
1

MAJOR PROJECT
on

 ADVANCED FEATURE EXTRACTION AND ITS
IMPLEMENTATION IN SPEECH RECOGNITION SYSTEM

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE AWARD OF DEGREE

Of

MASTER OF ENGINEERING
(Computer Technology and Applications)

Delhi University, Delhi

Submitted by:

RACHNA JAIN
University Roll No 8551

Under the Guidance of:

Dr. S.K SAXENA

Department of Computer Engineering
Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

BAWANA ROAD, DELHI-110042
DELHI UNIVERSITY

2011

2

Certificate

This is to certify that the major project entitled “ADVANCED FEATURE EXTRACTION

AND ITS IMPLEMENTATION IN SPEECH RECOGNITION SYSTEM” is the work of

Rachna Jain (Univ. Roll No. 8551), a student of Delhi College of Engineering. This work

was completed under my direct supervision and guidance and forms a part of Master of

Engineering (Computer Technology & Applications) course and curriculum.

(Dr. S. K. SAXENA)

Project Guide

Department of Computer Engineering
Delhi College of Engineering
(Now Delhi Technological University)

3

Acknowledgement

It gives me a great pleasure to express my profound gratitude to my project guide

Dr. S. K. SAXENA, Senior Faculty, Department of Computer Engineering, Delhi

College of Engineering, for his valuable and inspiring guidance throughout the progress

of this project.

At the same time, I would like to extend my heart felt thanks to Dr.(Mrs.) Daya Gupta,

Head of the department, Department of Computer Engineering, Delhi College of

Engineering, for keeping the spirits high and clearing the visions to work on the project.

Rachna Jain

Roll No. 8551

(12/CTA/09)

4

ABSTRACT

The project entitled “ADVANCED FEATURE EXTRACTION AND ITS

IMPLEMENTATION IN SPEECH RECOGNITION SYSTEM” deals with the in depth

study of Feature Extraction module. It encompasses various feature extraction algorithms

which would be implemented and optimized. Different parameters would be extracted

both in time domain and frequency domain.

Speech Processing is an upcoming field. A lot of research is conducted in this field.

Today people are interested in hand free systems. A password can be hacked but using

voice as a password can not be hacked. We want to make the use of mouse obsolete. As

we speak ‘my computer’, it should be double clicked or in general the respective

application should be opened.

The project is mainly concerned with the advanced feature extraction and implementation

of those features in the speech recognition system. Various feature extraction algorithms

have been implemented in the project. They are then compared with each other with

respect to their performance. Graphs have been plotted to represent their respective

performance in terms of their recognition rates.

The project is designed following a simplistic yet an effective approach so that the user

has a hassle free working experience. This project includes text fields for the input word

and recognized word and the list of various levels of noise which need to be added.

I have used its application in design of voice automated robot.

Voice based robotic control is an interesting project, mainly used for industrial and

surveillance applications. It gives exact concept of controlling a robot by a voice

instruction.

5

Robot is capable of understanding and synthesizing human speech for communication. A

voice recognition unit built around a high speed processor that ensures various operations

of the system to be performed by voice command. A few of commands recommended

for operation are listed as: START, STOP, FORWARD, REVERSE, RIGHT, LEFT,

SLOW, FAST,OK, UP, DOWN, CLOCK, ANTICLOCK, CLOSE,OPEN.

After the design of voice automated mobile robot I have designed the gesture automated

mobile robot. Robot is capable of understanding and synthesizing gesture for

communication.

6

LIST OF FIGURES

Figure 1: The Human Speech Organ ………………………...…………………..….....3

Figure 2(a): Typical impulse sequence...4

Figure 2(b): Variation of the pitch frequency..4

Figure 3: The Human Speech Production..5

Figure 4(a): Enrollment Phase…………………….……........................7

Figure 4(b): Identification Phase...……………………..…………………….................7

Figure 5: An example of speech signal...9

Figure 6(a):Block diagram of the LPCC...11

Figure 6(b): Block diagram of RAS...12

Figure 6(c): Block diagram of DAS...13

Figure 6(d): Block diagram of AMFCC ...14

Figure 6(e): Block diagram of Higher-lag autocorrelation coefficients relation………15

Figure 7: An example of mel-spacefilterbank...20

Figure 8(a): Block diagram of the LPCC …………………..…………........................23

Figure 8(b): Block diagram of OSALPC ………………………...………………........24

Figure 8(c)Block diagram of SMC ..25

Figure 9: Conceptual diagram illustrating VQ codebook formation.............................32

Figure 10: Steps in HMM..36

Figure 11(a): Results with maximum recognition for Higher-Lag Module for white

noise..37

Figure 11(b): Graphical representation of Figure 11(a)..37

7

Figure 11(c): Results with maximum recognition for Higher-Lag Module for F16

noise...38

Figure 11(d): Graphical representation of Figure 11(c)...38

Figure 11(e): Results with maximum recognition for Higher-Lag Module for Factory

noise..39

Figure 11(f): Graphical representation of Figure 11(e)..39

Figure 11(g): Results with maximum recognition for Higher-Lag Module for Babble

noise..40

Figure 11(h): Graphical representation of Figure 11(g)...40

Figure 11(i): Results with maximum recognition for Higher-Lag Module for white

noise..41

Figure 11(j): Graphical representation of Figure 11(i)...41

Figure 11(k): Results with maximum recognition for Higher-Lag Module for F16

noise..42

Figure 11(l): Graphical representation of Figure 11(k)..42

Figure 11(m): Results with maximum recognition for Higher-Lag Module for Factory

noise..43

Figure 11(n): Graphical representation of Figure 11(m)..43

Figure 11(o): Results with maximum recognition for Higher-Lag Module for Babble

noise..44

Figure 11(p): Graphical representation of Figure 11(o)...44

Figure 11(q): Results using Segmental SNR with maximum enhancement for AR-HASE

than HASE..45

8

Figure 11(r): Graphical representation of Figure 10(q)..45

Figure 12: Block Diagram of the System..47

TABLE OF CONTENTS

Certificate…………………………………………………………….….….i

9

Acknowledgement……………………………………………………..…...ii

Abstract………………………………………………………………..…....iii

Chapter 1. Introduction……………….…………………………………1

1.1 Speech Recognition……………………………………....1
1.2 Speech…………………………………………………….2

1.2.1The process of speech production
1.2.2Fundamental of the Human speech Production

1.3 Mechanism of Speech Production………………………..5
1.4 Principle of Speech Recognition…………………………6

Chapter 2. Hardware & Software Requirements…….………….…….8

2.1 Hardware…………………………………………….…...8
2.2 Software………………...………………………….…….8

Chapter 3. Speech Feature Extraction………………….……….……...9

3.1 MFCC………………………………………………...…11
3.2 RAS……………………………………………………...12
3.3 DAS……………………………………………………...13
3.4 AMFCC……………………………………………….....14

 3.5 Higher Lag Autocorrelation……………………………..15
3.6 Steps Involved………………………………………...…16

Chapter 4. Speech Feature Extraction(Based on LPC coefficients)…22

 4.1 LPCC.……………………..……………………………..22
4.2 OSALPC......……………………………………………..23
4.3 SMC…...24
4.4 Steps Involved……………..……………………………..25

Chapter 5. Feature Matching…………………………………………....31

 5.1 Codebook………...... …………..………….....................32
5.1.1 Code Book Generation
5.1.2 Code Book Initialization

 5.1.3 Code Book Design
 5.2 Vector Quantization…….…………......……......................33
 5.2.1 VQ Algorithm

 5.3Design of Codebook……….………………….....................36

10

 5.3.1 Vector Quantization coding Outline
 5.4HMM……………………….………………........................36

Chapter 6. Experimental Result….………..…………………...…...........37

Chapter 7. Application of Speech Recognition System...……....….........46

 7.1 Implementation Framework……………...……...................46

 7.2 Working of Robot...….………………...……......................47

 7.3 Uses........................…..……………………….....................48

Chapter 8. Conclusion....…...………………………………………..........51

Chapter 9. Future Scope…………………………………………….........52

Chapter 10. References...53

Appendix A….......……………….………………………………………........54

Appendix B………………………………………………………………........56

Appendix C………………………………………………………………........71

Appendix D………………………………………………………………........73

Appendix E………………………………………………………………........75

Chapter 1

11

INTRODUCTION

1.1 SPEECH RECOGNITION

Speech recognition (also known as automatic speech recognition or computer speech

recognition) converts spoken words to machine-readable input. The term "voice

recognition" may also be used to refer to speech recognition, but can more precisely refer

to speaker recognition, which attempts to identify the person speaking, as opposed to

what is being said. Speech recognition applications include voice dialing (e.g., "Call

home"), call routing (e.g., "I would like to make a collect call"), demotic appliance

control and content-based spoken audio search (e.g., find a pod cast where particular

words were spoken), simple data entry (e.g., entering a credit card number), preparation

of structured documents (e.g., a radiology report), speech-to-text processing (e.g., word

processors or emails), and in aircraft cockpits (usually termed Direct Voice Input).

Speech recognition is the process of converting an acoustic signal, captured by a

microphone or a telephone, to a set of words. The recognized words can be the final

results, as for applications such as commands & control, data entry, and document

preparation. Speech recognition systems can be characterized by many parameters. An

isolated-word speech recognition system requires that the speaker pause briefly between

words, whereas a continuous speech recognition system does not. Spontaneous, or

extemporaneously generated, speech contains influences, and is much more difficult to

recognize than speech read from script. Some systems require speaker enrollment---a user

must provide samples of his or her speech before using them, whereas other systems are

said to be speaker-independent, in that no enrollment is necessary. Some of the other

parameters depend on the specific task. Recognition is generally more difficult when

vocabularies are large or have many similar-sounding words.

12

1.2 SPEECH

The purpose of speech is communication. Speech can be represented in terms of its

message or information. The information that is communicated through speech is

intrinsically of a discrete nature, i.e. it can be represented by a concatenation of element

from a finite set of symbols. The symbols from which every sound can be classified are

called phonemes. Each language has its own distinctive set of phonemes, typical number

between 30 and 50.A human produce speech at an average rate of 10phonemes/sec. If a

binary number represent each phoneme, then a six-bit numerical code is more than

sufficient to represent all of the phonemes of the English. In speech communication

system, the speech signal is transmitted, stored and processed in many ways. In general

there are two major concerns in any system:

• Preservation of the message content in the speech signal.

• Representation of the speech signal in a form that is convenient for transmission and

storage, or in a form that is flexible.

1.2.1 The process of speech production

Speech signal are composed of a sequence of sounds. The arrangement of these sounds

(symbol) is governed by the rules of the language. The study of these rules and their

implications in human communication in the domain of linguistics, and classification of

the sounds of speech is called phonetics.

13

1.2.2 Fundamentals of the Human Speech Production

Figure1: The Human Speech Organ

Speech is produced by a cooperation of lungs, glottis (with vocal cords) and articulation

tract (mouth and nose cavity). Fig1 shows a cross section of the human speech organ.

For the production of voiced sounds, the lungs press air through the epiglottis, the vocal

cords vibrate, and they interrupt the air stream and produce a quasi-periodic pressure

wave. The pressure impulses are commonly called pitch impulses and the frequency of

the pressure signal is the pitch frequency or fundamental frequency.

14

In Fig2a, a typical impulse sequence (sound pressure function) produced by the vocal

cords for a voiced sound is shown. It is the part of the voice signal that defines the speech

melody. When we speak with a constant pitch frequency, the speech sounds monotonous

but in normal cases a permanent change of the frequency ensues. Fig2b depicted the pitch

frequency variation.

Figure 2a: Typical impulse sequence

Figure 2b: Variation of the pitch frequency

15

The pitch impulses stimulate the air in the mouth and for certain sounds (nasals) also

stimulate the nasal cavity. When the cavities resonate, they radiate a sound wave which is

the speech signal. Both cavities act as resonators with characteristic resonance

frequencies, called formant frequencies. Since the mouth cavity can be greatly changed,

we are able to pronounce many different sounds. In the case of unvoiced sounds, the

excitation of the vocal tract is more noise-like.

 Figure 3: The Human Speech Production

1.3 MECHANISM OF SPEECH PRODUCTION

The human vocal system begins at the opening between the vocal cords, or glottis, and

ends at the lips. In the average male, the total length of vocal tract is about 17-cm.the

cross section area of the vocal tract is about 20-cm². The nasal tract begins at the velum

and ends at the nostrils. When the nasal is lowered, the nasal tract is acoustically coupled

to the vocal tract to produce the nasal sounds of speech. The sub- glottis system, which is

composed of lungs, bronchi, and trachea, serves as a source of energy for the production

of speech. Speech is simply the acoustic wave that is radiated from this system when air

is expelled from the lungs and the resulting flow of air is perturbed by a constriction

16

somewhere in the vocal tract. Speech sound can be classified into 3 distinct classes

according to their mode of excitation. Vocal sounds are produced by forcing air through

the glottis with the 1vocal sounds are produced by forcing air through the glottis with the

tension of the vocal cords adjusted so that they vibrate in the relaxation oscillation, there

by producing quasi-periodic pulses of air which excite the vocal tract. Fricative and

unvoiced sounds are generated by forming a constriction in some point in the vocal tract

and forcing air through the constriction at a high enough velocity to produce turbulence.

Vocal tract, nasal tract is a tube of non-uniform cross-sectional area. As sound propagates

down these tubes, the frequency spectrum is shaped by the frequency selectivity of the

tube. In the context of speech production, resonance frequencies of the vocal tract tube

are called formant frequencies or simply formants. Varying the shape of the vocal tract

forms different sounds. The spectrograph produces a two dimensional pattern called a

spectrogram in which the vertical dimension corresponds to frequency and the horizontal

dimensional to time. The darkness of the pattern is proportional to signal energy.

1.4 PRINCIPLE OF SPEECH RECOGNITION SYSTEM

Speech recognition can be classified into Enrollment Phase (training phase) and

Identification Phase (testing phase). Enrollment phase is a process of collection of

speech samples and then used to train the model. In the training phase, each registered

speaker has to provide samples of their speech for different words so that the system can

build or train a reference model. Identification phase is the process of testing sample of

unknown speech which is compared against word database. During the testing phase, the

input speech is matched with stored reference model(s) and recognition decision is made.

17

The basic structures of Enrollment phase:

Figure 4(a): Enrollment Phase

The basic structures of Identification phase:

Figure 4(b): Identification Phase

All technologies of speech recognition, enrollment and identification, each has its

own advantages and disadvantages and may require different treatments and techniques.

The choice of which technology to use is application-specific. All speech recognition

systems contain two main modules (as in figure 4) feature extraction and feature

matching.

18

Chapter 2

HARDWARE AND SOFTWARE REQUIREMENTS

2.1 HARDWARE

 256 MB RAM (Min.)

 2.44 GHz Processor

 10 GB HDD (Min.)

2.2 SOFTWARE

 MATLAB 7.0.1

 MICROSOFT VISUAL STUDIO 2008

 Operating System - Microsoft Window XP

19

Chapter 3

SPEECH FEATURE EXTRACTION

The purpose of this module is to convert the speech waveform to some type of parametric

representation (at a considerably lower information rate) for further analysis and

processing. This is often referred as the signal-processing front end. The speech signal is

a slowly timed varying signal (it is called quasi-stationary). An example of speech

signal is shown in Figure 5. When examined over a sufficiently short period of time

(between 5 and 100 msec), its characteristics are fairly stationary. However, over long

periods of time (on the order of 1/5 seconds or more) the signal characteristic change to

reflect the different speech sounds being spoken. Therefore, short-time spectral analysis

is the most common way to characterize the speech signal.

Figure 5: An example of speech signal

0 5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

20

Wide range of possibilities exists for parametrically representing the speech signal for the

speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency

Cepstrum Coefficients (MFCC), and others. MFCC is perhaps the best known and most

popular.

In this project, several modules are applied for speech feature extraction. They are:

 MFCC

 RAS

 DAS

 AMFCC

 HIGHER-LAG

MFCC, RAS, DAS, DPS and HIGHER LAG are based on MFCC coefficients.

21

3.1 MEL-FREQUENCY CEPSTRUM COEFFICIENTS (MFCC)

MFCC’s are based on the known variation of the human ear’s critical bandwidths with

frequency; filters spaced linearly at low frequencies and logarithmically at high

frequencies have been used to capture the phonetically important characteristics of

speech. This is expressed in the mel-frequency scale, which is linear frequency spacing

below 1000 Hz and a logarithmic spacing above 1000 Hz. This sampling frequency was

chosen to minimize the effects of aliasing in the analog-to-digital conversion. These

sampled signals can capture all frequencies up to 5 kHz, which cover most energy of

sounds that are generated by humans. As been discussed previously, the main purpose of

the MFCC processor is to mimic the behavior of the human ears. In addition, rather than

the speech waveforms themselves, MFCC’s are shown to be less susceptible to

mentioned variations.

Figure 6(a): Block diagram of the MFCC

Frame
Blocking &
Pre-emphasis

Windowing FFT

Mel-frequency
Filter Bank

Log &
DCT

Cepstrum,
Delta Cepstrum,
Delta Delta Cepstrum

Continous
speech

Mel-
cepstrum

22

3.2 RELATIVE AUTOCORRELATION SEQUENCE (RAS)

In this algorithm, splitting the speech signal into frames and applying a pre-emphasis

filter, the autocorrelation sequence of the frame signal is obtained. A FIR filter is then

applied to the noisy speech signal autocorrelation sequence. Hamming windowing and

short time fourier transform constitute the next stage. A set of cepstral coefficients can

then be derived by applying a conventional mel-frequency filter bank to the resultant

spectrum and finally passing the logarithm of bin outputs to the DCT block.

Figure 6(b): Block diagram of RAS

Frame
Blocking &
Pre-emphasis

Windowing

FFT

Mel-frequency
Filter Bank

Log &
DCT

Cepstrum,
Delta Cepstrum,
Delta Delta Cepstrum

Continous
speech

Mel-
cepstrum

Autocorrelation
Sequence &
Filter

23

3.3 DIFFRENTIATED AUTOCORRELATION SEQUENCE (DAS)

This approach combines the advantage of RAS and DPS. In this algorithm, splitting the

speech signal into frames and applying a pre-emphasis filter, the autocorrelation sequence

of the frame signal is obtained. A FIR filter is then applied to the noisy speech signal

autocorrelation sequence. Hamming windowing and short time fourier transform

constitute the next stage. Then differential power spectrum of the filtered signal is

calculated. By differentiation of the spectrum, we preserve the peaks. Since the spectral

peaks convey the most important information in speech signal. A set of cepstral

coefficients can then be derived by applying a conventional mel-frequency filter bank to

the resultant spectrum and finally passing the logarithm of bin outputs to the DCT block.

Figure 6(c): Block diagram of DAS

Frame Blocking
& Pre-emphasis

Windowing FFT

Mel-frequency
Filter Bank

Log & DCTCepstrum,
Delta Cepstrum,
Delta Delta Cepstrum

Continous
speech

Mel-
cepstrum

Autocorrelation
Sequence & Filter

Amplitude2

Amplitude

Differentiation

24

3.4 AUTOCORRELATION MEL-FREQUENCY CEPSTRUM COEFFICIENTS

(AMFCC)

In this algorithm, splitting the speech signal into frames and applying a pre-emphasis

filter. A hamming windowing and autocorrelation constitute the next stage. Then again

windowing is done. Then taking short time fast fourier transformation, the absolute value

is preserved. A set of cepstral coefficients can then be derived by applying a conventional

mel-frequency filter bank to the resultant spectrum and finally passing the logarithm of

bin outputs to the DCT block.

Figure 6(d): Block diagram of AMFCC

Frame Blocking
& Pre-emphasis

Windowing Autocorr
elation

Mel-frequency
Filter Bank

Log & DCTCepstrum,
Delta Cepstrum,
Delta Delta Cepstrum

Continous
speech

Mel-
cepstrum

Windowing

Amplitude

FFT

25

3.5 HIGHER-LAG AUTOCORRELATION COEFFICIENTS

In this algorithm, splitting the speech signal into frames and applying a pre-emphasis

filter. Then autocorrelation is applied because the noise autocorrelation sequence is more

significant in lower lags. Therefore, noise robust spectral estimation is possible on the

higher lag autocorrelation coefficients. Hence eliminating the lower lags of the noisy

speech signal autocorrelation should lead to removal of the main noise components. A

hamming windowing constitute the next stage. Then taking short time fast fourier

transformation, the absolute value is preserved. Then differentiation of the square of

absolute is taken to preserve the spectral peaks. A set of cepstral coefficients can then be

derived by applying a conventional mel-frequency filter bank to the resultant spectrum

and finally passing the logarithm of bin outputs to the DCT block.

Figure 6(e): Block diagram of Higher-lag autocorrelation coefficients

Frame Blocking
& Pre-emphasis

Windowing FFT

Mel-frequency
Filter Bank

Log & DCTCepstrum,
Delta Cepstrum,
Delta Delta Cepstrum

Continous
speech

Mel-
cepstrum

Autocorrelation
Sequence &
Lower-lag
removal & Filter

Amplitude2

Amplitude

Differentiation

26

3.6 STEPS INVOLVED

3.6.1 Pre-emphasis

Pre-emphasis s(n) (input signal) using a pre-emphasis filter H(z) = 1 – aprez-1, where apre

is the pre-emphasis coefficient. The value of apre is given as an experimental parameter.

X(n) = s(n) – apre s(n-1), n = 0,1,…..,N-1.Frame Blocking

3.6.2 Framing

In this step the continuous speech signal is blocked into frames of N samples, with

adjacent frames being separated by M (M < N).

The first frame consists of the first N samples. The second frame begins M samples after

the first frame, and overlaps it by N - M samples.

 Similarly, the third frame begins 2M samples after the first frame (or M samples after the

second frame) and overlaps it by N - 2M samples.

This process continues until all the speech is accounted for within one or more frames.

Typical values for N and M are N = 256 (which is equivalent to ~ 30 msec windowing

and facilitate the fast radix-2 FFT) and M = 100.

3.6.3 Windowing

The next step in the processing is to window each individual frame so as to minimize the

signal discontinuities at the beginning and end of each frame. The concept here is to

minimize the spectral distortion by using the window to taper the signal to zero at the

beginning and end of each frame. If we define the window as 10),( Nnnw , where

N is the number of samples in each frame, then the result of windowing is the signal

27

 10),()()( Nnnwnxny ll

Typically the Hamming window is used, which has the form:

 10,
1

2
cos46.054.0)(









 Nn

N

n
nw



Pole preservation property: Original signal is excited by an impulse train and a white

noise, then, the poles of the autocorrelation sequence would be the same as the poles of

the original signal.

For many typical noise types, noise autocorrelation sequence is more significant in lower

lags. Therefore, Noise-Robust Spectral estimation is possible on the higher lag

autocorrelation coefficient.

3.6.5 Filter

High pass filtering of autocorrelation sequence done to reduce noise effect.

3.6.6 Fast Fourier Transform (FFT)

The next processing step is the Fast Fourier Transform, which converts each frame of N

samples from the time domain into the frequency domain. The FFT is a fast algorithm to

3.6.4 Autocorrelation Sequence:

 N-1-K

ryy(m,k) = 1 Σ y(m,i)*y(m,i+k)
 N-K i = 0

0 ≤ m ≤ M-1, 0 ≤ n ≤ N-1

28

implement the Discrete Fourier Transform (DFT) which is defined on the set of N

samples {xn}, as follow:

 




 
1

0

/2 1,...,2,1,0,
N

k

Njkn
kn NnexX 

Note that we use j here to denote the imaginary unit, i.e. 1j . In general Xn’s are

complex numbers. The resulting sequence {Xn} is interpreted as follow: the zero

frequency corresponds to n = 0, positive frequencies 2/0 sFf  correspond to

values 12/1  Nn , while negative frequencies 02/  fFs correspond

to 112/  NnN . Here, Fs denote the sampling frequency. The result after this step

is often referred to as spectrum or periodogram.

3.6.7 Discrete Fourier Transform (DFT)

 N-1
X(k) = ∑ x(n) e-j2πkn/N

 n=0

where k=0,1,2……………(N-1).

The inverse Discrete Fourier Transform (IDFT) of the sequence x(n)

 N-1
X(n) = 1∑ X(k) ej2πkn/N

 N n=0

where n =0,1,2……………(N-1).

The DFT transform pair is denoted by

{ x(n) } {X(k)}

29

Frequency resolution of the DFT

The frequency resolution of the N-point DFT

fr = fs / N

• The DFT can resolve exactly only the frequencies falling exactly at: k fs/N. There is

spectral leakage for components falling between the DFT bins.

• Typically we use an FFT that is as large as we can afford.

• Zero-padding is often using to provide more resolution in the frequency components.

• Zero padding is often combined with tapered windows

The DFT and the FFT Complexity

The N-point DFT requires N ^2 multiplications and N ^2 –1 additions to compute the

Discrete frequency spectrum. The complexity of the DFT is reduced using the FFT to N/2

logN (Base 2) multiplications and N logN (Base2) additions. For example If N=4096 the

DFT requires 16,777,216 multiplications while the FFT requires 49,152 multiplications.

3.6.8 Mel-frequency wrapping

As mentioned above, psychophysical studies have shown that human perception of the

frequency contents of sounds for speech signals does not follow a linear scale. Thus for

each tone with an actual frequency, f, measured in Hz, a subjective pitch is measured on a

scale called the ‘mel’ scale. The mel-frequency scale is linear frequency spacing below

1000 Hz and a logarithmic spacing above 1000 Hz. As a reference point, the pitch of a 1

kHz tone, 40 dB above the perceptual hearing threshold, is defined as 1000 mels.

Therefore we can use the following approximate formula to compute the mels for a given

frequency f in Hz:

)700/1(log*2595)(10 ffmel 

30

One approach to simulating the subjective spectrum is to use a filter bank, spaced

uniformly on the mel scale (see Figure 4). That filter bank has a triangular bandpass

frequency response, and the spacing as well as the bandwidth is determined by a constant

mel frequency interval. The modified spectrum of S() thus consists of the output power

of these filters when S() is the input. The number of mel spectrum coefficients, K, is

typically chosen as 20.

Note that this filter bank is applied in the frequency domain; therefore it simply amounts

to taking those triangle-shape windows in the Figure 4 on the spectrum. A useful way of

thinking about this mel-wrapping filter bank is to view each filter as a histogram bin

(where bins have overlap) in the frequency domain.

Figure 7: An example of mel-spaced filterbank

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Mel-spaced filterbank

Frequency (Hz)

31

Another reason to use a non-linear frequency analysis is to get around the frequency/time

resolution tradeoff. Using a narrow bandwidth at low frequencies enables harmonics to

be resolved but gives poor onset information. Using a larger bandwidth at higher

frequencies allows for high temporal resolution of bursts, etc.

3.6.9 Cepstrum

In this final step, we convert the log mel spectrum back to time. The result is called the

mel frequency cepstrum coefficients (MFCC). The cepstral representation of the speech

spectrum provides a good representation of the local spectral properties of the signal for

the given frame analysis. Because the mel spectrum coefficients (and so their logarithm)

are real numbers, we can convert them to the time domain using the Discrete Cosine

Transform (DCT). Therefore if we denote those mel power spectrum coefficients that are

the result of the last step are KkSk ,...,2,1,
~

 , we can calculate the MFCC's, ,~
nc as

Kn

K
knSc

K

k
kn ,...,2,1,

2
1

cos)~(log~
1













  





Note that we exclude the first component, ,~
0c from the DCT since it represents the mean

value of the input signal which carried little speaker specific information.

32

Chapter 4

SPEECH FEATURE EXTRACTION (BASED ON LPC
COEFFICIENTS)

Wide range of possibilities exists for parametrically representing the speech signal for the

speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency

Cepstrum Coefficients (MFCC), and others. MFCC is perhaps the best known and most

popular. In this project, several modules are applied for speech feature extraction:

 LPCC

 OSALPC

 SMC

LPCC, OSALPC and SMC are based on LPC coefficients [1, 2, 3].

4.1 LINEAR PREDICTION CEPSTRAL COEFFICIENTS (LPCC)

LPC features are generated in accordance with the vocal cord or human vocal tract.

LPCC algorithm [1, 2, 3] is based on LPC features. They model the speech as a linear but

time varying system. Speech samples from previous time points are combined linearly to

predict the current value. LPCC performs better in case of loud signals. In this algorithm,

splitting the speech signal into frames and applying a pre-emphasis filter, then

autocorrelation is applied followed by windowing to remove discontinuities. A set of

cepstral coefficients can then be derived by applying Levinson Durbin Recursion

Algorithm. Then the final result is the LPCC extracted features.

33

Figure 8(a): Block diagram of the LPCC

4.2 ONE-SIDED AUTOCORRELATION LINEAR PREDICTION CEPSTRALS

(OSALPC)

LPC features are generated in accordance with the vocal cord or human vocal tract.

OSALPC algorithm [1, 2] is based on LPC features. OSALPC performs better in case of

loud as well as noisy signals. This technique performs only a partial deconvolution of the

speech signal. In spite of tha, OSALPC shows better speech recognition performance

than conventional LPCC in severe conditions of additive noise. In this algorithm, splitting

the speech signal into frames and applying a pre-emphasis filter, then autocorrelation is

applied followed by windowing to remove discontinuities. Then, autocorrelation of order

12 is applied. A set of cepstral coefficients can then be derived by applying Levinson

Durbin Recursion Algorithm. Then the final result is the OSALPC extracted features.

Frame
Blocking &
Pre-emphasis

Autocorrelation Windowing

Levinson Durbin
Recursion
Algorithm

Cepstrum,
Delta Cepstrum

Continuous
speech

Extracted
Features

34

Figure 8(b): Block diagram of OSALPC

4.3 SHORT-TIME MODIFIED COHERENCE (SMC)

LPC features are generated in accordance with the vocal cord or human vocal tract. SMC

algorithm [1, 2] is based on LPC features. SMC performs better in case of loud signals.

They are more robust to additive white noise hence performs better than conventional

LPCC in severe conditions of additive white noise. In this algorithm, splitting the speech

signal into frames and applying a pre-emphasis filter, then autocorrelation is applied

followed by windowing to remove discontinuities. Then FFT is applied to convert time

domain to frequency domain followed by computing the absolute and the IFFT to convert

back to time domain. A set of cepstral coefficients can then be derived by applying

Levinson Durbin Recursion Algorithm. Then the final result is the SMC extracted

features.

Frame
Blocking &
Pre-emphasis

Autocorrelation Windowing

Levinson Durbin
Recursion
Algorithm

Cepstrum,
Delta Cepstrum

Continuous
speech

Extracted
Features

Autocorrelation
of order 12

35

Figure 8(c): Block diagram of SMC

4.4 STEPS INVOLVED

4.4.1 Pre-emphasis

Pre-emphasis s(n) (input signal) using a pre-emphasis filter H(z) = 1 – apre(z-1), where

apre is the pre-emphasis coefficient [1, 2]. The value of apre is given as an experimental

parameter.

X(n) = s(n) – apre s(n-1), n = 0,1,…..,N-1 (1)

4.4.2 Framing

In this step the continuous speech signal is blocked into frames of N samples, with

adjacent frames being separated by M (M < N).

The first frame consists of the first N samples. The second frame begins M samples after

the first frame, and overlaps it by N - M samples.

Frame
Blocking &
Pre-emphasis

Autocorrelation Windowing

Levinson Durbin
Recursion
Algorithm

Cepstrum,
Delta Cepstrum

Continuous
speech

Extracted
Features

FFT

IFFT

Amplitude

36

 Similarly, the third frame begins 2M samples after the first frame (or M samples after the

second frame) and overlaps it by N - 2M samples.

This process continues until all the speech is accounted for within one or more frames.

Typical values for N and M are N = 256 (which is equivalent to ~ 30 msec windowing

and facilitate the fast radix-2 FFT) and M = 100 [1, 2].

4.4.3 Windowing

The next step in the processing is to window [1, 2] each individual frame so as to

minimize the signal discontinuities at the beginning and end of each frame.

 The concept here is to minimize the spectral distortion by using the window to taper the

signal to zero at the beginning and end of each frame. If we define the window

as 10),( Nnnw , where N is the number of samples in each frame, then the result of

windowing is the signal.

10  Nn(n)w(n),x(n)y ll (2)

Typically the Hamming window is used, which has the form:

10
1

2
cos460540 









 Nn,

N

πn
..w(n) (3)

4.4.4 Autocorrelation Sequence:

Pole preservation property [1]: Original signal is excited by an impulse train and a white

noise, then, the poles of the autocorrelation sequence would be the same as the poles of

the original signal.

