categories. For process metrics, development time is objective measure and level of programmer is subjective measure.
iii. Software metrics can also be classified as primitive or computed metrics. Primitive metrics are those that can be directly observed, such as the program size (in LOC), number of defects observed in unit testing, or total development time for the project. Computed metrics are those that cannot be directly observed but are computed in some manner from other metrics. Examples of computed metrics are those commonly used for productivity, such as LOC produced per person-month (LOC/person-month), or for product quality, such as the number of defects per thousand lines of code (defects/KLOC). Computed metrics combinations of other metric values and thus are often more valuable in understanding or evaluating the software process.
1.1.4 Metrics Proposed in Literature
The importance of software metrics has grown in the software engineering community, especially in the past two decades with the development of new and improved metrics. Metrics have been used more and more in making quantitative/qualitative decisions as well as in risk assessment and reduction. They give software professionals the ability to evaluate software process. There is an increasing need for metrics adapted to the object-oriented paradigm to help manage and foster quality in software development. Various object-oriented metrics have been proposed by various researchers. With the plethora of metrics proposed, it is critical that these metrics are thoroughly validated with the help of past experiences and new test data. Two of the widely accepted metrics are Chidamber and Kemerer[11] and MOOD [15] metrics. CK and MOOD metrics have been analyzed according to their validation criteria and it has been observed that CK suite which was build on the validation criteria given by Weyukar fail to satisfy it completely. MOOD metrics on the other hand fail to satisfy the validation criteria given by the MOOD team itself thus showing that MOOD metrics is working with an inaccurate and imprecise understanding of the object oriented paradigm [25]. Other prominent researchers who have proposed various metrics are Li and Henry [13], Lake and Cook [26], Lorenz and Kidd [12], Tegarden et al. [27], Lee et al. [28], Henderson-sellers [16], and Briand [10]. Chidamber and Kemerer were the first to define a metrics suite for object oriented design and programming. The CK metrics suite is defined below along with the detailed explanation of each of its metrics. As we know, coupling and cohesion are well-known and established concepts from traditional software engineering. There are various versions of metrics defined for these concepts. The metrics suite of Chidamber and Kemberer also includes measures for coupling and cohesion. But CK metrics for cohesion suffer several measurement theoretical anomalies. Thus, various other approaches were proposed by different researchers. For e.g., some of the coupling and cohesion metrics proposed by Li and Henry are data passing coupling(DPC), message passing coupling(MPC), information based cohesion (IBC), etc. Coupling metrics were also proposed by Briand et al. The Briand et al. coupling metrics are counts of interactions between classes. The metrics distinguish between the relationship amongst classes (i.e., friendship, inheritance, or another type of relationship), different types of interactions, and the locus of impact of the interaction. The acronyms for the metrics indicate what types of interactions are counted. Some of the Briand et al. coupling metrics are ACAIC, OCAIC, DCAEC, OCAEC, ACMIC, OCMIC, DCMEC, OCMEC, AMMIC, OMMIC, DMMEC, and OMMEC [10,29]. The first or first two letters in each of these metrics indicate the relationship (A: coupling to ancestor classes; D: Descendents; F: Friend classes; IF: Inverse Friends; and O: other, i.e., none of the above) The next two letters indicate the type of interaction between classes c and d (CA: there is a class attribute interaction between classes c and d if c has an attribute of type d; CM: there is a class method interaction between classes c and d if class c has a method with a parameter of type class d; MM: there is a method-method interaction between classes c and d if c invokes a method of d, or if a method of class d is passed as parameter to a method of class c). The last two letters indicate the locus of impact (IC: Import Coupling; and EC: Export Coupling). A class c exhibits import coupling if it is the using class (i.e., client in a client-server relationship), while it exhibits export coupling if is the used class (i.e., the server in a client-server relationship).Based on the above, the authors have defined a total of 18 different coupling metrics [10]. A number of coupling metrics were also proposed by Lee et al. [28].  Some of them are information flow-based coupling (ICP), information flow-based inheritance coupling (IHICP), information flow-based non inheritance coupling (NIHICP) etc [28,29].  Some cohesion metrics were proposed by Hitz and Montazeri [30] such as lack of cohesion (LCOM), tight class cohesion (TCC), etc. Another quite popular cohesion metrics was proposed by Bieman and Kang [31], namely loose class cohesion (LCC). Besides these coupling and cohesion metrics, many more metrics were defined.  Tegarden et al. [27] defined the metrics CLD i.e. class- too leaf depth, NOA i.e. number of ancestors etc. Lorenz and Kidd [12] introduced many metrics to quantify software quality assessment. Lorenz and Kidd metrics were accompanied by a justification for being considered as metrics. Eleven metrics introduced by Lorenz and Kidd are applicable to class diagrams. Some of Lorenz and Kidd metrics are number of methods overridden (NMO), number of methods inherited (NMI), number of methods added (NMA), specialization index (SIX) etc. Henderson-sellers [16] also defined some of the metrics such as average inheritance depth of a class (AID) ,number of attributes per class (NA), number of methods per class (NM) and many more. Thus, we can see that there are large number of metrics existing and being used by different researchers in their studies.
Chidamber & Kemerer's Metrics Suite

Chidamber and Kemerer's metrics suite for OO Design is the deepest research in OO metrics investigation. They have defined six metrics for the OO design. In this section we’ll have a complete description of their metrics [11]:
a. Weighted Methods per Class (WMC)
WMC measures the complexity of an individual class .WMC metric is the sum of the complexities of all methods in a class. Mathematically, we can define as follows:

Consider a Class C1, with methods M1... Mn that are defined in the class. Let c1... cn be the complexity of the methods.
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 Complexity can be measured in terms of cyclomatic complexity, or we can arbitrarily assign a complexity value of 1 to each method. If all method complexities are assigned a value of 1, then WMC = n, the number of methods. 

 A class with more member functions than its peers is considered to be more complex and therefore more error prone. The larger the number of methods in a class, the greater the potential impact on children since children will inherit all the methods defined in a class. Classes with large numbers of methods are likely to be more application specific, limiting the possibility of reuse. This reasoning indicates that a smaller number of methods are good for usability and reusability.
b. Depth of Inheritance Tree (DIT)

The depth of inheritance tree (DIT) metric for each class is the maximum number of steps from the class node to the root of the tree and is measured by the number of ancestor classes. In Java where all classes inherit object the minimum value of DIT is 1. DIT is a measure of how many ancestor classes can potentially affect this class. In structured object oriented systems, classes are deep within the hierarchy, thus inheriting large number of methods which makes them more complex to predict their behaviour. This makes them more fault prone.

Applications where there are too many classes near the root, and the designers are not taking advantage of reuse of methods through inheritance, are considered to be "top heavy" applications. Alternatively, applications whereby too many classes are near the bottom of the hierarchy, resulting in concerns related to design complexity and conceptual integrity are considered to be "bottom heavy" applications.
c. Number of children (NOC)
A class's number of children (NOC) metric measures the number of immediate descendants (subclasses) of the class. Classes with large number of children are considered to be difficult to modify and usually require more testing because of the effects on changes on all the children. They are also considered more complex and fault-prone because a class with numerous children may have to provide services in a larger number of contexts and therefore must be more flexible.
d. Coupling between object classes (CBO)

The CBO for a class represents the number of classes to which it is coupled and visa versa. This coupling can occur through method calls, field accesses, inheritance, arguments, return types, and exceptions. "Coupling is a measure of interdependence of two objects. For example, objects A and B are coupled if a method of object A calls a method or accesses a variable in object B. Classes are coupled when methods declared in one class use methods or attributes of the other classes. Excessive coupling between classes is not recommended as it prevents reusability and also affects the design. The more independent a class is, the easier it is to reuse it in another application. Coupling between classes should be minimum to promote encapsulation. The larger the number of couples, the higher the sensitivity to changes in other parts of the design, and therefore maintenance is more difficult.
e. Response for a Class (RFC)

The value of  RFC is the sum of number of methods called within the class's method   bodies and the number of class's methods. RFC = | RS | where RS is the response set for the class. The response set of a class is a set of methods that can be executed in response to a message received by an object of that class. The cardinality of this set is a measure of the attributes of objects in the class. Since it also includes methods called from outside the class, it is also a measure of the potential communication between the class and other classes.
f. Lack of Cohesion in Methods (LCOM)
Cohesion refers to how closely the operations in a class are related to each other. Cohesion of a class is the degree to which the local methods are related to the local instance variables in the class. The CK metrics suite examines LCOM, which is a count of the number of method pairs whose similarity is 0 (i.e.σ () is a null set) minus the count of method pairs whose similarity is not zero. The degree of similarity for two methods M1 and M2 in class C1 is given by: σ() = {I1}∩{I2} where {I1} and {I2} are the sets of instance variables used by M1 and M2.
Consider a class C with three methods M1, M2 and M3. Let {I1} = {a,b,c,d,e} and {I2} = {a,b,e} and {I3} = {x,y,z}. {I1}∩{I2} is non-empty, but {I1}∩{I3} and {I2}∩{I3} are null sets. LCOM is the (number of null-intersections - number of non-empty intersections), which in this case is 1.

Cohesiveness of methods within a class is desirable, since it promotes encapsulation. Lack of cohesion implies classes should probably be split into two or more sub-classes. Low cohesion increases complexity, thereby increasing the likelihood of errors during the development process.
1.2 Motivation
Nowadays, we see there is a huge demand in any software organisation for reducing the development cost, decreasing the development time, increasing the software reliability and making the software more reliable [32]. But, due to high complexity and constraints involved in the software, it is difficult to develop and produce reliable software without faults. This problem can be handled by predicting quality attributes such as fault proneness, maintenance effort, testing effort and reliability during early phases of software. For doing this, efficient testing of the software is required. But, testing of any software is one of the activities where efficient resources are required. Since the software products are too large, it is not possible to test each and every class completely as it will not be cost-effective and also it will be very time consuming. Thus, we need to identify the classes where vigorous testing is required.  In other words, we need to identify the classes which are more prone to fault. There are various methods which can be used to identify faulty classes. Software metrics have been identified as useful predictors of fault proneness. The models predicted using object oriented metrics can be used in early phases of software development to predict faulty classes. This will help software practitioners and researchers to concentrate testing resources on the predicted faulty areas during software development. Thus, it will be significantly beneficial in terms of saving time and resources during software development. 
1.3 Objectives and Goals 
The aim of this thesis is to achieve the following goals:

· To establish relationship between object oriented metrics and fault proneness: 
There are number of object oriented metrics such as CK metrics [11], MOOD [15], QMOOD metrics [33], etc. But not all the metrics are good predictors of fault proneness. Thus, it is very important to understand the relationship of object oriented metrics and fault proneness. In other words, we must find out which all metrics are significant in predicting the faulty classes.

