

i

DISSERTATION

On

A Paradigm for testing Web Application

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT

FOR THE AWARD OF DEGREE

Of

MASTER OF ENGINEERING

(Computer Technology and Application)

Delhi University, Delhi

Submitted By:

RUCHI GOEL

University Roll No

10073

Under the Guidance of:

Dr. Akshi Kumar

Assistant Professor

Department Of Computer Science and Engineering

Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY

2011

i

CERTIFICATE

I hereby certify that the work is being presented in the thesis report entitled, ―A

Paradigm for Testing Web Application‖, submitted in partial fulfilment of the

requirements for the award of degree of Master of Engineering in Computer Technology

& Application at Delhi College of Engineering, Delhi, is a authentic record of my own

work carried out under the supervision of Dr. Akshi Kumar and refers other researcher‘s

works which are duly listed in the reference section.

The matter presented in this thesis has not been submitted for the award of any other

degree of any university.

(Ruchi Goel)

This is to certify that the above statement made by the candidate is correct and true to the

best of my knowledge.

Dr. Akshi Kumar

Assistant Professor

Department of Computer Science and Engineering

Delhi College of Engineering, Delhi - 110042

ii

ACKNOWLEDGEMENT

No volume of words is enough to express my gratitude towards my guide Dr. Akshi

Kumar, Assistant Professor, Computer Science and Engineering, Delhi College of

Engineering, Delhi, who has been very concerned and has aided for all the materials

essential for the preparation of this thesis report. She has helped me to explore this vast

topic in an organized manner and provided me with all the ideas on how to work towards

a research-oriented venture.

I am also thankful to Dr. (Mrs) Daya Gupta, Head of the Department, Computer

Science and Engineering, Delhi College of Engineering, Delhi for the motivation and

inspiration that triggered me for the thesis work.

I would also like to thank the staff members and my colleagues who were always

there at the need of the hour and provided with all the help and facilities, which I required

for the completion of my thesis work.

Most importantly, I would like to thank my husband ,parents and the almighty for

showing me the right direction out of the blue, to help me stay calm in the oddest of the

times and keep moving even at times when there was no hope

Ruchi Goel

M.E. (Computer Technology and Application)

Department of Computer Science and Engineering

Delhi College of Engineering Delhi-42

iii

ABSTRACT

For any work of literature, a fundamental issue is to identify the individual(s) who wrote

it, and conversely, to identify all of the works that belong to a given individual or to

identify the individual who writes many papers on same topic.

A web application is an application that can be accessed via a web browser over a

network. Web applications contain client side code and server side code. Web

applications undergo changes in the maintenance phase, and retesting changed programs

is done thereafter. To retest a program after changes, we can select a subset of the whole

test suite on the condition that the selected subset will give confidence about covering the

changes. As an important method to ensure quality of web applications, Regression

Testing techniques are required for adequate selection of these subsets of test cases. This

project compares regression testing techniques for web applications based on a safe

approach that covers changed elements and other potentially affected ones.

In this project we have implemented a new technique to select test cases for regression

testing on web applications based on the Edge Test Tree Graph (ETT) as presented in the

paper ―A Practical Web Testing Model for Web Application Testing‖ by Zhongsheng

Qian, Huakiou Miao, Hongwei Zeng., School of Computer Engineering and Science,

Shanghai University, China[5]. This work proposes a Web Testing Model for web

application testing. It starts from constructing the ETT (Event Test Tree) of web

application. An algorithm is designed to derive an ETT (Event Test Tree) from the EDG

from ETT, we extract the path expressions to generate test paths. Then a test specification

is made in C++ to generate the required test cases. Then the web application is modified

and Regression Testing is applied. The regression test selection technique is based on

identifying changed and potentially changed components. Empirical results show that this

technique selects a reduced number of test cases that experience only affected and

potentially affected components.we have also studied paper by Abbas Tarhini, Zahi

Ismail, Nashat Mansour, Regression Testing Web Applications, 2008 International

Conference on Advanced Computer Theory and Engineering[3].

