Chapter-1

Introduction

OpenCL is the first open, royalty-free standard fooss-platform, parallel

programming of modern processors found in persooaputers, servers, handheld
and embedded devices. OpenCL greatly improves speedesponsiveness for a
wide spectrum of applications in numerous markeegaies from gaming and
entertainment to scientific and video encoding dedoding software. There are
various video coding techniques emerging in indestfor very high quality of

picture viewing, such as, MPEG7, H.263, H.264, Hi0. &hese video codec
employ different algorithms for representing tHeirmats, many of them uses only
the compression and decompression, some of therm WN&#ion estimation

techniques for video compression. But in MCTI (MaotiCompensated Temporal
Interpolation) we generate new images between adjaitnages of a incoming
video sequence which increases no. of frames lisplayed per second and this
increases viewing experience in multiples. Thiadkieved by comparing adjacent
frames of a video sequence both in forward and Wwawk direction and generates
motion vectors for generating new intermediate imagor the generation of
Motion Vectors huge computation is needed, anddbmputation is done through
intensive computation Power of Graphics Processligits (GPUs) .The

implementation of MCTI algorithm for generate nootivector is done by OpenCL

language.

Delhi Technological University

Page 1

Currently we are developing a compression algoribased on motion vectors of
consequent frames of videos to give very high pecguality. The most important
thing is, we are using GPU with CPU to generatgion vectors which is now

first of its kind and more over it will go into boMobile device which are having
capabilities of GPU and for PC’s and set-top baa®svell. We are using GPUs for
parallel processing of the data for faster resulise goal of this thesis is to
implement some of the most widely used motion esiion algorithm on

OpenCL, analyze common pitfalls and design choaespoint out limits of GPU-

accelerated motion estimation. To this end, therdlgns have been embedded
with the OpenCL engine framework, making them aldé instantly in the context

of existing applications using the OpenCL library.

Many computational problems have gained a sigmfigeerformance increase by
using the highly parallel properties of the GPU.e®PL (Open Computing
Language) is a framework for writing programs tbaécute across heterogeneous
platforms consisting of CPUs, GPUs, and other msoes. OpenCL was initially
developed by Apple Inc., which holds trademark tsgin collaboration with
technical teams at AMD, Intel, and Nvidia. Applésuitted this initial proposal to
the Khronos Group [1]. On June 16, 2008, the KhsoG@ompute Working Group
was formed [2] with representatives from CPU, GRhbedded-processor, and
software companies. This group worked for five rhento finish the technical

details of the specification for OpenCL 1.0 by Naeer 18, 2008. This technical

Delhi Technological University Page 2

specification was reviewed by the Khronos memberd approved for public
release on December 8, 2008 [3].

The main goals of the project are;

1.) OpenCL as a multi-core programming tool andintserent performance and
portability properties is of interest. On backgrdusf code developed within this
project, we wish to explore this area.

2.) Experiments with one or several tools usedderformance measuring and
profiling of OpenCL code. Nvidias performance measy and profiling tools
should be included here.

3.) For the study of performance tools as mentioaleove; include one or more
from another vendor; Intel and AMD/ATI.

4.) Based on the experiments; suggest ways to goriens of the OpenCL code
for efficient multi-core/GPU execution.

5.) Study how performance is affected when porfmnggrams between different
platforms.

6.) Provide estimates for some OpenCL programs fame&ion of the number of
cores/compute units used.

7.) Compare the performance of benchmark programmemented in OpenCL
with comparable implementations in other languages

8.) Study the interplay of current OpenCL implenagioins and the operating
systems they run on with respect to performance.

9.) A focus on debugging tools for OpenCL is okneist.

Delhi Technological University

Page 3

The thesis is organized in 6 chapters:

The chapter -2 explains Benchmarking and benchmgrgrocedure in MCTI. In
chapter -3, theory of OpenCL is explained. In chapt, the proposed work of this
thesis is explained. In chapter -5, Timing analysi8enchmarking of GPU Code
is shown in graphical results. Chapter-6 showsctmelusion and discussion about
future directions in this project.

All the results have been achieved on Nvidia QuadV& 295 & Nvidia GTX 285.

Delhi Technological University Page 4

Chapter -2

Benchmarking Procedure in MCTI

Benchmarking [4] is the process of comparing ormisiness processes and
performance metrics to industry bests and/or bemsttices from other industries.
Dimensions typically measured are quality, time aws$t. Improvements from

learning mean doing things better, faster, and pérea

There is no single benchmarking process that has baiversally adopted. The
wide appeal and acceptance of benchmarking hagoledarious benchmarking

methodologies emerging

2.1 Benchmarking Procedure

The methodology for benchmarking consists of sklgcta subject for

benchmarking (here | have selected MCTI Video cgdain OpenCL platform), and
defining the process and system requirement. Syst&guirement consist of
defining hardware, Operating system and softwaredus the process of
benchmarking.

After defining all the system requirements we sbadentify the algorithm used in
the codec/application and the type of data usethenprocess (integer, floating
etc.), choose different algorithms to do the sanmetionality by selecting the same
data type and precision. Then determine the difisgein the time required to

complete the task performed by different algorithaiso tell the process difference

Delhi Technological University Page 5

(i.e. cycles and memory buffer used in compodt , compare them with the
pre specified target and set accordingly the fupedgormance of the code. Share
all your experience with the experts in the indestand compare your design with
their designs, adjust your product goal and fupggormance. Finally implement
the design by the best algorithm you have used ao and if necessary
review/recalibrate the application by the same @doce used. By doing all these
steps the application will attain optimum performamand will become an industry

standard.

2.2MCTI (Motion Compensated Temporal Interpolation)

It is a technique for frame repetition or lineatempolation for reconstructing
skipped frames in temporally sub-sampled video segel tends to introduce
undesirable artifacts. Object motions must be caorsgied in order to remove these

artifacts.[5]

To smooth out object motions, this proposal is st poocessing technique; motion
compensated temporal interpolation (MCTI), to imse the instantaneous decoder
frame rate. In MCTI, block-based exhaustive motsmarch is used to establish
temporal association between two reconstructed dsanBoth forward and
backward searches are used to account for uncovarddnewly covered areas
properly. With MCTI, It is shown that one or mdrames can be interpolated with
acceptable visual quality. After showing the fedisjpb of MCTI, In MCTI,

compensation for the object motions by tracking tigects between adjacent

Delhi Technological University Page 6

received frames. Knowing the trajectory of eacheohjwe can place the object at
the appropriate location in the interpolated framé&& use block-based motion
estimation to establish block wise association ketw each pair of adjacent
received frames. The criterion for block matchiegSUM of Absolute Difference
(SAD). Both forward and backward motion estimatiould be performed to
account for the uncovered regions and the newly@V regions. These regions
can be found in only one but not both of the reegiframes. The collection of all
the motion vectors defines a motion field whiclused to set up a database for each
interpolated frame. The database would then be tsednstruct the interpolated
frames. The feasibility of the MCTI is to verify bgimulation using two

videoconferencing test sequences.

2.3 Benchmarking Procedure in MCTI
STEPS
1. Verify your code!

2. Measure runtime: & compare against the best available code

1) compile other codes correctly (as good as possible)
2) use same timing method
3) be fair

4) Always sanity check: compare to published restits
3. Measure performance flops (number floating point operations/second),

compare to peak performance

Delhi Technological University Page 7

1) needs peak performance, which can be difficult

2) get instruction count statically (cost analysispgnamically (tool that
counts, or replace operations by counters througtros (input s sequence

of characters))

3) Careful: Different algorithms may have differentogtions count, i.e., best

flops is not always best runtime

How to measure runtime?
1) process specific, low resolution, very portable
2) measures wall clock time, higher resolution, sonavgortable
3) Performance counter
4) measures cycles (i.e., also clock time), highesilution, not portable

5) measure only what you want to measure (may beatthiverhead)
6) proper machine state
7) measure enough repetitions

8) check how reproducible; if not reproducible: fix it
How to present results (in writing)?
Specify machine

1) processor type, (CPU & GPU Used)
2) Frequency of operation of processors

3) relevant caches and their sizes

Delhi Technological University

Page 8

4) operating system (windows / Linux)

Specify compilation
1) compiler incl. version

2) Debugger Used

3) Tools and software SDK Used

Explain timing method
1) By Plotting different results
2) Results of operation have to be very readable (sdal@ossible, thick lines,
fonts, etc.)
3) Choose proper type of plot: message as visiblessilple

4) X-Y plot and different comparison Plots

2.4 Benefits of Benchmarking

Increase profit margins

Improve return on IT investments
Reduces the unknowns

Identify best practices and worst practices
Pinpoint redundancies

Quantifies the risks

Delhi Technological University Page 9

2.5 Benchmarking Procedure

1. Select at least a common target platform to shase ctudies results &
practical experience between AST teams & memberatéoal at different

sites

2. Take another platform for comparison of resultspé&tience.

Common platform

1. PC with Nvidia Graphics Acceleration Card and OBux.

2. SDK (Software Development kit) : Nvidia

Alternate Platform

1. PC with ATI GPU

2. lon Nvidia CPU-GPU platform.

3. Mobile Phones with embedded GPUSs.

3 EVAL Board form GPU provider

4 other Requirements

1. OpenCL Candidate release Library UP and runninghenplatform(e.g

Nvidia one)

2. Gdebugger from Gremedy.

3. Set of relevant case studies for Benchmarking apédréence gathering.

Delhi Technological University Page 10

1. To compare development / Optimization time

2. Compare Programming languages/Models: OpenGL V$10pe

Vs C/C++(Vs CUDA)

3. OpenGL Vs OpenCL code performance comparison.

4. Automatic C to OpenCL translation (Code portabisity

Performance)

5. Data Type Precision

6. Data parsing Overhead (i.e. Cycles Penalty, memuauifer

accessibility)

5. Produce & Document case studies depending upoaxperience.

2.6 Development Flow

1. Select Platform with GPU installed.

2. Obtain Tools and applications examples as sourcde d¢or compiling &

Debugging.

3. Obtain the OpenCL compiler & tools for selectedj&drplatform

4. Identify a simple test application in OpenCL to ement & Learn the way

of Benchmark/profile/test an application.(e.g. Mo@arlo Integration etc.)

5. Cascade the work flow of “How To” by properly docenting & sharing

experience in open sharing style.

Delhi Technological University Page 11

Chapter 3

Basics of OpenCL

OpenCL: open computing language for writing parallel aggtions for
heterogeneous GPUs. OpenCL (Open Computing Lanyimgenew cross-vendor
standard for heterogeneous computing that runsherCUDA (Compute Unified
Device Architecture) architecture. Using OpenClyalepers can use the massive
parallel computing power of NVIDIA GPU’s to creat®rceful computing
applications. As the OpenCL standard matures asdpported on processors from
other vendors, NVIDIA would continue to provide tbavers, tools and training

resources for developers need to create GPU aatsllespplications.

Advantage of using OpenCL

I. it extends the life cycle of SOC

ii. lessertime is needed to write the software implaaten

iii. saving the chip area by implementing the same fomality in Software

rather than implementing in hard ware

iv. NRE cost of software in much lesser than equivaldrardware

implementation.

v. OpenCL have a very big development community suppor

Delhi Technological University Page 12

vi. OpenCL gives less time to develop and gives mor®peance.

vii. Algorithms for OpenCL development is being done Agvance System

Technologies.

Processor Parallelism

Processor parallelism is enjoyed by OpenCL Programas both the processors

can be used together, Heterogeneous computingnsyasteper Khronos Group as

shown in the figure 3.1 below [6].

Processor Parallelism

CPUs GPUs

Multiple cores driving Emerging Increasingly general
performance increases Intersection purpose data-parallel
computing

B

Q€.
& a

OpenCL
Multi- Heterogeneous Graphics
processor Computing APIs and
programming Shading
—e.g. OpenMP Languages

OpenClL is a programming framework for heterogeneous compute resources

Figure3.1: Processor Parallelism

Delhi Technological University

Page 13

3.1 History of GPUs

The details in this topic is taken from thefial documentation provided by
NVIDIA [7 & 8].Graphic processing units have higtally been designed to
handle the generation and modification of graphiead. This includes rendering of
2D or 3D scenes by means of shader, the name tjiveaftware to program the
GPUs rendering pipeline. Another task for GPUs witers, which are small
programs that can be applied to an existing streaimages. In 1992, the OpenGL
standard was created by Silicon Graphics Inc. (SGlallow for cross-platform
development of programs which render three dimemicscenes. Microsoft
DirectX, with its Direct3D and Direct2D componeniss,a competing standard and
programming API which provides easy facilities togram for graphics cards. The
rendering of 3D scenes, while computationally dedivay requires a profoundly
different toolset compared to the task normally byndesktop PCs, which is why
specialized graphic cards proved to be an effioreany to handle this increasingly
important task using dedicated hardware with fiastting point operations, freeing
the CPU for other tasks it was more suited for. $heed and detail achieved by
programs written for OpenGL, DirectX or the deptedaGlide API surpassed the
integrated software renderers of games and profesissoftware, quickly making
them obsolete for interactive applications. Whilpe@GL and DirectX were only
aimed at graphics processing, some people tribdtoess the computing power of
their graphics cards for more general computati@asning the term GPGPU,
which is short for general purpose programming gigingraphics processing unit.

Programs had to be translated to look like graphcablems, meaning that the

Delhi Technological University Page 14

program-code had to be written for execution by ghegrammable shader units,
while the data had to be translated into image-d3¢gause of the lack of native
instructions and debug facilities, this was a viamyjted, cumbersome, and error-
prone way to program, but it started the proceaswlould eventually culminate in
the 2007 release of NVIDIA’'s CUDA programming emwviment. Before the
introduction of CUDA, the design philosophy of GPdrdware had already gone
from having a fixed-function pipeline for the diféat stages in three-dimensional
image creation to a unified multipurpose procesguich could be programmed to
handle each of these stages using multiple passgsite input data. This has the
advantage that no stage is underutilized whiletarattage had reached its limit. In
2007, the CUDA toolkit was released by NVIDIA shyrafter its new G80 series
GPUs, the first one being the GeForce 8800 GTXh\Wie release of the G80 GPU
chip, NVIDIA acknowledged the potential of GPGPU diying the G80 additional
hardware to enable easy programmability. Not onéyeasingle-precision floating
point operations according to IEEE 754 supportedl @ entually double-precision
as well), but typical integer operations becamesids too. Suddenly, the NVIDIA
GPUs transformed into powerful and affordable maedgiparallel supercomputers
with a wide installation base. The compute capidsli of the NVIDIA chips
evolved with each new generation, and soon includiegble-precision floating
point operations, efficient scattered memory accéaster and atomic integer

operations for 32-bit and 64-bit words and thregtthkronization.

Delhi Technological University Page 15

In the same timeframe, AMD/ATI released the lowdkeClose to Metal (CTM)
framework to program its GPU device. After the 20@¥ase of the high-level
AMD Stream SDK based on the ATI Brook+ programmlagguage, CTM was
renamed to ATl Compute Abstraction Layer. Thesengwaorks provided similar
functionality for AMD GPU devices as the CUDA frawark. It was not until late
2008 that OpenCL 1.0 was released to the generblicpuOpenCL (Open
Computing Language) is a vendor-agnostic GPGPUdvaork which was initially
developed by Apple Inc. and later handed over ¢okthronos group. The Khronos
group consists of big vendors like NVIDIA, AMD, kit SGI and Sun and is also
the home of the OpenGL working group.

Apple had anticipated that it would sell PCs egagwith both NVIDIA and AMD
GPUs, which is why they wanted to supply their depers with a portable
framework to accelerate algorithms in their appiaa using a GPU, while AMD
started to focus on integrating OpenCL into the ANBDeam SDK and began
promoting OpenCL over its own proprietary languade¥IDIA still offers and

develops CUDA alongside OpenCL to the same extebeéore.

Delhi Technological University Page 16

CPU GPU

Figure 3.2: Distribution of transistors used in CPUand GPU hardware

Today, the computing power of consumer-grade GPas feached about 1.5
teraflops (single-precision) for cards like the Gefe GTX 580 (GF110 chipset),
while specialized GPU clusters with four GPU desioffered by NVIDIA perform
at a theoretical 5 teraflops. This is similar te grerformance achieved by the ASCI
Red cluster used by the US Department of Energprtirsg in 1997, which was the
fastest supercomputer in the TOP500 list from JaB67 to June 2000. For
comparison, a recent Intel Xeon X5680 CPU can delabout 150 gigaflops. At
the time of writing, the fastest supercomputer o lWovember 2010 TOP500 list
was the Chinese Tianhe-1A system, which was bwibgi 14,336 Intel Xeon
X5670 CPUs (each having 6 cores) and 7,168 NVIDIésla M2050 GPUs
[TOP10]. It was benchmarked at 2.6 petaflops, awdach would reportedly have
required 50,000 CPUs to achieve the same leveédbpnance without the help of

GPUs [8].

Delhi Technological University Page 17

The reason for the vast differences in raw floapagnt operation speed becomes
apparent when the distribution of transistors irJ6RNnd GPUs is observed. Figure
2.1 illustrates how transistors are used in dia®ofhly the same size in CPUs and
GPUs. The CPU uses a lot of transistors for cactatg and control logic to steer
program execution and allow for seamless execufatifferent tasks. All of these
transistors are not used for actual computatioly, the transistors designated ALU
(arithmetic logic unit) are responsible for thiskaln a GPU, the area occupied by
transistors for arithmetic operations occupies naofsthe chip, while caches and

control logic are kept

3.1.1 Introduction of GPU Programming

Small, fitting the model of executing the same nnstions for a large amount of
data, a principle termed SIMD (Single Instructidyltiple Data). Access latency
to the global RAM is hidden by having a massive hanof threads to schedule if a
set of threads is waiting for a memory transaction.

Recently, designers of CPU hardware have reaceitslin the acceleration of
single die processors imposed by heat dissipandns&e. Higher clock speeds can
only be achieved with smaller-sized components {iansistors), while increasing
the energy consumption per square centimeter mesthese processors have
increasingly demanding cooling requirements andplais wasteful energy
consumption in the face of elevated electrical stasice as a result of the

temperature. That is why CPU manufactures haverbége move towards multi-

Delhi Technological University Page 18

core architectures in the desktop market severatsyago, with eight-core CPUs
available for the consumer market today.
3.1.2 Graphical Processing Unit (GPU)
The structure of a typical GPU differs from the CBltucture. The main parts of
GPU are processor cores, raster operators, textengory, memory controllers and
thread scheduler. Hardware thread scheduler isngyoritant part for parallel

computing as it is used to switch threads on harevievel very fast. While one

thread is waiting for data from the global memooyher threads are serviced.

Threads on GPU are lightweight, which means theytato a small number of

instructions, and because of that can work verydassPU.

Processor i : Processor
Cores A Cores

WA R B8

ol TR A W L e

-

Processor
Cores

$
F
4
il
iy
a
i
.. 5
i
i
£
=
£
i
K
L]
3
£

Figure 3.3: lllustrative scheme of GPU

Delhi Technological University

Page 19

GPU has some streaming multiprocessors (SM), acld eathese multiprocessors
has some scalar processors (SP) and shared meéBeaguse most GPU work with
single precision float point arithmetic, we can espthat there will be more single
precision scalar processors than double precistaiais processors. Every scalar
processor has its own small and fast memory catgdsters. Besides processors,
memory, and registers, GPU also has load/stors thtt supply graphic chip with
data from global memory or store the results of potation.

Another way of looking at GPU is to look at it asraltiprocessor with MIMD
architecture from programming perspective. GPU e#o be looked at from
execution point of view as a set of SIMD processioas work on shared memory.
Thread scheduler is one of the most important pam&PU. It switches threads
between scalar processors on hardware layer mstér flnan on CPU. This is an
important advantage of GPU, especially for lightytwi kernel objects. For
example, a chip from Nvidia G80 has GigaThreadTMe&ld Scheduler and it can
manage 12.288 threads in real time. Its distributedad management has two
level of architecture; with first level distribugrschedules thread blocks to various
SMs. Next, every SM warp has a scheduler thatiliges warps consisting of 32
threads to SM warps execution units.

3.2. Classification of Processor Architectures

Classification of processor architectures witsslfication based on two factors -

data stream and instruction stream .

Delhi Technological University Page 20

1. SISD - sequential computer architecture that logsamnallelism, with one
data flow and one instruction flow per one procesghis is a typical Von
Neumann model. SIMD — computer architecture Wtbrocessors and
data flows instructions but with only one flow afmmands working with
data .

2. MISD - computer architecture with processors ani instruction flows
working with one data flow.

3. MIMD - computer architecture witN processors working oM instruction
flows and processdsflows of data. One example of this architecture is
GPU or distributed system.

4. SPMD - Single Process Multiple Data is a methoohaking one a task
effective by splitting the data into parts and rgrthe same process
multiple times with different parts of data. Unlikgth SIMD, this method
does not require vector processors as it can useErglgourpose processors

instead.

3.3 About OpenCL

3.3.1 Introduction to OpenCL

The Khronos Group has presented Open Compute Lgegndheir specification:
"OpenCL is an open industry standard for programming a heterogeneous
collection of CPUs, GPUs and other computing devices organized into a single
platform. It is more than a language. OpenCL is a framework for parallel

programming and includes language, API, libraries and a runtime system to

Delhi Technological University Page 21

support software development. Using OpenCL, for example, a programmer can
write general purpose programs that execute on GPUs without the need to map

their algorithms onto a 3D graphics API such as OpenGL or DirectX."

The OpenCL standard was suggested by Apple andedrdsy non-commercial
Khronos Group, which has created their own stargjasdch as OpenGL and
OpenAL.

How is written in OpenCL specification about maitilization of OpenCL
language:

"The target of OpenCL is expert programmers wanting to write portable yet
efficient code. This includes library writers, middleware vendors, and performance
oriented application programmers. Therefore OpenCL provides a low-level
hardwar e abstraction plus a framework to support programming and many details
of the underlying hardware are exposed.” [1, p. 19].

3.3.2 The OpenCL Architecture

The OpenCL Architecture is split into four modélse platform model, execution
model, the memory model and finally the programnrimgdel [9].