· To study and compare some of the models on well-known open source dataset, poi [34]. 
This type of research or study is basically referred to as an empirical research. Empirical research is a method of gaining knowledge and then analysing it by means of observations or experiments. The analysis is done on the data or the evidence collected. Some researchers also combine qualitative and quantitative forms of analysis to answer the questions more easily which cannot be answered or studied in some laboratory. Various empirical studies have been done in the field of software engineering. Prediction of faulty classes is one of the many areas under software engineering. There are various empirical studies done in this area too. Some of the very prominent authors who have worked in this area are L.Briand, EL.Emam, T.Gyimothy, G.Pai, M.H.Tang, Y.Zhou, H.Olague and many more. Also, as we discussed, S.Chidamber & C.Kemerer proposed object-oriented metrics in their paper titled as “A metrics suite for object-oriented design in the year 1994” [11]. These metrics are widely used in these empirical studies. The metric suite proposed by M.Lorenz & J.kidd and L.Briand are also widely used. Empirical research in this field has started long back around the year 1994 and is still going on. Such empirical researches are very beneficial and find wide scope in the field of software engineering.
· To analyse machine learning methods: among the various machine learning methods we have used, we must conclude one of the model as the best model which can be used by the researchers in their further studies to predict the faulty classes.
In order to achieve this aim we will use dataset collected from open source software, poi [34]. This software was developed using java language and consists of 422 classes. We will use one statistical method (logistic regression) and six machine learning methods (random forest, adaboost, bagging, multilayer perceptron, support vector machine, genetic programming) to predict the model. 
The performance of statistical and machine-learning methods will be evaluated in the study and validation of these methods will be carried out using Receiver Operating Characteristic (ROC) analysis [35]. To obtain a balance between the number of classes predicted as fault prone, and number of classes predicted as not fault prone, we use ROC curves. We also analyze the performance of the models by calculating the area under the curve from an ROC curve [35]. 
1.4  Organisation of the Thesis
Following this introductory chapter, Chapter 2 presents the related work done in the field of fault prediction. This chapter shows the summary of the work done by different researchers laying the main emphasis on the metrics used, dataset used and the methods used to bring out the results. Also the final conclusions made by studying various papers from the year 1998 to 2010 are listed in this chapter.
Chapter 3 describes the background of this research work. As we have discussed, there are number of object oriented metrics proposed in the literature. This chapter explains the independent variables, i.e. the metrics which we have used in our work. Various hypothesis are listed which we have tested and provided the results in the later section. Also, it provides the summary of the dataset we have used.
Next chapter, i.e. Chapter 4 explains the research methodology. This chapter provides the descriptive statistics of our dataset. The various methods (i.e. machine learning methods and the statistical method) which we have used have been briefly explained in this chapter. The evaluation measures used to evaluate the results are also explained.

Chapter 5 analyse the results which we have obtained. The univariate and the multivariate results are shown and explained. Based on the multivariate results, appropriate model is proposed which can be used by researchers in their studies. The acceptance or rejection of hypothesis is also shown in this section. We have also drawn the ROC curves for the various machine learning methods.
Chapter 6 provides the overall conclusion of the work done. The results obtained are summarized in this section. Following this chapter are the references used in this study. The names of various research papers published in national and international journals and conferences that we have used are mentioned. 

CHAPTER 2

Literature Review

There has been always a demand to produce efficient and high quality software. There are various object oriented metrics that measure various properties of the software like coupling, cohesion, inheritance etc. which affect the software to a large extent. These metrics can be used in predicting important quality attributes such as fault proneness, maintainability, effort, productivity and reliability. Early prediction of fault proneness will help us to focus on testing resources and use them only on the classes which are predicted to be fault-prone.  Thus, this will help in early phases of software development to give a measurement of quality assessment.

This chapter provides the review of the previous studies which are related to software metrics and the fault proneness. In other words, it reviews several journals and conference papers on software fault prediction. There is large number of software metrics proposed in the literature. Each study uses a different subset of these metrics and performs the analysis using different datasets. Also, the researchers have used different approaches such as Support vector machines, naive bayes network, random forest, artificial neural network, decision tree, logistic regression etc.  Thus, this chapter focuses on the metrics used, dataset used and the evaluation or analysis method used by various authors.  
This review will be beneficial for the future studies as various researchers and practitioners can use it for comparative analysis.

2.1 Importance of the Review

There are various large software organizations supporting number of software activities. Software activities require huge number of resources which are quite costly. Thus, it is very essential to use these resources judiciously. Testing of any software is one of the activities where efficient resources are required. Since the software products are too large, it is not possible to test each and every class completely as it will not be cost-effective and also it will be very time consuming. Thus, we need to identify the classes where vigorous testing is required.  In other words, we need to identify the classes which are more prone to fault proneness. There are various methods which can be used for to identify faulty classes. Software metrics have been identified as useful predictors of fault proneness. When such classes are identified, we can concentrate on them to find the faulty classes. Thus, it will be significantly beneficial in terms of saving time and resources during software development and improves the software quality. 

There are number of software metrics proposed in the literature e.g. [9],[10],[11],[12],[13],[14],[15],[16],[17]. Also there have been various empirical studies that have used subsets of the metrics and have analyzed the relationship between the object-oriented metrics and the fault proneness. Thus, in this chapter we have provided the review of all such previous studies since 1998 to 2010. These studies have been published in various prestigious journals and conferences such as ‘Software quality journal’, ‘IEEE Transactions on Software Engineering’, ‘Information and Software Technology’, ‘Journal of Computer Science and technology’ and various others. In this review, we have laid the main emphasis on the metrics used by each study, dataset used and the evaluation technique used to carry out the results. We have also mentioned the journal/conference in which a particular paper has been published along with the year of its publication and the author’s names. In all the studies the independent variables are the subset of the object oriented metrics and the dependent variable is the fault proneness. Fault proneness is defined as the probability of fault detection in a class. Such a review will be beneficial for researchers and practitioners as they can have the summary of all the previous studies and thus can perform the comparative analysis.

2.2  Review Procedure

There have been various empirical studies done in the field of fault prediction. In this work we study the impact of object oriented metrics on quality attributes and constructed relevant models that help to predict these quality attributes have been considered. These studies will help to improve software quality which helps us to plan and allocate testing resources in early phases of software development. There are various metrics proposed in literature. These metrics are widely used in most of such studies as independent variables. In our review, we have considered only those papers where object oriented metrics are used. The dependent variable in every study is fault proneness. The following procedure was followed in selecting the relevant studies:

1. We have searched through various journals and conferences such as ACM, IEEE, Springer, Elsevier,etc. listed below:

· ACM

· Springer

· Elsevier

· IEEE

· Wiley
All the previous papers since 1998 to 2010 that are concerned with software fault prediction have been collected and studied to carry out this important and significant review. The title and abstract of the relevant studies containing key terms (such as fault proneness, defect proneness, faulty classes, OO metrics etc) were identified by the initial search and were reviewed by two senior assistant professors in Delhi Technological University. The irrelevant studies (or papers) were removed as advised by these assistant professors. The review criteria/protocol was that the study must find the effect of OO metrics on quality attribute fault proneness.

2. The full copies of these papers were obtained and again reviewed by two senior assistant professors (having doctorate degree). The introduction and conclusion section of the papers selected in the initial stage was read and hence a final decision was made.

 From the table 2.1 we can see that the CK [11] and Briand [10] metrics are widely used in most of the studies. Some of the studies have also defined their own software metrics and have carried out the results based on them. Also, we can observe that the statistical method, ‘logistic regression’ has been used by most of the authors.  Machine learning methods are also used in some of the studies. Such a review will help us to get an idea of all the previous work done in this field and will provide insight about the important future research. Thus, any new work in this field can be compared to all the previous work. This will help us to perform a much effective and efficient work in the future.

We have studied various previous papers which have worked in the field of software fault prediction. Table 2.1 shows the summary of our study. It gives the overall review of each paper with their important information. It gives the paper reference number followed by the journal or the conference name followed by the year of publication mentioned in the 4th column. As we have discussed, there are number of software metrics proposed in the literature and each study has used a subset of these metrics. Thus, we have presented the metrics used by each study in our review. To obtain the results, i.e. to find the relationship between the software metrics and the fault proneness, there are various machine learning and statistical methods used such as support vector machine, genetic programming, artificial neural network, random forest, decision tree, naïve bayes network, logistic regression etc. Each study makes use of different evaluation methods which have been listed in our review. Lastly, the last column represents the dataset used on which the methods were applied to get the results. 

2.3 Review Results

We evaluated papers with a specific focus on types of metrics, methods used and datasets. For doing this review, we have studied various types of publications such as journals, conference papers, proceedings, transactions, chapters etc. We know, object oriented paradigm is widely used in the industry nowadays. So we have only considered papers where object oriented metrics are used. We have studied the papers from the year 1998 to 2010. In this review we provide an overview of existing studies that highlight the differences and commonalities among these studies. After the extensive survey following results are observed:

· There are number of metrics proposed in the literature such as CK metric suite, MOOD, QMOOD, L&K, etc. But we have observed CK metric suite is much more popular than other suites. Most of the studies have used CK metric suite. It has been observed that some studies have defined their own new metrics and have worked on them. They have not used any of the standard defined metric suites. Some of the papers have used large number of metrics, e.g. [36] has used 64 metrics. Thus, in such cases, it was not possible to list all the metrics explicitly and hence only the number of the types of metrics is specified. In some other similar cases, only the names of the metric suites are specified. 

· There are various categories of methods to predict the most accurate model such as machine learning methods, statistical methods etc. Trend is shifting from the traditional statistical methods to the machine learning methods. It has been observed that now more and more researchers are exploring the potential of machine learning methods to predict fault prone classes. Also various studies show that better results are obtained with machine learning systems. Thus, machine learning methods such as decision tree, bagging, random forest, artificial neural network etc., should be widely used for the further studies. Among the statistical methods, logistic regression is widely used by the researchers. Most of the studies have used both, the machine learning methods and the statistical methods to bring out the results.

· Papers have used different types of datasets which are mostly public datasets, commercial datasets, open source or students/university datasets. We have observed that the public datasets which have been mostly used in the studies are the PROMISE and NASA repositories. Such pubic datasets are distributed freely and are hence available easily to everyone. Commercial datasets belong to personal/ private companies or organisations and they are not available freely. We have observed that the public domain datasets were not widely used during the initial years from 1998 to 2005. But their usage should be increased because software engineering can only be built using public datasets. We have seen that, recently i.e. from the year 2005 onwards, their percentage usage has increased.