iv

Contents

Certificate i

Acknowledgement ii

Abstract iii

Contents iv

1 Introduction 1

1.1 Motivation..1

1.2 Problem Statement .. 2

1.3 Proposed Work...2

1.4 Organization of thesis..4

1.5 Chapter Summary..4

2 Literature Review 5

2.1 Introduction...5

2.2 Web Application ...6

v

2.2.1 Phases in web Application ..8

2.2.2 Challenges in analysis and Modelling of web Application…………….9

2.2.3 Influences produced by changing web Application…………………...10

2.3 Testing..12

 2.3.1 Testing Fundamentals…………………………………………………...12

 2.3.2 Different approaches to testing…………………………………………13

 2.3.3 Testing process…………………………………………………………...14

 2.3.4 Test cases………………………………………………………………...16

2.4 Web Application Testing……………………………………………………….19

 2.4.1 Background………………………………………………………………19

 2.4.2 Defining Website Quality and Reliability………………………………...19

 2.4.3 Dimensions of quality…………………………………………………….19

 2.4.4 impact Of Quality…………………………………………………………20

 2.4.5 Website Architectural Factors……………………………………………..20

 2.4.6 Website Test Requirements……………………………………………......21

 2.5 Regression Testing………………………………………………………………..23

vi

 2.5.1 Regression Test Selection Techniques…………………………………………24

 2.5.2 Regression Testing Process……………………………………………………..25

2.6 Modelling Web Application………………………………………………………....31

2.7 Chapter summary…………………………………………………………………….32

3 Design and Architecture 33

3.1 Web Application Modelling…...33

3.1.1 Event Dependency Graph...34

3.1.2 Event Test Tree... 35

3..2 Algorithm………………………………………………………………....................36

 3.2.1 EDG to ETT……………………………………………………......................36

 3.2.2 Comparison…………………………………………………………………37

3.3 Test Case Reduction……………………………………………………………….40

3.4 Chapter Summary...40

4 Implementation 41

4.1 Technology Used... 42

vii

 4.1.1 Hardware and Software specification...42

4.2 Methodology………...43

4.2.1 Event dependency graph of original...44

4.2.2 Event dependency graph of Modified...44

4.2.3 Event Test tree of original...46

4.2.4 Event test tree of modified...47

 4.2.5 Test Path...47

4.3 Analysis and Results.. 48

4.3.1 Test Cases for original System...49

4.3.2Test Cases for Modified System...52

4.4 Result..56

4.5 Chapter Summary..58

5 Conclusion and Future Works 59

5.1 Conclusion ………... 59

5.2 Future Works…... 60

Bibliography 61

viii

Appendixes 64

A.1 Code of the System...64

A.2 Screen Shots of System...77

List of Abbreviations ix

Table of Figures x

Table of Tables xii

ix

LIST OF ABBREVIATION

EDG Event Dependency Graph

ETT Event Test Tree

TE Test Expression

API Application Programming Interface

CGI Common Gateway Interface

UML Unified Modeling Language

XML Extensible Markup Language

SDG System Dependent Graph

SQL Sequential Query Language

x

List of Figures

2.1 Web Application Components...7

2.2 Testing Process..13

2.3 Levels of testing...15

2.4: Regression Testing Techniques..26

2.5 Classification of Test Case Prioritization...43

3.1 Architecture of System...34

3.2 Event Dependency graph.. ...35

3.3 Event Test tree..36

4.1 Event Dependency Graph of original Application..44

4.2 Event Dependency Graph of modified Application...45

 4.4 Event Test Tree of original Application...46

 4.4 Event Test Tree of modified Application...47

 4.5 Main Menu.. 54

4.6 Signup Menu...55

4.7 LogIn Menu.. 55

xi

4.8 Test cases forForget password ..56

4.9 Test cases for LogIn Functionality..56

xii

List of Tables

3.1:EDG to ETT………………………………………………………………………37

4.1 test cases for original system………………………………………………………48

4.2 test cases for Modified system……………………………………………………53

xiii

1

Chapter 1

Introduction

In this chapter we will expand why we had chosen this work as my major thesis, how we

motivated to do this work along with some issues regarding the work done earlier on the

same and how we rectify these issues in my thesis with some assumptions given in the

problem statement along with some objectives of the thesis and finally we will discuss

how we accomplished the objectives in the contribution.

