CERTIFICATE

This is to certify that the work contained in the thesis entitled "STUDY OF COOLING CHARACTERISTICS OF INFRARED DETECTOR CRYOCHAMBER" by Mr. Mayank Singhal in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Thermal Engineering has been carried out under my supervision and this work has not been submitted elsewhere for a degree.

Date: 27-06-2011 Place: New Delhi (**Dr. A. Arora**) Department of Mechanical Engineering Delhi College of Engineering, Delhi.

STUDENT DECLARATION

I hereby certify that the work which is being presented in the minor project entitled "STUDY OF STEADY STATE COOLING CHARACTERISTICS OF INFRARED DETECTOR CRYOCHAMBER", in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Thermal Engineering, is an authentic record of my own work carried under the supervision of **Dr A. Arora, Astt. Prof** of Mechanical Engineering Department, University of Delhi, Delhi

I have not submitted the matter embodied in this minor project for the award of any other degree.

MAYANK SINGHAL ME (Thermal)

Univ. Roll no.-11001

ACKNOWLEDGEMENT

"If brain is the nucleus of thoughts, teacher is the source of energy to run the operation of solving cross puzzles of doubts that often poise the mind of students."

It is my privilege to express my deep sense of gratitude and sincere thanks to my able and versatile guide **Dr. A. Arora** for his invaluable guidance. I am highly indebted for his critical discussion and continuous encouragement. his critics and suggestions on my experiments have always guided me towards perfection. Moreover, his ways of analyzing the results have given a new dimension to my scientific aptitude. This work is simply the reflection of his thoughts, ideas, concepts and above all his efforts. Working under his guidance has been a privilege and an excellent learning experience that I will cherish for a long time.

I would also like to express my deep gratitude to Dr. Samsher, Professor, Mechanical Engineering Department, Delhi College of Engineering, Delhi, for his moral support and help whenever needed.

My special thanks to all the faculty members and friends for their continuous support, motivation and enthusiastic help in every difficult situation of this work.

Finally, the blessing of God, the love, care, expectations and encouragement from my parents and family have invaluable contribution in successful completion of my degree.

Date: 27-06-2011 Place: New Delhi (MAYANK SINGHAL) Roll No. 15/THR/08 Univ. Roll no.-11001

ABSTRACT

The present work, along with the study of design considerations of an Infrared detector cryochamber investigates the steady and transient cooling characteristics of an Infrared detector cryochamber for various operating conditions.

The design aspects of a cryochamber housing the device for achieving its have also been studied. The major considerations as far as design of cryochamber is concerned are; choice of material of the cryochamber, manner of electrical feedthrough, vacuum sealing and type of cryocooler. These few prime areas concerns which influence the performance of the devices sealed in these cryochambers.

The thermal model developed considers the conduction heat transfer through a cold well, the gaseous conduction due to outgassing, and the radiation heat transfer. The thermal modeling of the cryochamber has been carried out for both steady state as well as transient conditions using a finite volume method. The basic algorithms for solution of steady state and transient state cryochamber heat transfer problem were developed and the numerical codes for both the cases were written in MATLAB. In case of steady state analysis it is found that the length profile of temperature is linear owing to conduction at negligible gas conduction. However, as the influence of gas conduction increases it greatly affects the length temperature profile. In case of transient flow, the cooling down time is mostly affected by the bore conductivity and gas conduction coefficient seems to have little influence. The efficacy of the numerical models has been established by performing detailed experimental studies and also by comparing with existing data.

The code enables prediction of transient cooling performance of the cryochamber under various conditions viz., "no bias" and "with bias" condition, variation in ambient temperature, variation in cryochamber vacuum and its influence on gas conduction coefficient

The computer program developed allows the determination of cooling characteristics specially the cool down time of cryochambers of varying materials and dimensional configurations with differing material and transport properties.

Table of Contents

Contents

				Page No.
	Cer	tificate		i
	Acl	knowled	gement	ii
	Ab	stracts		iii
	Tat	ole of Co	ontents	iv
	Lis	t of figu	res	
	Lis	t of Tab	les	
	No	menclati	ure	
1.	Intr	oduction	n	1
	1.1	Infrare	d (IR) radiation and its fundamental	1
	1.2	Applic	ations of Infrared (IR) Imaging and detection	3
	1.3	Need f	or cooling	5
	1.4	Scope	of work	5
2.	Lite	erature F	Review	6
3. Cryochamber Design Aspects		er Design Aspects	11	
	3.1	Cr	yochambers or Dewars	11
	3.2	De	esign Considerations for Cryochamber	12
		3.2.1	Heat load of cryochamber	12
		3.2.2	Operating temperature range	14
		3.2.3	Material of cryochamber	14
		3.2.4	Details of conductor leads	16
		3.2.5	Bore and length of inner dewar	16
		3.2.6	Outer diameter of dewar	17
		3.2.7	Type of window, cold filter and cold shield	17
		3.2.8	Degassing of dewar by baking	17
		3.2.9	Vacuum sealing of dewar	18

	3.2.10	Type of getters	19	
	3.2.11	Cool-down time and hold on time of cryochamber	20	
	3.2.12.	Type of cryocooler	21	
	3.2.13.	Mechanical integrity and ruggedness of cryochamber	27	
4.	Numerical	Simulation		
	4.1 De	omain Configuration	29	
	4.2 M	odes of heat transfer	30	
	4.3 Tł	nermal modeling	32	
	4.3.1	Formulation for steady state heat transfer	32	
	4.3.2	Formulation for transient heat transfer	35	
	4.4 Nu	umerical Results	38	
	4.4.1	Numerical Results: Steady state	38	
	4.4.2	Numerical Results: Transient	44	
5.	Experimental Validation			
	5.1 Experi	mantal Test setup	51	
	5.1.1	Cryochamber assembly and cooling provision	52	
	5.1.2	High pressure bottle	53	
	5.1.3	Solenoid valve	54	
	5.1.4	Regulation Valve	54	
	5.1.5	Molecular Sieve Filter	55	
	5.2 Cooling Experiments			
	5.3 Results	s and Discussions	57	
6.	Conclusion	S	63	
7.	Recommen	dations for future work	65	
8.	References			
	Appendix – A			
	Appendix – B			
	Appendix – C			

List of Figures

Fig No.	Title	age No.
Fig 1.1	Electromagnetic Spectrum	2
Fig 2.1	Schematic of the infrared detector cryochamber	7
	experimental setup	
Fig 2.2	Schematic diagram of cryochamber with radiation shield	8
Fig 2.3	Photo of a cold finger and heating wire	9
Fig 3.1	Schematic of a typical cryochamber and the	13
	mechanism of heat transfer	
Fig 3.2	Curve showing close expansion relationship between	15
	Glass 9013 vs Carbon steel 1020, and Glass 7052 vs Kovar	
Fig 3.3	Wire Bonding of feedthrough to ceramic header with	16
	Ir-Pt wire	
Fig 3.4	Cryochamber degassing station	18
Fig 3.5	Vacuum sealing techniques for Cryochamber	19
Fig 3.6	Typical getter action along with types of getter used in	20
	cryochambers	
Fig 3.7	T and P plot for various enthalpies showing inversion curve	24
Fig 3.8	Typical hardware of JT cooler	25
Fig (3.9)	Thermodynamic cycle of a stirling cooler	26
Fig 4.1	Schematic a typical cryochamber and modes of heat transfer	30
Fig 4.2	Heat transfer in an elemental volume of coldwell	32
Fig 4.3	Grid convergence check for numerical model of cryochambe	er 39
Fig 4.4	Length profile of temperature for various gas conduction	40
	Coefficient	
Fig 4.5	Length profile of temperature for various emissivity	41
Fig 4.6	Length profile of temperature for various gas conduction	42
	Coefficients (h=1.0 have been studied)	
Fig 4.7	Length profile of temperature for various gas conduction	42

