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        ABSTRACT 

The complications of the systems make their analysis a rather difficulty and possibly a 

non desirable task, mainly due to difficult economic and computational considerations 

involved. This makes the need for using model, which constitutes a good approximation 

of the original system. 

The purpose of this dissertation is to develop methods, which preserve time-domain as 

well as frequency-domain characteristics of original higher-order discrete-time systems 

and their application for the control of discrete-time systems. 

The Routh stability method is reported to be simple and powerful one, which carries 

significance like reduced-order models are stable, provided original system is stable. The 

overall time and frequency-domain characteristics are retained and it offers 

computational simplicity. 

 The Routh approximation method on the other hand, posses not only the stability 

preservation characteristics of the system, but also many desirable features such as model 

stability, minimum computation and recursive nature of calculation for reduced model of 

various orders. However, it does not provide good transient response for purpose. A 

Modified Routh stability method has been proposed. 

 Besides these reduced-order modeling techniques, Modified Routh stability 

method using p-domain transformation has been reported which patches up shortcomings 

of bilinear transformation and yields stable reduced-order models provided original 

system is stable.  
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CHAPTER 1 

 INTRODUCTION  

 

1.1 GENERAL DESCRIPTION: 

 The analysis of all physical systems starts by building up of a model. A physical 

phenomenon has to be adequately modelled so as to be a faithful representation of a 

reality; all further analysis can be done on the model so that experimentation on the 

process is no longer required. The advent of the digital computer has meant that 

relatively complex models can be analyzed. 

 The mathematical procedure of the system modeling often leads to 

comprehensive description of a process in the form of high-order differential equations 

which are difficult to use either for analysis or controller synthesis. Thus, it motivates to 

find the possibility of some equations of the same characteristics but of lower-order that 

adequately reflects the dominant characteristics of the system under considerations. 

 The reasons which prompt to have reduced-order models of higher-order linear 

system could be: 

(a) To have better understanding of the system: 

A system of uncomfortably high-order poses difficulty in its analysis, synthesis, or 

identification. An obvious method of dealing with such type of system is to approximate 

them by a low-order systems which reflect the characteristics of original system such as 

time constant, damping ratio, natural frequency etc. 
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(b) To reduce computational complexity: 

The developments of state space methods and optimal control techniques have made the 

design of control systems for higher-order multivariable systems quite feasible. When the 

order of the systems becomes high, special numerical techniques are required to permit 

the calculation to be done at a reasonable cost on fast digital computer. This saves both 

time and memory required by computer. 

(c) To reduce hardware complexity: 

A control systems design for a high-order system is likely to be very complicated and of 

a high-order itself. This is particularly true for controller based on optimal control theory. 

Controllers designed on the basis of low-order model will become more reliable, less 

costly and easy to implement and maintain. 

1.2 APPLICATIONS OF REDUCED ORDER MODELLING: 

Reduced-order models and reduction techniques have been widely used for the analysis 

and synthesis of high-order systems. 

Some of the typical applications are listed below: 

(i) Prediction of the transient response sensitivity of high-order systems using 

low-order model. 

(ii) Prediction of the transient response sensitivity of high-order systems using 

low-order equivalents. 

(iii) Control-systems design. 

(iv) Adaptive control using low-order models. 
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(v) Designing reduced-order estimators. 

(vi) Sub optimal control derived by simplified models. 

1.3 CLASSIFICATIONS OF REDUCED ORDER MODELLING: 

 The order reduction techniques can be broadly classified as: 

(i)  Time Domain Simplification Techniques: 

 In time domain reduction techniques, the original and reduced system are 

expressed in state space from where the order of matrices Ar, Br, Cr are less than A, B, C 

and the output Yr will be a close approximation to Yorginal for specified inputs. The time-

domain techniques belong to either of categories: 

(a)  Perturbation Method: It is based on the approximation of system‟s 

structure through neglecting certain interactions within the model which leads to lower-

order. The basic benefits from this model are computational and structure realization. 

However these benefits cannot be at the expense of key system‟s properties such as 

stability. 

(b)  Aggregation: The intuitive notion behind an aggregative model is to 

combine certain system variable which in effect, involves weighted averaging of the state 

vector to find an approximate model for a large scale system. It has been applied to both 

time and frequency domain. It preserves the stability of the systems. 

(c)  Gramian Technique:  It is a balanced realization which is based on 

parameter matching. The ROM (Reduced Order Model) matches various combination of 

four types of the system invariant parameters of the full-order system associated with low 

frequency response, high frequency response, low frequency power spectral density and 

high frequency power spectral density. 
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(ii)  Frequency Domain Model Reduction: 

  Frequency domain model reduction may be divided into three groups. 

(a) The first group is classical reduction method (CRM) which is based on 

classical theories of mathematical approximations or mathematical 

concepts such as continued-fraction expansion and truncation, pade 

approximations and the time-moments matching these approximations. 

These methods are algebraic in nature. The problems such as instability, 

non-minimum phase behavior and low accuracy in the mid and high 

frequency range of reduced-order model restrain the application of CRM. 

(b) The second group is a development of CRM and includes the stability 

preservation method (SPM) such as Routh approximation. Hurwitz 

polynomial approximation. Dominant pole retention and stability-equation 

method. The SPM poses serious drawback of lack of flexibility which, the 

reduced model does not produce good enough approximation. 

(c) The third group includes the mixed methods and known as stability 

criterion method (SCM) where the denominator of reduced model is 

derived by one of SPM and numerator parameters are evaluated by a 

described CRM. The SCM incorporates interest by a described method. 

This improves the degree of accuracy in the low frequency range. 

 

(1.4) LITRETURE SURVEY: 

These dissertations work in based on reduced-order modeling for the analysis of discrete 



6 

 

time systems in this regard as in this manner. 

AI-Saggaf, U. M. and Franklin, G.F, [1], have studied the robust discrete control system 

design techniques. A new linear quadratic gaussian /loop transfer recovery procedure for 

discrete time systems in presented. In this technique, a full-state feedback or an output 

injection feedback is designed which has the designed loop shape, and than recovered by 

a realizable linear quadratic gaussian controller. The complexity of the resulting 

controller is than reduced without causing closed-loop instability. 

Badreddin, E. and Mansour. M, [2], have studied the model reduction of discrete-time 

systems using Schwarz canonical form. It is employed to have stable reduced-order 

models which are stable if original system is stable. Further, the steady part of system 

responses of the model to a step input is equal to that of the system. 

Chen T-C, and chang, C.Y, [3], have described a method of model reduction of reducing 

a high-order transfer function to its low-order models based upon the stability-equation 

method. The transformations of reduced order are obtained directly from the pole-zero 

patterns of the stability equation of the original transfer function. 

Farsi, M., Warwick, K. and Guilandoust K, [4], have suggested a technique which 

provides stable reduced order models for discrete time systems. In this method Routh 

stability approach in employed to reduce the order of discrete time systems. Transfer 

function which employs a new transformation approach i.e. p-domain gives a stable 

reduced order model if the original system is stable. 

Hwang, C. and Hsieh C-S, [5], have described a method of combining the Routh 

approximation method with the bilinear transformation for deriving stable reduced-order 

models of a strictly proper Z-transfer function. It is based on applying the bilinear 

transformation to the (Z+1) Gη (Z), and then deriving a new bilinear Routh  canonical 

expansion for Gη (Z) 
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Hwang, C., Hwang, J.H., and Guo, T-Y, [6], have described a multipoint Routh  

canonical continued fraction expansion for the transfer function of linear systems. Based 

on this general form, a multifrequency Routh approximant to the system is derived by 

selecting the expansion point on the imaginary axis and truncating the resulting continued 

fraction expansion. 

 

Warwick, K, [7], have suggested a method in which an error polynomial is defined, the 

coefficients of which indicate the difference at any instant between a system and a model 

of lower order approximating the system. Also discussed the way in which the error 

between system and model can considered as being a filtered form of an error input 

function specified by means of model parameters selection. 

Zhang, W.D., Sun, Y.X. and Xu, X.M, [8], proposed the Dahlin controller in the complex 

– frequency domain in terms of performance and robust stability. The possibility of 

extending the Dahlin controller to the control of plants is discussed. A new procedure in 

developed for digital controller. 

 T.Kangsanant, [9], presented a new algorithm for model reduction of z-    transfer 

function. The technique is based on moment matching. The simple algorithm is obtained 

with the use of a power series transformation. Reduced order models are obtained by 

matching the coefficients of the power series in the transformed domain, which is 

equivalent to matching of time moments of impulse responses. Though this technique 

produces good results but it does not guarantee stability of reduced transfer function. 

 

Shanti Mishra, Jayanta Pal, [10], have described a mixed method for the reduction of 

high order discrete time systems. The reduced model denominator is formed by using the 

stability-equation method and reciprocal transformation in w-domain. The numerator 

dynamics in w-domain are chosen to fit a number of initial time-moments and Markov 

parameters of the original system. The reduced model in w-domain is then transformed 
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back to the z domain. The method approximates both low and high magnitude poles to 

give better matching in both the transient and steady state regions of the step response. 

R. Unnikrishnan and A. Gupta, [11], presented a modified approach for reducing the 

order of discrete time systems. The objective of reduction process is to preserve specific 

design parameters of the transfer function such as phase margin, gain margin and 

bandwidth. In this technique the transfer function is first expanded about zero and then 

about infinity so that steady state response and transient response for a step input are both 

carefully approximated. The remaining function is then approximated by a lower order 

transfer function to match the frequency response at specific frequencies. 

B.Clapperton, F. Crusca and M. Aldeen, [12], have described a new general bilinear 

relationship between continuous and discrete Generalised Singular Perturbation (GSP) 

reduced order models. This result is applied to the problem of deriving discrete analogues 

of continuous singular perturbation and direct truncation model reduction, and leads to a 

new definition of discrete “Nyquist” model reduction. Also ‟unit circle‟ bilinear 

transformations are used to relate several known facts about continuous and discrete 

balanced model reduction and incorporate them into a symmetrical, unified framework. 

Vivek kumar sehgal, [13], suggested a method which preserves time domain and 

frequency domain specifications of original discrete time systems with higher order 

controller and their application for the control of discrete time systems. A new mixed 

method, improved routh stability method, p- domain transformation have been proposed 

which patches up the shortcomings of bilinear transformation and yields stable system 

with reduced order controller.  

P. Brehonnet, A.Derrien, P. Vilbe and L.C. Calvez, [14], proposed a novel non iterative 

method for deriving reduced order models of linear discrete time systems without solving 

any non linear equation. The resulting error energy is usually relatively close to optimal. 

M. Diab, W. Q. Liu, and V. Sreeram, [15], suggested an double–sided weights. A number 
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of properties of the gradient flows associated with the objective function are 

obtained.optimization technique for model reduction. The objective function being 

minimized is the impulse energy of the overall system with unity. 

 

Chen-Chien Hsu, Kai-Ming Tse, and Wei-Yen Wang, [16], suggested a framework to 

automatically generate a reduced-order discrete-time   model for the sampled system of a 

continuous plant preceded by a   zero-order hold using an enhanced multiresolutional 

dynamic genetic algorithm (EMDGA).Chromosomes consisting of the denominator and 

the numerator parameters of the reduced-order model are coded as a vector with floating 

point type components and searched by the genetic algorithm. Therefore, a stable optimal 

reduced-order model satisfying the error range specified can be evolutionarily obtained. 

Because of the use of the multiresolutional dynamic adaptation algorithm and genetic 

operators, the convergence rate of the evolution process to search for an optimal reduced 

order model can be expedited. Another advantage of this approach is that the reduced 

discrete-time model evolves based on samples directly taken from the continuous plant, 

instead of the exact discrete-time model, so that computation time is saved. 

 

 

 Shih-Lian Cheng and Chyi Hwang,[17], described a differential evolution algorithm 

(DEA)   incorporating a search-space expansion scheme for solving the problem of 

optimally approximating linear systems The optimal approximate rational model 

with/without a time delay for a system described by its rational or irrational transfer 

function is sought such that a frequency-domain L
2
-error criterion is minimized. The 

distinct feature of the proposed model approximation approach is that the search-space 

expansion scheme can enhance the possibility of converging to a global optimum in the 

DE search. This feature and the chosen frequency-domain error criterion make the 

proposed approach quite efficacious for optimally approximating unstable and/or non 

minimum-phase linear systems. 

 

 



10 

 

G. Kotsalis, A.Megretski, M. A. Dahleh, [18], proposed a model reduction algorithm for 

discrete-time, markov jump linear systems. The main point of the reduction method is the 

formulation of two generalized dissipation inequalities that in conjunction with a suitably 

defined storage function enable the derivation of reduced order models that come with a 

provable a priori upper bound on the stochastic L2 gain of the approximation error. 

 

 

 J. S. Yadav, N. P. Patidar, J. Singhai and S. Panda, [19], described reduction of SISO 

discrete systems, using a conventional and a bio-inspired evolutionary technique. In this 

method, the original discrete system is first converted into equivalent continuous system 

by applying bilinear transformation. The denominator of the equivalent continuous 

system and its reciprocal are differentiated successively and the reduced denominator of 

the desired order is obtained by combining the differentiated polynomials. The numerator 

is obtained by matching the quotients of MCF. Finally, the reduced continuous system is 

converted back into discrete system using inverse bilinear transformation. In the 

evolutionary technique method, Differential Evolution (DE) optimization technique is 

employed to reduce the higher order model. DE method is based on the minimization of 

the Integral Squared Error (ISE) between the transient responses of original higher order 

model and the reduced order model pertaining to a unit step input. 

 

 (1.5) ORGANISATION DISSERTATION: 

 This dissertation comprises following significant parts to which follows in this 

manner. 

Chapter 1 deals with general introduction of reduced order modeling and its implication 

for systems analysis. 

Chapter 2 describes reduce order modelling techniques extended by K.Warwick [7] 

Hwang, C; and Hseih, C.S. [5], Hwang, C; Hwang, J.H; and Guo, T.Y. [6], Zhang, W.D., 

Sun, Y.X. and Xu, X.M. [8], Shanti Mishra, Jayanta Pal[10], well as J. S. Yadav, N. P. 
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Patidar, J. Singhai and S. Panda[19] which impart systems if original system is stable. 

Chapter 3 elaborates reduced order modelling by modified Routh stability method using 

P-domain transformation stable state system. This technique incorporates P-domain 

transformation which resolves the lacunes of bilinear transformation. 

Chapter 4 elaborates modified Routh stability for unstable systems. 

Chapter 5 Includes summaries of the major parts of the Dissertation, discussion about 

proposed methods (A new modified Routh Stability method) and constraints imposed on 

controller design for discrete time systems have been described. Some, observations 

about the scope of further work in this area have been included. 
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CHAPTER 2 

AN OVERVIEW OF MODEL REDUCTION TECHNIQUES FOR DISCRETE-

TIME SYSTEMS 

2.1     INTRODUCTION 

Reduced order modelling for the analysis of continuous time systems have been 

attempted by various researchers. Latter it become well known that most of reduced order 

modelling techniques can be extended for discrete time systems equally by introducing 

bilinear transformation, other transformations like z = p+1 (6) and z = p/(A+BP) where A 

and B are continuous and P is a new variable. 

 Significant reduced order modelling techniques and its application for the analysis 

of discrete time systems proposed by earlier workers are: 

(i) A new approach to reduced order modelling, [7]. 

(ii) Order reduction of discrete time systems via Bilinear Routh 

Approximations, [5]. 

(iii) Multifrequency Routh approximants for linear systems, [6]. 

(iv) Robust digital control design for process as with dead time; new 

results, [8]. 

(v) A mixed method for the reduction of discrete time systems,[10] 
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(vi) Differential evolution algorithm for model reduction of SISO discrete 

time systems,[19] 

 

2.2 A NEW APPROACH TO REDUCED ORDER MODELLING: 

Warwick, K. [7], proposed a new approach to reduced order modelling by an error 

polynomial is defined, the coefficients of which indicate the difference of any instant 

between a system and a model of lower order approximating the system. 

Many control technique are relatively simple to implement on a low-order system 

containing few parameters. High order systems, however generally lead to a much greater 

amount of effort for their analysis, especially in terms of necessary computation. The 

methods involve detailed ladder networks which are computationally time consuming 

and prone to rounding errors. In this paper a new method for obtaining reduce-order 

models is suggested. It is believed that the approach is computationally efficient and 

simple to comprehend. 

2.2.1 Reduction of discrete-time systems: 

 It is assumed that a high-order discrete-time transfer function, relating plant input 

to output, is available, and can be described by the expression 

n

n

1n

1n10

1n

1n10

zez.e..........zee

Zd.........zdd
  G(z)












  

           (2.1) 

where the numerator order is given as one less than the denominator. This limitation is 

merely for explanation purposes; the method of reduction to be described later imposes 
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no such restrictions itself.  

 The transfer function G (z) can also be written with regard to its power series 

expansion about Z = ∞ , i.e. 







1

i-g  )(
i

izzG          (2.2) 

the parameters {g-i: i = 1, …….,  }being called the Markov parameters. 

 Similarly, G (z) can be written in terms of its power series expansion about z =1 

 P = z-1          (2.3) 

such that 

n

n
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The expansion of G (p) about p = 0 is equivalent to the expansion of G (z) about z =1; 

hence 







1i

i

iph  G(p)  

The parameters {hi: I = 1, ..,} are proportional to the system time moments. 

 The desired reduced-order model can be described in a similar fashion to G(z). 

Let this model be 

k1k
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in which the index k n {When k ≤ n, R(z) G(z)}. The two transfer function may now be 

written as  

   (i)  
E(z)

D(z)
  G(z)  

   (ii)  
B(z)

A(z)
  R(z)       (2.7) 

 This overall problem can now be described as one in which the parameters {ai : I 

= 1, .., k-1} and {bi: i=1, …., k} are chosen such that the model transfer function, R(z), is 

in some these, a good approximation to the system transfer function G(z). 

2.2.2 Error polynomial and its implications: 

The resultant error between system and model can be described by the equation 

 G (z) = R (z) +  (z)       (2.8) 

Where  (z) is a rational transfer function denoting the undesired error 

Eqn. 2.8 can, however, also be written, from eqn. 2.7, in the form 

 D (z) B (z) = A (z)E (z) +  (z) B (z) E (z) 

Such that the error polynomial may now be defined as  

W (z) =  (z) B (z) E (z)       (2.9) 

Where W (z) = w0 + w1z + ………..wm z
m

      (2.10) 

in which m = n + K-1. 
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 The usefulness of the {wi: i = 0, 1... m} parameters and their meaning in relations 

to the error between model and system at any time instant will now be discussed. 

If an identical input is provided to both system and model, an error will be apparent 

between the respective outputs when the transfer functions are not identical. Let this 

input be u (t) at time t {t = 0, ±1, ±2, ….}, and let the outputs, at time t, be ys (t) and ym 

(t) for system and model, respectively. 

Then, the error at time t is defined as: 

v (t) = ys (t) = ym (t)        (2.11) 

This also may be written as  

 v (t) = [G(z) – R(z)]u(t)       (2.12) 

or, by inclusion of eqn. 2.8, 

 v (t) =  (z) u (t) 

Hence using 2.9 

 E (z) B (z) v (t) = W (z) u (t)       (2.13) 

The m roots of the W (z) polynomial are therefore also the zeros of the transfer function 

relating input to error. It follows that if the system denominator polynomial, E(z), is 

stable, it is a requirement that the model denominator, B(z), is also stable, to enable the 

error to tends to zero under steady state conditions, Model stability is not generally 

achieved with all reduction methods and is shown here to be a limiting factor for a 

particular model choice. 
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2.2.3 Error polynomial with a unit step input: 

Applying a unit step input to both model and system, {u (t) = 1: t ≥0} and {u(t) = 1 : t 

≥0}. Then, if a subsidiary error signal is defined as  

         (2.14) 

this signal is filtered by the polynomial E(z)B(z) to become the error V(t). At time instant 

t =1, therefore, v(1) = Wm, and its follows that v(2) = Wm,+Wm-1, etc. This addition of 

errors at each time instant can be summarized by 

}1m  t 0,  j : 1mt 0 t,-1m  j :w{ 
m

ji

i


v                                                        

Under steady-state conditions the error )(tv fed through to the E (z)B(Z) filter is thus 

 

m

ji iw , i.e. the summation of all the W(z) coefficients. There are, therefore, m+1 = n+k 

error terms  ,1m .., 1, t:)( tv but only 2k, the number of model parameters to be 

chosen, degrees of freedom. Hence, while k<n, at least one of the )(tv values will be 

nonzero, i.e. the model response cannot be made to fit exactly that of the system. 