These are the main areas on which we have summarized our review. There are various other details in most of the papers such as the validation method used to predict the model (e.g., the hold out method, K-cross validation, leave-one-out method etc), the evaluation criteria used etc. There are various evaluation criteria used by different studies such as ROC curve, statistical parameters, etc. 
2.4 Summary of the Review Conducted

This paper reviews several significant journal articles and conference papers on software fault prediction. Early prediction of the fault is very necessary as it leads to saving of resources and time. This substantial amount of saving happens because testing is applied only to few classes which are predicted to be fault prone. We have included relevant significant papers on software fault prediction. Moreover, we have included those papers and articles where only object oriented metrics have been used as the independent variables. Based on these criteria, we found total 25 papers and articles to be relevant and useful. We have not given the detail description of any paper, but our aim is to provide some of the important information with main emphasis on the metrics used, dataset used, methods or evaluation techniques used. This review will be beneficial for both the students and the researchers to have a brief overview of the work already done in this field of software engineering. This will help them in carrying out much better and efficient research in future. The following research directions can be drawn from the existing literature review:

· Machine learning methods have gained significant importance in the recent past and should be used to a large extent.

· Large datasets should be used to evaluate the results. This will help to provide with more accurate results.

· The percentage usage of commercial datasets should be increased to obtain real life result.
Table 2.1 : Literature Review

	S.No.
	Paper
	Journal name
	Year
	Variables used
	Methods used
	Dataset used

	1
	[37]
	Software Quality Journal
	1998
	Conditions, depth,LN_path, arcs, LNBranches, loops, macros, Lenn_MSD,LNLenn)MC, SigFF,Macro_maxSDL, MAX_CALLS, COND, PATH, cohesion, components, ivers, FAN-in, FAN-out
	principal component analysis, discriminant analysis
	Ericsson Telecom AB 

More than 130 modules.

Size of the modules ranges from 1000 to 6000LOC after implementation.

	2
	[38]
	Technical report: NRC 43609
	1999
	CK, Briand: 

ACAIC, ACMIC, DCAEC, DCMEC, OCAIC, OCAEC, OCMIC, OCMEC, DIT,NOC,ATTS
	logistic regression
	Commercial java application.

Implements a word processor.

2 versions of this application are considered: 0.5 and 0.6.

Version 0.5 had 69classes.

Version 0.6 had 42 classes.

	3
	[39]
	Proceedings of Metrics
	1999
	WMC, DIT, NOC, CBO, RFC, IC, CBM, NOMA, AMC
	logistic regression
	Subsystems of an HMI (Human machine interface) s/w.

All the subsystems are implemented using C++.

System A consists of 20 classes 256 virtual functions, and 5600 LOC.

System B consists of 45 classes, 353 virtual functions and 21300LOC.

System C consists of 27 classes, 293 virtual functions, and 16000 LOC.

	4
	[40]
	Technical Report: NRC 43607
	1999
	CK and Briand :

WMC, DIT, NOC, CBO, LCOM, OCAIC, IFCAIC, ACAIC, OCAEC, FCAEC, DCAEC, OCMIC, FCMEC, DCMEC, OMMIC, IFMMIC, AMMIC,OMMEC, FMMEC, AMMEC, SLOC
	logistic regression
	Telecommunication system developed in C++.

Consists of 85 classes.

	5
	[41]
	IEEE Transactions on Software Engineering
	 2000
	ATTRIB,STATES,EVNT,READS,WRITES, DELS, RWD, DIT, NOC, LOC, LOC_B,LOC_H, DFCT
	Spearman’s rank correlation
	Large European telecommunication industry.

Consists of 32 classes and 133KLOC.

	6
	[42]
	IEEE Transactions on Software Engineering
	2000
	Briand metrics: 28 coupling measures, 10 cohesion measures and 11 inheritance measures.
	principal component analysis, logistic regression 
	Medium sized management information system that supports the rental process of a hypothetical video rental business.

	7
	[43]
	Technical report: NRC 44146.
	2000
	CK and Briand:

NOC, DIT, ACAIC, OCAIC, DCAEC, OCAEC, ACMIC , OCMIC, DCMEC, OCMEC, WMC
	logistic regression
	XML document editor.

A java application.

Consists of 145 classes.

	8
	[31]
	The Journal of Systems and Software
	2001
	CK and Briand:

ACAIC, ACMIC, DCMEC, OCAEC, OCMIC, OCMEC, DIT, NOC, ATTS
	logistic regression
	Java application that implements a word processor.

2 versions 0.5 and 0.6 were considered.

Version 0.5 had 69 classes.

Version 0.6 had 42 classes.

	9
	[44]
	Empirical Software Engineering. International Journal (Toronto, Ont.)
	2001
	28 coupling measures, 10 cohesion measures, and 11 inheritance measures
	logistic regression, principal component analysis, univariate regression analysis
	Open multi-agent development environment: LALO (language agents Logical Object).

Consists of 90 classes and 40K SLOC.

	10
	[45]
	IEEE Transactions on Software Engineering
	2005
	CK: 

WMC, DIT, RFC, NOC, CBO, LCOM, LCOMN, LOC
	logistic regression, linear regression, decision tree, neural network
	Analyzed the source code of Mozilla with the help of Columbus framework.

	11
	[46]
	IEEE Transactions on software Engineering
	2006
	WMC, DIT, RFE, NOC, CBO, LCOM, SlOC
	logistic regression, machine learning methods (naïve Bayes network, random forest, NNge)
	Public domain dataset KC1 from NASA.

Implemented in C++.

Consists of 145 classes, 2107 methods, 40,000 LOC.

	12
	[47]
	ISESE
	2006
	32 independent variables – measures of class size, inheritance, coupling and cohesion. These were captured using two code analyzers: XRadar and JHawk
	logistic regression
	Middleware systems serving mobile division in a large telecom company.

Consists of 1700 java classes, 110K SLOC.

	13
	[36]
	Information and software Technology
	2007
	Total 64 metrics are used: 10 cohesion, 18 inheritance, 29 coupling and 7 size
	logistic regression, back propagation neural network, probabilistic neural network
	Library management S/w system developed by students.

System developed in C++.

Consists of 1185classes.



	14
	[48]
	IEEE transactions on Software Engineering
	2007
	CK, MOOD, QMOOD metric suites
	logistic regression
	Open source Mozilla rhino project.

Rhino software is written in java

	15
	[49]
	IEEE transactions on Software Engineering
	2007
	CK metric suite: WMC, RFC, NOC, CBO, LCOM, SLOC
	multiple regression: ordinary least squares, bayesian linear regression, bayesian poisson regression
	Public domain dataset KC1.

Implemented in C++.

Consists of 2107 methods, 145 classes, 43KLOC.

	16
	[50]
	Journal of Computer Science and technology
	2007
	Coupling, NOC, no. of base classes, WMC, RFC, DIT, LCOM, no. of statements, no. of executable statements, 

no. of declarative statements, no. of comments lines,

 max. cyclomatic complexity, change size, ratio comment to code
	linear regression, stepwise linear regression
	2 telecommunication systems developed by Ericsson.

Their sizes are 800classes (500 KLOC) and 1000classes (600 KLOC).

	17
	[51]
	The journal of systems and software
	2007
	CK  design metrics and code metrics:

1.At class level:

coupling, NOC, WMC, RFC, DIT, LCOM, No. of statements, max. cyclomatic complexity, change size

2.At component level:

no. of statements, no. of methods, no. of modified classes, changesize
	linear regression,

expert estimation
	2 s/w systems from the telecommunication domain developed at Ericsson.

Their sizes are 800classes (500 KLOC) and 1000classes (600 KLOC).



	18
	[52]
	The journal of systems and software 
	2008
	CK, Lorenz and Kidd:

CBO,CTA,CTM, RFC, WMC, DIT, NOC, NOAM, NOOM, LCOM, NOA, NOO
	logistic regression
	Eclipse project: version 2.0,2.1,3.0 by using two sources: the Bugzilla database and the change log.

	19
	[53]
	Journal of Zheijang University SCIENCE A
	2008 
	21 software metrics:

CBO, CSAO, CSA, CSI, DIT, LOC, LOCM,

NAAC, NAIC, NAOC, NPavgC, NSUB, OSavg, PA, PPPC, RFC, SLOC, TLOC, WMC
	layered kernel, set kernel, linear, Gaussian, RBF
	Real life software case study taken from optical communication domain.



	20


	[54]
	PROMISE’09 Proceedings of the 5thInternational conference on 

Predictor Models in Software Engineering
	2009
	NMC,NOC,DIT,CBO,RFC,LOC
	logistic regression
	Java development toolkit (JDK) component of the Eclipse project.

Comprises of 1412class files , 268000 LOC.

	21
	[55]
	Proceedings of the world congress on engineering
	2009
	CK : 

CBO, LCOM, NOC, DIT, WMC, RFC, SLOC
	support vector machine
	Public domain dataset KC1 from NASA metrics data program.

Implemented in C++language.

Consists of 145classes,2107 methods, 40K LOC.

	22
	[56]
	Third International Symposium on Empirical Software Engineering and Measurement
	2009
	CK : 

RFC, CBO, WMC
	logistic regression
	Code of the first released version of the Mylyn s/w.

Open source project.

Written in java.

Consists of 638 classes.

	23
	[57]
	The Journal of Systems and Software 
	2010
	WMC, SDMC, AMC, CCMax, NIM, NCM, NTM, NLM, aVGloc, LOC
	logistic regression
	Data collected from 3 releases 2.0,2.1 and 3.0 of Eclipse.

Consists of 6751,7909,10635 java files resp.

Consists of 796, 988,1306 KLOC resp.

	24
	[58]
	IEEE 21st International Symposium on Software Reliability Engineering
	2010
	Baseline metrics (DIT,CAE,CBM) and new metrics (base coupling metric suite and aspect coupling metric suite)
	logistic regression
	iBATIS: java based open source framework.

HealthWatcher(HW): java based information system, released in 2002 in both java and AspectJ version.

MobileMedia(MM):s/w product for mobile devices.

	25
	[59]
	Software Quality Journal
	2010
	CK: 

CBO,  RFC, LCOM, NOC, DIT, WMC, SLOC
	logistic regression, machine learning (Artificial neural network, Decision Tree)
	Public domain dataset KC1 from NASA Metrics Data Program.

Implemented in C++

Consists of 145 classes, 2107 methods, 40KLOC.


CHAPTER 3

Research Background

In this chapter, we present independent and dependent variables used in this study and empirical data collection. We also present the summary of the metrics studied in this paper, and hypotheses to be tested in our work.

3.1 Dependent and Independent Variables

In this research, we have used object oriented metrics as independent variables. Object-oriented metrics describe aspects of object-oriented programming. We examined the metrics from all three metrics suites i.e. CK , MOOD, QMOOD to determine whether they measure different dimensions of object oriented classes or are measuring the same thing. Then, we developed models using the different metric suites to predict faults. The summary of the metrics used in this paper is given in table 3.1. The dependent variable is fault proneness. Fault proneness is defined as the probability of fault detection in a class [60,61,29,62]. We use logistic regression and machine learning methods which are based on predicting probabilities [60,61,29,62].

The program Ckjm calculates the six object oriented metrics specified by Chidamber and Kemerer by processing the bytecode of compiled Java files. It also calculates few of the other metrics. Ckjm follows the Unix tradition of doing one thing well. It does not offer a GUI and fancy diagrams. It calculates metrics thoroughly, and efficiently: on a 1.6GHz Pentium-M machine. It processes the 33MB of the Eclipse 3.0 jar files (19717 classes) in 95 seconds.

 The program calculates for each class the following six metrics proposed by Chidamber and Kemerer:

    WMC: Weighted methods per class

    DIT: Depth of Inheritance Tree

    NOC: Number of Children

    CBO: Coupling between object classes

    RFC: Response for a Class

    LCOM: Lack of cohesion in methods

In addition it also calculates for each class:

     Ca: Afferent couplings

    NPM: Number of public methods

To run the program we have to specify the class files (or pairs of jar/class files) on its command line or standard input. The program will produce on its standard output a line for each class containing the complete name of the class and the values of its metrics. 

From version 1.2 and onward ckjm can be used as an ant task, and can also directly generate XML output. We can post-process the XML output with XSLT to generate nice-looking reports. 

Table 3.1 : Metrics defination
	S.No.
	Metric
	Definition



	1.
	WMC - Weighted methods per class


	WMC metric is the sum of the complexities of all methods in a class. Complexity can be measured in terms of cyclomatic complexity, or we can arbitrarily assign a complexity value of 1 to each method. 



	2.
	DIT - Depth of Inheritance Tree


	The depth of inheritance tree (DIT) metric for each class is the maximum number of steps from the class node to the root of the tree. In Java where all classes inherit Object the minimum value of DIT is 1. 



	3.
	NOC :

Number of Children


	A class's number of children (NOC) metric measures the number of immediate descendants of the class. 



	4.
	CBO:

Coupling between object classes


	The CBO for a class represents the number of classes to which it is coupled and visa versa. This coupling can occur through method calls, field accesses, inheritance, arguments, return types, and exceptions. 



	5.
	RFC :

Response for a Class


	The value of RFC is the sum of number of methods called within the class's method   bodies and the number of class's methods. 



	6.
	LCOM :

Lack of cohesion in methods


	For each data field in a class, the percentage of the methods in the class using that data field; the percentages are averaged then subtracted from 100%.



	7.
	Ca:

 Afferent couplings (not a C&K metric)


	A class's afferent couplings are number of other classes that use the specific class. Coupling has the same definition in context of Ca as that used for calculating CBO. 



	8.
	Ce :

Efferent couplings (not a C&K metric)


	A class's efferent couplings are number other classes that are used by the specific class. Coupling has the same definition in context of Ce as that used for calculating CBO. 



	9.
	NPM:

 Number of Public Methods(not a C&K metric; CIS: Class Interface Size in the QMOOD metric suite)


	The NPM metric counts all the methods in a class that are declared as public. 



	10.
	LCOM3:

Lack of cohesion in methods Henderson-Sellers version


	LCOM3 varies between 0 and 2.

m - number of procedures (methods) in class

a - number of variables (attributes in class

µ(A) - number of methods that access a variable (attribute)
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The constructors and static initializations are taking into accounts as separately methods.



	11.
	LOC: 
Lines of Code. (not a C&K metric)


	The lines are counted from java binary code and it is the sum of number of fields, number of methods and number of instructions in every method of given class.



	12.
	DAM: 
Data Access Metric(QMOOD metric suite)


	This metric is the ratio of the number of private (protected) attributes to the total number of attributes declared in the class. A high value for DAM is desired. (Range 0 to 1)



	13.
	MOA: 
Measure of Aggregation(QMOOD metric suite)


	The metric is a count of the number of data declarations (class fields) whose types are user defined classes.



	14.
	MFA: 
Measure of Functional Abstraction(QMOOD metric suite)


	This metric is the ratio of the number of methods inherited by a class to the total number of methods accessible by member methods of the class. The constructors and the java.lang.Object (as parent) are ignored. (Range 0 to 1) 



	15.
	CAM: 
Cohesion Among Methods of Class(QMOOD metric suite)


	The metric is computed using the summation of number of different types of method parameters in every method divided by a multiplication of number of different method parameter types in whole class and number of methods. A metric value close to 1.0 is preferred. (Range 0 to 1)



	16.
	IC:
 Inheritance Coupling (quality oriented extension to C&K metric suite)


	This metric provides the number of parent classes to which a given class is coupled. A class is coupled to its parent class if one of the following conditions is satisfied: 

One of its inherited methods uses a variable (or data member) that is  defined in a new/redefined method. 

One of its inherited methods calls a redefined method. 

One of its inherited methods is called by a redefined method and uses a parameter that is defined in the redefined method.



	17.
	CBM: 
Coupling Between Methods(quality oriented extension to C&K metric suite)


	The metric measure the total number of new/redefined methods to which all the inherited methods are coupled. 

	18.
	AMC:

Average Method Complexity(quality oriented extension to C&K metric suite)


	This metric measures the average method size for each class. Size of a method is equal to the number of java binary codes in the method.



	19.
	CC:

The McCabe's cyclomatic complexity


	It is equal to number of different paths in a method (function) plus one. The cyclomatic complexity is defined as:

CC = E - N + P

where

E - the number of edges of the graph

N - the number of nodes of the graph

P - the number of connected components




3.2 Hypothesis

In this section, research hypotheses are presented. We tested these hypotheses to find the effect of object oriented metrics on fault proneness. Testing hypothesis is an essential part of statistical inference. There are two types of statistical hypotheses.
· Null hypothesis. The null hypothesis, denoted by H0, is usually the hypothesis that sample observations result purely from chance. The null hypothesis, H0, represents a theory that has been put forward, either because it is believed to be true or because it is to be used as a basis for argument, but has not been proved.
· Alternative hypothesis. The alternative hypothesis, denoted by H1 or Ha, is the hypothesis that sample observations are influenced by some non-random cause. The alternative hypothesis, H1, is a statement of what a statistical hypothesis test is set up to establish. 
Statisticians follow a formal process to determine whether to reject a null hypothesis, based on sample data. This process, called hypothesis testing, consists of four steps:

i. State the hypotheses. This involves stating the null and alternative hypotheses. The hypotheses are stated in such a way that they are mutually exclusive. That is, if one is true, the other must be false.
ii. Formulate an analysis plan. The analysis plan describes how to use sample data to evaluate the null hypothesis. The evaluation often focuses around a single test statistic.
iii. Analyze sample data. Find the value of the test statistic (mean score, proportion, t-score, z-score, etc.) described in the analysis plan.
iv. Interpret results. Apply the decision rule described in the analysis plan. If the value of the test statistic is unlikely, based on the null hypothesis, reject the null hypothesis.
Example of Null and Alternative hypothesis

For example, suppose we wanted to determine whether a coin was fair and balanced. A null hypothesis might be that half the flips would result in Heads and half, in Tails. The alternative hypothesis might be that the number of Heads and Tails would be very different. Symbolically, these hypotheses would be expressed as:

H0: P = 0.5

Ha: P ≠ 0.5

Suppose we flipped the coin 50 times, resulting in 40 Heads and 10 Tails. Given this result, we would be inclined to reject the null hypothesis. We would conclude, based on the evidence, that the coin was probably not fair and balanced. The final conclusion once the test has been carried out is always given in terms of the null hypothesis. We either "Reject H0 in favour of H1" or "Do not reject H0". We never conclude "Reject H1", or even "Accept H1". If we conclude "Do not reject H0", this does not necessarily mean that the null hypothesis is true, it only suggests that there is not sufficient evidence against H0 in favour of H1. Rejecting the null hypothesis then, suggests that the alternative hypothesis may be true.

Can We Accept the Null Hypothesis?

Some researchers say that a hypothesis test can have one of two outcomes: you accept the null hypothesis or you reject the null hypothesis. Many statisticians, however, do not consider the notion of "accepting the null hypothesis." Instead, they say: you reject the null hypothesis or you fail to reject the null hypothesis. There is a difference between "acceptance" and "failure to reject". Acceptance implies that the null hypothesis is true. Failure to reject implies that the data are not sufficiently persuasive for us to prefer the alternative hypothesis over the null hypothesis.

Following are the hypothesis used in this research and later tested:

3.2.1 For Size metrics – H1

A class with larger size, i.e. more information is more likely to be fault prone than a class with smaller size. (Null hypothesis: A class with larger size, i.e. more information is less likely to be fault prone than a class with smaller size.) 

3.2.2 For cohesion metrics – H2
A class with less cohesion is more likely to be fault-prone than a class with high cohesion. (Null hypothesis: A class with less cohesion is less likely to be fault-prone than a class with high cohesion).

3.2.3 For coupling metrics – H3 

A class with high import or export coupling is more likely to be fault prone than a class with less import or export coupling. (Null hypothesis: A class with high import or export coupling is less likely to be fault-prone than a class with high import or export coupling).

3.2.4 For Inheritance metrics – H4

A class with a greater number of children (NOC) or ancestors is more likely to be fault prone than a class with lesser NOC or ancestors. (Null hypothesis: A class with more NOC or ancestors is less likely to be fault prone than a class with lesser NOC or ancestors.)

3.2.5 For DIT – H3

A class with more depth in inheritance tree is more likely to be fault prone than a class with less depth in inheritance tree. (Null hypothesis: A class with more depth in inheritance tree is less likely to be fault prone than a class with less depth in inheritance tree.)

3.2.6 For Complexity metrics – H6

A class with more complexity is found to be more fault prone than a class with less complexity. (Null Hypothesis: A class with more complexity is found to be less fault prone than a class with smaller complexity.)

3.3 Empirical Data Collection

This study makes use of the open source dataset ‘Apache POI’[34]. Apache POI is a pure java library for manipulating Microsoft documents. It is used to create and maintain java API for manipulating file formats based upon the office open XML standards (OOXML) and Microsoft OLE2 compound document format (OLE2). In short, we can read and write MS Excel files using java. In addition, we can also read and write MS word and MS powerpoint files using java. Apache POI is your java Excel solution (for Excel 97-2008). The important use of the Apache POI is for text extraction applications such as web spiders, index builders, and content management systems. This system consists of 422 classes. Out of 422 classes, there are 281 faulty classes containing 500 numbers of faults. It can be seen from figure 1 that 71.53% of classes contain 1 fault, 15.3 % of classes contain 2 faults and so on. As shown in pie chart, majority of classes consists of 1 fault. Table 3.2 summarizes the distribution of faults and faulty classes in the dataset. 
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Fig.ure 3.1. Distribution of Faults
Table 3.2:  Data Description
	No. of faulty classes
	281

	% of faulty classes
	63.57

	No. of faults 
	500

	Language used
	Java


CHAPTER 4

Research Methodology

In this section we present the descriptive statistics for all the metrics which we have considered. Also, we have explained the methodology used i.e. one statistical method and six machine learning methods. Performance evaluation measures are also presented. At the end, various validation techniques are explained.

4.1 Descriptive Statistics

The table 4.1 shows the “mean”, “median”, “min”, “max”, “std dev”, “25% quartile”, “50% quartile” and “75% quartile” of all the independent variables used in our study. ‘Mean’, as we know, is a method to derive the central tendency of a sample space. It is calculated by adding up all the numbers and then dividing the sum by the total number of numbers. ‘Median’ is also a type of average, which is found by arranging the values in any sorted order (ascending or descending) and then selecting the one in the middle.  The median is a useful number in cases where the distribution has very large extreme values which would otherwise skew the data.
 We can make the following observations from the table 4.1:
The size of a class measured in terms of lines of source code ranges from 0 to 9886. We can observe that the NOC metric values are 0 in 75% of the classes. Also, the DIT metric values are low, the biggest DIT metric value is 6 and 75% of the classes have at most 2 levels of inheritance. This shows that inheritance is not much used in the system. Similar results were also observed by other authors [33,60, 63]. There is high cohesion observed in the system. The cohesion metrics, i.e. LCOM & LCOM3 have high values. The LCOM metric values range from 0 to 7059 and the LCOM3 metric values range from 0 to 2 (which is the maximum LCOM3 value).

Table 4.1: Descriptive Statistics
	Metrics
	Mean
	Std. Error of Mean
	Median
	Std.

Deviation
	Minimum
	Maximum
	Percentiles

	
	
	
	
	
	
	
	   25
	 50
	75

	WMC
	13.51
	0.70
	10
	14.68
	0
	134
	5
	10
	16

	DIT
	1.87
	0.04
	2
	0.85
	1
	6
	1
	2
	2

	NOC
	0.74
	0.33
	0
	6.96
	0
	134
	0
	0
	0

	CBO
	10.12
	0.93
	6
	19.58
	0
	214
	4.75
	6
	9

	RFC
	30.35
	1.76
	21
	37.07
	0
	390
	13
	21
	36.25

	LCOM
	100.46
	21.01
	22
	441.85
	0
	7059
	1
	22
	53.25

	Ca
	5.23
	0.84
	2
	17.62
	0
	212
	1
	2
	4

	Ce
	5.22
	0.43
	4
	9.06
	0
	133
	2
	4
	6

	NPM
	11.60
	0.61
	9
	12.75
	0
	101
	4
	9
	14

	LCOM3
	0.100
	0.03
	0.85
	0.53
	0
	2
	0.75
	0.85
	1.13

	LOC
	292.59
	30.05
	124.5
	631.68
	0
	9886
	59.75
	124.5
	321.25

	DAM
	0.46
	0.02
	0.5
	0.40
	0
	1
	0
	0.5
	0.89

	MOA
	0.81
	0.12
	0
	2.55
	0
	34
	0
	0
	1

	MFA
	0.36
	0.02
	0.36
	0.32
	0
	1
	0
	0.36
	0.57

	CAM
	0.38
	0.01
	0.31
	0.21
	0
	1
	0.25
	0.31
	0.47

	IC
	0.58
	0.03
	1
	0.56
	0
	3
	0
	1
	1

	CBM
	1.95
	0.12
	1
	2.44
	0
	20
	0
	1
	4

	AMC
	19.36
	1.88
	12.19
	39.52
	0
	616.38
	6.38
	12.19
	20.54

	MAX_CC
	3.70
	0.37
	2
	7.71
	0
	126
	1
	2
	3

	AVG_CC
	1.19
	0.05
	0.98
	1.09
	0
	17.13
	0.81
	0.98
	1.29


4.2 Methods Used

In this study, we have used one statistical model and two machine learning models to bring out the results.

4.2.1 The statistical model

Logistic regression is commonly used statistical modelling method. Logistic regression is used to predict the dependent variable from a set of independent variables (a detailed description is given by [29,64, 65]. It is used when the outcome variable is binary or dichotomous. We have used both univariate and multivariate regression. Univariate logistic regression finds the relationship between the dependent variable and each independent variable. It finds whether there is any significant association between them. Multivariate logistic regression is done to construct a prediction model for the fault proneness of classes. It tells which all metrics are useful when they are used together. Logistic regression results in a subset of metrics that have significant parameters. To find the optimal set of independent variables (metrics), there are two stepwise selection methods, forward selection and backward elimination. Forward selection examines the variables that are selected one at a time for entry at each step. Based on certain statistical criteria, variables are selected one at a time for inclusion in the model, until a stopping criteria is fulfilled .The backward elimination method includes all the independent variables in the model and the variables are deleted one at a time from the model until stopping criteria is fulfilled. We have used forward stepwise selection method.
The general multivariate logistic regression formula is as follows [29]:-

       Prob(X1, X2, . [image: image18.png]



      where g(x)= B0 + B1* X1 + B2 * X2 + … + Bn * Xn
        ‘prob’ is the probability of a class being faulty

      Xi , (1<= i <= n) are independent variables

The following statistics are reported for each metric from the above formula:-

1. Odds Ratio: Odds ratio is calculated using Bi's. The formula for odds ratio is as below:

R= exp(Bi)

This is calculated for each independent variable. The odds ratio is the probability of the event divided by the probability of non -event. The event in our study is a probability of having a fault and the non- event is the probability of not having a fault [62].

2. Maximum likelihood estimation (MLE) and coefficients (Bi's): MLE is the likelihood function that measures the probability of observing set of dependent variable [62]. MLE finds the coefficient such that log of the likelihood function is as large as possible. The more the value of coefficient, more is the impact of the independent variables on predicted fault proneness.

4.2.2 The Machine Learning Models

The goal of machine learning is to build computer programs that have ability to improve their performance through experience or example. In other words, machine learning is method of programming computers to optimize a performance criterion using example data or past experience. We need learning in cases where we cannot directly write a computer program to solve a given problem, but need example data or experience.  Consider the recognition of spoken speech, that is, converting the acoustic speech signal to an ASCII text; we can do this task without any difficulty, but we are unable to explain how we do it. Different people utter the same word differently due to differences in age, gender, or accent. In machine learning, the approach is to collect a large collection of sample utterances from different people and learn to map these to words. Another case is when the problem to be solved changes in time, or depends on the particular environment. We would like to have general purpose systems that can adapt to their circumstances, rather than explicitly writing a different program for each special circumstance. Consider routing packets over a computer network. The path maximizing the quality of service from a source to destination changes continuously as the network traffic changes. A learning routing program is able to adapt to the best path by monitoring the network traffic. 

There are many successful applications of machine learning in various domains. There are commercially available systems for recognizing speech and handwriting. Retail companies analyze their past sales data to learn their customers' behavior to improve customer relationship management. Financial institutions analyze past transactions to predict customers' credit risks.  Robots learn to optimize their behavior to complete a task using minimum resources.  In bioinformatics, the huge amount of data can only be analyzed and knowledge be extracted using computers. 

To predict the fault proneness of classes, we have used following machine learning methods. These machine learning algorithms are available in the WEKA open source tool [66].

a. Random forest: A random forest is made of number of decision trees. Each decision tree is made from a randomly selected subset of the training dataset using replacement. For building decision tree, a random subset of available variables is used. This helps us to choose how best to partition the dataset at each node. The final result/outcome is chosen by the majority .Each decision tree in the random forest gives out its own vote for the result and the majority wins. In building random forest, we can mention the number of decision trees we want in the forest. Each decision tree is built to its maximum size. Random Forest has various advantages. Very little pre-processing of data is required. Also, we do not need to do any variable selection before starting to build the model. Random forest itself takes the most useful variables [67].

b. Adaboost: Adaboost is short for adaptive boosting. It is a Machine learning algorithm which can be used along with many other learning algorithms. This leads to improvement in efficiency and performance. Adaboost is adaptive as it adapts to the error rates of the individual weak hypothesis. Also, adaboost is a boosting algorithm as it can efficiently convert a weak learning algorithm into a strong learning algorithm. Adaboost calls a given weak algorithm repeatedly in a series of rounds. The important concept to adaboost algorithm is to maintain a distribution of weights over the training set. Initially all the weights are equal but on each round, weights of incorrect classified examples are increased, so that weak learner is forced to focus on the hard examples in the training set. This is how weak learning algorithm is changed to a strong learning algorithm. Adaboost is less susceptible to overfitting problem than most learning algorithm [67].

c. Bagging: Bagging which is also known as bootstrap aggregating is a technique that repeatedly samples (with replacement) from a data set according to a uniform probability distribution [68]. Each bootstrap sample has the same size as the original data. Because the sampling is done with replacement, some instances may appear several times in the same training set, while others may be omitted from the training set. On average, a bootstrap sample Di contains approximately 63% of the original training data because each sample has a probability 1- ( 1- 1/N)N of being selected in each Di. If N is sufficiently large, this probability converges to 1-1/e = 0.632. After training the k classifiers, a test instance is assigned to the class that receives the highest number of votes [69]. 
d. Multilayer perceptron: Multilayer Perceptron (MLP) is an example of artificial neural network. It is used for solving different problems, example pattern recognition, interpolation etc. It is advancement to the perceptron neural network model. With one or two hidden layers, they can solve almost any problem. They are feedforward neural networks trained with the back propagation algorithm. Error back-propagation learning consists of two passes: a forward pass and a backward pass. In the forward pass, an input is presented to the neural network, and its effect is propagated through the network layer by layer. During the forward pass the weights of the network are all fixed. During the backward pass the weights are all updated and adjusted according to the error computed. An error is composed from the difference between the desired response and the system output. This error information is fed back to the system and adjusts the system parameters in a systematic fashion (the learning rule). The process is repeated until the performance is acceptable [69].
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Fig.ure 4.1. Multilayer Perceptron

e. Support Vector Machine: Support Vector Machine (SVM) is a learning technique which is used for classifying unseen data correctly. Even though it’s considered that Neural Networks are easier to use than this, however, sometimes unsatisfactory results are obtained. A classification task usually involves with training and testing data which consist of some data instances. Each instance in the training set contains one target values and several attributes. The goal of SVM is to produce a model which predicts target value of data instances in the testing set which are given only the attributes. Classification in SVM is an example of Supervised Learning. For doing this, SVM builds a hyperplane which separates the data into different categories. The dataset may or may not be linearly separable. By ‘linearly separable’ we mean that the cases can be completely separated i.e. the cases with one category are on the one side of the hyperplane and the cases with the other category are on the other side. For example Figure 4.2 shows the dataset where examples belong to two different categories – triangles and squares. Since these points are represented on a 2 – dimensional plane, they can be separated by a 1 - dimensional line. Similarly, points in a 3-dimensional cube can be separated by a 2 - dimensional plane. As we add additional predictor variables (attributes), the data points can be represented in N-dimensional space, and a (N-1) - dimensional hyperplane can separate them. To separate these points into 2 different categories, there is infinite number of lines possible. Two possible candidate lines are shown in the figure 4.2. However, only one of the lines gives maximum separation/margin and that line is selected. ‘Margin’ is defined as distance between the dashed lines (as shown in figure) drawn parallel to the separating lines. These dashed lines give the distance between the separating line and closest vectors to the line. The reason we need maximum margin classifier is because if we use a hyper plane to classify, it might end up closer to one set of datasets compared to others and we do not want this to happen and thus we see that the concept of maximum margin classifier or hyper plane as an apparent solution. These vectors are called as support vectors. So SVM must deal with (a) more than two predictor variables, (b) separating the points with non-linear curves, (c) handling the cases where clusters cannot be completely separated, and (d) handling classifications with more than two categories. Sometimes, it is not possible to divide two groups with a straight line, flat plane or an N-dimensional hyperplane and the points are separated by a nonlinear region. SVM can be extended to the non-linear boundaries using kernel trick. 