* Platform model

The platform model consists of a host with one asrenconnected OpenCL
devices. These devices in turn consist of ComputgslW{CUs in short) and each
Compute Unit consists of several processing elesnéREs). Using a modern
multicore CPU as an example the CPU is the compuote and each core is a

processing element. Execution of applications u€hpgnCL is achieved through

Delhi Technological University Page 22

running a native application on the host which thesues commands to the

OpenCL devices via an OpenCL context and commaedeju

1D NDRange
|

| | I_I_I

1
Work group Work item

Host

Processing | -
Element —[-a—ii:ﬂl_‘ |

M-

Compute Unit

Compuie Device

Figure 3.4: lllustration how OpenCL see devices

» Execution Model

As the OpenCL platform is designed to utilize npi#i additional computational
devices the execution of an OpenCL applicationpig between the host and the
compute devices. The part that runs on the hoapily named host program and
the part that runs on the computation devicesliscta kernel. To facilitate parallel

execution an index space is created when the kesrselbmitted to the device for

Delhi Technological University Page 23

computation. An instance of the kernel, called witekn is then created for each
index and can subsequently by identify by this ad&ork-items are then grouped
into work-groups. Just as the work-items each wgrkup holds a unique ID
derived from the same index space. Apart from litha ID work-items are also
given a local ID to identify its location withinsitwork-group. During execution all
work-items in a work-group will execute concurrgntlhe indexing space used to
partition problems in OpenCL is called an NDRanggronos OpenCL Working

Group, 2008a, p.19).

* Memory Model
In OpenCL the memory model contains four indepahdad distinct memory
regions.

a. . Global memory — available to all work-items fead and write

b. . Constant memory — part of the global memory, laté to all work

items only for read

c. . Local memory — available to work-items in one kegroup, it can

be mapped into global memory

d. . Private memory — one per every work-item.

Delhi Technological University Page 24

Private

Private
Memory

Private
Memory

Memory

Private
Memory

Work-Item Work-Item Work-Ttem Work-Item

Local Memory Local Memory

Workgroup

Workgroup

Global/Constant Memory

Compute Device

Host Memory

Table 1 describes memory allocation and access fimshand kernel to different
memory regions. Static allocation is performed wnigikernel compilation. Dynamic
allocation is available from host program. Kerrahiot perform any dynamic
allocation.

Table 1. Memory allocation and access to devices mery

Global Constant Local Private

Host | Dynamic Dynamic Dynamic No allocation
allocation allocation allocation No access
Read / Write | Read / Write | No access
access access

Kernel | No allocation | Static Static Static
Read / Write | Allocation Allocation Allocation
access Read Only Read / Write | Read / Write

Access Access Access

Delhi Technological University

Page 25

g ™

[Private J [Private J (Private] (Private j
(Thread 1 j [Thread]N-IJ [Thread 1] [Thrcad I\IJ

~,

Compute unit Compute unit
- y -
-~ ~
Local 111@11101’}-'] [Local memory
. '

-~

Global /Constant memory Cache
-

~

A

Compute device

—

1

-

[Global memory

Compute device

Figure 3.5: [11]The OpenCL memory model. Source: Mcresearch.org

OpenCL tutorial Podcast, episode 2.

In other words if the kernel instance is readingwositing in other than local
memory of his work-group there are required basri@s synchronization points.

Exception are private memory and constant memdrgf tvere not changed

explicitly from the host.

* Programming Model

OpenCL supports data parallel and task parallel hgbrid of these two
programming models. The primary model driving thesign of OpenCL is data
parallel. Data parallel model defines the way ofkireg with memory. The strict
data parallel model defines one-to-one mapping éetwthe work-item and

memory object .In explicit model programmer defitet®l number of work-items

Delhi Technological University

Page 26

to execute and also defines how the work-itemslatided among work-groups. In
implicit model programmer defines only total numleémnwork-items and OpenCL

take care about division into work-groups.

Host Kernel
(Dynamic allocation) (No allocation)

Global memory

o

[Read/Write access) (Read /Write access)

[Dynamic allocation) (No allocation)

Constant memor ,

o

(Read /Write access) (Read access)

[Dynamic allocation) (Static allocation)

Local memory

(No access) (Read /Write access)

[No allocation) (Static allocation)
Private memory)

(No access

(Read /Write access)

Figure 3.6: The different memory types and accessVels for host and

kernel(Source:(Khronos OpenCL Working Group, 2008a,p.23))

OpenCL Synch: Queues & Events
Events can be used to synchronize kernel execubietrgeeen queues

Example: 2 queues with 2 devices

Delhi Technological University Page 27

ernel 2 waits for an event from
Kernel 1 and does not start until
the results are ready

Kernel 2 starts before
the results from Kernel 1
are read

Enqueue Kernel 1
Enqueue Kernel 2
Enqueue Kernel 1
Enqueue Kernel 2

4

Figure 3.7: ®@pCL Synchronization

OpenCL Summary m

Context
|Programs Kernels Memory Objects Command Queues
} T T 1
— I - |
o | o At Images I.|| Buffers Ill
4o bl cont o ", o In Out of
$ﬂ::$3m b, CPU program binary arall] value Order Order
{
intid = get_global _id(0); dp_mul argil] value fin i
}c{id] =afid] * bfid]; GPU program binary
=l || Compute Device

Compile code) A\ /

Figure 3@penCL Summary

Delhi Technological University

Page 28

3.3.3 Comparison OpenCL to Other Technologies

Writing good and effective program is a little cdiopted. When we write
program, we have to know on what device this pnogvall run. Also we have to
know properly how this device and device memoryksoAt least this is necessary
to know in advance to write reasonable program. @Bé&s a lot of cache and does
not have hardware thread scheduler, so it is b&ithave small amount of kernels
running together on one CPU and have them work Wighchunks of memory,
which is known as +elaxed data parallel model. But GPU is different, there are lot
of small Compute Units and cache is very smalif o better to run program with
big count of kernels, which is known astrict data parallel model. If we will not
choose right data parallel model computation may wvery slowly. CPU will not
switch big amount of kernels fast enough, so thmeeg occur slow down of our
program, or GPU will not use all compute power @&womne compute units will
unused.

When Apple and Khronos Group made OpenCL as a mialtiorm standard they
had one very big and strong rival - CUDA from Nwadiorp. CUDA provides the
full power of almost all Nvidia graphic cards. CUCd OpenCL are very similar
to C language. Program in CUDA is compiled beforegpam run, meanwhile
OpenCL need double compilation, first on the hostiive C/C++ language and
after kernel compilation for specific device. If weant have program with hybrid
computation on multi-core CPU and GPU togetheGWDA language it is in some

way more complicated to write, because native C/Cede on host runs in one

Delhi Technological University Page 29

thread, so for full computation power we need to pwogram in threads (using
libraries such as Pthread or OpenMP (see below)).

Compared to CUDA, OpenCL can use all compute postecomputer without
complicated rewriting host program. From Figure&aan see the main differences
between platforms. Interesting thing is, that CUB@es not support fully standard
for float point arithmetic it may cause some uneteé problems during

computation.

Compilation Methods Online + Offline Offline Only

Mathematical Precision
Math Libraries

CPU Support

Well Defined
Defined Standard

OpenCL™ CPU Device

Undefined
Proprietary

No CPU Support

Native Host Task Support Task Parallel Compute No Native Thread

Model w/ Ability To Support
Enqueue Native
Threads

Extension Mechanism Defined Mechanism Proprietary

Vendor Support Industry-Wide
Support

AMD, Apple, etc.
C Language Support Yes

NVIDIA Only

Figure 3.9: Description of differences between Op&il and CUDA.
There are two most used access to multi-threadragmaging on CPU, OpenMP
and Ptrhead. OpenMP is collection of compiler dives, library routines, and
environment variables that can be used to spetifyesl-memory parallelism in
C/C++ and Fortran programs. OpenMP has simplifiedanchy of memory model,

there are just shared memory and private memony usg.