2.2.3.1 Illustrative example: 

Consider a system of order 3, n =3, and a model of order 2, k =2. The error are built up as 

shown if Table 2.1. 

Table2.1: Example 2.2.3.1                                                                                                      

Time instant t   Error signal )(tv  

0 0 

1 W4    4w  

 W(Z)u(t) ν
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2     W4+W3   3w  

3     W4+W3+W2   2w  

4     W4+W3+W2+W1   1w  

5      W4+W3+W2+W1+W0   0w  

6      W4+W3+W2+W1+W0   0w  

Because K = 2, there are 2K = 4 model parameters to be chosen. Thus, there are 4 

degrees of freedom with respect to the 5 error coefficients                                   

 .4 .. 0,  i : w                                                                                                                    

One further polynomial must be introduced, this being W (p) obtained from W(z) by 

means of the substitution given in eqn. (2.3). Hence, 

0ŴpŴ.......PŴpŴ W(P) 1

1m

1m

m

m  

  

Such that iŴ coefficients can be obtained simply form Pascal‟s triangle. Referring back to 

the illustrative example 2.3.1.1: 

0432100 w            wwww wŵ   

4321 w4w3w2 wˆ 1w  

432 w6w3 wˆ 2w  

43 w4 wˆ 3w  



19 

 

44 w                                          wˆ 4w  

It must be denoted that 

(a) 00
ˆ ww   

(b) mww 0
ˆ  

2.3 ORDER REDUCTION OF DISCRETE TIME SYSTEMS VIA BILINEAR 

ROUTH APPROXIMATION: 

Hwang, C; and Hseih C.S. [5], proposed a method of combining the Routh 

approximation method with bilinear transformation for deriving stable reduced order 

models of a strictly proper Z-transfer function )(ZG . It is based on applying the bilinear 

transformation of the (z+1) )(ZG  and then deriving a new bilinear Routh  

canonical expansion for )(ZG . The proposed bilinear Routh approximation method has 

all the advantages of Routh approximation [13], without having initial-value problem 

posed by the bilinear transformation. 

 Bilinear Routh approximation does not require the bilinear transformation 

explicitly, which involves directly in z-plane via single set of computation. 

2.3.1 Bilinear Routh δγ   Expansion: 

 Consider an asymptotically stable nth-order discrete-time described by the strictly 

proper z-transfer function: 

                                             

1a,
D(z)

N(z)
Δ

za....zaa
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(z)G 1nn

1n21

1n

n21
n 


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 





     (2.15) 
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Or 

                                             

n(z)G
1)(z

1

D(z)

1)N(z)(z

1z

1
(z)Gn









      (2.16) 

Then it can be shown that the bilinear-transformed function 















s1

s1
(z)G  (S)G

znn  is strictly proper      (2.17) 

Hence )(sGn can be expanded into the following Routh   canonical from [13]: 

(s)ŵΠδ
s
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(s)G n

i
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n
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


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Where ),(ˆ sw j for j = 2, 3, …………….., n are defined by 

s
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
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       (2.19) 

Application of inverse bilinear transformation [s = (z-1)/(z+1)] to )(sGn  results )(sGn . 


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Where 
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   (2.21)  

i  and i  coefficients are obtained from the following recursive polynomials U1(z) 

And V1 (z) as follows: 

  2/)()()( 1

1

 zDzzDzU n       (2.22) 

  2/)()()( 1

1

 zDzzDzV n        (2.23) 

i  coefficients are obtained from following recursive algorithm: 

Ui+1 = Vj(z)/(z-1)        (2.24) 

)]1([2/)1( 1 iii UU         (2.25) 

Vi+1(z) = [Ui(z)-i(z+1)Ui+1(z)]/(z-1)      (2.26) 

Once i  is calculated, i  coefficients in the bilinear Routh expansion can be computed 

by the recursive algorithm for i=1, 2,  ……n. 
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i = Ni (1) / [2Ui+1(1)]        (2.27) 

Ni+1(z) = [Nj(z)-(z+1)Uj+1(z)] / (z-1)     (2.28) 

Where   

N1(z) = (z+1) N (z). 

2.3.2 Bilinear Routh Approximation in Frequency-Domain: 

Hm(z) be the mth order (m<n) model obtained by truncating the bilinear Routh    

expansion [13]. After the first m terms truncation eliminates terms containing 

, 1m ………….. , n ,  , 1m  ……………, n  in the bilinear Routh    expansion and 

hence Hm(z) depends only on the first m terms   and  coefficients. 

Then the mth order bilinear Routh approximation Hm (z) is given by 

(z)WΠδi
1z

1
(z)H jm

m

1i

i

1j
m 




         (2.29) 

(z)Hm reduces to 
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)(......
(z)H

1.....2.1.
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      (2.30) 

Where, 

(z)1)A(zγ1)(zδ(z)B 1mm

1m

mm 

        (2.31) 
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)()1()()1()( 12

2 zAzzBzzA mmmm          (2.32) 

With 

B0 (z) = 0, B-1(z) = 0         (2.33) 

A0 (z) = 1, A1(z) = 1 / (z-1)        (2.34) 

 Bilinear Routh approximations possess all the advantages of Routh 

approximation. Aforesaid bilinear Routh approximation [9] preserves the stability 

characteristics of the original system in reduced models and the evaluation of reduced-

order model of higher-order model. It does not suffer from initial-value problem posed by 

bilinear transformation because; it introduces the concept of bilinear transformation 

implicitly. 

2.4 MULTIFREQUENCY ROUTH APPROXIMATION FOR LINEAR 

SYSTEMS: 

 Hwang, C; Hwang, J.H: and Guo, T.Y. [6] suggested multipoint Routh    

canonical continued fraction expansion for continuous time transfer function of a linear 

system. They have emphasized that the proposed method can be fully extended for the 

discrete time case by using bilinear transformation. It can also be extended to yield the 

reduced-order models for multivariable systems (MIMO). 

 Their work for continuous-time has been reproduced here. 

A multifrequency Routh approximation to the system is derived by selecting the 

expansion. A connection between the stability preservation property of the 

multifrequency Routh approximants and the expansion points on the imaginary axis is 

established. 
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 Multifrequency Routh approximation procedure is flexible in deriving stable 

reduced-order models while fitting frequency responses and retaining the time moments 

and for markov parameters of impulse response of the systems. He proposed 

multifrequency Routh approximation approach of model reduction retains the property of 

original system at selected frequencies. This method finds its application in dealing with 

analysis and design of communication systems for which response is of more importance. 

2.4.1 Multifrequency Routh    canonical Expansion: 

 Continuous-time transfer function can be described as 

)(

)(

......

......
G(s)

2

210

1
10 1
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Sasasaa

bsbb

n

n

n
nS


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







 

The denominator polynomial A(s) can be split into the even and odd parts: 

A(s) = A0(S)
2
+sA1(s)

2
       (2.36) 

Where 

A0(s
2
) = 0

0

2n

12n

2

4

2

20 sasasaa         (2.37) 

A0(s
2
) = 1

1

2n

12n

4

5

2

21 sasasaa       (2.38) 

Numerator Polynomials B(s) can be split into the even and odd parts: 

B(s) = B1(S)
2
+sB2(S

2
)       (2.39) 

Where 
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B1 (s
2
) = 0

2n

12n

2

20 sbsbb
1
        (2.40) 

B2 (s
2
) = 1

2n

12n

2

31 sbsbb
1
        (2.41) 

Reduced order modeling using multifrequency Routh approximation carries i  and i   

i  Coefficients are evaluated using following recursive formula 

   (2.42) 

        (2.43) 

 

i  coefficients are evaluated using following recursive formula : 
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Where wi are general frequencies which lie on imaginary axis around which expansions 

have to be carried out. 

2.4.2. Stability Condition of Multi Frequency Routh Algorithm: 

Stability condition of multifrequency Routh algorithm in term of the expansion 

coefficients i  and expanding points i  are set up. The stability condition for the 

polynomial 
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 Fn-1(s) = Ai(s
2
)+sAi+1(s

2
)       (2.46) 

is first determined. Criterion for the stability test of a polynomial by multifrequency 

Routh algorithm is in this manner. 

The frequency points j i  involved in the algorithm may be chosen such that 

1-n2 K  0   Ki . Efficacy of frequencies which lie on imaginary axis around 

which expansions have to be carried out depend upon the value of i  which put restrains 

that 0i  

2.4.3 Reduced-order Modelling Procedure: 

Reduced order models obtained by the above method [16] are: 

)(ˆ

)(B̂
 )( m

sA

s
sGm           (2.47) 

Where 

(S)B̂δ(S)B̂)w(SSδ (s)B̂ 1mm1m
221m

m 
       (2.48) 

(S)Â(S)Â)w(S (s)Â 1mm1m
22

          (2.49) 

Where 

1101 )(Â                 1,(s)Â
S

1
 (s)Â  Ss  

110 )(B̂                                 ,0)(ˆ  ssA  
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Multifrequency Routh expansion approximation method retains bans pass and high 

frequency characteristics of original system. Therefore by selecting an appropriate set of 

expanding frequency points. The stable multifrequency Routh approximation can be 

retain not only the time moments and /or markow parameters but also the response 

characteristics of the system. Moreover, performance of multifrequecy Routh 

approximants can be made to be optimal by searching optimal expanding frequency 

points. The meet of stability constraints on choosing the ith expanding frequency i can 

be guaranteed by checking if  

 0i and )(ssA)(sA 2

1i

2

i   is stable. 

2.5 ROBUST DIGITAL CONTROLLER DESIGN FOR PROCESS WITH 

DEAD TIMES: NEW RESULTS: 

Zhang, W.D.; sum, Y.X. and Xn, X.M. [8], suggested the Dahlin controller in studied in 

the complex frequency domain in terms of performance and Robust stability. 

2.5.1 Performance and robust stability: 

 Consider the unity feedback control loop shown in fig. 2.1, where C(s) is the 

controller and G(s) is the plant. As the Dahlin controller is designed for first order plants 

with dead times, the discussion of the paper is also limited to this kind of plant. Assume 

that    

1Ts

Ke
  G(s)

s-






          (2.50) 

and the system input is a unit step. The Dahlin controller is designed by specifying the 

closed loop transfer function T(s) to be a first-order process with dead time equal to that 

of the plant G(s), i.e. 
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1s

e
  T(s)

s-







          (2.51) 

Where   is the time constant of the closed-loop response. One the other hand, the 

closed-loop transfer function can be described as. 

)()(1

C(s)G(s)
  )(

sGsC
sT


          (2.52) 

This relation can be rearranged to give an expression of the controller C(s) 

ses

Ts

ksG
sC

 




1

11

)(

1

T(s)-1

T(s)
  )(        (2.53) 

In the complex-frequency domain, the dead time is an irrational function. Thus C(s) can 

not be realised exactly. However, in the discrete domain the dead time is approximated 

by the finite-dimensional function. Suppose that the sampling time is Ts and  = NTs. by 

introducing a zero-order hold, we have 

          

Fig. 2.1 Closed-loop system with unity feed back 
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Fig. 2.2: Structure of internal model control 

1Ts/λ

1N-Ts/λ

ze1

)ze-(1
 T(z)






                                           (2.54) 

The corresponding discrete controller can then be obtained directly from  

G(s)

1
 

ze1

)ze-(1
 c(z)

1Ts/λ

1N-Ts/λ






                                          (2.55) 

We will interpret the merits of the Dahlin controller by internal model implementation. In 

the case of two model-plant mismatch, the classical unity feedback loop show in fig. 2.1 

can be converted into the external model control structure shown in Fig. 2.2 with  

(s)C(s)G1

C(s)
Q(s)

m
                                    (2.56) 

(s)Q(s)G1

Q(s)
C(s)

m
                                    (2.57) 

Where Gm(s) = G(s) is the model. Therefore  

G(s)Q(s)
C(s)G(s)1

C(s)G(s)
T(s) 


                                     (2.58) 
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The structure shown fig. 2.1 is in fact an open loop. 

The performance of the control system design is usually specified as keeping the error 

between the plant output y and the reference r small, or equivalently, minimizing the 

effect of the disturbance d the plant output y normally, we can take 

1)sK(

1Ts
  )(







sQ                                (2.59) 

Then the closed-loop system transfer function is 

1λs

e
  T(s)

-θθ


                       (2.60) 

When  tends to zero, the plant output can track the reference input exactly after the delay 

 This is in fact the result of optimal control. 

Although the Dahlin controller is designed for a nominal plant, it is robust. This can be 

explained by modern robust theory. We can describe the plant dynamic behavior by a 

linear time invariant family. Assume that the plant uncertainly profile is L (w), then the 

family can be represented as 

L(jw)
(jw)G

(jw)GG(jw)

m

m



                    (2.61) 

From the basic result of modern robust control theory [15], it is know that the closed-loop 

system is stable if, and only if, 

1)()( jwLjwT  

or equivalently 
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1

1
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


 wLe
jw

jw


  for all w        (2.62) 

In other words, by tuning the parameter   , is obtained for the closed-loop system. 

The optimal normal performance is usually defined as min dt 
0

2




e  or min 

)(
2

2
)()( ssSsW , where W(s) is the input weighting function, and S(s) the transfer 

function form the input r to the error e. Since the system input is a unit step, we can 

simply let the weight function be 1/s. Observe that 

T(s)1
C(s)G(s)1

1
S(s) 


        (2.63) 

The robust performance can be tested by the sufficient by the sufficient and necessary 

condition as follows: 


 T(s)T(s)W(s)S(s)  

L(w)G(jw)Q(jw)(jw)Q(jw)]G[1
jw

1
  









 L(w)e

1λjw

λ

1λjw

λ θjw
 

< 1 for all w.                                             (2.64) 

Hence, if the model is exact, the tunning parameter can be used for optimizing the nomial 

performance arbitrarily. In the case of a mismatch existing between the model and the 

plant, performance and stability can always be evaluated by some simple conditions. 
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2.5.2 Equivalents and extension of the Dahlin controller: 

 One can find a very large number of digital control algorithms for single-loop 

systems. Each of them lies to satisfy some commonly accepted criterial. 

2.5.2.1 Dead beat control : 

 Suppose the response of the closed-loop system to a unit sep is required to be 

unity at every sampling instant after the application of the unit step. If the plant is 

expressed as a first-order process with dead time, then the desired closed-loop model 

must have the pulse transfer function. 

  T (z) = Z
-N-1 

The controller can be obtained from the Dahlin controller with the parameter 

0  

2.5.2.2  Internal model control: 

 The internal model control provides a framework for the design and tuning of 

robust controllers. It includes a two-step design procedure which was introduced by 

Zafirous and Morari. In the first step, Qim (z) is designed so that no offset is produced for 

the given input, which means tha Qim (z) is equal to: 

1N

im z
(z)-G

1
 (z) Q            (2.66) 

Where the subscript _ denotes the delay free part of G(z) with the zeros inside the unit 

circle. A mismatch between the model and the plant will generate a feedback signal 

which may cause performance deterioration or instability. Thus, in the second step the 

filter F (z) is included to take care of the problem. It is of the form 
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          (2.67) 

Where 1α0 ,eα Ts/λ   . For a first-order process with dead time, Q(z) 

becomes. 

Q (z) = Qim(z) F(z) 
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and the closed-loop transfer function is given by  
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
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      (2.68) 

The result us the same as that of the Dahlin controller 

2.5.2.3 One-step ahead dynamic matrix-control 

Using a step response model, Culter and Ramaker developed the algorithm. They have 

applied it successfully to the control of chemical processes such as in catalytic cracking 

units. The scheme is a typical predictive controller. It has three major features in 

common. 

2.5.2.3.3 The predictive law: 

The criteria function used for predictive controller design is   

j = [y (k+1)-w (k+1)]
2

        (2.69) 

where the symbol ^ denotes estimation. Let L be the control horizon and L = P. Then the 

1αz1

α-1
  F(z)



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predictive control law can be written as 

u = A
1
 e                                                                                                                     (2.70) 

Where A is the dynamic matrix and e is the error between the reference trajectory and the 

closed-loop predictive output with zero input. It is easy to find that the result is identical 

with the Dahlin controller. 

As we known, the classic Dahlin controller cannot be used for the control of plants with 

zeros outside the unit circle and unstable plants. Based on the above discussion, we will 

develop its extension. Since the expression in the discrete domain is very complex and 

hard to understand, only the result in the complex frequency domain are given. 

2.5.2.3.4   Control of unstable plants: 

Consider the following plant 

sθ

s

e
T

1
G(s)


                    (2.71) 

which is a type II system. In order to track the step input, the closed-loop transfer 

function has to satisfy the following constraints. 

0s

lim   


0)](1[  sT          (2.72) 

0x  

ds

d
lim   



0)](1[  sT          (2.73) 

For stability, we can take Q(s) = sQ1(s). The closed-loop system is stable if, and only if, 

Q1(s) is stable. Let Q1(s) be of the form. 
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where B(s) is a polynomial. Combining it with eqns. 28 and 29 yield n=2 and B(s) = 

T[(2+),+1] Then one can obtain the described closed-loop transfer function 

2)1(

1)2(
)(






s

ssT

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        (2.74) 

The result in the controller 

 
sθ

s

2

s

ss

1]eθ)[(2λ1)(λ

1]θ)[(2λT
C(s)





                 (2.75) 

Remarks: 

Most of the model reduction techniques proposed by various investigators for 

continuous-time systems are equally applicable to discrete-time systems by employing 

suitable transformation techniques like bilinear transformation, p-domain transformation 

as well as z=p/(A+Bp) where A and B are constants. Therefore, multifrequncy Routh 

approximation approach [10] and reduction be extended for discrete-time case. 

2.6 A MIXED METHOD FOR THE REDUCTION OF DISCRETE TIME 

SYSTEMS 

The problem of reducing a high order system to a lower order model is considered 

important in analysis, synthesis and simulation of practical systems. It is known that 

reduction methods based on power-series expansion, like pade approximation, or 

continued-fraction may often lead to instability even when the original system is stable. 

One way of overcoming the instability problem is by using the stability-equation method, 

where reduced models are guaranteed to be stable when the original system is stable. 

Often, the bilinear transformation is used to extend continuous-time reduction methods to 
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reduce z-transfer functions in the „w‟ domain. Such methods suffer from the drawback 

that due to the nature of the bilinear transformation, the initial value of the step response 

may not be zero even though the initial value to the step response of the original system 

is zero. Shanti Mishra, Jayanta Pal [10], proposed a new method combining the 

advantages of stability-equation and Pade approximation technique that retains the 

important fast poles while ensuring identical responses at zero time. 

2.6.1 THE PROPOSED METHOD 

The procedure consists of four steps: (1) the use of bilinear transformation to convert the 

original z-domain high order system to w-domain, (2) the denominator polynomial is 

then reduced by using the stability equation method along with reciprocal transformation, 

(3) the numerator dynamics in w-domain are chosen to fit a number of the initial time-

moments and Markov parameters, (4) the reduced order model in z-domain is finally 

obtained by using the reverse bilinear transformation. 

Step (1): Transformation of the system and the model 

Let the nth-order system transfer function be given by G (z). By using the bilinear 

transformation z = 
1+w

/1-w, separately on the numerator and the denominator of G (z) = 

N(w)
/D(w), the w-domain G(w) can be obtained as : 
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




     (2.76) 

In this case, the pole-zero excess of G (w) remains the same as that of G(z). Hence, the 

step response of G (z) and the reduced model Rr (z) will match exactly at t=0. As detailed 

below, G(w) can then be reduced to give an r-th order reduced model Rr (z) which may 

be converted back into the z-domain by using the bilinear reverse transformation 

separately on the numerator and the denominator of Rr (z). 