Coefficients (h=0, 0.632, 0.8, 1.0, 4.35 have been studied)

Fig 4.8	Grid convergence check for transient numerical model of	45
	Cryochamber	
Fig 4.9	Time step independence for transient numerical model of	46
	Cryochamber	
Fig 4.10	Numerically predicted cool down time for Case II	47
	cryochamber employing time step of 1ms time	
Fig 4.11	Numerically predicted cool down time for Case II	48
	cryochamber employing time step of 1ms time in	
	"bias on" detector condition	
Fig 4.12	Length profile of temperature for Case - II of cryochamber	49
Fig 4.13	Numerically predicted detector cool down time for ambient	49
	temperature of 328 K under "no bias" condition	
Fig 4.13	Numerically predicted detector cool down time for ambient	50
	temperature of 328 K under "bias on" condition	
Fig 4.15	Effect of ambient temperature on detector cool down time	51
	considered to be operating in "no bias" condition	
Fig 4.16	Effect of gas pressure variation on detector cool down time	52
Fig 5.1	Configuration of the experimental setup	54
Fig 5.2	Cryochamber Assembly	55
Fig 5.3	High Pressure Nitrogen Bottle	56
Fig 5.4	Solenoid valve	56
Fig 5.5	Regulating valve	56
Fig 5.6	Photograph of experimental setup	57
Fig 5.7	Cryochamber cooling curve at 25°C without heat load	59
Fig 5.8	Cryochamber cooling curve at 25°C with device heat load	60
Fig 5.9	Cryochamber cooling curve at elevated temperature without	61
	device heat load	
Fig 5.10	Cryochamber cooling curve at elevated temperature with	62
	device heat load	

List of Tables

- Table 1.1
 Classification of Infrared (IR) Imaging and detection
- Table 3.1Maximum inversion temperature of various gases
- Table 4.1Dimension and properties of glass cryochamber
- Table 4.2Dimension details of our glass cryochamber
- Table 4.3Dimension and properties of steel cryochamber
- Table 4.4Details of cryocooler characteristics given by Kim et.al (5)
- Table 4.5Details of cryocooler characteristics in our case
- Table 5.1
 Cooldown time of cryochamber cooler combinations at ambient temperature without heat load
- Table 5.2
 Cooldown time of cryochamber cooler combinations at ambient temperature with heat load
- Table 5.3Cooldown time of cryochamber cooler combinations at elevated temperature
without heat load
- Table 5.4
 Cooldown time of cryochamber cooler combinations at elevated temperature with heat load

Nomenclature

Notations

COP	Coefficient of Performance
COP _{carnot}	Ideal Coefficient of Performance
Т	Temperature (in °C and K)
T _R	Minimum Cycle Temperature
T _C	Maximum Cycle Temperature
$Q_{\rm w}$	Heat being conducted into the finite volume
Qe	Heat being conducted away from the finite volume
Qc	Heat Transfer due to gaseous conduction
Q _R	Radiative Heat Transfer
T _b	Temperature of the metal base
T_{∞}	Ambient Temperature
T _d	Detector Temperature
K _n	Knudsen number
K _B	Boltzmann constant
d	Molecular diameter of air $(= 0.37)$
h	Gas conduction coefficient
μm	micron
ppm	Parts per million
Р	Pressure in bar or psi
mW	milli Watt

Subscript

Conduction
Radiation
base
Ambient
Detector
Boltzmann

Greek symbol

α	Coefficient of Linear Expansion & Thermal diffusivity
η	Efficiency
μ_{JT}	Joule Thomson Coefficient
σ	Stefan Boltzmann Constant
3	Emissivity
λ	Mean free path