For many typical noise types, noise autocorrelation sequence is more significant in lower

lags. Therefore, Noise-Robust Spectral estimation is possible on the higher lag

autocorrelation coefficient.

     kimyimy
KN

kmr
KN

i
yy 


 





,,
1

,
1

0

, 0 ≤ m ≤ M-1, 0 ≤ n ≤ N-1 (4)

37

4.4.5 Fast Fourier Transform (FFT)

The next processing step is the Fast Fourier Transform, which converts each frame of N

samples from the time domain into the frequency domain. The FFT is a fast algorithm to

implement the Discrete Fourier Transform (DFT) which is defined on the set of N

samples {xn}, as follow:






 
1

0

/2 1,...,2,1,0,
N

k

Njkn
kn NnexX  (5)

Note that we use j here to denote the imaginary unit, i.e. 1j . In general Xn’s are

complex numbers. The resulting sequence {Xn} is interpreted as follow: the zero

frequency corresponds to n = 0, positive frequencies 2/0 sFf  correspond to

values 12/1  Nn , while negative frequencies 02/  fFs correspond

to 112/  NnN . Here, Fs denote the sampling frequency. The result after this step

is often referred to as spectrum or periodogram.

The FFT Complexity

The N-point DFT requires N ^2 multiplications and N ^2 –1 additions to compute the

Discrete frequency spectrum. The complexity of the DFT is reduced using the FFT to

N/2 logN (Base 2) multiplications and N logN (Base2) additions. For example If N=4096

the DFT requires 16,777,216 multiplications while the FFT requires 49,152

multiplications.

4.4.6 Levinson Durbin Recursion Algorithm

Levinson Durbin Recursion Algorithm [1] is the core of the LPCC, OSALPC and SMC

modules. This is an algorithm for finding an all-pole IIR filter with a prescribe

deterministic autocorrelation sequence. It has applications in filter design, coding and

spectral estimation. This algorithm mainly consists of four steps:

38

4.4.6.1 LPC Analysis

It converts each frame of p+1 autocorrelations into an “LPC parameter set” in which the

set might be the LPC coefficients, PARCOR coefficients, the cepstral coefficients or any

desired transformation. The formal method for converting from autocorrelation

coefficients to an LPC parameter set is known as Durban’s method.

   00 rE  (6)

     1
1

1

1 














  i
L

j

i
ji Ejirirk  , pi 1 (7)

 
i

i
i k (8)

   11 


  i
jii

i
j

i
j k  (9)

     121  i
i

i EkE (10)

where,

am= LPC coefficients,

km=PARCOR coefficients

gm=log area ratio coefficients

4.4.6.2 LPC Parameter Conversion to Cepstral Coefficients

A very important LPC parameter set, which can be derived directly from the LPC

coefficient set, is the LPC cepstral coefficients, c(m). The recursion used is

2
0 lnc (11)

kmk

m

k
mm ac

m

k
ac 




 








1

1

, pm 1 (12)

kmk

m

k
m ac

m

k
c 




 








1

1

, pm  (13)

where, 2 is the gain term in LPC model.

4.4.6.3 Parameter Weighing

Because of the sensitivity of the low-order cepstral coefficients to overall spectral slope

and the sensitivity of the higher-order cepstral coefficients to noise, it has become a

39

standard technique to weight the cepstral coefficients by a tapered window so as to

minimize these sensitivities.








 


Q

mQ
wm sin

2
1 , Qm 1 (14)

This weighting function truncates the computation and de-emphasizes cm around m=1

and m=Q.

4.4.6.4 Temporal Cepstral Derivative

An improved representation of the speech spectrum can be obtained by extending the

analysis to include information about the temporal cepstral derivative (both first and

second derivatives have been investigated and found to improve the performance of

speech recognition system).

     ktkctc
t

tc K

Kk
mm

m 


 


 (15)

where, µ is an appropriate normalization constant and (2k+1) is the number of frames

over which computation is performed.

4.4.7 Cepstrum

The cepstral representation of the speech spectrum provides a good representation of the

local spectral properties of the signal for the given frame analysis.

4.4.8 Segmental SNR

Segmental SNR [8] is used for comparing the performance of HASE and AR-HASE

modules. In this process, the speech signal is divided into large number of segments and

SNR is calculated for each segment. Then the average SNR is computed for the whole

input speech, called the Segmental SNR for that speech signal.

For each segment, SNR is calculated as,

40

    
     












2

2

01.0
1log

ixbixaSUM

ixaSUM
kSS (16)

Then the final average Segmental SNR is calculated as,

   1/10log*10  NkSUMSSSSNR (17)

41

Chapter 5

FEATURE MATCHING

The objects of interest are generically called patterns and in our case are sequences of

acoustic vectors that are extracted from an input speech using the techniques described in

the previous section. The classes here refer to individual speakers. Since the

classification procedure in our case is applied on extracted features, it can be also referred

to as feature matching. Furthermore, if there exists some set of patterns that the

individual classes of which are already known, then one has a problem in supervised

pattern recognition. This is exactly our case since during the training session, we label

each input speech with the ID of the speaker (S1 to S8). These patterns comprise the

training set and are used to derive a classification algorithm. The remaining patterns are

then used to test the classification algorithm; these patterns are collectively referred to as

the test set. If the correct classes of the individual patterns in the test set are also known,

then one can evaluate the performance of the algorithm. The state-of-the-art in feature

matching techniques used in speech recognition includes Dynamic Time Warping

(DTW), Hidden Markov Modeling (HMM), and Vector Quantization (VQ). In this

project, the VQ approach will be used, due to ease of implementation and high accuracy.

VQ is a process of mapping vectors from a large vector space to a finite number of

regions in that space. Each region is called a cluster and can be represented by its center

called a codeword. The collection of all codewords is called a codebook. Figure below

shows a conceptual diagram to illustrate this recognition process. In the figure, only two

speakers and two dimensions of the acoustic space are shown. The circles refer to the

acoustic vectors from the speaker 1 while the triangles are from the speaker 2. In the

training phase, a speech-specific VQ codebook is generated for each known speaker by

clustering his/her training acoustic vectors. The result codewords (centroids) are shown in

Figure 8 by black circles and black triangles for speaker 1 and 2, respectively. The

distance from a vector to the closest codeword of a codebook is called a VQ-distortion.

In the recognition phase, an input utterance of an unknown voice is “vector-quantized”

using each trained codebook and the total VQ distortion is computed. The speech

corresponding to the VQ codebook with smallest total distortion is identified.

42

Speaker 1

Speaker 1
centroid
sample

Speaker 2
centroid
sample

Speaker 2

VQ distortion

Figure 9: Conceptual diagram illustrating VQ codebook formation.

5.1 CODEBOOK

5.1.1 Codebook Generation

• Generate codebook from a Training set

• Training Set: Set of vectors derived from image vectors

• Code vectors should minimize distortion

5.1.2 Codebook Initialization

Three basic schemes:

• Random

• Perturb and Split (Bottoming)

• Pair wise Nearest Neighbor (PNN) clustering (PNN

43

5.1.3 Codebook Design

• Basic objective: Minimize search time for code vector

• Full (Exhaustive) Search: very expensive

• Design emphasis: Organization of codebook

5.2 VECTOR QUANTIZATION

Vector quantization (VQ) is a data compression technique, with several successful

applications in speech and image coding or speech recognition. Vector quantization is a

classical quantization technique from signal processing which allows the modeling of

probability density functions by the distribution of prototype vectors. It was originally

used for data compression. It works by dividing a large set of points (vectors) into groups

having approximately the same number of points closest to them. Each group is

represented by its centroid point, as in k-means and some other clustering algorithms.

The density matching property of vector quantization is powerful, especially for

identifying the density of large and high-dimensioned data. Since data points are

represented by the index of their closest centroid, commonly occurring data have low

error, and rare data high error. This is why VQ is suitable for lossy data compression. It

can also be used for lossy data correction and density estimation. A simple training

algorithm for vector quantization is:

Pick a sample point at random

1. Move the nearest quantization vector centroid towards this sample point, by a

small fraction of the distance

2. Repeat

A more sophisticated algorithm reduces the bias in the density matching estimation, and

ensures that all points are used, by including an extra sensitivity parameter:

44

1. Increase each centroid's sensitivity by a small amount

2. Pick a sample point at random

3. Find the quantization vector centroid with the smallest <distance-sensitivity>

1. Move the chosen centroid toward the sample point by a small fraction of

the distance

2. Set the chosen centroid's sensitivity to zero

4. Repeat

There are two categories of approaches in speech verification. In the first one verification

decisions are based on speech selected by the speaker and not previously known by the

verification system. Within the second approach, the verification system is trained on a

particular utterance and the same utterance is letter spoken by the speaker who claims

that identity verification using vector quantization (VQ). A typical approach to speech

verification is DTW (Dynamic Time Warping) which consists of selecting parameters

that can be derived from the speech waveform and then representing each speaker by a

time series of these parameters (reference template) obtained from a particular utterance.

The parameters are chosen to reflect speaker specific organic differences in the structure

of vocal apparatus or to reflect specific learned differences in the use of vocal apparatus.

After obtaining the set of references for each speaker to be verified, an unknown speaker

claims an identity and speaks an appropriate utterance. This utterance is analyzed and a

time series of parameters is obtained. The unknown speaker's parameters are then time

aligned to the reference stored for the speaker whose identity was claimed and the

decision to accept or reject is based on a measure of similarity between this two time

series of parameters.

The parameters employed by this technique, might be: the pitch, the short time energy,

the short time spectrum and coefficients. In addition to the template matching method

described above, statistical methods are sometimes used. These methods require large

amounts of training data to estimate the probability densities of the parameters chosen to

represent the speaker.

45

Use dependency between N consecutive samples to break-up an N dimensional space in

cells in a more efficient way than with scalar quantization

• Signal to be quantized is considered as a series of vectors x, containing N samples.

• y the ith vector-of-quantized amplitudes.

5.2.1 VQ algorithm

A codebook may be small in the beginning and may be gradually expanded to the final

size. One method is to split an existing cluster in two smaller clusters and assign a

codebook entry to each. The following steps describe this method of designing the

codebook: create an initial cluster consisting of the entire training set; this initial

codebook contains a single centroid for the entire set; split this cluster in two sub clusters,

getting a codebook of twice the size; repeat this cluster-splitting process until the

codebook reaches the desired size, ideally each cluster should be divided by a hyper plan

normal to the direction of maximum distortion.

5.3 DESIGN OF CODEBOOK

5.3.1 Vector Quantization coding Outline

• Divide data (signal) into non-overlapping vectors

• Each vector contains ‘n’ elements (pixels/samples))

• For each speech vector:

 Find closest vector in codebook

 Get its index in codebook

 Encode indices

 -Expression similar to scalar quantizer design

-We do not know p(x)

-Cannot be optimized analytically

46

• Instead of p(x), a set of representative examples or trainings vectors is used to design

the codebook in an iterative optimization procedure.

5.4 HIDDEN MARKOV MODEL (HMM)

A Hidden Markov Model (HMM) is a statistical model in which the system being

modeled is assumed to be a Markov process with unknown parameters, and the challenge

is to determine the hidden parameters from the observable parameters. The extracted

model parameters can then be used to perform further analysis, for example for patter

recognition applications. An HMM can be considered as the simplest dynamic Bayesia

network. In a regular Markov model, the state is directly visible to the observer, and

therefore the state transition probabilities are the only parameters. In a hidden Markov

model, the state is not directly visible, but variables influenced by the state are visible.

Each state has a probability distribution over the possible output tokens. Therefore the

sequence of tokens generated by an HMM gives some information about the sequence of

states. Hidden Markov models are especially known for their application in temporal

pattern recognition such as speech, handwriting, gesture recognition, part-of-speech

tagging, musical score following, partial discharges and bioinformatics.

 Figure 10: Steps in HMM

Codebook

HMM Module

Data Files

47

Chapter 6

EXPERIMENTAL RESULTS

Figure 11(a): Results with maximum recognition for Higher-Lag Module for white noise

Figure 11(b): Graphical representation of Figure 11(a)

Module\Noise 0dB 10dB 15dB 20dB 40dB

MFCC 24.1379 37.9310 58.6207 68.9655 86.2069

AMFCC 25.8621 55.1724 72.4138 77.5862 89.6552

RAS 37.9310 72.4138 87.9310 91.3793 91.3793

DAS 36.2069 75.8621 91.3793 93.1034 96.5517

HLAG 46.5517 87.9310 96.5517 98.2759 100.0000

48

Figure 11(c): Results with maximum recognition for Higher-Lag Module for F16 noise

Figure 11(d): Graphical representation of Figure 11(c)

Module\Noise 0dB 10dB 15dB 20dB 40dB

MFCC 25.8621 43.1034 60.3448 77.5862 86.2069

AMFCC 32.7586 62.0690 77.5862 81.0345 87.9310

RAS 20.6897 50.0000 77.5862 94.8276 93.1034

DAS 29.3103 74.1379 84.4828 91.3793 96.5517

HLAG 29.3103 84.4828 94.8276 94.8276 100.0000

49

Figure 11(e): Results with maximum recognition for Higher-Lag Module for Factory

noise

Figure 11(f): Graphical representation of Figure 11(e)

Module\Noise 0dB 10dB 15dB 20dB 40dB

MFCC 25.8621 44.8276 58.6207 75.8621 86.2069

AMFCC 25.8621 62.0690 82.7586 82.7586 87.9310

RAS 27.5862 50.0000 68.9655 87.9310 93.1034

DAS 27.5862 77.5862 91.3793 96.5517 98.2759

HLAG 27.5862 79.3103 91.3793 96.5517 100.0000

50

Figure 11(g): Results with maximum recognition for Higher-Lag Module for Babble

noise

Figure 11(h): Graphical representation of Figure 11(g)

Module\Noise 0dB 10dB 15dB 20dB 40dB

MFCC 27.5862 44.8276 63.7931 79.3103 87.9310

AMFCC 25.8621 51.7241 68.9655 84.4828 87.9310

RAS 24.1379 44.8276 67.2414 86.2069 93.1034

DAS 36.2069 68.9655 89.6552 96.5517 98.2759

HLAG 29.3103 70.6897 93.1034 94.8276 100

51

Figure 11(i): Results with maximum recognition for Higher-Lag Module for white noise

Figure 11(j): Graphical representation of Figure 11(i)

Module\Noise 0dB 10dB 15dB 20dB 40dB

LPCC 24.1379 31.0345 60.3448 77.5862 96.5517

OSALPC 32.7586 27.5862 55.1724 89.6552 98.2759

SMC 24.1379 25.8621 50.0000 86.2069 93.1034

HLAG 38.2414 60.6897 84.1379 91.3793 96.5517

52

Figure 11(k): Results with maximum recognition for Higher-Lag Module for F16 noise

Figure 11(l): Graphical representation of Figure 11(k)

Module\Noise 0dB 10dB 15dB 20dB 40dB

LPCC 25.8621 32.7586 74.1379 91.3793 96.5517

OSALPC 25.8621 31.0345 77.5862 91.3793 98.2759

SMC 24.1379 48.2759 75.8621 91.3793 93.1034

HLAG 35.8621 64.4828 71.7241 96.5517 96.5517

Module\Noise 0dB 10dB 15dB 20dB 40dB

LPCC 25.8621 32.7586 74.1379 91.3793 96.5517

OSALPC 25.8621 31.0345 77.5862 91.3793 98.2759

SMC 24.1379 48.2759 75.8621 91.3793 93.1034

HLAG 35.8621 64.4828 71.7241 96.5517 96.5517

53

Figure 11(m): Results with maximum recognition for Higher-Lag Module for Factory

noise

Figure 11(n): Graphical representation of Figure 11(m)

Module\Noise 0dB 10dB 15dB 20dB 40dB

LPCC 23.1034 52.0690 75.8621 86.2069 96.5517

OSALPC 27.5862 53.4483 91.3793 94.8276 98.2759

SMC 24.1379 51.7241 81.0345 87.9310 93.1034

HLAG 35.8621 71.0345 84.8276 96.5517 96.5517

54

Figure 11(o): Results with maximum recognition for Higher-Lag Module for Babble

noise

Figure 11(p): Graphical representation of Figure 11(o)

Module\Noise 0dB 10dB 15dB 20dB 40dB

LPCC 33.1034 75.8621 91.3793 94.8276 96.5517

OSALPC 36.2069 77.5862 87.9310 94.8276 98.2759

SMC 32.4138 76.2069 89.6552 91.3793 93.1034

HLAG 36.2069 77.3448 87.9310 96.5517 96.5517

55

NOISE/

MODULE

 0dB 10Db 20dB 30Db 40dB

HASE

(Segmental SNR in dB)

 -34.5231 -22.9957 -21.3760 -14.2681 -16.6824

AR-HASE

(Segmental SNR in dB)

 -0.9359 1.0797 4.6661 6.3311 5.8434

Figure 11(q): Results using Segmental SNR with maximum enhancement for AR-HASE

than HASE

Figure 11(r): Graphical representation of Figure 10(q)

56

Chapter 7

APPLICATION OF SPEECH RECOGNITION SYSTEM

Speech Processing is an upcoming field. A lot of research is conducted in this field.

Today people are interested in hand free systems. A password can be hacked but using

voice as a password can not be hacked. We want to make the use of mouse obsolete. As

we speak ‘my computer’, it should be double clicked or in general the respective

application should be opened.

Extracted features in speech recognition system can also be used for speech Speech-to-

Text conversion. For further use, speech recognition system with various enhancements

can be used for Automatic Translation, Vehicle Navigation System, Mobile Telephony,

Hands-free computing, Robotics etc.

I have used its application in design of voice automated robot.

Voice based robotic control is an interesting project, mainly used for industrial and

surveillance applications. It gives exact concept of controlling a robot by a voice

instruction.

Robot is capable of understanding and synthesizing human speech for communication. A

voice recognition unit built around a high speed processor that ensures various operations

of the system to be performed by voice command. A few of commands recommended

for operation are listed as: START, STOP, FORWARD, REVERSE, RIGHT, LEFT,

SLOW, FAST,OK, UP, DOWN, CLOCK, ANTICLOCK, CLOSE,OPEN.

7.1 Implementation Framework

The speech recognition system is programmed in the manner that the system has to be

trained in spoken language (or vocal utterances) by the user so that circuit is to recognize

the voice of a specific user. This board allows us to experiment with many facets of

57

speech recognition technology. It has 8 bit data which interfaced with any

microcontroller.

The 89S51 microcontroller contains four ports of each eight pins. In this project one port

is dedicated for speech recognition. Relays are interfaced through ULN driver circuit to

control the electrical appliances. A simple yet powerful program is written in assembly

language and burned into the microcontroller to record and accept voice instructions and

to control the devices. . This project uses regulated 5V, 1A power supply.

Figure 12 Block diagram of the system

7.2 Working of the Robot

The robot works as follows.

1. The modules are assembled and power supply is given to the robot.

2. Different Words are spoken by user with the help of microphone, words are recognized

by speech recognition module . Once the word is accepted, the corresponding tone is

generated against each word.

58

3. This tone is sent to DTMF Decoder(IC 8870) for decoding.

4. The decoded signals from this module are sent to 8051 module (AT89S52) for

interpretation. The microcontroller takes the decision on this basis and passes signals to

the relay circuit to make the robot turn accordingly.

5. The robot turn based on the signals received from the 8051 module and thus, the robot

moves in the desired direction.

7.3 USES

The following software was used for the development of the project:

1. It helps physically disabled persons by carrying some objects from one place to
another place using the arm structure in the robot.

2. It guides the blind persons to reach a particular Destination by using the voice
feature.

3. It is used to guide visitors in an organization by providing information about the
facilities available.

4. Because of the presence of the Real-time Clock (DS1307), time-based control of
the robot is possible. For example, it is used in hospitals to inform patients to take
the tablets at the right time.

5. It is used in hazardous places.
6. The photo electric sensor in the robot will sense the obstacles and it will make

decisions according to the obstacles it encounters.

DESIGN OF GESTURE AUTOMATED MOBILE ROBOT

After the design of voice automated mobile robot I have designed the robot which will

move according to gesture .when I will move the object in any direction through webcam

robot will move in that direction.

59

FLOW CHART

60

61

Chapter 8

CONCLUSION

In this system implementation of advanced feature extraction for speech recognition

system. Various feature extraction algorithms are implemented and are then compared

with each other with respect to their performance. Graphs are plotted at different noise

levels to represent their respective performance in terms of their recognition rates. The

user can play the file and on generating the result, the recognized word is displayed on

the screen. Wide range of possibilities exists for parametrically representing the speech

signal for the speech recognition task, such as Linear Prediction Coding (LPC), Mel-

Frequency Cepstrum Coefficients (MFCC), and others. And after removal of lower lags

from the input speech signal the Higher Lag Autocorrelation Coefficients method is

perhaps then the best known and most effective.

The robot is controlled through connected speech input. The language input allows a

user to interact with the robot which is familiar to most of the people. The advantages of

speech activated robots are hands-free and fast data input operations. In future, it is

expected that speech recognition systems will be used as man-machine interface for

robots in rehabilitation, entertainment etc. In view of this, aforementioned system is a

source of learning process for a mobile robot which takes speech input as commands and

performs some navigation task through a distinct man-machine interaction with the

application of the learning. The speech recognition system is trained in such a way that it

recognizes defined commands and the designed robot navigates based on the instruction

through the Speech Commands. The medium of interaction between humans and

computers is on the processing of speech (words uttered by the person). . The complete

system consists of three sub-systems, the speech recognition system, a central controller

and the robot .we have studied the various factors such as noise which interferes speech

recognition and distance factor. The results prove that proposed robot is capable of

understanding the meaning of speech commands. After the design of voice automated

mobile robot it is also possible to control a robot through gesture recognition. The result

also proves that robot is capable of understanding the meaning of gesture commands.

62

Chapter 9

FUTURE SCOPE

After recognizing the speech i.e. the word spoken by the user, the user can also be

recognized, by using the advance features that are extracted in this project. These

advanced features of the input speech can further be implemented using various

algorithms for speaker recognition.

Speech Processing is an upcoming field. A lot of research is conducted in this field.

Today people are interested in hand free systems. A password can be hacked but using

voice as a password can not be hacked. We want to make the use of mouse obsolete. As

we speak ‘my computer’, it should be double clicked or in general the respective

application should be opened.

Extracted features in speech recognition system can also be used for speech Speech-to-

Text conversion. For further use, speech recognition system with various enhancements

can be used for Automatic Translation, Vehicle Navigation System, Mobile Telephony,

Hands-free computing etc.

63

Chapter 10

REFERENCES

[1] L.R. Rabiner and B.H. Juang, Fundamentals of Speech Recognition, Prentice-

Hall,Englewood Cliffs, N.J., 1993.

[2] L.R Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-

Hall,Englewood Cliffs, N.J., 1978.

[3] Y. Linde, A. Buzo & R. Gray, “An algorithm for vector quantizer design”,

IEEETransactions on Communications, Vol. 28, 1980.

[4] Satya Dharanipragada, Umit S.Yatanel & Bhaskar D.Rao, “Robust

FeatureExtraction For Continous Speech Recognition using the MVDR Spectrum

Estimation Method, IEEE Trans. Audio, Speech & Language Processing, Vol.15,

No.1, pp.224-234, Jan 2007.

[5] Benjamin J. Shannon, Kuldip K. Paliwal, “Feature Extraction from Higher Lag

Autocorrelation Coefficients for Robust Speech Recognition”, ELSEVIER Trans.

Speech & Audio Processing, Jan 2003.

[6] Chulhee Lee, Domghoon Hyun, Euisum Choi, Jimwook Go & Chungyong Lee,

“Optimizing Feature Extraction For Speech Recognition”, IEEE Trans. Speech &

Audio Processing, Vol.11, No.1, pp.80-87, Jan 2003.

[7] Jingdong Chen, Kuldip K. Paliwal & Satoshi Nakamura, “Cepstrum Derived From

Diffrentiated Power Spectrum for Robust Speech Recognition”, Jan 2003.

[8] www.ieeexplore.ieee.org

64

Appendix A

FUNCTIONS USED

Modules:

1. pre.m : This function is used for p re-emphasis purpose.

2. frm.m : This function is used for blocking of continuous speech signal into

frames of N samples, with adjacent frames being separated by M (M < N).

3. ham.m : This function is used for windowing purpose.

4. auto_corr.m : This function is used to take autocorrelation sequence.

5. fft_amp.m : This function is used to take fast fourier transformation.

6. filtering.m : This function is used for filtering purpose.

7. melbank.m : This function is used to apply malbank filters.

8. mfcc.m : This function is used to take mfcc.

Training:

1. create_code.m : This function is used to generate codebook.

2. HMMmodule.m : this function is used to apply HMM on the generated

codebook.

Testing:

1. Testallmodules.m : This function is used for testing.

2. Testmodule.m : This function is used for testing.

Interfaces:

1. spee.m : This function is used to show interface.

2. TESTRESULTS.m : This function is used to show results.

65

TRAINING DATABASE

 Number of input words = 14

 Number of utterances for each word = 15

 Sampling frequency = 16 KHz

 Number of bits required for quantization = 16 bits

 Frame Size = 16 ms

TESTING DATABASE

 Number of words = 14

 Number of utterances for each word = 5

66

Appendix B

CODING

Input Speech

[s,fs]= wavread(FILE);
%n is the no of samples in each frames
%m is the diffrence b/w the start of 2 frames
n=256;
m=156;
l1=length(s);

Pre-emphasis

for i=2:l1
 sig(i)=s(i)*(1-(0.97*s(i-1)));
end

l=length(sig)
nb = floor((l-n)/m)+1;

Framing

x(1:n,1:nb)=0; %framing the signal with overlap

for j=1:nb
 x(:,j)=s(((n-m)*(j-1))+1:((n-m)*(j-1))+256);
end

Autocorrelation

sum=0;
for j=1:nb
 for k=1:n
 for i=1:n-k
 z=a(i,j)*a(i+k,j);
 sum=sum+z;
 z=0;
 end
 auco(k,j)=sum;
 sum=0;

67

 end
end

Lower Lag Removal

for i=1:nb
 for k=23:n
 lagre(k-22,i)=auco(k,i);
 end
end

for j=1:nb
 for k=235:n
 lagre(k,j)=0;
 end
end

Filter

for j=3:nb-2
 for k=1:n
 sum=auco(k,j+1)+auco(k,j+2)-auco(k,j-1)-auco(k,j-2) ;
 h(k,j-2)=sum/10;
 sum=0;
 end
end
for j=floor(nb-4):nb
 for i=1:n
 h(i,j)=0;
 end
end

Hamming

k=0.54;

for j = 1:nb
 for i = 0:n-1
 o=0.46*cos((i*2*pi)/255);
 p=k-o;
 a(i+1,j)=p*x(i+1,j);
 end
end

68

FFT

for j = 1:nb
 for i=1:n
 sfft(i,j)= fft(h(i,j));
 end
end

Mel-frequency bank & mfcc

%p number of filters in filterbank
%n length of fft
%fs sample rate in Hz

f0=700/fs;
fn2=floor(n/2);
lr=log(1+0.5/f0)/(p+1);

%convert to fft bin numbers with 0 for DC term

b= n*(f0*(exp([0 1 p p+1]*lr)-1));
b1=floor(b(1))+1;
b2=ceil(b(2));
b3=floor(b(3));
b4=min(fn2,ceil(b(4)))-1;
pf=(log(1+(b1:b4)/n/f0)/lr);
fp=floor(pf);
pm=pf-fp;
r=[fp(b2:b4) 1+fp(1:b3)];
c=[b2:b4 1:b3]+1;
v=2*[1-pm(b2:b4) pm(1:b3)];
m1=sparse(r,c,v,p,1+fn2);

for j=1:nb
 n2=1+floor(n/2);
 ms=m1*v(1:n2,j).^2;
 if ms==0
 v1(:,j)=0;
 else
 v1(:,j)=dct(log(ms));
 end
 %converting back to time domain

69

End

Codebook Creation

%accessing the folder containing the necesssary modules
addpath('C:\MATLAB701\work\modules');

Z = 4; %no. of words(folders) in the database(\train directory)
B = 128; %number of codebook entries (clusters)
start = 1;

for i = 1 : Z
 WORD = strcat('C:\MATLAB701\work\modules\train\',int2str(i+4),'\')
 %folder(word) no. i

 % Retrieve the filenames from the database
 FileNames = dir(WORD);
 FileNames = char(FileNames.name);
 [rowFN, colFN] = size(FileNames);
 FileNames = [FileNames(3:end, :)];
 for index = 1:rowFN-2
 %load the files from the database
 FILE = strcat(WORD,FileNames(index, :));
 COEF = HLAGmodule(FILE);
 clear FILE;
 if(start == 1) %then data not init yet
 OBS = COEF;
 start = 2;
 else
 OBS = [OBS COEF];
 end
 end
end
 OBS = OBS';
 [idx CB] = kmeans(OBS,B,'maxiter',150,'EmptyAction','drop');
 %open file for writing
 DATA = strcat('C:\MATLAB701\work\modules\test\','codebookHLAG1','.mat');
 save(DATA,'CB');

HMM

%uses the modules stored in the HMM directory.
%making the directory accesible to MATLAB
addpath('C:\MATLAB701\work\modules\studentsHLAG\HMM');

70

B = 128; %number of codebook entries
HMM = 4; %the number of hmm's (depends on no. of words)
L = 7; %number of states per hmm
count = zeros(1,B); %to count how many times each codeword is observed
skp = 0;
warning off all;

%read codebook in from file
C = load('C:\MATLAB701\work\modules\test\codebookHLAG1.mat');
CB = C.CB;

min = 1e-4;
%will use fixed number of states (7) for each digit's HMM
%first initialize the observational probabilities all to a min value
%format is observe(model,observation,state)
observe = min*ones(HMM,B,L);
%the follwing fixed transition table will be used for all hmms
trans = zeros(L);
trans_lg = zeros(L); %pre-computed logs of transitions
%hmm is left to right
edges = 2;
for i = 1:L
 for j = 1:i-1 %no back transitions
 trans(i,j) = 0;
 trans_lg(i,j) = -10e50;
 end

 if(i+(edges-1) <= L)
 for j = i:i+(edges-1)
 trans(i,j) = 1/edges;
 trans_lg(i,j) = log10(1/edges);
 end
 else %allowed transitions
 for j = i:L
 trans(i,j) = 1/(L-i+1);
 trans_lg(i,j) = log10(1/(L-i+1));
 end
 end

 for k = j+1:L
 trans(i,k) = 0;
 trans_lg(i,k) = -10e50; %too far to transition
 end
end
%the initial probs

71

%ntial = 1/L*ones(1,L);
ntial = [.8 .18 .01 .01 .01 .01 .01];

for i = 1:HMM
 trans_hat(i,:,:) = trans;
 init_hat(i,:) = ntial;
end

%initial estimate of the obs probs
for i = 0 : HMM-1
 WORD = strcat('C:\MATLAB701\work\modules\train\',int2str(i+5),'\') %folder(word)
no. i+1
 % Retrieve the filenames from the database
 FileNames = dir(WORD);
 FileNames = char(FileNames.name);
 FileNames = [FileNames(3, :)]; %considering only 1 utterance
 % load the files from the database
 FILE = strcat(WORD,FileNames);
 cep = HLAGmodule(FILE);
 clear FILE;
 cep = transpose(cep);
 length = size(cep);
 seg = fix(length(1) / L);
 rem = mod(length(1),L);
 for j = 0:L-1 %state j
 for k = 1:seg %frame j*seg+k
 index = vq(CB,cep(j*seg+k,:));
 count(index) = count(index) + 1;
 end
 if (j == L-1) %add any extra segments at end to last state
 if(rem ~= 0)
 for k = 1:rem
 index = vq(CB,cep(j*seg+k,:));
 count(index) = count(index) + 1;
 end
 end
 end
 for k = 1:B %computing the probs
 if (count(k) ~= 0)
 if(j ~= L-1)
 observe(i+1,k,j+1) = count(k) / seg;
 else
 observe(i+1,k,j+1) = count(k) / (seg + rem);
 end
 end
 end

72

 count = zeros(1,B); %make count zero again for next state
 end
end

for i = 0:HMM-1
 WORD = strcat('C:\MATLAB701\work\modules\train\',int2str(i+5),'\') %folder(word)
no. i
 % Retrieve the filenames from the database
 FileNames = dir(WORD);
 FileNames = char(FileNames.name);
 [rowFN, colFN] = size(FileNames);

 FileNames = [FileNames(3:end, :)]; %taking all utterances
 for index = 1:rowFN-2
 % load the files from the database
 FILE = strcat(WORD,FileNames(index, :));
 cep = HLAGmodule(FILE);
 clear FILE;
 cep = transpose(cep);
 length = size(cep); nf = length(1);
 for nf_i = 1:nf
 O(nf_i) = vq(CB,cep(nf_i,:));
 end %creating the index sequence
 clear temp;
 for x = 1:L
 for y = 1:L
 temp(x,y)= trans_hat(i+1,x,y);
 end
 end
 [seq,p_o] = viterbi(observe(i+1,:,:),log10(temp),ntial,O,nf,L);
 %make initial re-estimates based on optimal state seq
 %number of vectors with codebook index in state
 b_count = zeros(B,L);
 %number of vectors in state
 count = zeros(L);
 for seq_i = 1:nf
 b_count(O(seq_i),seq(seq_i)) = b_count(O(seq_i),seq(seq_i))+1;
 count(seq(seq_i)) = count(seq(seq_i)) + 1;
 end
 %find available probs
 for seq_i = 1:B
 for seq_j = 1:L
 if(b_count(seq_i,seq_j))
 observe(i+1,seq_i,seq_j)=b_count(seq_i,seq_j)/count(seq_j);
 end

73

 end
 end
 %do forward backward
 [alpha,pp,ct] = fwd(observe(i+1,:,:),trans_hat(i+1,:,:),...
 ntial,O,nf,L);
 beta = bck(observe(i+1,:,:),trans_hat(i+1,:,:),O,nf,L,ct);
 %now repeat for each observational prob
 p_o_t = p_o;
 for ob = 1:B
 for n = 1:L
 if(p_o == 0)
 display('here')
 p_o = 10e-20;
 end
 %new re-estimated model
 observe_hat(i+1,ob,n) = em(alpha,beta,observe(i+1,:,:),...
 trans_hat(i+1,:,:),O,seq,n,ob);
 end
 end
 %compare new model vs previous model if better keep else discard
 [seq,prb] = viterbi(observe_hat(i+1,:,:),log10(temp),ntial,O,nf,L);
 %since digit being trained on and the model is known, then a
 %higher prob is desired
 (1/nf)*(prb-p_o_t);
 %pause
 if(prb > p_o_t)
 observe(i+1,:,:) = observe_hat(i+1,:,:);
 trans_hat(i+1,:,:) = aem(alpha,beta,observe(i+1,:,:),...
 trans_hat(i+1,:,:),O);
 init_hat(i+1,:) = iem(alpha,beta,observe(i+1,:,:),...
 trans_hat(i+1,:,:),O);
 end
 end
end

%open file for writing
 DATA = strcat('C:\MATLAB701\work\modules\test\','hmmHLAG1','.mat');
 save(DATA,'observe');
%open file for writing
 DATA = strcat('C:\MATLAB701\work\modules\test\','transHLAG1','.mat');
 save(DATA,'trans_hat');
%open file for writing
 DATA = strcat('C:\MATLAB701\work\modules\test\','initHLAG1','.mat');
 save(DATA,'init_hat');

74

Testing Module

addpath('C:\MATLAB701\work\modules');
addpath('C:\MATLAB701\work\modules\studentsHLAG\HMM');

B = 128; %number of codebook entries
 %the number of hmm's
L = 7; %number of states per hmm
min = 1e-4;
warning off all;

%-----------------------------test for HLagmodule--------------------------

if df==0
HMM = 4;
%read codebook in from file
C = load('C:\MATLAB701\work\modules\test\codebookHLAG.mat');
CB = C.CB;

%read other data files
C = load('C:\MATLAB701\work\modules\test\hmmHLAG.mat');
observe = C.observe;

C = load('C:\MATLAB701\work\modules\test\transHLAG.mat');
trans_hat = C.trans_hat;

C = load('C:\MATLAB701\work\modules\test\initHLAG.mat');
init_hat = C.init_hat;

elseif df==4
 HMM = 4;
 %read codebook in from file
C = load('C:\MATLAB701\work\modules\test\codebookHLAG1.mat');
CB = C.CB;

%read other data files
C = load('C:\MATLAB701\work\modules\test\hmmHLAG1.mat');
observe = C.observe;

C = load('C:\MATLAB701\work\modules\test\transHLAG1.mat');
trans_hat = C.trans_hat;

C = load('C:\MATLAB701\work\modules\test\initHLAG1.mat');
init_hat = C.init_hat;

75

elseif df==8
 HMM = 4;
 %read codebook in from file
C = load('C:\MATLAB701\work\modules\test\codebookHLAG2.mat');
CB = C.CB;

%read other data files
C = load('C:\MATLAB701\work\modules\test\hmmHLAG2.mat');
observe = C.observe;
C = load('C:\MATLAB701\work\modules\test\transHLAG2.mat');
trans_hat = C.trans_hat;

C = load('C:\MATLAB701\work\modules\test\initHLAG2.mat');
init_hat = C.init_hat;

elseif df==12
HMM = 2;
%read codebook in from file
C = load('C:\MATLAB701\work\modules\test\codebookHLAG3.mat');
CB = C.CB;

%read other data files
C = load('C:\MATLAB701\work\modules\test\hmmHLAG3.mat');
observe = C.observe;

C = load('C:\MATLAB701\work\modules\test\transHLAG3.mat');
trans_hat = C.trans_hat;

C = load('C:\MATLAB701\work\modules\test\initHLAG3.mat');
init_hat = C.init_hat;

end

%the follwing fixed transition table will be used for all hmms
%ntial = 1/L*ones(1,L);
ntial = [.8 .18 .01 .01 .01 .01 .01];
wrong_count = zeros(1,HMM);
right_count = zeros(1,HMM);
conf = zeros(HMM,HMM);
for i = 0:HMM-1
 WORD = strcat('C:\testfiles\'); %folder(word) no. i+1
 %WORD = strcat('C:\MATLAB701\work\modules\train\',int2str(i+1),'\')
%folder(word) no. i+1
 % Retrieve the filenames from the database
 FileNames = dir(WORD);
 FileNames = char(FileNames.name);

76

 [rowFN, colFN] = size(FileNames);
 FileNames = [FileNames(3:end, :)]; %taking all utterances
 for index = 1:rowFN-2
 % load the files from the database
 FILE = strcat(WORD,FileNames(index, :));
 cep = HLAGmodule(FILE);
 cep = transpose(cep);
 length = size(cep);
 nf = length(1);
 for nf_i = 1:nf
 O(nf_i) = vq(CB,cep(nf_i,:));
 end
 for hm = 1:HMM
 clear temp;
 for x = 1:L
 for y = 1:L
 temp(x,y)= trans_hat(hm,x,y);
 end
 end
 [seq,lhood(hm)] = viterbi(observe(hm,:,:),log10(temp),...
 ntial,O,nf,L);
 end
 lhood;
 [mx,indx] = max(lhood);
 conf(i+1,indx) = conf(i+1,indx)+1;
 if(indx == i+1)
 right_count(i+1) = right_count(i+1) + 1;
 else
 wrong_count(i+1) = wrong_count(i+1) + 1;
 end
 end
end
clear WORD;
percent_err = sum(wrong_count) / sum(wrong_count+right_count) * 100;
success = sum(right_count) / sum(wrong_count+right_count) * 100;
%conf = conf/index * 100;
wrong_count;
right_count;

[b,c]=max(right_count);
%per=success;

77

Interface

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @spee_OpeningFcn, ...
 'gui_OutputFcn', @spee_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

function spee_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);

function varargout = spee_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function seter(b)
global a;
a=b;
function pushbutton1_Callback(hObject, eventdata, handles)
global user_entry;

f1=strfind(user_entry,'132.wav')
f2=strfind(user_entry,'133.wav')
f3=strfind(user_entry,'134.wav')
f4=strfind(user_entry,'135.wav')
g1=strfind(user_entry,'136.wav')
g2=strfind(user_entry,'137.wav')
g3=strfind(user_entry,'140.wav')
g4=strfind(user_entry,'141.wav')
h1=strfind(user_entry,'170.wav')
h2=strfind(user_entry,'171.wav')
h3=strfind(user_entry,'172.wav')
h4=strfind(user_entry,'173.wav')
i1=strfind(user_entry,'174.wav')
i2=strfind(user_entry,'175.wav')

78

if f1~=0
 st=TESTallmodules(0);
elseif f2~=0
 st=TESTallmodules(0);
elseif f3~=0
 st=TESTallmodules(0);
elseif f4~=0
 st=TESTallmodules(0);
elseif g1~=0
 st=TESTallmodules(4);
elseif g2~=0
 st=TESTallmodules(4);
elseif g3~=0
 st=TESTallmodules(4);
elseif g4~=0
 st=TESTallmodules(4);
elseif h1~=0
 st=TESTallmodules(8);
elseif h2~=0
 st=TESTallmodules(8);
elseif h3~=0
 st=TESTallmodules(8);
elseif h4~=0
 st=TESTallmodules(8);
elseif i1~=0
 st=TESTallmodules(12);
elseif i2~=0
 st=TESTallmodules(12);
end
clear user_entry;

sprintf('NAME OF CITY IS %s',st);

h = uicontrol('Style', 'text', 'String', st,...
 'Position', [590 210 300 50],'HorizontalAlignment',...
 'center','Fontsize',18,'fontweight','bold','foregroundcolor',[0 0 0]);

function pushbutton2_Callback(hObject, eventdata, handles)
play();

function edit1_Callback(hObject, eventdata, handles)

global user_entry;
user_entry = get(hObject,'string');
savefile(user_entry);

79

h = uicontrol('Style', 'text', 'String', user_entry,...
 'Position', [200 210 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');
h = uicontrol('Style', 'text', 'String', '',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function edit1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pushbutton26_Callback(hObject, eventdata, handles)
WhiteNoise('C:\testfiles\test.wav',0);
h = uicontrol('Style', 'text', 'String', '0dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton27_Callback(hObject, eventdata, handles)
WhiteNoise('C:\testfiles\test.wav',5);
h = uicontrol('Style', 'text', 'String', '5dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton28_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',10);
h = uicontrol('Style', 'text', 'String', '10dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton29_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',15);
h = uicontrol('Style', 'text', 'String', '15dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton30_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',20);
h = uicontrol('Style', 'text', 'String', '20dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton31_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',25);

80

h = uicontrol('Style', 'text', 'String', '25dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton32_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',30);
h = uicontrol('Style', 'text', 'String', '30dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

function pushbutton33_Callback(hObject, eventdata, handles)
 WhiteNoise('C:\testfiles\test.wav',40);
h = uicontrol('Style', 'text', 'String', '40dB Noise Added',...
 'Position', [200 170 300 20],'HorizontalAlignment',...
 'center','Fontsize',10,'fontweight','bold');

81

Appendix C

Assembly Language Program Code for robot

 FWD EQU P0.0
 RWD EQU P0.1

 LFT EQU P0.2
 RGT EQU P0.3

 INP EQU P1

 ;-------------------------------

 ORG 0000H

 MAIN:
 MOV A,INP

 CJNE A,#1111 0010B,NXT1 ; 2
 AJMP FWDF

 NXT1: CJNE A,#1111 1000B,NXT2 ; 8
 AJMP BWDF

 NXT2: CJNE A,#1111 0100B,NXT3 ; 4
 AJMP LFTF

 NXT3: CJNE A,#1111 0110B,NXT4 ; 6
 AJMP RGTF

 NXT4: CJNE A,#1111 0101B,MAIN ; 5
 AJMP STP
 ;------------------------------
 STP: MOV P0,#1111 1111B
 ACALL DELAY
 AJMP MAIN

 ;-------------------------------

 FWDF:
 MOV P0,#1111 1111B
 ACALL DELAY
 MOV P0,#1111 1110B
 AJMP MAIN

82

 ;-------------------------------

 BWDF:
 MOV P0,#1111 1111B
 ACALL DELAY
 MOV P0,#1111 1101B
 AJMP MAIN
 ;-------------------------------

 LFTF:
 MOV P0,#1111 1111B
 ACALL DELAY
 MOV P0,#1111 1011B
 AJMP MAIN
 ;-------------------------------

 RGTF:
 MOV P0,#1111 1111B
 ACALL DELAY
 MOV P0,#1111 0111B
 AJMP MAIN
 ;-----------------------------

 DELAY:
 MOV R7,#05H
 RPT3: MOV R6,#255
 RPT2: MOV R5,#255
 RPT1: DJNZ R5,RPT1
 DJNZ R6,RPT2
 DJNZ R7,RPT3
 RET

83

Appendix D

Code For Voice Automated Mobile Robot

using Microsoft.Win32;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using SpeechLib;
using System.IO;
using System.Threading;
using System.Diagnostics;

namespace speechtotext
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 public void listener_Reco(int StreamNumber, object StreamPosition,
SpeechRecognitionType RecognitionType, ISpeechRecoResult Result)
 {

 string heard = Result.PhraseInfo.GetText(0, -1, true);

 textBox1.Text = heard;
 FileInfo path = new FileInfo(Application.ExecutablePath);
 string new_path = path.Directory.FullName + "\\" + heard + ".wav";
 path = new FileInfo(new_path);
 if (path.Exists)
 {
 Process.Start(path.FullName, "wmplayer.exe");
 }
 }

 private void button1_Click(object sender, EventArgs e)

84

 {
 // Speech Recognition Object

 SpSharedRecoContext listener;

 // Grammar object

 ISpeechRecoGrammar grammar;

 listener = new SpeechLib.SpSharedRecoContext();

 listener.Recognition += new
_ISpeechRecoContextEvents_RecognitionEventHandler(listener_Reco);

 grammar = listener.CreateGrammar(0);

 grammar.DictationLoad("", SpeechLoadOption.SLOStatic);
 grammar.DictationSetState(SpeechRuleState.SGDSActive);

 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void textBox1_TextChanged(object sender, EventArgs e)
 {

 }

 }
}

85

Appendix E

Code For Gesture Automated Mobile Robot

namespace motion
{
 using System;
 using System.Drawing;

 using AForge.Imaging;
 using AForge.Imaging.Filters;
 using System.Collections;
 using System.Runtime.InteropServices;
 using System.Reflection;
 using Tiger.Video.VFW;
 using System.Windows.Forms;
 using System.Diagnostics;
 using System.IO;
 /// <summary>
 /// MotionDetector1
 /// </summary>
 public class MotionDetector1 : IMotionDetector
 {
 private IFilter grayscaleFilter = new GrayscaleBT709();
 private Difference differenceFilter = new Difference();
 private IFilter thresholdFilter = new Threshold(15, 255);
 private IFilter erosionFilter = new Erosion();
 private Merge mergeFilter = new Merge();

 private IFilter extrachChannel = new ExtractChannel(RGB.R);
 private ReplaceChannel replaceChannel = new ReplaceChannel(RGB.R);

 private FiltersSequence processingFilter = new FiltersSequence();

 private MainForm _mForm;
 private ArrayList points = new ArrayList();

 private int blankFrameCount = 0; // Blank frame count

 private Bitmap leftArrow, rightArrow, upArrow, downArrow, d1aArrow,
d1bArrow, d2aArrow, d2bArrow, question;
 private Bitmap lastGesture;

 private bool drawGesture = false;

86

 public MainForm mForm
 {
 get { return _mForm; }
 set { _mForm = value; }
 }

 //// Get a handle to an application window.
 //[DllImport("USER32.DLL")]
 //private static extern IntPtr FindWindow(string lpClassName,
 // string lpWindowName);

 //// Activate an application window.
 //[DllImport("USER32.DLL")]
 //private static extern bool SetForegroundWindow(IntPtr hWnd);

 // Constructor
 public MotionDetector1()
 {
 processingFilter.Add(differenceFilter);
 processingFilter.Add(thresholdFilter);
 processingFilter.Add(erosionFilter);

 #region Gifs

 Assembly assembly = this.GetType().Assembly;

 leftArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.left.gif")));

 rightArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.right.gif")));

 upArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.up.gif")));

 downArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.down.gif")));

 d1aArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.d1a.gif")));

 d1bArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.d1b.gif")));

87

 d2aArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.d2a.gif")));

 d2bArrow = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.d2b.gif")));

 question = new Bitmap(assembly.GetManifestResourceStream(
 string.Format("motion.Resources.question.gif")));

 #endregion
 }

 // Reset detector to initial state
 public void Reset()
 {
 //if (backgroundFrame != null)
 //{
 // backgroundFrame.Dispose();
 // backgroundFrame = null;
 //}
 }

 // For making beeping sounds
 private class Beeper
 {
 //[DllImport("Kernel32.dll")]
 //public static extern bool Beep(UInt32 frequency, UInt32 duration);

 public static void RecognizedBeep()
 {
 //Beep(2000, 50);
 //System.Threading.Thread.Sleep(50);
 //Beep(3000, 50);
 }

 public static void UnrecognizedBeep()
 {
 //Beep(256, 200);
 }
 }

 // Process new frame
 public void ProcessFrame(ref Bitmap image)
 {
 Utility.UnsafeBitmap uBitmap = new Utility.UnsafeBitmap(image);

88

 bool brightnessFound = false;

 float brightest = 0;
 int xPos = 0, yPos = 0;

 uBitmap.LockBitmap();

 for (int y = 0; y < uBitmap.Bitmap.Height; y += 5)
 {
 for (int x = 0; x < uBitmap.Bitmap.Width; x += 5)
 {
 byte red, green, blue;
 red = uBitmap.GetPixel(x, y).red;
 green = uBitmap.GetPixel(x, y).green;
 blue = uBitmap.GetPixel(x, y).blue;

 float brightness = (299 * red + 587 * green + 114 * blue) / 1000;

 if (brightness > _mForm.threshold)
 {
 if (brightness > brightest)
 {
 brightest = brightness;
 xPos = x;
 yPos = y;
 brightnessFound = true;
 }
 } // (brightness > _mForm.threshold)
 } // x loop
 } // y loop

 if (brightnessFound == true)
 points.Add(new Point(xPos, yPos));
 else
 blankFrameCount++;

 if (blankFrameCount < 5 && drawGesture == true)
 {
 Graphics dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)lastGesture, 0, image.Height - 68);
 dc.Dispose();
 }
 else if (blankFrameCount > 5 && drawGesture == true)
 {
 drawGesture = false;

89

 }

 if (blankFrameCount > 5)
 {
 if (points.Count >= 2)
 {
 Point[] pnts = (Point[])points.ToArray(typeof(Point));
 string gesture = RecognizeMovement(pnts);
 Graphics dc;
 drawGesture = true;
 FileInfo fi = new FileInfo(Application.ExecutablePath);
 string path = fi.Directory.FullName;
 #region Gestures
 switch (gesture)
 {
 case "LEFT":
 path = Path.Combine(path, "Left.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path,"wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)leftArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = leftArrow;
 break;

 case "RIGHT":
 path = Path.Combine(path, "Right.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path,"wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)rightArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = rightArrow;
 break;

90

 case "UP":
 path = Path.Combine(path, "Up.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path,"wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)upArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = upArrow;
 break;

 case "DOWN":
 path = Path.Combine(path, "Down.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path, "wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)downArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = downArrow;
 break;

 case "DIAGONAL1A":
 path = Path.Combine(path, "Stop.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path, "wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)d1aArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = d1aArrow;
 break;

 case "DIAGONAL1B":

91

 path = Path.Combine(path, "Start.wav");
 fi = new FileInfo(path);
 if (fi.Exists)
 {
 Process.Start(path, "wmplayer.exe");
 }
 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)d1bArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = d1bArrow;
 break;

 case "DIAGONAL2A":
 //Console.WriteLine("DIAGONAL - 2A");

 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)d2aArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = d2aArrow;
 break;

 case ("DIAGONAL2B"):
 //Console.WriteLine("DIAGONAL - 2B");

 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)d2bArrow, 0,
 image.Height - 68);
 dc.Dispose();
 Beeper.RecognizedBeep();
 lastGesture = d2bArrow;
 break;

 case ("?"):
 //Console.WriteLine("?");

 dc = Graphics.FromImage((System.Drawing.Image)image);
 dc.DrawImage((System.Drawing.Image)question, 0,
 image.Height -68);

 dc.Dispose();
 Beeper.UnrecognizedBeep();
 lastGesture = question;
 break;

92

 }
 #endregion

 //if ((gesture != "?") && (_mForm.controlWMP == true))
 // ControlMediaPlayer(gesture);

 }

 points.Clear();

 blankFrameCount = 0;
 }

 uBitmap.UnlockBitmap();
 uBitmap.Dispose();
 }

 // Code for controlling Windows Media Player
 private void ControlMediaPlayer(string gesture)
 {
 //IntPtr mediaPlayerHandle = FindWindow("WMPlayerApp", "Windows Media
Player");

 //// Verify that WMP is a running process.
 //if (mediaPlayerHandle == IntPtr.Zero)
 //{
 // System.Windows.Forms.MessageBox.Show("WMP is not running.");
 // return;
 //}

 //switch (gesture)
 //{
 // case "LEFT":
 // SetForegroundWindow(mediaPlayerHandle);
 // SendKeys.SendWait("^b");
 // break;

 // case "RIGHT":
 // SetForegroundWindow(mediaPlayerHandle);
 // SendKeys.SendWait("^f");
 // break;

 // case "UP":
 // SetForegroundWindow(mediaPlayerHandle);
 // SendKeys.SendWait("^s");

93

 // break;

 // case "DOWN":
 // SetForegroundWindow(mediaPlayerHandle);
 // SendKeys.SendWait("^p");
 // break;
 //}
 }

 // Laser movement recognition code
 private string RecognizeMovement(Point[] pnts)
 {
 int x1, y1, x2, y2;
 int length = pnts.Length;

 x1 = pnts[0].X;
 y1 = pnts[0].Y;

 x2 = pnts[length - 1].X;
 y2 = pnts[length - 1].Y;

 int dx = Math.Abs(x2 - x1);
 int dy = Math.Abs(y2 - y1);
 bool diagonal = false;

 if (dx > dy)
 {
 if ((dy == 0) || ((dx / dy) >= 3))
 {
 if ((x2 - x1) > 0)
 return ("RIGHT");
 else
 return ("LEFT");
 }
 else
 diagonal = true;
 }
 else if (dy > dx)
 {
 if ((dx == 0) || ((dy / dx) >= 3))
 {
 if ((y2 - y1) > 0)
 return ("DOWN");
 else
 return ("UP");

94

 }
 else
 diagonal = true;

 }
 else
 diagonal = true;

 if (diagonal == true)
 {
 // Recognize diagonal type
 if ((x2 > x1) && (y2 > y1))
 {
 return ("DIAGONAL1A");
 }
 else if ((x2 < x1) && (y2 < y1))
 {
 return ("DIAGONAL1B");
 }
 else if ((x2 < x1) && (y2 > y1))
 {
 return ("DIAGONAL2A");
 }
 else if ((x2 > x1) && (y2 < y1))
 {
 return ("DIAGONAL2B");
 }
 }

 // If nothing else returned a value...
 return "?";
 }

 }
}