Delhi Technological University Page 30

OpenMP is simple to use and simple to understdratetis no need to use a lot
changes in C/C++ code. From forum StacOverflow.ct@penMP is taskbased,
Pthreads is thread based. It means that OpenMPRallaliate the same number of
threads as number of cores.” [14]. The standard5IRQc, defines an API for
creating working with threads. Memory model is $anito OpenMP. Managing
with threads may be quite difficult, because thisreo one row definition about
how program should behave, you have to create dargain them, synchronize
them if you use shared memory [15]. Both OpenMP Rtidead, unfortunately to
OpenCL, can use already written libraries for CBUt program that is written in
OpenCL can run on other devices than CPUs, alsorwaron multiple different
devices; therefore OpenCL provides much more coenpatver on other devices.
All these technologies require libraries to runt{ boly OpenCL needs drivers for

each device.

3.4 The Anatomy of OpenCL 1.0

The OpenCL 1.0 specification [9] is made up of ¢hreain parts: the language
specification, platform layer API and runtime APThe language specification
describes the syntax and programming interfacenaing compute kernels that
run on supported accelerators, such as GPUs anilaote CPUs. The language
used is based on a subset of ISO C99. C was chasehe basis for the first
OpenCL compute kernel language due to its prevalearad familiarity in the

developer community. To foster consistent resuttoss different platforms, a

Delhi Technological University Page 31

well-defined IEEE 754 numerical accuracy is definkat all floating point

operations along with a rich set of built-in furmets. The platform layer API gives

the developer access to routines that query fontheber and types of devices in

the system. The developer can then select andlinéi the necessary compute

devices to properly run their work load. It is listlayer that compute contexts and

work-queues for job submission and data transfgueasts are created. Finally, the

runtime API allows the developer to queue up comatrnels for execution and is

responsible for managing the compute and memorguress in the OpenCL

system. Table 3 is a concise representation ofdheus parts of OpenCL.

OpenCL C
C-based cross-platform programming interface
Subset of ISO C99 with language extensions - familiar to developers
Well-defined numerical accuracy - IEEE 754 rounding behavior with defined maximum error
Online or offline compilation and build of compute kernel executables
Includes a rich set of built-in functions

OpenCL API
A hardware abstraction layer over diverse computational resources
Query, select and initialize compute devices Create compute contexts and work-queues

OpenCL Runtime
Execute compute kernels
Manage scheduling, compute, and memory resources

Tlel8: Main parts of OpenCL

OpenCL C

OpenCL defines OpenCL C, which is a variant of fhmiliar C99 language

optimized for GPU programming. It incorporates amsinecessary to adapt the C

programming language for use with GPUs and to supparallel processing.

Delhi Technological University

Page 32

OpenCL C includes comprehensive support for veigtoes to streamline data flow

and increase efficiency.

OpenCL C kemel Kemnel exacutahle

pernaL yelil

aorlgantal reflecfli Bd 18Ageld 1 EDg,

ot 1AAgEld T oear

MR (wiatn-1-49, ¥

WELLE Anagebidan, (intad (a ¥

Figure 3.10: Kernel executing as defa by OpenCL 1.0

OpenCL API

The OpenCL API provides functions that allow an lmapion to manage parallel

computing tasks. It enumerates the OpenCL-capabidware in a system, sets up
the sharing of data structures between the apigicand OpenCL, controls the
compilation and submission of kernels to the GPtdl lhas a rich set of functions
that manage queuing and synchronization.

OpenCL Runtime

The OpenCL runtime executes tasks submitted byapipdication via the OpenCL

API. The runtime efficiently transfers data betweesin memory and the dedicated

Delhi Technological University Page 33

VRAM used by the GPU, and directs execution of Kegnels on the GPU
hardware. During execution, the OpenCL runtime rgasahe in-order or out-of-
order dependencies between the kernels, and uatilthe GPU’s processing

elements in the most efficient manner.

3.3.5 Limitations in the OpenCL C Language

When writing kernels there are some important ltmwins on what is allowed in
the code. The limitations can be found on the Kbsdnhweb page. The list below is
a collection of some of the limitations found oe theb page[10]:

The use of pointers is somewhat restricted. THewahg rules apply:

1. Arguments to __kernel functions declared in aypa that are pointers must be
declared

with the _ global, _constant or __local qualifier

2. A pointer declared with the _ constant, __ loocal, global qualifier can only
be assigned to a pointer declared with the _stam, local, or _ global
gualifier respectively.

3. Pointers to functions are not allowed.

4. Arguments to __ kernel functions in a program cdrfre declared as a pointer to
a pointer(s). Variables inside a function or argaoted¢o non __kernel functions in a

program can be declared as a pointer to a poipter(s

Delhi Technological University Page 34

5. Variable length arrays and structures with fleilgbr unsized) arrays are not
supported.

6. The C99 standard headers assert.h, ctype.h, cempkrrno.h, fenv.h, float.h,

inttypes.h, limits.h, locale.h, setjmp.h, signaktdarg.h, stdio.h, stdlib.h, string.h,
tgmath.h, time.h, wchar.h, and wctype.h are noilavi@ and cannot be included
by a program.

7.The extern, static, auto, and register storagesd@pecifiers are not supported.

8. Predefined identifiers are not supported.

9. The function using the __ kernel qualifier can ohfwve return type void in the

source code.

3.4 OpenCL Programming [12]
3.4 .1 Basics
Making the program in OpenCL we should go througime steps. First of all we

need to select a platform; this is shown in Fichew.

cl_uint numPlatforms;
cl_platform_id platform = NULL,;
cl_platform_id * platforms;
clGetPlatformIDs(0, NULL,
&numpPlatforms);

platforms = (cl_platform_id*) malloc (

Delhi Technological University

Page 35

sizeof(cl_platform_id) * numPlatforms);
clGetPlatformIDs(numPlatforms, platforms,

NULL);

Getting platforms

After choosing the platform we can gain accessdwvias on that platform. In

Figure we can select on what device our prograrrwil by creating context.

cl_device type dType = CL_DEVICE_TYPE_DEFAULT; //
setting device

cl_context context;

cl_context_properties cps[3] =
{CL_CONTEXT_PLATFORM,(cl_context_properties)platfor m,
0};

context =

clCreateContextFromType(cps,dType,NULL,NULL,NULL);

Creating context
Each context has to have at least one command gu&iean have multiple

command queues with different properties, see Eigetow.

Delhi Technological University Page 36

cl_command_queue commandQueue;

cl_device_id * devices;

size_t deviceListSize;

clGetContextinfo(context, CL_CONTEXT_DEVICES, 0,
NULL, &deviceListSize);

devices = (cl_device_id *) malloc (deviceListSize);
clGetContextinfo(context, CL_CONTEXT_DEVICES,
devicelListSize, devices, NULL);

commandQueue = clCreateCommandQueue(context,

devices[0], 0, &status);

Creating command queue

Kernels have to be compiled and linked. Next steyli be memory allocation on
the host, setting the kernels arguments and comatg on the host, see Figure

below.

const char * source;

cl_program = program;

cl_kernel kernel;

cl_mem buffer;

size_t sourceSize = strlen(source);

program =

Delhi Technological University Page 37

clCreateProgramWithSource(context,1,&source,&sourc8ize,NULL);
clBuildProgram(program, 1, devices, NULL, NULL, NULL);

kernel = clCreateKernel(program, "Kernel_Name", 0);

buffer = clCreateBuffer(context, CL_ MEM_READ_WRITE,
1024*sizeof(cl_float), NULL, NULL);

clSetKernelArg(kernel, 0, sizeof(cl_mem), &buffer);

Building kerteeand setting arguments
Now we can run kernels with their dimensions seaitVfor finishing the kernel

jobs and read data back from device memory to t¢isé tmemory, see Figure below

unsigned int global work_size[1] = {1024},
unsigned int local_work_size[1] = {256};
unsigned int work_dim = 3;

status =
clEnqueueNDRangeKernel(commandQueue,
kernel, work _dim, NULL,

global_work_size,

local_work_size, 0, NULL, NULL);

clFinish(commandQueue);

Running kernels

Delhi Technological University Page 38

Number of work groups in dimensioms computed by

Work Groups = Global work sizeli]

Local work size[i]

Count of total running kernels is multiply of eaglobal work sizes from each
dimension.