37 

 

 Let the rth –order reduced model be Rr (z), which, in the w-domain may be 

written as: 
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1rw
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     (2.77) 

Step (2): Reduction of the denominator 

Let D (w) from (1) and Dr (w) to be found out, be given by 
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bwD          (2.78) 
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For stable G (w), the stability equations of D(w) can be written as (5), (6) 
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           (2.80) 
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                     (2.81) 

Where m is the integer part of n/2 and (n-1)/2 for n even and odd respectively and the 

pole-zero patterns is 
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The reduced stability equation of order r1 can be obtained by discarding the poles (pi) 
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and zeroes (zi) with larger magnitudes .The results are 
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The reciprocal polynomial of D (w), D
~

(w) be defined by 
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The reciprocal polynomial in Eqn. 2.83 has the property that it inverts the roots of the 

original polynomial and thus the small magnitude roots of D (w) will become the large 

magnitude roots of D (w) and vice versa. 

 It is known that only poles nearest to the origin are retained in Dr1 (w) and no 

consideration is given to poles which have large negative real parts. To ensure that Dr(w) 

also approximates some large magnitude poles of G(w), stability equations similar to 

Eqns. (2.80,2.81) are constructed for the reciprocal polynomial of Eqn. (2.83) and a 

reduced polynomial Dr2(w) of order r2 is formed. Dr (w) is then found as 

Dr (w) =Dr1 (w) xDr2 (w)        (2.84) 

Step (3): Reduction of the numerator 

Using the power series expansions of G (w) about w=0 and w=, the modified time 

moments (ti) and the Markov parameters (mi) are obtained as 







0i

i

iwtG(w)          (2.85) 
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





0i

1-i-

iwmG(w)          (2.86) 

The coefficients of Nr (w) of Eqn. (2.77) are determined form the following set of 

equations with the assumption that R(w) and G(w) have identical first  time-moments 

(t0,t1--) and first  Markov parameters (m0,m1--) 

 Choosing +=r, we have, 

0m

mm

1rr

0r11r1-r

0
m

r1rr1rr

0α11α2α1α

02112

011

dn

mdmdn

                

2βd3mβd...2βd1βd1βn

tdtd...tdn

                  

tdtdn
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


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
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
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Step (4) To obtain the reduced model Rr(z) from Rr(w)    

By using the inverse bilinear transformation ,
1

1






z

z
w  separately on the numerator and 

the denominator of Rr (w) =Nr (w)/Dr(w), the z-domain reduced order model Rr (z) may 

be obtained. For steady-state matching, the final reduced model is obtained by 

multiplying the coefficients of the numerator polynomial of Rr (z) by a constant 

R(1)

G(1)
k   

2.7 DIFFERENTIAL EVOLUTION ALGORITHM FOR REDUCTION OF SISO 

DISCRETE TIME SYSTEMS                                                              

Reduction of high order systems to lower order systems (LOS) has been an important 
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subject area in control engineering for many years. The conventional methods of 

reduction, developed so far, are mostly available in continuous domain. However, the 

high order systems can be reduced in continuous as well as in discrete domain. 

 J. S. Yadav, N. P. Patidar, J. Singhai and S. Panda [19], suggested two methods of 

model reduction of Single-input (SISO) discrete system have been presented. The first 

method which is based on the conventional approach combines the advantages of 

Modified Cauer Form (MCF) and differentiation of the denominator polynomials. This 

transformation is accomplished using synthetic division .The denominator of reduced 

continuous system is derived using differentiation, of both, the original and reciprocal 

polynomials in w-domain and multiplying various derivatives of these two polynomials 

.The numerator is found by matching the quotients of MCF. After obtaining the Reduced 

Order Model (ROM) of continuous system is conversion into discrete system is 

accomplished by using inverse bilinear transformation, separately on numerator and 

denominator polynomials to give the desired result. Also a steady state correction is 

applied to match the final values of response of original and reduced systems. 

 In the second method, Differentional Evolution (DE) is employed for the order 

reduction where both the numerator and denominator coefficients of low order system are 

determined by minimizing an ISE error criterion. Differential Evolution (DE) is a branch 

of evolutionary alogorithms optimization problems .DE uses weighted differences 

employs a greedy selection process with inherent elitist features. Also it has a minimum 

number of control parameters, which can be tuned effectively. 

2.7.1. STATEMENT OF THE PROBLEM 

Given a high order discrete time stable system of order „n‟ that is described by the z-

transfer function: 

 
n

n

n

n

n

n
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
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)(      (2.89) 
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The objective is to find a reduced r
th
 order model that has a transfer function (r<n): 

 
r

r

r

r

r

r

r

r

zdzdzdd

zczcc

zD

zN
zR
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.......

)(

)(
)(      (2.90) 

The polynomial D(z) is stable, that is all its zeros reside inside the unit circle 1z . 

Where 1),-ni(0ai   n),i(0bi  ),ri(0ci 1  and r),i(0di   are scalar 

constants. 

The numerator order is given as being one less than that of the denominator, as for the 

original system, The R(z) approximates G0(z) in some sense and retains the important 

characteristics of G0(z) 

2.7.2 REDUCTION BY CONVENTIONAL METHOD 

The reduction procedure by conventional method (modified Cauer Form and 

differentiation) may be described in the following steps: 

Step-1 

Apply bilinear transformation
w

w
z






1

1
, separately in the numerator and denominator 

polynomials of Eq. (2.89) using synthetic division. This converts G0(z) into G(w) as: 

0
w)(1

N(w)

w1

w1
zN(z)N(w)

1n











      (2.91) 

0
w)(1

D(w)

w1

w1
zD(z)D(w)

n








        (2.92) 
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From  Eqs. (2.91) and (2.92) we get G(w) = 
D(w)

N(w)
 

This can be expressed as: 

n

n

1n

1n1211

1n

1n1211

wb1wb1...............wbb

wa1..................waa
G(w)












      (2.93) 

The reciprocal of D (w) is given as: 

nw
bwbbbwDwwD nw

nn

n

11

1

121111 ....)/1()(
~

 

     (2.94) 

Step-2 

Compute the questions of Modified Cauer form (MCF) h1, h2, ……,H1, H2…..using 

Modified Routh Array. 

Step-3 

Differentiate successively the denominator of the Eq. (2.93), and its reciprocal, the r
th

 

order denominators of reduced order models can be obtained by multiplying various 

combinations of differentiated polynomials. In particular D (w) is differentiated (n-r1) 

times and its reciprocal )(
~

wD is differentiated (n-r2) times. The r
th

 order reduced 

denominator is obtained as: 

Dr (w)=Dr1(w).Dr2(w)         (2.95) 

Where )(
~

2 wrD  is the reciprocal of )(2 wDr and r = r1+r2 

Step-4 
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Match the quotients h1, h2, ……., H1, H2….to find out the numerator N(w) of the ROM 

as given in . 

The ROM G (w) will be obtained as G (w) = 
)(

)(

wD

wN
 

Step-5 

Apply the inverse bilinear transformation w=
1

1





z

z
  separately in the N (w) and D(w) to 

convert G(w) in z domain. Thus the rank of G0 (z) and G (w) will be same. Hence the 

step response of G0 (z) and G (w) will match at initial time t=0. 

Step-6 

Remove steady state error by evaluating k=
1

)(

)(0

z
zR

zG
   , and multiply it in the numerator 

of R (z). 

2.7.3. DIFFERENTIAL EVOLUTION (DE) 

In conventional mathematical optimization techniques, problem formulation must satisfy 

mathematical restrictions with advanced computer algorithm requirement, and may suffer 

from numerical problems. Further, in a complex system consisting of number of 

controllers, the optimization of several controller parameters using the conventional 

optimization is very complicated process and sometimes gets struck at local minima 

resulting in sub-optimal controller parameters. In recent years, one of the most promising 

research field has been “Heuristics from Nature”, an area utilizing analogies with nature 

or social systems. Application of these heuristic optimization methods a) may find a 

global optimum, b) can produce a number of alternative solutions, c) no mathematical 

restrictions on the problem formulation, d) relatively easy to implement and e) 

numerically robust. Several modern heuristic tools have evolved in the lat two decades 
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that facilitates solving optimization problems that were previously difficult or impossible 

to solve. These tools include evolutionary computation, simulated annealing, tabu search, 

genetic algorithm, particle swarm optimization, etc. Among these heuristic, techniques, 

Genetic Algorithm (GA), particle Swarm Optimization (PSO) and Differential Evolution 

(DE) techniques appeared as promising algorithms for handling the optimization 

problems. These techniques are finding popularity within research community as design 

tools and problem solves because of their versatility and ability to optimize in complex 

multimodal search applied to non-differentiable objective functions. 

Differential evolution (DE) is a stochastic, population-based optimization algorithm 

introduced by Storn and Price in 1996. DE works with two populations; old generation 

and new generation of the same population. The size of the population is adjustable by 

the parameter Np. The population consists of real valued vectors with dimension D that 

equals the number of design parameters/control variables. The population is randomly 

initialized within the initial parameter bounds. The optimization process is conducted by 

means of three main operations: mutation, crossover and selection. In each generation, 

individuals of the current population become target vectors. For each target vector, the 

mutation operation produces a mutant vector, by adding the weighted difference between 

two randomly chosen vectors to a third vector. The crossover operation generates a new 

vector, called trial vector, by mixing the parameters of the mutant vector with those of 

the target vector. If the trial vector obtains a better fitness value than the target vector, 

then the trial vector replaces the target vector in the next generation. The evolutionary 

operators are described below. 

2.7.3.1. Initialization 

In DE, a solution or an individual i, in generation G is a multidimensional vector given 

as: 

)( ,,...1, Dii

G

i XXX 
         (2.96) 
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)X-(Xrand(0,1)x  mink maxk min ,  k

G

ki XX       (2.97) 

With d][1,k ],,1[  pNi  

Where, Np is the population size, D is the solution‟s dimension i.e. number of control 

variables and rand (0,1) is a random number uniformly distributed between 0 and 1. Each 

variable k in a solution vector i in the generation G is initialized within its boundaries 

min kX  and max kX . 

2.7.3.2.  Mutation 

DE does not use a predefined probability density function to generate perturbing 

fluctuations. It relies upon the population itself to perturb the vector parameter. Several 

population members are involved in creating a member of the subsequent population. For 

every ],1[ pNi the weighted difference of two randomly chosen population vectors, Xr2 

and Xr3, is added to another randomly selected population member, Xr1, to build a 

mutated vector Vi.  

).( 321 rrri XXFXV          (2.98) 

With r1, r2, r3  [1, Np] are integers and mutually different, and F>0, is a real constant to 

control the differential variation di=Xr2-Xr3. 