Kernel: If data is linear, a separating hyper plane may be used to divide the data. However it is often the case that the data is far from linear and the datasets are inseparable. To allow for this kernels are used to non-linearly map the input data to a high-dimensional space. The new mapping is then linearly separable. A very simple illustration of this is shown below in figure. 
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Figure 4.2: SVM
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Figure 4.3 : Kernal Mapping

This mapping is defined by the Kernel:    [image: image22.png]K(x,y)=3(x) (y)



            

Strength and Weakness of SVM

The major strengths of SVM are the training is relatively easy. No local optimal, unlike in neural networks. It scales relatively well to high dimensional data and the trade-off between classifier complexity and error can be controlled explicitly. The weakness includes the need for a good kernel function.
f. Genetic Programming: Genetic Programming is a branch of genetic algorithms. It is inspired by biological evolution. Genetic programming creates computer programs that can perform a user defined task. For doing this, following 4 steps are used:

i. First, all the computer programs are made.

ii. Then, each program is executed and assigned a fitness value according to ho well it solves the problem.

iii. Then, a new population of computer programs is created:

· Among all the programs, best existing programs are copied.

· Mutation is carried out to create new programs.

· Crossover is also carried out to create new programs.

iv. Finally, the best computer program so far created in any generation is the result of the genetic programming.

4.3 Data Analysis Methods

Our data analysis approach consists of following main three steps:

i. Variable Selection

During this step the objective is to identify the subset of the object-oriented metrics that are related to fault-proneness. This selected subset of variables is then used as the basis for further modeling steps explained below. We select variables that are individually associated with fault-proneness and that are orthogonal to each other. Variable selection is done by finding the association between each individual metric and fault-proneness individually. The statistical modeling technique that we use is logistic regression (LR). 

ii. Calibration
After identifying a subset of metrics that are associated with fault-proneness and that are orthogonal, we construct a multivariate model that combines all of these metrics. The construction of such a model follows the procedure described above, except that more variables will be incorporated. The multivariate model can be practically applied in identifying which classes are likely to contain a fault (prediction step) and to estimate the overall fault content of a system (quality estimation step). The optimal operating point for the multivariate model is determined during calibration. This operating point maximizes the prediction accuracy. For calibration only the training data set is used.

iii. Prediction

The calibrated model can be used to predict which classes have a fault in the test data set. The prediction results provide a realistic assessment of how accurate this multivariate model will perform in actual projects.

4.4 Performance Evaluation Measures

To measure the performance of the predicted model, we have used the following performance evaluation measures:

        Sensitivity: It measures the correctness of the predicted model. It is defined as the percentage of classes correctly predicted to be fault prone. Mathematically,

Sensitivity = ((Number of modules correctly predicted as fault prone) / (total number of actual faulty modules)) * 100 

Specificity: It also measures the correctness of the predicted model. It is defined as the percentage of classes predicted not to be fault prone. Mathematically,

Specificity = ((Number of modules correctly predicted as non- fault prone) / (total number of actual non faulty modules)) * 100 

Precision or Accuracy: It is defined as the ratio of number of classes (including both faulty and non- faulty) that are predicted correctly to the total number of classes.

   Receiver Operating Characteristic (ROC) analysis: The performance of the outputs of the predicted models were evaluated using ROC analysis. It is an effective method of evaluating the performance of the model predicted. The ROC curve is defined as a plot of sensitivity on the y-coordinate versus its 1-specificity on the x-coordinate [35]. While constructing ROC curves, we selected many cut off points between 0 and 1, and calculated sensitivity and specificity at each cut off point. The ROC curve is used to obtain the required optimal cut off point that maximizes both sensitivity and specificity [35, 62].

4.5 Validation Technique

There are three cross- validation techniques namely hold-out, leave-one-out and K-cross validation [66]. In cross- validation method, the entire data set is not used when training a learner. Some of the data is removed before training begins. Then when training is done, the data that was removed can be used to test the performance of the learned model on ``new'' data. This is the basic idea for a whole class of model evaluation methods called cross validation. Separating data into training and testing sets is an important part of evaluating data mining models. Typically, when you partition a data set into a training set and testing set, most of the data is used for training, and a smaller portion of the data is used for testing. Analysis Services randomly samples the data to help ensure that the testing and training partitions are similar. By using similar data for training and testing, you can minimize the effects of data discrepancies and better understand the characteristics of the model.

After a model has been processed by using the training set, you test the model by making predictions against the test set. Because the data in the testing set already contains known values for the attribute that you want to predict, it is easy to determine whether the model's guesses are correct. 

If a lot of data are available, simply take two independent samples and use one for training and one for testing. The more the training data is, the better the model. The more test data, the more accurate the error estimate. Cross validation is a model evaluation method that is better than residuals. The problem with residual evaluations is that they do not give an indication of how well the learner will do when it is asked to make new predictions for data it has not already seen.
Following are the cross validation techniques:

· The holdout method is the simplest kind of cross validation. The data set is separated into two sets, called the training set and the testing set. The function approximator fits a function using the training set only. Then the function approximator is asked to predict the output values for the data in the testing set (it has never seen these output values before). The errors it makes are accumulated as before to give the mean absolute test set error, which is used to evaluate the model. The advantage of this method is that it is usually preferable to the residual method and takes no longer to compute. However, its evaluation can have a high variance. The evaluation may depend heavily on which data points end up in the training set and which end up in the test set, and thus the evaluation may be significantly different depending on how the division is made. 

· K-fold cross validation is one way to improve over the holdout method. The data set is divided into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 subsets are put together to form a training set. Then the average error across all k trials is computed. The advantage of this method is that it matters less how the data gets divided. Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times. The variance of the resulting estimate is reduced as k is increased. The disadvantage of this method is that the training algorithm has to be rerun from scratch k times, which means it takes k times as much computation to make an evaluation. A variant of this method is to randomly divide the data into a test and training set k different times. The advantage of doing this is that you can independently choose how large each test set is and how many trials you average over. 

· Leave-one-out cross validation is K-fold cross validation taken to its logical extreme, with K equal to N, the number of data points in the set. That means that N separate times, the function approximator is trained on all the data except for one point and a prediction is made for that point. As before the average error is computed and used to evaluate the model. The evaluation given by leave-one-out cross validation error (LOO-XVE) is good, but at first pass it seems very expensive to compute. 

The validation method used in our study is k-cross validation (value of k is taken as 10) in which the dataset is divided into k approximately equal partitions [70]. One partition at a time is used for testing the model and the remaining k-1 partitions are used for training the model. This is repeated for all the k partitions. 

CHAPTER 5

Result Analysis

In this chapter, we have shown and explained all the results obtained in this research. The univariate and multivariate results are described. The ROC curves are used to represent the results graphically. Results of all the hypothesis is also shown in this section.
5.1 Univariate LR Analysis

We conducted univariate analysis to find whether each of the metrics (independent variables) is significantly associated with fault proneness (dependent variable). Table 5.1 represents the results of univariate analysis. It provides the coefficient (B), standard error (SE), statistical significance (sig) and odds ratio (exp(B)) for each metric [62]. The parameter ‘sig’ tells whether each of the metric is significant predictor of fault proneness. If ‘sig’ value of a metric is below or at the significance threshold of 0.01, then the metric is said to be significant in predicting the faulty classes. Table 5.1 shows the significant values in bold. The coefficient ‘(B)’ shows the strength of the independent variable. Higher the value, the higher is the impact of the independent variable. The sign of the coefficient tells whether the impact is positive or negative. We can see that DIT, NOC, Ca and MFA metrics are not significant and therefore not taken for any further analysis. Thus, in this way we can reduce the number of independent variables and select only the best fault predictors. The following notations used in tables 5.2 – 5.6 show the degree of the significance:

++ Denotes metric is significant at 0.01, + denotes metric is significant at 0.05, −−denotes metric is significant at 0.01 but in an inverse manner, −denotes metric is significant at 0.05 but in an inverse manner,0 denotes that metric is not significant. 
Table 5.1: Univariate Analysis
	S.no
	Metric

	B
	SE
	Sig.
	Exp(B)

	1
	WMC
	0.123
	0.018
	0.000
	1.131

	2
	DIT
	-0.188
	0.115
	0.102
	0.828

	3
	NOC
	0.003
	0.015
	0.835
	1.003

	4
	CBO
	0.056
	0.020
	0.004
	1.057

	5
	RFC
	0.055
	0.008
	0.000
	1.056

	6
	LCOM
	0.012
	0.003
	0.000
	1.012

	7
	Ca
	0.007
	0.007
	0.354
	1.007

	8
	Ce
	0.251
	0.043
	0
.000
	1.285

	9
	NPM
	0.109
	0.018
	0.000
	1.115

	10
	LCOM3
	-0.943
	0.192
	0.000
	0.389

	11
	LOC
	0.004
	0.001
	0.000
	1.004

	12
	DAM
	1.477
	0.264
	0.000
	4.381

	13
	MOA
	0.495
	0.128
	0.000
	1.641

	14
	MFA
	-0.004
	0.311
	0.991
	0.996

	15
	CAM
	-3.844
	0.568
	0.000
	0.021

	16
	IC
	1.460
	0.206
	0.000
	4.307

	17
	CBM
	0.511
	0.065
	0.000
	1.668

	18
	AMC
	0.013
	0.006
	0.036
	1.013

	19
	MAX_CC
	0.187
	0.045
	0.000
	1.206

	20
	AVG_CC
	0.828
	0.192
	0.000
	2.289


Table 5.2: Univariate results of size metrics
	Metric

	Notation

	WMC
	++

	NPM
	++

	LOC
	++

	DAM
	++

	MOA
	++

	AMC
	+


Table 5.3: Univariate results of coupling metrics
	Metric

	Notation

	RFC
	++

	CBO
	+

	Ca
	0

	Ce
	++

	IC
	++

	CBM
	++


Table 5.4: Univariate results of cohesion metrics
	Metric

	Notation

	LCOM
	++

	LCOM3
	--

	CAM
	--


Table 5.5: Univariate results of inheritance metrics
	Metric
	Notation

	DIT
	0

	NOC
	0

	MFA
	0


Table 5.6: Univariate results of complexity metric
	Metric

	Notation

	CC
	++


5.2 Multivariate LR Analysis

Multivariate analysis is done to find the combined effect of all the metrics together on fault proneness. For doing multivariate analysis, we have used forward stepwise selection to determine which variables should be included in the multivariate model. Out of all the variables, one variable in turn is selected as the dependent variable and remaining others are used as independent variable [71]. In univariate analysis 16 metrics were found to be significant. Table 5.7 shows the result of multivariate model. The coeff(B), statistical significance(Sig.), standard error(SE), odds ratio(Exp(B)) are also shown in the table for all the metrics included in the model. We can see that only 3 metrics i.e. DIT, RFC and CBM are included in the model.

      Table 5.7: Multivariate Model Statistics
	Metric

	B
	SE
	Sig.
	Exp(B)

	DIT
	-0.522
	0.165
	0.002
	0.594

	RFC
	0.031
	0.007
	0.000
	1.032

	CBM
	0.531
	0.078
	0.000
	1.701

	Constant
	-0.089
	0.328
	0.785
	0.914


5.3 Validation of Hypothesis

In this section, we validate our hypothesis presented in section 3.2. Also we have compared our results with the results of previous studies shown in table 5.9. 

5.3.1 Discussion of Our Results

  All the size metrics except AMC are significant at 0.01. AMC is significant at 0.05. Thus, we say hypothesis H1 is accepted and null hypothesis is rejected, i.e. an increase in size increases faults in the class. Among the cohesion metrics, we can see that LCOM3 and CAM have negative coefficients indicating they have negative impact on fault proneness. By definition, if LCOM, LCOM3 and CAM are significant, it means fault proneness increases with decrease in cohesion. Since CAM and LCOM3 are negatively significant to the fault proneness, we can conclude that the fault proneness decreases with the decrease in cohesion. We can observe that out of 3 cohesion metrics, majority (i.e. 2) of the metrics are negatively significant. Thus, we reject hypothesis H2 or accept the null hypothesis. All the coupling metrics except ca are found to be strongly relevant to determine the fault proneness of the class. CBO is not strongly related but it still has a positive impact.Ca is not significant to fault proneness, meaning it has neither a positive or a negative impact. We accept hypothesis H3, i.e. a class with high import or export coupling is more likely to be fault prone. None of the inheritance metrics is found to be significant showing that hypothesis H4 is rejected. The hypothesis H5 is also rejected. The complexity metrics CC is found to be strongly positively related to fault proneness, thus concluding hypothesis H6 is accepted, i.e. a class with more complexity is likely to be more fault prone. In table 5.8, we have summarized the results of the hypothesis stated in section 3.2, in which ( means that the hypotheses are supported.

Table 5.8: Summary of Hypothesis
	Hypothesis
	Accepted
	Rejected/Null hypothesis Accepted


	H1
	· 
	     -

	H2
	    -
	· 

	H3
	· 
	    -

	H4
	    -
	· 

	H5
	    -
	· 

	H6
	· 
	    -


5.3.2 Discussion of Previous Studies

 We have done the comparison of our results with the results of the previous studies. CBO was found to be significant predictor in majority of the studies except Tang et al. [17], El Emam et al. [72] and Olague et al.[48]. In El Emam et al. [72], the results were analyzed for the projects with and without size control. When size control was not taken into account, then CBO was found to be insignificant. Similarly, Olague et al. [48] predicted the fault prone classes for various versions of Rhino. For one of the version, the CBO was found to be insignificant. RFC was also found to be significant predictor of fault proneness in all the studies except El Emam et al. [72] when size control was not considered. Most of the studies i.e. Tang et al. [17], Briand et al. [60], Briand et al. [44], Yu et al. [73], Shatnawi et al. [52], English et al. [71], Zhou et al. [57] and Burrows et al. [58] did not examine the LCOM metrics or calculated it in a very different manner. Among the studies that examined LCOM, it was insignificant in Basili et al. [64] and Singh et al. [62] for Low Severity Fault (LSF) prediction model. The metric NOC, which is not found to be significant predictor in our study, shows negative impact on fault proneness in Basili et al. [64], Briand et al. [60], Zhou et al. [73] for LSF prediction model and Singh et al. [62] for Medium Severity Fault (MSF) and Ungraded Severity Fault (USF) prediction model. For the remaining previous studies, it was not considered to be significant. NOC was found to be very significant in predicting faulty classes in Yu et al. [74] and English et al. [71]. SLOC is found to be strongly relevant to fault proneness in all the studies. Various studies i.e. Tang et al. [17], El Emam et al. [72], Yu et al. [74], Zhou et al. [73], Singh et al. [62], Burrows et al. [58] and Aggarwal et al. [75] showed the results of DIT similar to our results. In Basili et al. [64], Briand et al. [60], Gyimothy et al. [45] and English et al. [71], it was found to be positive significant predictor. WMC is also found to be quite significant in all the previous studies. Thus, we can conclude WMC and SLOC have always been significant predictors. DIT is not much useful in predicting the faulty classes.  
Table 5.9:  Results of different validation
	Metric
	Our results
	Basili

et al.

[64]
	Tang

et al.

[17]
	Briand

et al.

[60]
	Briand

et al.

[44]
	El Emam

et al.

[72]

	Yu

et al.

[74]
	Gyimothy

et al.

[45]
	Zhou

et al.

[73]
	Olague

et al.

[48]

	Lang. used
	Java


	C++
	C++
	C++
	C++
	C++
	Java
	C++
	C++
	Java

	Method used
	LR,ML

(RF,Ab,MLP,

Bagging,

SVM,GP)
	LR
	LR
	LR
	LR
	LR
	OLS
	LR,ML

(DT,ANN)
	LR,ML

(NNage, RF, NB)
	LR

	Type of data
	Open source
	Univ.
	Comm.
	Univ.
	Comm.
	Comm.
	Comm.
	Open 

source
	NASA 

dataset
	Open 

source

	Fault severity taken
	No
	No
	No
	No
	No
	No
	No
	No
	Yes
	No

	WMC
	++
	+
	+
	+
	++
	#1     #2                  

+       0
	++
	++
	LSF/USF    HSF

++            ++
	R3    R4     R5

++    ++     ++ 

	DIT
	0
	++
	0
	++
	--
	0       0
	0
	+
	0              0
	0     --        0

	RFC
	++
	++
	+
	++
	++
	++      0
	+
	++
	++            ++
	++    ++     ++

	NOC
	0
	--
	0
	-
	0
	
	++
	0
	--        
	0      0       0

	CBO
	++
	+
	0
	++
	++
	+       0
	+
	++
	++            ++
	++    ++      0

	LCOM
	++
	0
	
	
	
	
	
	+
	+             ++
	++     ++    ++

	SLOC
	++
	
	
	++
	
	++    ++
	
	++
	++            ++
	


Table 5.9 (contd…), Results of different validation

	Metric


	Shatnawi
et al.

[52]

	Agg.
et al.

[75]

	English

et al.

[71]
	Singh

et al.

[62]
	Zhou

et al.

[57]
	Burrows

et al.

[58]

	Lang. used
	java
	Java
	Java
	C++
	Java
	1.Java

2.,3.Java,AspectJ

	Method used
	LR
	LR
	LR
	LR,ML (DT,ANN)
	LR
	LR

	Type of data
	Open source
	Univ.
	Open source
	NASA dataset
	Open source
	1.open source

2.web based

3.S/w prod.

	Fault severity taken
	No(UBA)               Yes(UMA)
	No
	No
	Yes
	No
	No

	WMC
	2.0   2.1   3.0              2.0                           2.1                          3.0   

                          HSF  MSF  LSF       HSF  MSF  LSF        HSF  MSF  LSF

++    ++   ++        ++     ++     ++         ++     ++     ++           ++     ++     ++
	++
	
	HSF    MSF    LSF    USF 

++       ++        ++       ++
	 2.0     2.1     3.0

  ++      ++      ++
	1.  2.   3.



	DIT
	 0     0     ++          0      0       0          ++      0       0             0       0      ++
	0
	++
	0          0          0         0
	
	0    0    0

	RFC
	++    ++   ++         ++    ++    ++          ++     ++     ++           ++     ++     ++   
	++
	++
	++       ++        ++       ++
	
	

	NOC
	 0      0     0           0      0      0             0       0      0              0       0       0     
	0
	++
	0         --           0       --
	
	

	CBO
	++    ++   ++         ++    ++   ++            ++    ++     ++            ++     ++     ++       
	++
	++
	++       ++        ++       ++   
	
	

	LCOM
	
	+
	
	++       ++         0        ++     
	
	

	SLOC
	
	++
	++
	++       ++        ++       ++   
	   ++      ++     ++
	


++, Denotes metric is significant at 0.01; +, denotes metric is significant at 0.05; --, denotes metric is significant at 0.01 but in an inverse manner; -, denotes metric is significant at 0.05 but in an inverse manner; 0,  metric is not significant. A blank entry means that our hypothesis is not examined or the metric was calculated in a different way. LR, logistic regression; UMR ,Univariate multinomial Regression; UBR, Univariate Binary Regression; OLS, ordinary least square; ML, machine learning; DT, decision tree; ANN, artificial neural network; RF, random forest; NB, Naı¨ve Bayes ;MLP, multilayer perceptron; Ab,  Adaboost; SVM, Support Vector Machine; GP, genetic Programming; LSF, low severity fault; USF, ungraded severity fault; HSF, high severity fault; MSF, medium severity faults; #1, without size control; #2, with size control;2.0, Eclipse version 2.0; 2.1, Eclipse version 2.1; 3.0,Eclipse version 3.0; 1. , iBATIS system;  2. , HealthWatcher app.; 3. , MobileMedia system; R3,R4,R5; Rhino 15R3,15R4,15R5; comm.,commercial; univ.,university
5.4 Model Evaluation Using ROC 

This section presents and summarizes the result analysis. We have used various machine learning methods to predict the accuracy of the model predicted. For this, we have performed 10 cross validation of the machine learning models. In 10 cross validation, classes are randomly divided into 10 partitions of approximately equal number of data points. One partition in turn is used for testing /validating the model and the remaining partitions are used for training the model.

5.4.1 ROC Evaluation

The statistical method used in this study is the logistic regression method. Logistic regression gives the results in the form of a probability rather than a binary value. In other words, the result is probability of the occurrence of a fault. Probability is mentioned in terms of cutoff values. For e.g., if cut-off is decided as 0.7, it means if the probability is more than 0.7, then the class is predicted to be faulty. Different researchers have used different cut-off values in their studies.  To avoid the problem of selecting arbitrary cut-off values, receiver operating characteristics curve (ROC) is drawn. In constructing ROC curve, cut-off point between 0 to1 is selected and sensitivity and specificity at each cut off point is calculated. Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular decision threshold (cut-off point). The main advantage of drawing ROC curve is that no arbitrary decisions need be made to decide the cut-off point which helps to predict probability. Therefore the closer the ROC curve is to the upper left corner, the higher the overall accuracy of the test. We can calculate the area under the curve using trapezoidal rule. The value for the area under the ROC curve can be interpreted as follows: an area of 0.84, for example, means that a randomly selected individual from the positive group has a test value larger than that for a randomly chosen individual from the negative group in 84% of the time (Zweig & Campbell, 1993). When the variable under study cannot distinguish between the two groups, i.e. where there is no difference between the two distributions, the area will be equal to 0.5 (the ROC curve will coincide with the diagonal). When there is a perfect separation of the values of the two groups, i.e. there no overlapping of the distributions, the area under the ROC curve equals 1 (the ROC curve will reach the upper left corner of the graph, 100% sensitivity and 100% specificity). Using the ROC curve, we can also find the optimal operating point. The optimal operating point on the ROC curve is the point closest to the top-left corner. This gives the cut-off value that will provide the highest sensitivity and specificity. Therefore, to compute the accuracy of a prediction logistic regression model, we use the area under the ROC curve, which provides a general and non-arbitrary measure of how well the probability predictions can classify the classes as faulty and non faulty.

We have used ROC analysis to find the cut - off point. Cut- off point is selected such that a balance is maintained between the number of classes predicted as fault prone and not fault prone. ROC curve is plotted with sensitivity on the y-axis and (1-specificity) on the y- axis. The point where sensitivity equals (1-specificity) is called as the cut-off point. The ROC curves for the machine learning models are presented in Figure 4.

5.4.2 Discussion of Results

Table 5.10 summarizes the results of 10 cross validation of the model predicted using machine learning methods. It shows the sensitivity, specificity, precision, AUC and the cut off point for the model predicted using all the machine learning methods. We have used ROC analysis to find the cut - off point. We can see that the random forest and bagging give quite similar results. They show good results as compared to the results of the other methods. The specificity and AUC for both the models are quite similar. The specificity for random forest is 80.7% whereas for bagging it is 80.1%. These values are quite high when compared to the values of the other methods. Also the ROC curve for the random forest and bagging gives high AUC values i.e. 0.875 and 0.876 respectively. The sensitivity of random forest is 98.6% whereas the bagging shows high sensitivity of 82.9%. The highest sensitivity is shown by SVM method which is 89.3% but it gives the lowest specificity of 51%. Also AUC for the SVM model is 0.70. Thus, this method is not considered to be good. Adaboost and genetic programming show average results with sensitivity of 80.8% and 82.8% respectively, specificity of 78.3% and 72.7%. Besides these machine learning models, we have also used a statistical method i.e. logistic regression. We can observe that the sensitivity of logistic regression is the lowest as compared to other machine learning methods. Also, specificity is quite low when compared with most of the other machine learning methods.    Thus, we can conclude from the discussion that machine learning methods give better results as compared to the statistical methods. Among machine learning methods, random forest and bagging are the best predicted models.  
Table 5.10: Results of 10-cross Validation
	S.No.
	Method Used
	Sensitivity
	Specificity
	Precision
	Area under curve
	Cut-off point

	1.
	Random Forest
	78.6%
	80.7%
	1.159
	0.875
	0.61

	2.
	Adaboost
	80.8%
	78.3%
	1.153
	0.861
	0.62

	3.
	Bagging
	82.9%
	80.1%
	1.181
	0.876
	0.57

	4.
	Multilayer Perceptron
	77.6%
	77%
	1.122
	0.799
	0.54



	5.
	Support Vector Machine
	89.3%
	51%
	0.984
	0.70
	0.5



	    6.
	Genetic Programming
	82.8%
	72.7%
	1.120
	0.808
	0.5

	7.
	Logistic Regression
	74.7%
	73.9%
	1.078
	0.791
	0.59
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Figure 5.1. ROC curve for (A) adaboost  ,(B) random forest  ,(C) bagging, (D)multilayer perceptron , (E)genetic programming, (F) SVM, (G) Logistic regression

CHAPTER 6

Conclusion and Future Work

This chapter presents conclusion and scope of future work in this area of research. The conclusion summarizes the results of the experiments conducted in this work and describes the future directions in this area of research.

6.1 Summary of the thesis

In Chapter 1, we have introduced the topic of our research. It explains the basic concepts of the work done and gives the overview of the thesis. It explains the various concepts related to software reliability, for e.g., importance and definition of software quality models, various metrics available in the literature; their classification and importance etc. This is followed by motivation of the work and goals and objectives of the thesis. The main motivation is the need to increase the quality of the software. Software quality can be increased by predicting quality attributes during early phases of the software. Thus, we have predicted a model that can be used to improve the quality by predicting the occurrence of faulty classes. There are two main objectives i.e. to establish a relationship between object oriented metrics and fault proneness and secondly to predict a model which can be used to find the faulty classes.   

After giving the brief introduction in chapter 1, in Chapter 2 we have reviewed the work already done in this area. It shows the summary of the work done by different researchers laying the main emphasis on the metrics used, dataset used and the methods used to bring out the results. For this, we have reviewed various previous studies which are related to software object oriented metrics and fault proneness. This review has helped us to conclude that among various metrics which are available, CK metric suite and MOOD metrics are widely used by different researchers in their study. Secondly, we observed that machine learning methods are used in most of the studies to predict the model. Trend is shifting from the traditional statistical methods to modern machine learning methods. Lastly, we concluded that public domain datasets such as PROMISE and NASA repositories mostly used in the studies.

 In Chapter 3 we have described the background of this research work. The independent and dependent variables used in the study, the hypothesis to be tested and the empirical data collection are presented in this chapter. The independent variables used are the object oriented metrics and the dependent variable is fault proneness. The definition of all the metrics which are used as independent variables is also provided. We have defined six hypotheses to be tested. The details of the dataset used are given. We have used open source dataset ‘Apache POI’ for this study.

Chapter 4 has emphasized on the key research concepts i.e. descriptive statistics, performance measures and various validation techniques. This chapter also describes different statistical and machine learning methods used to analyse the results. The descriptive statistics shows the “mean”, “median”, “min”, “max”, “std dev”, “25% quartile”, “50% quartile” and “75% quartile” of all the independent variables used in our study. The statistical method, i.e. logistic regression and machine learning methods, i.e. bagging, adaboost, genetic programming, random forest, support vector machine and multilayer perceptron which we have used to predict the model are explained. The three cross- validation techniques namely hold-out, leave-one-out and K-cross validation are explained. We have used k-cross validation (the value of k is taken as 10) in our study. 
In Chapter 5, the univariate and the multivariate results of the work have been explained and shown graphically. The univariate results show the effect of individual independent variable on fault proneness. Thus, the variables which are not significant in predicting faulty classes can then be removed. Out of the total 20 independent variables, 16 variables are found to be significant predictors of faulty classes. Based on the multivariate results, appropriate model has been proposed which can be used by the researchers in their studies. We have concluded that the machine learning methods give better results as compared to the statistical methods. Among machine learning methods, random forest and bagging are the best predicted models.  Receiver Operating Characteristics (ROC) curves for various machine learning methods are drawn to find the optimal operating point. The acceptance or rejection of hypothesis is also shown in this section. 
6.2 Discussion of Results

In any software project, there can be number of serious faults. It is very essential to deal with these faults and try to detect them as early as possible in the lifecycle of the project development. Thus, various techniques are available for this purpose in the literature, but previous research has shown that the object oriented metrics are useful in predicting the fault proneness of classes in object oriented software system. In this study, we have used object oriented metrics as the independent variables and fault proneness as the dependent variable. We have studies 19 object oriented metrics for predicting the faulty classes. We have done fault prediction using machine learning and statistical methods. We have also compared our results with those of previous studies and concluded that WMC and SLOC are significant predictors in majority of the studies. Based on the open source dataset –‘Apache POI’, the result analysis was done using the ROC curve in which the results of ‘Bagging’ were found to be best with area under the curve as 0.876. Thus, we can say that practitioners and researchers may use bagging for constructing the model to predict the faulty classes. Univariate and multivariate logistic regression are used to determine the effect of the metrics on fault proneness. It was found that the metrics DIT, NOC, Ca and MFA are not significant predictors of fault proneness and the remaining metrics which we have considered are found to be quite significant. Using multivariate analysis, we constructed the model in which only 3 metrics were included, i.e. DIT, RFC and CBM. While research continues, practitioners may apply the metrics captured in predicted model to predict faulty classes. One can assess the quality of the software in the earlier stages of software development by computing the values of metrics found in the predicted model. The classes predicted to be fault prone will need extra attention during rest of the development. We can develop practical quality benchmarks to assess and compare the design attributes in OO systems that are newly developed or under maintenance.

6.3 Application of the Work

We can conclude that the work in this thesis will be beneficial for the researchers and software professionals.
· The model can be used in early phases of software development to measure the quality of the systems. This will lead to efficient use of resources and time.

· From the design phase, one could make software measurements and then predict which classes will need extra attention during the remainder of development. This can help management focus resources on those classes that are likely to cause the bulk of problems. Also, if required developers could reconsider design and thus take corrective actions. 
· A subset of factors (independent variables) is obtained that can be used to predict faulty classes.
· Researchers can use machine learning methods (specially ‘bagging’) rather than statistical methods to predict the faulty classes.

6.4 Future Work

This is an empirical study to find the effect of object oriented metric on fault proneness. The results provide guidance for future research on the impact of object oriented metrics on fault proneness. Following are some areas, which we plan to investigate in future:

· In this study, the severity of faults is not taken into account. The failures are always not the same and there can be sometimes very serious failures. For eg. a failure caused by a fault that can lead to a network crash is a serious failure. Thus, in future studies, we should take into account severity of faults to get the more accurate and efficient results.

· In this study, we have used dependent variable as fault proneness. In future research, we can take into account various other quality attribute factors such as maintainability, effort etc. as the dependent variable. We can then compare the results and find out which quality attributes effects the reliability to which extent.

· More similar type of studies must be carried out with different data sets to give generalized results across different organizations. We plan to replicate our study on larger data set and industrial object oriented software system.

· In our future work, we will investigate alternative modelling techniques which helps to predict the count of defects in classes rather than predicting the probability of detecting the fault (as in logistic regression). This can be done by using the techniques such as Poisson or negative binomial regression analysis. This will facilitate the use of design measurement based prediction models.

· In this study, we have not taken in to account the effect of size on fault proneness. In future work, we will also take into account some of the product properties such as size, and also process and resource related issues like experience of people, development environment etc. that effect fault proneness .
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