Kernels are independent small programs runningks) Bsing C99 syntax but with
some restrictions. Figure 11 shows an example airaple kernel. Kernel uses one
global address space. In kernel we can identifyndderdentification number in

global and local work space and work dimension blyerited functions into

OpenCL API. For more information see OpenCL speation

kernel void Kernel_Name(__global float * A)
{
__private gidO = get_global_id(0);
__private lid = get_local_id(0);
Afgid] = lid;

}

Example of simple kernel

Delhi Technological University Page 39

Chapter-4

Timing Analysis of MCTI Codec

There are several motion estimation algorithms labls each having its own
advantage and disadvantage. The Motion estimatigaritnm based on block
matching is used in the present work, where theleviioage is divided into grid of
8x8 pixels blocks. Each block of 8x8 pixels is st and matched to
corresponding nearby blocks using SAD algorithm iatlde best SAD is found out
the corresponding motion vector is stored in adyuffrray. In this way the whole
image covering each block of the grid is traveraed motion vector of each image
is filled up in the buffer array which is storedr fturther calculation. Motion
Vectors are represented as a dimensional struatoxering both(X and Y)

directions of motion of object in the images

4.1 Algorithms used in MCTI

The methods for finding motion vectors can be aatiegd into pixel based

methods ("direct”) and feature based methods (&atli). In pixel based method, a
sequence of images is applied as an input sequertbe algorithm first and then
each bmp color image is transformed to the YUV iemagd the Y component of
the image is taken. Whole image is divided intock#o of 8x8 pixels and best

motion vector is calculated on the basis of SADatgm.

Delhi Technological University Page 40

The motion estimation algorithm is used for generadf Motion vectors (MV) for

both x and y directions for the motion directionatfject in that direction .each of
the motion vectors is stored per frame and sharéd the next image for

calculation of the upcoming consequent frame .Mo#@stimation of frames is done
the basic of block matching algorithm. Each blo€iBx8 pixels is matched with
several 8x8 blocks along it on temporal (withirfeliént frames) and spatial (within
same frame) ways. This block matching generatesomdectors which is used to

make images that shows motion.

4.2 Sum of absolute differences

Sum of absolute differences (SAD) is used for meaguthe similarity between
imageblocks. It works by taking the absolute differemetween each pixel in the
original block and the corresponding pixel in theck being used for comparison.
The sum of absolute differences may be used foareety of purposes, such as

object recognition and motion estimation for vid®mpression.

4.3 SAD Calculation

SAD Calculation is done with every 8x8 pixel bloakighboring to it in both
temporal and spatial way. Each SAD value is stare@n array of size of the
number of neighbors of it and a SAD Penalty Is adaecording to the position of

the neighboring 8x8 pixel block.

Delhi Technological University Page 41

GetCandidateMV will give the candidates of Motion\éctor for all
blocks
IMAGE Ref_Image
IMAGE Target_image
Int SAD=0
for

get RefPixel Linealry from Ref_image

get Teget_pixel Bilinearly from Target Image

/I Calculate SAD

SAD = SAD +) (Ref_Pixe] - Target Pixel)

where i = 1 to 64 for all the pixels of 8x8

block
End

//Add Penalty to sad values
SAD = SAD+ SAD_Penalty
//sort and get Best_ SAD & Best_ MV
If SAD < Best_SAD
Best_SAD = SAD
Best MV = CandidateMV
Endif
//Store in Backward and forward MV Array

Pseudo code for calculation of SAD

4.4 Calculation of Reference Pixel and Target Pixel
Reference Pixel calculation in done by simply ggvthe coordinates of the pixel
and getting back the value of that pixel it usesnM&tan distance algorithm for

getting the pixel value of nearest pixel , thatges linear method.

Delhi Technological University Page 42

Target pixel calculation is done by giving both twordinates and the movement

value in that direction by using Bilinear Interpmda algorithm.

4.5 Debugging and checking the motion

A Bitmap (bmp) image is made out of the Motion \destin 4:2:2 formats where
YUV component of the image is manipulated to geteeng@w image for debugging
and checking the motion on the sequence of images.

Y component is kept as it is and the motion vecaoescalculated.

After calculating Motion Vectors new image is geated by adding motion
component of x direction is added to the U compor@nimage and motion
component of y direction is added to the V compoménmage. This will generate

a new image showing the motion of consecutive fame

4.6 Best SAD and Motion Vector along the path coputation

By sorting we take out the best SAD and the resgechotion vectors relating to
it. And this Best Motion Vector is stored in anarifor generating new frame and
calculating new Motion vectors for the next incogiiname and this generation of
motion vectors is continued for each frame of thieo.

By Using OpenCL- APl we have replaced some funetiauich are made by C

language as there are inbuilt by functions fordame.

Delhi Technological University

Page 43

4.7 Performance analysis of different phases of Miain Estimation on GPU

1. Using GPROF and GDB tools to optimize the code.

Motion Estimation for GPU code for the first timerked to OpenCL and the result
came out 23 seconds per frame for both forward leeckward calculation of
motion vectors. This was not the full optimized eahd for the testing purpose it
was successfully ported on OpenCL and it ran pdyfea GPU.

The output results were exactly same as that gblsisequential code written on C
language running on CPU. This was a brilliant bréalough for us as we have
achieved first parallelization on GPU successfully.

2. Changing Algorithm and dumping dead codes for tb CPU.

Some Changes has been done in the code and thealaslhad been removed to
make the ME4GPU code run at 15 seconds per framevé have got our code
running on GPU next phase of action was to incréfaseorder of parallelism, this
code reflected the increment of threads versesigjrauccessfully.

3. Eliminating large array structures into small ores to break most of the time
consuming functions,

Here in this version of code data transfer to GRI$ been minimized and the
constraints have been tightened to achieve maipeaince. Results reflected at
most 50% of time saving to do the same job, andegilt 7 second per frame. This
was obvious as we have expected because of dataeagereduction.

4. Changing GPU Kernel Code for making Code Even Fser by using inbuilt

APIs of OpenCL

Delhi Technological University Page 44

Inbuilt API functions take less time to execute Hame job, Khronos group have
made many functions for Imaging and Graphics, weehanplemented the code
using inbuilt APIs, which reduces the timing by mdhan 50%, and this made a
path for us to achieve the target timings. Aftersién changes we got result 3 second
per frame.

5. Written new algorithm of Chess Board Pattern geearation for X and Y
coordinates for the image to achieve timings in nliseconds.

Since the timing for launching the kernel was vemyical and giving overhead but
we written new chess board pattern algorithm tdeaehthe peak performance of
the code, this was a break through implementatiothe algorithm as the main
execution loop was reduced by sevéfahs this saved a lot of time.

Previous main loop execution(Height * Width) times.

New chess board algorithm Loop executiorf Height+Width-1) times.

Overall %age reduction in the no. of times executibthe loop=

(_Height * Width) — (Height+Width-1) *100 = % age reduction

(Height * Width)
This formula gives %age reduction (More than 80 éfcent in all cases) in the
Main loop which saves a lot of time and we havehier moved towards the target
timing. After written new chess board pattern aitfpon we got the result of 148

milliseconds per frame.

Delhi Technological University Page 45

6. Increased thread Parallelization and made the d® more complex to achieve
the best performance.

Finally we have made our code even complex anceasad no. of threads, this
gives us very good performance and this was the fimings we have obtained
and this time is closest to the target time. Anthlfy we got the result of 108

milliseconds per frame.

Delhi Technological University Page 46

Chapter-5
Timing & Result

5.1 Benchmarking of GPU Code

For Benchmarking we used Nvidia visual profilergdhis is done for the last 2
optimized codes.

The specification of CPU and GPU are as below

5.1.1 CPU Info
We implemented our code on an Intel Xeon Procdssang 8 CPU cores

Showing & core of 8 processors

processor :0

vendor_id . Genuinelntel

cpu family : 6

model . 26

model name : Intel(R) Xeon(R) CPU B4 @
2.00GHz

stepping :5

cpu MHz : 1995.005

cache size :4096 KB

physicalid :1

siblings 4

core id :0

Cpu cores 4

apicid 16

initial apicid : 16

fpu - yes

fpu_exception :yes

cpuid level :11

wp :yes

flags : fpu vme de pse tsc msr pae mce8a@pic sep
mtrr pge mca cmov pat pse36 clflush dts acpi mmx &x sse
sse2 ss ht tm pbe syscall nx rdtscp Im constant_tsc
arch_perfmon pebs bts rep_good pni monitor ds_cplmx est
tm2 ssse3 cx16 xtpr dca sse4_1 sse4_2 popcnt lahf_|
bogomips : 3993.66

Delhi Technological University

Page 47

clflush size : 64

cache_alignment : 64

address sizes : 40 bits physical, 48 bits virtual
power management:

5.1.2 GPU Info
It is an Nvidia Graphics Processor (Quadro NVS 295)

CPU Specification

GPU and OpenCL Info:

OpenCL SW Info:

CL_PLATFORM_NAME: NVIDIA CUDA
CL_PLATFORM_VERSION: OpenCL 1.0 CUDA 3.2.1
OpenCL SDK Revision: 5985201

OpenCL Device Info:

1 devices found supporting OpenCL:

CL_DEVICE_NAME: Quadro NVS295

CL_DEVICE_VENDOR: NVIDIA
Corporation

CL_DRIVER_VERSION: 260.19.29

CL_DEVICE_VERSION: OpenCL 1.CCUDA

CL_DEVICE_TYPE:
CL_DEVICE_TYPE_GPU
CL_DEVICE_MAX_ COMPUTE_UNITS: 1
CL_DEVICE_MAX_ WORK_ITEM_DIMENSIONS: 3
CL_DEVICE_MAX_ WORK_ITEM_SIZES: 512 /512
/ 64
CL_DEVICE_MAX WORK_GROUP_SIZE: 512
CL_DEVICE_MAX CLOCK_FREQUENCY: 1300
MHz

CL_DEVICE_ADDRESS_BITS: 32

CL_DEVICE_MAX_MEM_ALLOC_SIZE: 128
MByte

CL_DEVICE_GLOBAL_MEM_SIZE: 255 MByte

CL_DEVICE_ERROR_CORRECTION_SUPPORT: no

CL_DEVICE_LOCAL_MEM_TYPE: local

Delhi Technological University

Page 48

CL_DEVICE_LOCAL_MEM_SIZE: 16 KByte
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 64
KByte
CL_DEVICE_QUEUE_PROPERTIES:
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
CL_DEVICE_QUEUE_PROPERTIES:
CL_QUEUE_PROFILING_ENABLE
CL_DEVICE_IMAGE_SUPPORT: 1
CL_DEVICE_MAX_READ_IMAGE_ARGS: 128
CL_DEVICE_MAX_WRITE_IMAGE_ARGS: 8
CL_DEVICE_SINGLE_FP_CONFIG: INF-
guietNaNs round-to-nearest round-to-zero round-to#nf fma

CL_DEVICE_IMAGE <dim>
2D_MAX_WIDTH 4096
2D_MAX_HEIGT 32768
3D_MAX_WIDT 2048
3D_MAX_HEIGT 2048
3D_MAX_DERT 2048

CL_DEVICE_EXTENSIONS:

cl_khr_byte addressable_store
cl_khr_icd
cl_khr_gharing
cl_nv_cort®i_options
cl_nv_desiattribute_query
cl_nv_pragmunroll
cl_khr_glab int32_base_atomics

cl_khr_global_int32_extended_atomics

CL_DEVICE_COMPUTE_CAPABILITY_NV: 1.1

NUMBER OF MULTIPROCESSORS: 1
NUMBER OF CUDA CORES: 8
CL_DEVICE_REGISTERS_PER_BLOCK_NV: 8192
CL_DEVICE_WARP_SIZE_NV: 32
CL_DEVICE_GPU_OVERLAP_NV: CL_FALSE
CL_DEVICE_KERNEL_EXEC_TIMEOUT_NV:

CL_TRUE
CL_DEVICE_INTEGRATED_MEMORY_NV:

CL_FALSE

CL_DEVICE_PREFERRED_VECTOR_WIDTH_<t>
CHAR 1, SHORT 1, INT 1, LONG 1, FLOAT 1, DOUBLE
0

Delhi Technological University Page 49

oclDeviceQuery, Platform Name = NVIDIA CUDA,
Platform Version = OpenCL 1.0 CUDA 3.2.1, SDK Revisn
= 5985201, NumDevs = 1, Device = Quadro NVS 295

System Info:

Local Time/Date = 15:05:00, 06/16/2011

CPU Name: Intel(R) Xeon(R) CPU E5504 @ 2.00GHz

of CPU processors: 8

Linux version 2.6.26-2-amd64 (Debian 2.6.26-22)
(dannf@debian.org) (gcc version 4.1.3 20080704
(prerelease) (Debian 4.1.2-25)) #1 SMP Tue Mar 9 12:23
UTC 2010

GPU ,0S & OpenCL Specifications

5.2. Hardware and Software used for the Benchmark

The GPU and CPU hardware used in the tests avensimoTable 1 and Table 2

below respectively.

Table 1 The GPU hardware used in all tests.

Graphics board

Nvidia Quadro NVS 295

GPU

NVS 295

CL_DEVICE_VERSION

OpenCL 1.0 CUDA

Memory

1.5 GB GDDR3

Memory Bandwidth

76.8 GB/s (16 PCI lanes)

Number of SMs 24
Number of SPs 192
Clock frequency 1300 MHz
On-chip memory per SM 16 KB
Instructions FMAD

Delhi Technological University

Page 50

Table 2 The CPU hardware used in all tests.

CPU Intel(R) Xeon(R) CPU E5504 @ 2.0GGH
Memory 4GB (2 x 2 GB DIMM) 800Mhz DDR2
Front Side Bus 1333 MT/s
Number of cores 1 (The Second Core is turnedhadtfl tests)
Clock frequency 2.00 GHz
Cache memories 4096 KB L2, 32 KB L1 instrueti82 KB L1
data
Instructions X86 SSE4.1

For all GPU benchmarkgjnux version 2.6.26-2-amd64 (Debian 2.6.26-2BYbit
and Linux Redhat was used. For all the CPU bendksngior the CPU Linux
version 2.6.26-2-amd64 (Debian 2.6.26-2264 bits was used. All GPU
benchmarks were compiled for compute capability dsthg Nvidia drivers version
191.66. All CPU benchmarks were run with only ormecrunning to make
interpretation of the results easier as the comgiknd OS’s degree of optimizing
the code for two cores then becomes irrelevantLiux CPU benchmarks were
compiled with GCC using the flags ‘xc’, ‘ansi’, ‘lmand ‘O3’, allowing the
compiler to add SSE instructions where it deemedsipte. The Windows
benchmarks where compiled with ‘O3’. GFLOPS and &ai8k computed with base

10 throughout the benchmarks, not 1024.

Delhi Technological University Page 51

5.3 Benchmark Timing definitions

These parameters have been used when measurirggnpante of the different

benchmarks.

Kernel time refers to the time of running the GPU kernel omlgt including any

transfer between host and device.

Total GPU time refers to the time of running the GPU kernel cariyl any transfer

between host and device.

Kernel Speedupis how much faster the GPU executes a kernel cosdp@ the

CPU.

Total GPU speedupis how much faster the GPU executes a kernel coedpi@

the CPU including any transfers between host anttee

Peak performance is either the maximum GFLOPS or maximum throughput
achieved for what can be considered radar-reledatat sizes. GFLOPS is a metric
for how many billion floating point operations pg¥cond are being performed. The
way performance or throughput is calculated is ithgtain each respective
benchmark. As the aim with performance is to se& hard the GPU is working,
the transfer times between host and device arancaided; only kernel time is

relevant.

Delhi Technological University Page 52

5.4 Graphical Results

5.4.1 Benchmarking for optimized code running max ©12*67 threads
per execution of the GPU kernel

Case 1:
Specification: code running on GPU having total tine for execution of
GPU Kernel 145 ms by profiling

I 5ADRuBKemel
GPUTIME
[memepyDtoHasync
J I memcpyHtoAasyne

I memepyHtaDasync

1 B 1 183 LT) 1 149 3 577 b4l 105 78 i3 87 91 105 1089
Method Number

Figure 5.1: Timings for Kernel Execution from Nvidia Visual Profiler

Delhi Technological University Page 53

Here maximum kernel launch time for kernel exeauts®omin 82 uc and

Maximum 88 microseconds

Table: Kernel Execution Timing

GPU Time

CPU Time

Total Kernel
Execution
Time

31902.66
us

44838 us

Total kernel
Time

35565.15us

48413us

% total time

89.70%

92.61%

And drawing the curve by the data obtained fromdsvNVisual profiler

90

83

86 -

g4 - W
82

=

S~ Mmoo
I I T I (o I L o)

105
118
131
144

Ul
T
0 O A
\HHHHHHH\}HHHHHH

157
170
183
196
209
222
235

I

248
261
27L
287
300
313
326
339
352
365

Figure 3.2: GPU Individual Timings for launching the kernel obtained
from the the Nvidia GPU profiler

Delhi Technological University

Page 54

600

500

400

300

M Seriesl

00— = M~ O M W o ™NNWmoe — s~ MWy
= N T M~ O NN ST WM~ 000 oW
o B B B o e T I B O ot A ot Y et I ot A A o O 0 T A I T I B |

200

10

o

o

Lh
!—I

Figure 3.3: CPU Individual Timings for launching the kernel obtained
from the the Nvidia GPU profiler

5.3.2 Case 2:

Final Result

Specification: code running on GPU having total tine for execution of
GPU Kernel 108 ms by profiling

Latest 108 ms

- i
ww fwera
[e

B ek Saen s

- " anr M L e add o L) Lt il i Eir ik 18 (LT
I.I.--i.-ih H-n

Figure 3.4: Timings for Kernel Execution from Nvidia
Visual Profiler

Delhi Technological University Page 55

Here maximum kernel launch time for kernel execut®©66 microseconds
and minimum is 58 microseconds

Which gives total time to process one frame bothackward and forward

direction

Table: Kernel Execution Timing

GPU Time

CPU Time

Total Kernel
Execution
Time

24701.73pus

36648 ps

Total kernel
Time

21453.44
us

33489 us

% total time

86.85%

91.38%

And drawing the curve by the data obtained fromdsvNisual profiler

68

b6

. M
0l 1

60

58

56

54

52

T TR 1
VAR TIER IR RO ARV
OO0 R AR
AR TAROR O R AR
L LA I IR ER LT |H|\|H|H|H|\ LENERIAN

= o = L B B |
=~ 'R!'JELDI“-OOC'\

101
111
121
131
111
151
161
171
181
191
201
211
221
231
241
251
261
271
281
291
301
311
321
331

Figure 3.5: Individual Timings for Kernel Execution on GPU Ploted on Excel

Sheet

Delhi Technological University

Page 56

600

500

400

300

200

100

35

52

69

86
103
120
137
154
171
188
205
222
239
256
273
290
307
324

B Series]

Figure 3.6: Individual Timings ér Kernel Execution on
CPU Ploted on Excel Sheet

Delhi Technological University

Page 57

Chapter 6

Conclusion

In this project Motion estimation for GPU code ofCWI has been successfully
ported on OpenCL platform and parallelization haerb done using the new
chessboard pattern algorithm which makes the casteif to execute and got the
result as per the target time.

Timing analysis of MCTI codec on Nvidia GPU hasegiwery surprising results,
as there was a vast difference between the timentak execute the function made
by us in pure C language and time taken by its iinlAPIs doing the same
functionality. We used maximum inbuilt APIs of Og&nto reduce the timing of
the MCTI codec for the calculation of Motion Veddretween adjacent frames.
We have reduced the computational overhead by aptigithe Motion estimation
Code with OpenCL platform and using Nvidia GPUshibgaking the computation
to some parts and give part of it to CPU and samthé¢ GPU to enhance the
performance.

On different phases of the development of code wleutated the GPU kernel
execution timing and time to launch the kernel paohted out the major factors for
that consume more time, every time the phase ottiteec changes and timings
improves. There is still a possibility of improvitige timing of kernel execution by
reducing the time overhead to launch the kernel tandeduce the overhead of
reading and writing the buffer of GPU, which colle seen in the next release of

OpenCL Specification by Khronos Group. OpenCL haanyn possibilities in

Delhi Technological University Page 58

parallel programming as whole electronics industry moving towards
miniaturization and parallelization. The Timing Aysis of MCTI Codec has been
done successfully and the results were very clogbdt of target timings, and this
was shown by Nvidia OpenCL visual profiler in oxperiment and research.
Adding to this we have imposed some solutions te #éxisting Problem of
Parallelization and overcome it. Development & Benarking of this application

had reduced the CPU-GPU cycles penalty and memdgfgrioverhead uses.

Delhi Technological University Page 59

References

1.) http://www.khronos.org/opencl/

2.)http://www.khronos.org/news/press/releases/kbsolaunches heterogene
ous_computing_initiative/

3.)http://lwww.khronos.org/news/press/releases/thenos_group_releases
_opencl_1.0_specification/

4.) Benchmarking Process ,Provided by ST documents.
5.) MCTI ,STMicroelectronics Confidential propriety

6.) Khronos OpenCL Working Group.The OpenCL Specification
,Introduction and Overview-June 2010.

7.) NVIDIA CUDA C Programming Guide 3.2. 2010.

8.)NVIDIA Tesla GPUs Power World's Fastest Superpater.
http://pressroom.nvidia.com/easyir/customrel.doiedssAOD622CE9F579
FO9&prid=678988&releasejsp=release 157, 2010. [@nliaccessed 31-
April-2011].

9.) OpenCL 1.0 specification
10.) http://www.khronos.org/
11.) macresearch.org/ OpenCL tutorial podcassogla 2.

12.) OpenCL Programming Reference Card 1.0

Delhi Technological University Page 60

Delhi Technological University Page 61