2.7.3.3.. Crossover 

The crossover function is very important in any evolutionary algorithm. It also should be 

noted that there are evolutionary algorithms that use mutation as their primary search tool 

as opposed to crossover operators. In DE, three parents are selected for crossover and the 

child is a perturbation of one of them whereas in GA, two parents are selected for 

crossover and the child is a recombination of the parents. The crossover operation in DE 
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can be represented by the following equation 



 


otherwise     ),(

)1,0( Uif       ),(
)(
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jX

CRjV
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i

i

i        (2.99) 

2.7.3.4. Selection 

In DE algorithm, the target vector Xi,G is compared with the trial vector Vi,G+1 and the one 

with the better fitness value is admitted to the next generation. The selection operation in 

DE can be represented by the following equation: 



 




otherwiseG    

)()(f if       ,1 ,1,

i

GiGii

i
X

XfUGU
GX       (2.100) 

Where I  [1,Np]. 
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                                                                                                                         CHAPTER 3 

MODEL REDUCTION BY MODIFIED ROUTH STABILITY METHOD USING 

P-DOMAIN TRANSFORMATION. 

3.1 INTRODUCTION: 

 Reduction of high-order system transfer function to low-order Models has been 

an important subject and in the control engineering environment for many years. The 

Routh-stability method is employed to reduce the order of discrete time system transfer 

function. The Routh approximation is well suited to reduce both the denominator and 

numerator polynomials. Farsi, M; Warwick, K; and Guilandoust M, [4] employed this 

method to have order reduction of discrete time systems incorporating p-domain 

transformation which resolves the short comings of bilinear transformation 

Unfortunately, algorithms suggested [4], leads to erroneous result, Vivek kumar sehgal 

[13], suggested Modified Routh stability which resolves lacunae of Routh stability 

Method. In this chapter Modified Routh stability method has been applied to quite higher 

order system comparatively. This proposed method presents rectified value of ,  and 

expansion point m (z=p+m) and leads to correct value. 

3.2 MODEL REDUCTION IN THE DISCRETE TIME DOMAIN: 

It is assumed that a higher-order transfer-function relating system input to system output 

can be expressed by 

)(
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Where d and e coefficients are the numerator and denominator scalar constants 

respectively, also numerator order is given as being one less than the denominator. 

Assuming that a reduced order model R (z) of order k (k<n) is to be constructed. 

It assumes the form of 

A(z)

B(z)
R(z)  

0

1k

1k

k

k

0

2k

2k

1k

1k

aΛzaza

bzbzb




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









        (3.2) 

The overall modeling procedure necessary in this modified Routh stability method 

incorporates following steps: 

STEP 1: Given transfer G (z) is transformed into G (p) which is governed by (z=p+m) 

transformation where m is a scalar quantity equal to the distance from the farthest pole or 

zero to the centre of unit circle. This is performed by substituting z=p+m in equation 

3.1.The transfer function in z-domain is converted into p-domain with the help of 

Pascal‟s triangle. 

therefore 






3

22

2

122111

3

22

2

122111)(
pepepee

pdpdpdd
pG      (3.3) 

STEP 2: Routh arrays for the numerator and denominator are constructed by 

arrangements of parameters contained in Eq. (3.3) (Tables 3.1 and 3.2): 

Table 3.1: ROUTH ARRAY FOR E (p) 
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11e   12e   13e   14e   

21e  22e  23e  24e  

31e  32e   33e   

1).1( 

ne  

2).1( 

ne  …….  

1.ne  …….   

1).1( 

ne  ……..   

The first two rows of the arrays are obtained from Eqn. (3.3), where as other elements are 

determined from equation: 

   1).1()1(),1(1).2()1(),2(),( / 

iJijjjji eeeee           (3.4) 

 

Table 3.1: ROUTH ARRAY FOR E (p) 

11d    12d    13d    14d    

21d   22d   23d   24d   

31d   32d   33d   ….. 

1).1( 

nd  2).1( 


nd  …….  
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1).(nd   …….   

1).1( 

nd  ……..   

Where 

These first two rows of Table (3.2) are determined form Eq. (3.3) and other entries are 

obtained from equation. 

   1).1()1(),1(1).2()1(),2(),( / 

iJiijiji ddddd       (3.5) 

for 0i   and 3)/2}i-{(nji   in which {.} indicates the integer part of the quantity. 

STEP 3: Desired values of i, i and  can be calculating by using. 

,
1,

1),1( 





k

i
e

ie
          (Where i=1, ………k+1)      (3.6) 

Where k is the desired order of reduced model 

,
1,

1,

k

i

i
e

d 
        (Where i=1, ………k)                     (3.7) 

  for stable system         (3.8) 

 

STEP 4: The model denominator and numerator are calculated using following 

equations: 

,
1,

1),1( 





ke

kd

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


 
k

i

i

i mzzA
0

1 )()(   (where i=0, 1, 2,……, k)    (3.9) 

    k+1=1 

 
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

 
1

0

1 )()(
k

i

i

i mzzB   (where i=0, 1, 2,……, k)    (3.10) 

    k+1=1 

STEP 5: Desired reduced model assumes following form: 

)(

B(z)
 )(

zA
zR   

Where   gain correction factor is is defined as ratio of original system steady-state gain 

to reduced order model steady state gain. 

3.3 Numerical example 3.1: 

A SISO 8
th
 order – linear time-invariant system whose transfer – function, relating input 

to output, in discrete-time domain is represented by: 

00225.001625.009825.01935.0057.007875.04185.063075.0

00075.00055.003525.00645.0019.002625.01395.02125.0
)(

2345678

234567






zzzzzzzz

zzzzzzz
zG

 

STEP 1:  Given G (z) is transformed into G(P) which results 

E(P)

D(P)
G(P)   
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2502.00002.26010.93068.269830.413220.401662.233693.7

0675.03763.18605.59765.99802.362732.5627.12125.0
2345678

234567






pppppppp
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STEP 2: Routh array for numerator Polynomials is obtained by using Table 3.2 and eq. 

(3.5): 

0.2498 6.1777 9.4177 1.6270 

2.0108 9.9765 5.2732 0.2125 

4.938327 8.76261478 1.6006013  

6.40851719 4.62146326 0.2125  

5.201370242 1.436851332   

Routh array for Denominator polynomials is obtained by using Table (3.1) and Eq. (3.4) 

0.2502                 9.6010                      41.9830                         23.1662 

2.0002 26.3068 40.3220 7.3693 

6.310348                       36.939222    22.24439275  

14.598122 33.27116312                

22.55705574 

 

   

 



53 

 

3.3.1 Reduced Model (1
st
-Order): 

1 = 0.125087    2=1      

1=1     = 0.1248875 

STEP 4: Numerator of the reduced order would be based on Eq. (3.10) and Denominator 

of the reduced order would be based on Eq. (3.9) : 

             B(z)=1 

A (z) = (z-0.874913) 

STEP 5: Desired reduced model will assume the following for after incorporating gain 

correction factor where gain correction factor is obtained by using Eq. (3.8): 

874913.0

1248875.0
)(1




z
zR  

3.3.2 Reduced Model (2
nd

 –Order): 

 First two steps will remain same which are described for reduced model (1
st
 

order). 

STEP 3: Using Eqs. (3.6), (3.7) and (3.8) for the 2
nd

 order model: 

1 = 0.039649   2 = 0.31697    3 = 1 

1 = 0.124229   2 = 1 

 = 0.31865 
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STEP 4:  Numerator of the 2
nd

 order reduced model would be based Eq. (3.10): 

B (z) = z-0.875771 

Denominator of the 2
nd

 order reduced model would be based on Eq. (3.9) 

A (z) = z
2
-1.68303+0.722679 

STEP 5: Desired reduced model will assume the following form 
A(z)

B(z)
γR(z)  

after incorporating gain correction factor () which is described by Eqn. (3.8): 

722679.068303.1

27906443.031865.0
)(

22





zz

z
zR  

3.3.3 Reduced Model (3
rd

 –Order): 

First two steps would remain same which are described for the 1
st
 order reduced Model 

and 2
nd

 order reduced model. 

STEP 3: Using Eqs. (3.6), (3.7) and (3.8) for the 3
rd

 order reduced model: 

1 = 0.017139             2 = 0.1370176  3 = 0.432272             4=1 

1 = 0.0505839  2 = 0.40718   3=1 

 = 0.338285 

STEP 4: Numerator of reduced order model (3
rd

 order) would assume the following form 

which is generated by Eq. (3.10): 
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B (z) =z
2
-1.59282z+0.6434039 

Denominator of reduced order model (3
rd

 order) would assume the following form which 

is generated by Eq. (3.9): 

A (z) =z
3
-2.5677288z

2
+2.2724752z-0.0.6876074 

STEP 5: Desired model will assume the following form where 
A(z)

B(z)
γR(z)  

after incorporating gain correction factor which is described by Eq. (3.8): 

6876074.02724752.25677288.2

21765388.0538827113.0338285.0
)(

23

2

3





zzz

zz
zR  

 

 

 

 

 

 

 

 

Table 3.3 
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DERIVED REDUCED – ORDER MODELS 

1. ;
875.0

124625.0
)(1




z
zR                    Modified Routh stability method (1

st
 –Order

                       reduced MRSM) 

2. ;
715748.067514.1

283646.0324133.0
)(

22





zz

z
zR     Modified Routh stability method (2

nd
 –Order

                                reduced MRSM) 

3. ;
715748.067514.1

283646.0324133.0
)(

22





zz

z
zR       Modified Routh stability method  

                           (3
rd

-Order reduced MRSM) 
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3.4 MATLAB ANALYSIS AND PLOTS (STABLE SYSTEM)             

ABOUT MATLAB: 

In the few years, matlab has become the most widely used software package in academia 

and industry for calculation and response from the transfer function. It is very useful and 

powerful software to find out the higher order transfer function responses. 

We write the command in a MATLAB‟s command window and makes an .m file. Saves 

the program in .m files and gives the run command, and then MATLAB gives the desired 

result. Through MATLAB we can find out gain margin, phase margin, poles, zeros, Bode 

plot, Nyquist Plot etc. 

    Transfer function of an eight order stable system is considered. Model reduction is   

carried out and reduced 2
nd

 and 3
rd

 order systems are obtained 

   3.4.1 Script file(Stable System) 

   %Script file 
  %Purpose: 

 %Step response of original 8
th
 order system and reduced 2

nd
 and 3

rd
                 

order system 

 
   clc; 
   clear all; 
   n1=[0.2125 0.1395 -0.02625 0.019 -0.0645 -0.03525 0.0055 -0.00075]; 
   d1=[1 -0.6307 -0.4185 0.07875 -0.057 0.1935 0.0982 -0.0162 0.00225];       
   [z p k]=tf2zp(n1,d1) 
   r=ones(1,101) 
   k=0:100 
   y=filter(n1,d1,r) 
   plot(k,.99*y,'-'); 
   v=[0 100 0 2] 
   axis(v); 
   title('unit step response'); 
   xlabel('k'); 
   ylabel('y(k)'); 
   hold on; 
   n2=[0 0.318672001 -0.279090585]; 
   d2=[1 -1.682992082 0.72265274]; 
   r=ones(1,101); 
   k=0:100; 
   y=filter(n2,d2,r); 
   plot(k,0.99*y,'.'); 
   v=[0 100 0 2]; 
   axis(v); 
   title ('unit step response') 
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   xlabel('k'); 
   ylabel('y(k)'); 
   hold on; 
   n3=[0 0.338329368 -0.538907862 0.21768817]; 
   d3=[1 -2.567734622 2.272500791 -0.68762224]; 
   r=ones(1,101); 
   k=0:100; 
   y=filter(n3,d3,r); 
   plot(k,0.99*y,'-.') 
   v=[0 100 0 2]; 
   axis(v); 
   title ('unit step response') 
   xlabel('k'); 
   ylabel('y(k)'); 
   gtext('__original 8th order system') 
   gtext('...reduced 2nd order system') 
   gtext('-.-reduced 3rd order system') 

 

 

3.4.2. Results in command window(Stable System)                                                                             

z = 

   0.7121           

   0.0097 + 0.7378i 

   0.0097 - 0.7378i 

  -0.9840           

  -0.5505           

   0.0733 + 0.1069i 

   0.0733 - 0.1069i 
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p = 

   0.8798 + 0.2448i 

   0.8798 - 0.2448i 

  -0.0539 + 0.6554i 

  -0.0539 - 0.6554i 

  -0.5872 + 0.0945i 

  -0.5872 - 0.0945i 

   0.0766 + 0.1085i 

   0.0766 - 0.1085i 

k = 

    0.2125 

r = 

  Columns 1 through 14 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 15 through 28 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
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  Columns 29 through 42 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 43 through 56 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 57 through 70 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 71 through 84 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 85 through 98 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 99 through 101 

     1     1     1 

k = 

  Columns 1 through 14 

     0     1     2     3     4     5     6     7     8     9    10    11    12    13 
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  Columns 15 through 28 

    14    15    16    17    18    19    20    21    22    23    24    25    26    27 

  Columns 29 through 42 

    28    29    30    31    32    33    34    35    36    37    38    39    40    41 

  Columns 43 through 56 

    42    43    44    45    46    47    48    49    50    51    52    53    54    55 

  Columns 57 through 70 

    56    57    58    59    60    61    62    63    64    65    66    67    68    69 

  Columns 71 through 84 

    70    71    72    73    74    75    76    77    78    79    80    81    82    83 

  Columns 85 through 98 

    84    85    86    87    88    89    90    91    92    93    94    95    96    97 

  Columns 99 through 101 

    98    99   100 

y = 

  Columns 1 through 8 
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    0.2125    0.4860    0.7212    0.9863    1.1781    1.3306    1.4313    1.4890 

  Columns 9 through 16 

    1.4960    1.4654    1.4057    1.3259    1.2344    1.1406    1.0519    0.9739 

  Columns 17 through 24 

    0.9106    0.8643    0.8357    0.8238    0.8269    0.8422    0.8665    0.8966 

  Columns 25 through 32 

    0.9292    0.9615    0.9912    1.0164    1.0361    1.0497    1.0572    1.0590 

  Columns 33 through 40 

    1.0560    1.0492    1.0397    1.0287    1.0172    1.0062    0.9965    0.9884 

  Columns 41 through 48 

    0.9824    0.9786    0.9768    0.9769    0.9786    0.9814    0.9850    0.9890 

  Columns 49 through 56 

    0.9929    0.9966    0.9998    1.0023    1.0041    1.0051    1.0055    1.0052 

  Columns 57 through 64 

    1.0044    1.0033    1.0020    1.0006    0.9992    0.9980    0.9970    0.9962 

  Columns 65 through 72 



63 

 

    0.9957    0.9954    0.9954    0.9956    0.9959    0.9963    0.9968    0.9973 

  Columns 73 through 80 

    0.9978    0.9982    0.9985    0.9987    0.9989    0.9989    0.9989    0.9988 

  Columns 81 through 88 

    0.9987    0.9985    0.9983    0.9982    0.9980    0.9979    0.9978    0.9977 

  Columns 89 through 96 

    0.9977    0.9977    0.9977    0.9977    0.9978    0.9978    0.9979    0.9980 

  Columns 97 through 101 

    0.9980    0.9981    0.9981    0.9981    0.9981 

v = 

     0   100     0     2 
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3.4.3. Plots (Stable System) 

 

 

 

                         Fig.3.1: Step response of original 8th order system and reduced 2nd order system 
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                         Fig.3.2: Step response of original 8th order system and reduced 3rd order system 
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             Fig.3.1: Step response of original 8th order system and reduced 2nd and 3rd- order  MRSM system 
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Remarks: 

 Modified Routh stability method is stability preservation method (SPM) which 

retains stability in obtained reduced-order model. Modified Routh stability method 

imparts information categorically that if system whose order is to be reduced is stable, its 

expansion point m (z=p+m) should be unity. 

 If original system is oscillatory, then its expansion should be made around the 

point which lies out side of the unit circle and should be more than unity. 

 If original system is unstable whose order is to be reduced, it expansion point 

(z=p+m) should lie out side of unit circle and should be more than furthest pole/zero of 

original system which lies outside unit circle. 

 Some of the salient features of the method are: 

1. It incorporates the interest of p-domain than bilinear transformation. A  P-

domain transformation patch up the initial-value problem posed by bilinear 

transformation and it is quite simpler than bilinear transformation. 

2. The overall time and frequency-domain characteristics are closely matching. 

3. It offers computational simplicity. 
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CHAPTER 4 

REDUCED ORDER MODELLING OF UNSTABLE SYSTEM BY MODIFIED 

ROUTH STABILITY METHOD USING P-DOMAIN (PROPOSED METHOD) 

4.1 INTRODUCTION: 

In order to have reduced order model for unstable system which fins its application for 

design aspects of controllers extensively, Farsi, M; Warwick, K; and Guilandoust, M. [4], 

suggested that if system is unstable i.e. It has pole or zero lying outside of unity circle, 

then expansion should be carried around be point which is furthest pole or zero lying 

outside of unit circle. 

 While attempting the work it has been concluded by the author that if expansion 

is carried around the furthest pole or zero then degree of instability in reduced order 

model would be less than degree of instability which lies in original system which is 

undesirable. Thus, to preserve the characteristics of original unstable system, expansion 

should be carried out around the point which lies out sides of unity circle and should be 

more than the furthest pole or zero of original system. 

 The overall modeling procedure involves same steps as described in previous 

example for stable except (z=p+m) is used where m [1, 2]. 

4.2 NUMERICAL EXAMPLE 4.1: 

Considered an unstable 4
th

 order system whose transfer function is given as: 

        
01.02.172.02.1

323.091.055.1
)(

234

23






zzzz

zzz
zG  

STEP 1: Original G (z) has the pole which lies outside of unity circle having further pole 
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1. Thus according to argument made in introductory part of modified Routh stability 

method expansion point m (z=p+m) should be more than 1 so 

m = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. 

Thus, 

5719.0352.102.42.3

1335.013.175.1
1.1

)(

)(
)(

234

23






pppp

ppp
pz

pE

pD
PG  

STEP 2: Routh array for numerator polynomials is obtained by using Eq. (3.5) 

and Table (3.2), when z=p+1.1: 

0.1335                                               1.75                                           0 

1.13                                                      1 

1.63186 

Routh array for denominator polynomial is obtained by using table (3.1) and Eq. (3.4), 

when z=p+1.1 

-0.5719   4.02                           1 

1.3520    3.2 

5.373609   1 
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4.2.1 Reduced Model (2
nd

 –order): 

STEP 3: Using Eqs. (3.6), (3.7) and (3.8) for the second order reduced model: 

1 = -0.10643,  2 = 0.251599  3=1 

1 = 0.08181   2 = 1, 

 = 0.210287 

STEP 4: Numerator of reduced order model is based on Eq. (3.10) 

B (z) = z-0.91819 

Denominator of reduced order model is based on Eq. (3.9): 

A (z) = z
2
-1.7484z+0.641971 

STEP 5: Desired reduced order model will assume the following form after 

incorporating gain correction factor becomes: 

641971.0z7484.1z

193083.00.210287z
R(z)

2 


  

The steps corresponding to other values of m would be same as a step corresponding to       

m = 1.1 
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                      Derived Reduced 2
nd

 –Order Models 

   ;
01.02.172.02.1

323.091.055.1
)(

234

23






zzzz

zzz
zG            (Original system) 

  ;
641971.07484.1

193083.0210287.0
)(

22





zz

z
zR                                      (Reduced 2

nd
 –Order, m=1.1) 

 ;
53262.06019.1

21967.026643.0
)(

22





zz

z
zR                                         (Reduced 2

nd
 –Order, m=1.2) 

;
447385.046536.1

2395288.0308814.0
)(

22





zz

z
zR                                     (Reduced 2

nd
 –Order, m=1.3) 

;
379966.0339523.1

2500507.0341674.0
)(

22





zz

z
zR                                      (Reduced 2

nd
 –Order, m=1.4) 

;
325833.022289.1

2542108.0367784.0
)(

22





zz

z
zR                                        (Reduced 2

nd
 –Order, m=1.5) 

;
2820012.01135924.1

2538575.03889821.0
)(

22





zz

z
zR                                (Reduced 2

nd
 –Order, m=1.6) 
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4.3 MATLAB ANALYSIS AND PLOTS (UNSTABLE SYSTEM) 

 4.3.1 Script file(Unstable System) 

 %Script file 

 %Purpose: 

%Step response of original 4
th
 order unstable system and reduced 2

nd 

order MRSM           
clc; 
clear all; 
%for Modified Routh unstable system(z=p+1.1) 
n=[1 -1.55 0.91 -0.323]; 
d=[1 -1.2 0.72 -1.2 0.01]; 
r=ones(1,101); 
k=0:100; 
y=filter(n,d,r); 
plot(k,0.81*y,'-'); 
v=[ 0 20 0 10] ; 
axis(v); 
title('unit step response'); 
xlabel('k'); 
ylabel('y(k)'); 
hold on; 
n1=[0 0.210287 -0.193083]; 
d1=[1 -1.7484 0.641971]; 
r=ones(1,101); 
k=0:100; 
y=filter(n1,d1,r); 
plot(k,0.81*y,'-.'); 
v=[ 0 20 0 10] ; 
axis(v); 
title('unit step response'); 
xlabel('k'); 
ylabel('y(k)'); 
gtext('__original 4th order system'); 
gtext('-.-2nd order reduced MRSM'); 

 

 

4.3.2. Results in command window (Unstable System) 

 

 

z = 

 

   0.9500           

   0.3000 + 0.5000i 

   0.3000 - 0.5000i 
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p = 

 

   1.3317           

  -0.0701 + 0.9443i 

  -0.0701 - 0.9443i 

   0.0084           

 

k = 

 

     1 

 

r = 

 

  Columns 1 through 14 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 15 through 28 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 29 through 42 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 43 through 56 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 57 through 70 
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     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 71 through 84 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 85 through 98 

 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

 

  Columns 99 through 101 

 

     1     1     1 

 

k = 

 

  Columns 1 through 14 

 

     0     1     2     3     4     5     6     7     8     9    10    11    12    13 

 

  Columns 15 through 28 

 

    14    15    16    17    18    19    20    21    22    23    24    25    26    27 

 

  Columns 29 through 42 

 

    28    29    30    31    32    33    34    35    36    37    38    39    40    41 

 

  Columns 43 through 56 

 

    42    43    44    45    46    47    48    49    50    51    52    53    54    55 
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  Columns 57 through 70 

 

    56    57    58    59    60    61    62    63    64    65    66    67    68    69 

 

  Columns 71 through 84 

 

    70    71    72    73    74    75    76    77    78    79    80    81    82    83 

 

  Columns 85 through 98 

 

    84    85    86    87    88    89    90    91    92    93    94    95    96    97 

 

  Columns 99 through 101 

 

    98    99   100 
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4.3.3. Plots (Unstable System) 

 

 

 

 

Fig.4.1:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.1) 
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Fig.4.2:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.2) 
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Fig.4.3:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.3) 
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Fig.4.4:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.4) 
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Fig.4.5:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.5) 
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Fig.4.6:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.6) 
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4.4    NUMERICAL EXAMPLE 4.2: 

Considered an unstable 4
th

 order system whose transfer function is given as: 

        
72624.01631.3146.5712.3

365.053.11.2
)(

234

23






zzzz

zzz
zG  

STEP 1: Original G (z) has the pole which lies outside of unity circle having further pole 

1. Thus according to argument made in introductory part of modified Routh stability 

method expansion point m (z=p+m) should be more than 1 so 

m = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. 

Thus, 

0031.00075.01564.0688.0

1008.054.02.1
1.1

)(

)(
)(

234

23






pppp

ppp
pz

pE

pD
PG  

STEP 2: Routh array for numerator polynomials is obtained by using Eq. (3.5) 

and Table (3.2), when z=p+1.1: 

0.1008                                           1.2                                           0 

0.54                                                 1 

1.01333 

Routh array for denominator polynomial is obtained by using table (3.1) and Eq. (3.4), 

when z=p+1.1 
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-0.0031   0.1564                           1 

0.0075    0.688 

0.44077   1 

0.67098 

4.4.1 Reduced Model (2
nd

 –order): 

STEP 3: Using Eqs. (3.6), (3.7) and (3.8) for the second order reduced model: 

1 = -0.007033,  2 = 0.01839  3=1 

1 = 0.18666   2 = 1, 

 = 1.225128 

STEP 4: Numerator of reduced order model is based on Eq. (3.10) 

B (z) = z-0.91334 

Denominator of reduced order model is based on Eq. (3.9): 

A (z) = z
2
-2.18161z+1.182738 

STEP 5: Desired reduced order model will assume the following form after 

incorporating gain correction factor becomes: 

82738.1z18161.2z

119005.11.225128z
R(z)

2 


  
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The steps corresponding to other values of m would be same as a step corresponding to       

m = 1.1 

Derived Reduced 2
nd

 –Order Models 

   ;
72624.01631.3146.5712.3

365.053.11.2
)(

234

23






zzzz

zzz
zG           (Original system) 

  ;
82738.118161.2

119005.1225128.1
)(

22





zz

z
zR                                      (Reduced 2

nd
 –Order, m=1.1) 

 ;
20947.090048.0

885052.1915799.1
)(

22





zz

z
zR                                        (Reduced 2

nd
 –Order, m=1.2) 

;
37046.134149.2

694631.159645.1
)(

22





zz

z
zR                                     (Reduced 2

nd
 –Order, m=1.3) 

;
50376.14487.2

54408.136008.1
)(

22





zz

z
zR                                          (Reduced 2

nd
 –Order, m=1.4) 

;
65047.15619.2

45651.120664.1
)(

22





zz

z
zR                                          (Reduced 2

nd
 –Order, m=1.5) 

;
80979.167778.2

40788.110205.1
)(

22





zz

z
zR                                        (Reduced 2

nd
 –Order, m=1.6) 
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4.5 MATLAB ANALYSIS AND PLOTS (UNSTABLE SYSTEM) 

 4.5.1 Script file (Unstable System) 

 %Script file 

 %Purpose: 

%Step response of original 4
th
 order unstable system and reduced 2

nd 

order MRSM           
clc; 
clear all; 
%for Modified Routh unstable system(z=p+1.1) 
n=[0 1 -2.1 1.53 -0.365]; 
d=[1 -3.712 5.416 -3.1631 0.72624]; 
[z p k]=tf2zp(n,d) 
r=ones(1,41) 
k=0:40 
y=filter(n,d,r); 
plot(k,y,'-'); 
v=[ 0 40 -8000 6000] ; 
axis(v); 
title('unit step response'); 
xlabel('k'); 
ylabel('y(k)'); 
hold on; 
n1=[0 1.225128 -1.119025]; 
d1=[1 -2.18161 1.82738]; 
g=tf(n,d) 
r=ones(1,36); 
k=0:35; 
y=filter(n1,d1,r); 
plot(k,y,'-.'); 
v=[ 0 40 -8000 6000] ; 
axis(v); 
title('unit step response'); 
xlabel('k'); 
ylabel('y(k)'); 
gtext('__original 4th order system'); 
gtext('-.-2nd order reduced MRSM'); 
 

4.5.2. Results in command window (Unstable System) 

z = 

   0.8000 + 0.3000i 
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   0.8000 - 0.3000i 

   0.5000           

p = 

   1.3892 + 0.7783i 

   1.3892 - 0.7783i 

   0.4668 + 0.2617i 

   0.4668 - 0.2617i 

k = 

     1 

r = 

  Columns 1 through 14 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 15 through 28 

     1     1     1     1     1     1     1     1     1     1     1     1     1     1 

  Columns 29 through 41 

     1     1     1     1     1     1     1     1     1     1     1     1     1 
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k = 

  Columns 1 through 14 

     0     1     2     3     4     5     6     7     8     9    10    11    12    13 

  Columns 15 through 28 

    14    15    16    17    18    19    20    21    22    23    24    25    26    27 

  Columns 29 through 41 

    28    29    30    31    32    33    34    35    36    37    38    39    40 
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4.5.3. Plots(Unstable System) 

 

 

 

Fig.4.7:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.1) 
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Fig.4.8:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.2) 
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Fig.4.9:Step response of original 4
th
 order system and reduced 2

nd
-order MRSM(z=p+1.3) 
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Fig.4.10:Step response of original 4
th
 order system and reduced 2

nd
-order  MRSM(z=p+1.4) 
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Fig.4.11:Step response of original 4
th
 order system and reduced 2

nd
-order  MRSM(z=p+1.5) 
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Fig.4.12:Step response of original 4
th
 order system and reduced 2

nd
-order  MRSM(z=p+1.6) 
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Remarks: In order to reduce the order of unstable system (z=p+m) transformation is 

adopted where p is greater than 1(one). To preserve the characteristic of original unstable 

system in reduced-order system author suggest the value of m which should have range 

[1, 1.5], if m>1.5 then characteristic of reduced unstable system will not match with 

original system. 
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                                                                                                                        CHAPTER 5     

CONCLUSION AND SCOPE FOR FURTHER WORK 

5.1 CONCLUSION: 

The dissertation contains the results of the investigation carried out by the author in the 

area of reduced order modeling and its applications. 

 Routh stability method has been discussed which is stability preservation method. 

 Modified Routh stability method using p-domain transformation for stable, and 

unstable system has been proposed in this dissertation. Modified Routh stability method 

which employs a Routh array for reduction of linear time-invariant, discrete-time systems 

yields stable reduced models, if original is stable. The method is easy to employ and 

relates simply control engineering problem. 

 Modified Routh stability method takes the advantages of p-domain, 

transformation instead of s-domain which poses initial, value problem where p-domain 

transformation does not. This proposed modified Routh stability method is applicable to 

order reduction of stable, oscillatory and unstable systems which finds its application for 

controller design purposes. 

5.2 SCOPE FOR FURTHER WORK: 

 Proposed method utilizes bilinear transformation which poses initial value 

problem can be resolved using efficient p-domain transformation like z = Ap/ (A+Bp) 

instead of bilinear transformation. Proposed method retains desired time-domain 

specification as well as frequency-domain specifications in reduced-order model where 

practically significant frequencies are preserved implicitly. But explicit incorporation of 

practically significant frequencies interest can be tired in this method as multifrequency 
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Routh approximation has. Proposed modified Routh stability method using p-domain 

transformation can be tired for multivariable systems. 
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