1.1 Motivation

Web applications generate web pages, which contains different kinds of information such

as text, images and forms. Web applications provide thousand and thousand of

applications in our day to day life.Web application can be simple login page on web site

or it can be as complex as word processor or spreadsheet. The basic aim of using web

application is that they require very little or no disk space on the client. Web application

contains code of server side as well as client side. Now a day‘s commonly used web

applications are login, online shopping, online retail sales, online marketing and many

other functions. Every software product has a target Audience for e.g. the audience for

online auctions software is different from banking software. So when an organization

develops a software their main aim is whether they will meet all the requirements of

customers or not. The main aim in testing is to detect errors so that errors can be

recovered. Regression testing is to test modified software to ensure that changes are

correct and do not adversely affect other parts of the softwareSuppose that you've tested a

system completely and we found no errors now assume that we do some changes in our

system or in one part and we want to be sure that this change in system will not affect my

system means will not introduce any new errors. Testing is to make sure the software

hasn't taken a step backwards or "regressed", is called "regression testing".The main

aim of Regression testing is that whenever code is modified or changed it is able to

detect unexpected faults. Regression testing should be used to check the code's integrity.

2

Mainly, regression testing is performed during automated builds tigthly to ensure that

errors are detected and recovered as soon as possible.

1.2 Problem Statement

User demands are changing day by day and web applications have rapid developing

speed keeping all this in mind, regression testing is much important. Since the changed

demands result in different versions of Web applications, and the faults usually hiding in

the adjusted contents, the regression testing must cover all the related pages. First ly, we

analyze the possible changes in the Web applications and the influences produced by

these changes, discussing in the direct-dependent and indirect-dependent way. Very

limited work is proposed on regression testing web based Application.

 For our work we have studied the paper by Abbas Tarhini[3] tested web

application using Event Dependency Graph, in which they compare original and modified

web application using affected and potentially affected nodes and reduce test cases. The

disadvantage of this approach is that graph includes some cyclic redundancies which can

be avoided by using tree.

 For our problem statement we have make event dependency graph of original and

modified web application. Then we convert Event dependency graph to Event Test Tree

for the original and modified system and then identifying the changed nodes in order to

select a reduced set of test cases. The results obtained are compared with the results

obtained from the Event Dependency Graph technique to devise the best method. The

purpose of building the web application to be tested is to provide online facilities for the

students pursuing higher education.

1.3 Proposed Work

In this thesis, we provide a review of existing approaches to problems similar to what we

outlined in the previous section. We will use regression testing technique to test web

application. using Regression testing we compare original and modified web application

and check nodes which are affected and potentially affected nodes.When we do

3

regression testing there are two options first is to rerun every existing test case which

require lots of time and resources but the problem is we don‘t have unlimited time and

resources and second is to rerun a subset of existing test cases but it is also not practical

to identify subset of test cases from existing test suite, so we propose a model to test web

application using Regression testing technique.

 First step is to define all the requirements after defining the problem. Requirement

modelling provide multiple levels of detail and support for verification, validation and

testing prior to implementation. Regression testing means testing a system using a test

set T and then again testing the modified system using same test set T‘ and check nodes

which are affected means which are changed or modified. In short Regression testing

means testing the modified system with same test cases which were used previously to

test the original system.

 Important question is which existing test cases should be used for regression

testing? There are two options foe that first is that we rerun every test case and second

option is that we rerun subset of existing test cases.The events represent changes in the

system state, and services define the states in which they can be running, and how the

system reacts accordingly

.

The regression testing technique is summarized by the following steps:

1) Model the web application and the modified web application by using Event

Dependency Graph

2) Convert Event driven graph to Event Test Tree which will avoid scalability

issues for original and modified web application

3) Identify the changed nodes by comparing the nodes from both tree

4) Identify the potentially affected nodes

5) Select the test cases that pass through the changed nodes and the potentially

affected nodes.

4

6) Calculate the reduction in test cases from original and modified one

1.4 Organization of thesis

In the above chapter, we had discussed the motivation, problem statement, objective of

the thesis and finally the contribution. Chapter 2 provides the literature review of related

works. Chapter 3 has the complete details design of the new approach, their algorithms,.

Chapter 4 shows the experimental setup and results of the proposed system and finally

chapter 5 consists of the conclusion and possible future work or directions in this area

and it finally ends with the links and references (bibliography) and appendices.

1.5 Chapter Summary

In this chapter we had discussed the motivation of the author to do this work and it also

includes some issues regarding the previous work done on the same. Finally author had

described the objectives of the thesis and how he accomplishes these objectives in his

research using some assumptions and Event Dependency Graph and Event Test Tree.

5

 Chapter 2

Literature Review

In this chapter, we will provide a literature review for related work in this area. The work

done on regression testing web application is very limited.Although For two reasons, the

list of related works is long: one reason is that this task is at the intersection of several

important and active machine learning and NLP research areas therefore many different

approaches can be adapted to become relevant. The other important reason is that our

main approach of using graphical models has gained tremendous interest in recent

years due to successful application of these methods. We have made an attempt to

organize some of related literature with respect to their relevance to this task. We hope

the result of this literature review to help anyone who would like to design a new method

for a different task based on what is known about previous methods.

2.1 INTRODUCTION

Models are considered an essential step in capturing different system behaviors and

simplifying the analysis required to check or improve the quality of software.

Verification and testing of web software requires effective modeling techniques that

address the specific challenges of web applications.

Like many software domains, web applications are becoming more complex. This

complexity arises due to several factors, such as a larger number of hyperlinks, more

complex interaction, and the increased use of distributed servers. Modeling can help to

understand these complex systems, and several papers in the literature have studied the

specific problem of modeling web applications. In some cases, new models have been

proposed, while in other cases, existing modeling techniques have been adapted from

other software domains. Modeling can help designers during the design phases by

formally defining the requirements, providing multiple levels of detail, and providing

support for testing prior to implementation. Support from modeling can also be used in

later phases to support validation and verification.

6

 2.2 Web Application

A web application is an application that is accessed over a network such as the Internet

or an intranet[18]. The main drawback in web application is that it may have several

entry points, and users can not prevent himself from these complicated interactions. Web

applications are becoming more complex due to increase use of distributed servers, larger

number of hyperlinks, and their usage in our daily life. Modelling can help us in engaging

in these complex interactions. A web application is a dynamic extension of a web or

application server. There are two types of web applications:

 Presentation-oriented: A presentation-oriented web application generates

interactive web pages containing various types of markup language (HTML,

XML, and so on) and dynamic content in response to requests.

 Service-oriented: A service-oriented web application implements the endpoint of

a web service. Presentation-oriented applications are often clients of service-

oriented web applications. Web applications are popular due to the ubiquity of

web browsers, and the convenience of using a web browser as a client, sometimes

called a thin client. The ability to update and maintain web applications without

distributing and installing software on potentially thousands of client computers is

a key reason for their popularity, as is the inherent support for cross-platform

compatibility. Common web applications include webmail, online retail sales,

online auctions, wikis and many other functions. A web application is often

structured as a three-tiered application[19]. As shown in Fig. 2.1, the web browser

represents the first tier. The web server that implements CGI, PHP, Java Servlets

or Active Server Pages (ASP),along with the application server that interacts with

the database and other web objects is considered the middle tier. Finally, the

database along with the DBMS server forms the third tier.

7

Figure:2.1 Web Application Components

Web applications generate web pages, comprising different kinds of information such as

text, images and forms. These web pages can be either static or dynamic. Static pages

reside on a web server and contain only HTML and client side executable code (e.g.

JavaScript) and are served by the web server. Dynamic pages are generated as the result

of the execution of various scripts and components on the server. These pages contain a

mixture of HTML source and executable code, and are served by the application

server.Some researchers consider a website to be simply a set of related web pages

grouped together by some means on a server, or in a folder on a server. Such pages are

static pages that don‘t use dynamic features and thus need not be processed by the

application servers.The advantages and disadvantages of using web applications are;

Benefits

 Web applications do not require any complex "roll out" procedure to deploy in

large organizations. A compatible web browser is all that is needed;

 Browser applications typically require little or no disk space on the client;

8

 They require no upgrade procedure since all new features are implemented on the

server and automatically delivered to the users;

 Web applications integrate easily into other server-side web procedures, such as

email and searching.

 They also provide cross-platform compatibility in most cases (i.e., Windows,

Mac, Linux, etc.) because they operate within a web browser window.

Drawbacks

 Web applications absolutely require compatible web browsers. If a browser

vendor decides not to implement a certain feature, or abandons a particular

platform or operating system version, this may affect a huge number of users.

 Standards compliance is an issue with any non-typical office document creator,

which causes problems when file sharing and collaboration becomes critical.

 Since many web applications are not open source, there is also a loss of

flexibility, making users dependent on third-party servers, not allowing

customizations on the software and preventing users from running applications

offline (in most cases). However, if licensed, proprietary software can be

customized and run on the preferred server of the rights owner.

2.2.1. The Phases in a Web Application Project

The Web application development process has 4 phases:

1. Envisioning the nature and direction of the project

2. Devising the plan

3. