ACKNOWLEDGEMENT

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to Dr. Qasim Murtaza (Associate Professor) of Mechanical Engineering Department of Delhi College of Engineering for their continuous guidance and invaluable suggestion and time at all stages from conceptualization to experimental and final completion of this project work. They have guided me for fundamentals and provided many technical papers on the subject matter and thus inculcated the interest and quest for knowledge of this work. He provided constant support and encouragement for successful completion of this work.

I am also grateful to Prof. B.D Pathak Head Department of Mechanical Engineering, for providing the experimental facilities in various labs of the Department.

I also have great respect and indebtedness for Mr. Rajesh Bora and Mr. Ajay Kumar, for their support and facilities provided for experiments, required for the completion of this special subject.

My special thanks to Mr. Gopal Arora (PhD. Scholar DCE, Delhi) for his valuable time for guiding me and given his very useful critical comment on the work and help me to do the project work on time.

I am also thankful to all the lab assistants of my college help me.

At the last but not the least to my friends Mr. K.V.R.S Prashant, Mr. Yash Gupta, Mr. Sanket Katiyar and my family members who always give me strength and moral support to complete the work.

DALIP KUMAR

ABSTRACT:

Aluminum alloy coating of compositions, aluminum 98.76%, magnesium 0.81%, and manganese 0.41% was successfully prepared by two wire arc sprays on the graphite substrate. There are different thermal spray processes such as combustion flame spray, high velocity oxy- fuel spray, plasma spraying, vacuum plasma spraying and cold sprays. But the coating produced by two wire arc spray has less porosity (1-2% only) and the process can be performed under controlled conditions. The graphite substrate was used because the coating after solidification does not adhere. After solidification the coating was removed from the graphite substrate. It was then cut having a diameter 5 cm and pasted over a sheet of diameter 17 cm with the help of araldite. There are different wear tests such as scratch test, slurry abrasion test, erosion test and pin on the disc test. The selection of the wear test depends on the material of the coating and its applications. For marine applications of the coating, slurry erosion and corrosion test are preferred. But in case of dry applications of the coating the pin on disc and scratch test are commonly perform. For the present study two variables were selected for wear test; load (29.4, 44.1 and 58.8 N) and sliding speed (150, 200 and 250 rpm). To find the significant variables which affect the wear rate and coefficient of friction of the coating ANOVA was designed. Wear test of the coating was conducted on pin on disc machine under dry conditions. And wear rate calculated using mass loss methods. The wear disc was weight before and after the wear test on an electronic balance having least count of 0.0001g. The coefficient of friction was found with LVDT which gave the frictional force during wear test. The surfaces morphology of worn surfaces of the coating was analysed with scanning electron microscope. The XRD of the worn surfaces was done to determine the change in intermolecular spacing of the worn surfaces of the coating. The wear rate of the coating was found to be increased with increased in load as well as sliding speed. The co-efficient of friction of the coating was found to decrease with increased load and sliding speed. The d-spacing of the coating molecules on the wear track was found to decrease with increased load. The microstructure of the worn surfaces of the coating was also examined with optical telescope and no change in microstructure of the coating due to frictional heat was found. The micro hardness at the cross section of the coating at wear track was found to decrease away from the wear track. The main wear mechanism examined by scanning electron microscope was adhesion, deformation and microcutting.

Key words: Two wire arc spray, pin on disc, microstructure, wear rate, aluminum alloy coating.

CONTENTS

Page No.

Ι
II
III
VII
XI
XII

Chapter 1. Introduction	1
1.1. Classification of thermal spray coating	2
1.1.1 Combustion flame spraying coating process	2
1.1.2. High velocity oxy- fuel coating process	3
1.1.3. Two wire electric arc spraying process	3-4
1.1.4. Plasma Spraying coating process	4
1.1.5. Vacuum Plasma Spraying coating process	5
1.1.6. Cold sprays coating process	6
1.2. Properties of thermal sprayed coating	7
1.2.1. Stresses and strength in thermal spray coatings	7-9
1.2.1 Porosity	9
1.2.2. Oxide	9
1.2.3. Surface Texture	9-10

1.3. Application of the thermal spray coating	10
1.3.1. Wear resistance thermal sprayed coatings	10-11
1.3.2. Medical thermal sprayed coatings	11
1.3.3 Corrosion protection thermal sprayed coatings	12
1.3.4 Thermal sprayed coatings for carbon fiber composites	12-13
1.3.5. Dielectric thermal sprayed coatings	13
1.3.6. Electrically conductive thermal sprayed coatings	14
1.3.7. EMI/RFI thermal sprayed coatings	14-16
1.3.8. Food processing equipment thermal sprayed coatings	16
1.3.9. Thermal barrier thermal sprayed coatings	17
1.4. Material which can be Thermal spray	18
1.5. Wear of thermal spray coating	18-19
1.6. Types of wear of the coating	19
1.6.1. Adhesive wear of coating	19-21
1.6.2. Abrasive wear of coating	21-22
1.6.3. Surface fatigue wear of the coating	22-23
1.6.4. Fretting wear of coating	23-24
1.6.5. Erosive wear of coating	24-25
1.7. Types of wear test of thermal spray coating	25
1.7.1. Scratch test of thermal spray coating	25-26
1.7.2. Slurry Abrasion Test of thermal spray coating	26-27
1.7.3. Friction Test of thermal spray coating	27
1.7.4. Air Jet Erosion Test of thermal spray coating	27-28
1.7.5. Pin on Disc Test of thermal spray coating	28
Chapter 2. Literature review	29-31

Chapter 3. Experimental procedure	32
3.1. Materials	32-34
3.2. Design of experiment	34-35
3.3. Pin on disc test	35-37
3.4. Scanning electron microscope	37-39
3.5. X -Ray diffractometer	38-39
3.6. Vickers micro hardness tester	39-40
3.7. Optical Microscope	41
Chapter 4. Result and discussion	42
4.1 Coating characterization	42-44
4.2. Wear rate of thermal spray coating	44
4.2.1. wear rate with brass pin	44-46
4.2.2. wear rate with medium carbon steel pin	46-48
4.2.3. Wear rate with high carbon steel pin	49-49
4.3. Coefficient of friction of the coating	49
4.3.1. Coefficient of friction of the coating with brass pin	49-51
4.3.2. Coefficient of friction of the coating with medium carbon steel	51-52
4.3.3. Coefficient of friction of the coating with high carbon steel	52-53
4.4. EDS analysis of worn surfaces	54-58
4.5. Microhardness of the worn surfaces	58
4.5.1. Microhardness of the worn surfaces with brass pin	58-60
4.5.2. Microhardness of the worn surfaces with medium carbon steel pin	60-61
4.5.3. Microhardness of the worn surfaces with high carbon steel pin	61-62
4.6. Microstructure of worn surfaces of the coating	62-63
4.7. XRD analysis of worn surfaces of the coating	63-65
4.8. Wear mechanism	65
4.8.1 Wear mechanism with brass pin	65-68
4.8.2 Wear mechanism with medium carbon steel	68-70
4.8.3. Wear mechanism with high carbon steel	70-72

Chapter 5. Conclusions	
Chapter 6. Future scope of this study	
Chapter 7. References	75-79
APPENDIX – 1	80-82
APPENDIX – 2	83-97
APPENDIX – 3	98-100
APPENDIX – 4	101-109

LIST OF FIGURE

Sr. Numbe	er Title	Page No.
Figure 1.	Combustion flame spray coating process	2
Figure 2.	High velocity oxy fuel coating process	3
Figure 3.	Two wire electric arc spray coating process	4
Figure 4.	Plasma spraying coating process	5
Figure 5.	Vacuum plasma sprayed coating process	5
Figure 6.	Cold spray coating process	6
Figure 7.	Stresses on coating	7
Figure 8.	Carbon fiber composite component with thermal coating	15
Figure 9.	Thermal spray coated food processing equipments	16
Figure 10.	Thermal spray coated jet engine components	17
Figure 11.	Abrasive wear of thermal spray coating	22
Figure 12.	Fretting wear of thermal spray coating	24
Figure 13.	Erosion wear of thermal spray coating	25
Figure 14.	Slurry abrasion wears of thermal spray coating	26

Figure 15.	Pin on disc wear test of thermal spray coating	28
Figure 16.	Galvanized disc for pin on disc test without coating	33
Figure 17.	Coating pasted on the galvenised sheet	33
Figure 18.	Wear and friction monitor machine for pin on disc test	35
Figure 19.	Thermal spray coating before wear test	36
Figure 20.	Thermal sprays coating during wear test	36
Figure 21.	Scanning electron microscope in DTU, Delhi	37
Figure 22.	X-Ray diffractometer in DTU, Delhi	39
Figure 23.	Vickers micro hardness indentation	40
Figure 24.	Optical microscope	41
Figure 25. spray coatir	(a) Top view of sprayed coating (b) Cross section of thermal	42
Figure 26.	EDS analysis of thermal spray coating	42
Figure 27.	XRD peaks for the thermal spray coating	44
Figure 28. conditions	Mass loss of coating with brass pin at various loading and sliding	45

Figure 29. Mass loss of the coating with medium carbon steel pin coating at various sliding and loading conditions	47
Figure 30. Mass loss of the coating with high carbon steel pin coating at various sliding and loading conditions	48
Figure 31. Variation of coefficient of friction with brass pin at various loading and sliding conditions	50
Figure 32. Variation of coefficient of friction with medium carbon steel pin at various loading and sliding conditions	51
Figure 33. Variation of coefficient of friction with medium carbon steel pin at various loading and sliding conditions	53
Figure 34. EDS of the worn track of the thermal spray coating 58.8 N load and 150 RPM speed with brass pin	54
Figure 35. EDS of the worn track of the thermal spray coating 58.8 N load and 150 RPM speed with medium carbon steel pin	56
Figure 36. EDS of the worn track of the thermal spray coating 58.8 N load and 150 RPM speed with high carbon steel pin	57
Figure 37. Indentation over the cross section at a distance of 0.05 micro meters from wear track of coating at 250 rpm speed and 58.8 N loads (a) with brass pin (b) with medium carbon steel pin (c) with high carbon steel pin.	58
Figure 38. Variation of micro hardness of worn surfaces at cross section	59
distance from wear track with brass pin.Figure 39. Variation of micro hardness of worn surfaces from cross section	60

with medium carbon steel pin

TI (0)		- 1	
-	Variation of micro hardness of worn surfaces from cross section	61	
with high carbon steel pin			
Figure 41.	Micro structure of the cross section of the worn surfaces.	62	
(a)Aluminu	m alloy coating (b) at 29.4 N load (c) at 44.1 N load (d) at 58.8 N		
load			
Figure 42.	XRD peaks with brass pin at 250 rpm speed and 29.4 N loads	64	
Figure 43.	XRD peaks with medium carbon steel pin at 29.4 N load and 250	64	
rpm speed			
Figure 44.	XRD peaks with high carbon steel pin at 3 kg load and 250 rpm	65	
speed			
Figure 45.	(1)Worn surface with brass pin, at 250 rpm speed and (a) 29.4 N	66	
load (b) 44.	1 N load (c) 58.8 N load. (2) At 200 rpm speed and (d) 29.4 N		
loads (e) 44	.1 N load (f) 58.8 N loads.		
Figure 46.	Worn surface with brass pin, at 150 rpm speed and (a) 29.4 N	67	
-		67	
load (b) 44.	1 N load (c) 58.8 N load		
load (b) 44. Figure 47.	1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and	67 68	
load (b) 44. Figure 47.	1 N load (c) 58.8 N load		
load (b) 44. Figure 47. (a) 29.4 N l	1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load	68	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48.	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed 		
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and 	68	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed 	68	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads 	68 69	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1 Figure 49.	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads Worn surfaces with high carbon steel at 250 rpm speed and (a) 	68	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1 Figure 49.	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads 	68 69	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1 Figure 49. 29.4 N load	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads Worn surfaces with high carbon steel at 250 rpm speed and (a) (b) 44.1 N load (c) 58.8 N load 	68 69 71	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1 Figure 49. 29.4 N load Figure 50. V	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads Worn surfaces with high carbon steel at 250 rpm speed and (a) (b) 44.1 N load (c) 58.8 N load Worn surfaces with high carbon steel at 250 rpm speed and (a) (b) 44.1 N load (c) 58.8 N load 	68 69	
load (b) 44. Figure 47. (a) 29.4 N 1 Figure 48. and (a) 29.4 (d) 29.4 N 1 Figure 49. 29.4 N load Figure 50. N 29.4 N load	 1 N load (c) 58.8 N load Worn surfaces with medium carbon steel at 250 rpm speed and oad (b) 44.1 N load (c) 58.8 N load (1)Worn surface with medium carbon steel pin, at 200 rpm speed N load (b) 44.1 N load (c) 58.8 N load. (2) At 150 rpm speed and oads (e) 44.1 N load (f) 58.8 N loads Worn surfaces with high carbon steel at 250 rpm speed and (a) (b) 44.1 N load (c) 58.8 N load 	68 69 71	

LIST OF TABLES

Sr. Numl	per Title	Page No
Table 1.	Variables for wear test	34
Table 2.	Design of experiment table for wear test	35
Table 3.	Quantitative table of EDS analysis of thermal spray	43
	Quantitative table of EDS analysis of worn surface with brass pin at speed and 58.8 N load	55
	Quantitative EDS analysis of wear track of thermal spray coating with earbon steel pin at 150 rpm and 58.8 N loads	56
	Quantitative EDS analysis of wear track of thermal spray coating with on steel pin at 150 rpm and 58.8 N loads	57

ABBREVIATIONS

Symbol	Explanation
μ	co-efficient of friction
Φ	pin diameter
g	grams
Kg	kilogram
Ν	load in Newton
Hv	Vickers microhardness
μm	Micrometer
A°	Armstrong
d	Intermolecular distance
θ	Angle of incidence
3D	Three dimensional
D_1, D_2	Diagonals of indenter
Rpm	Revolution per minute
SEM	Scanning electron microscope
XRD	X-ray diffractometry
EDS	Electronic dispersive spectrometry
ANOVA	Analysis of variance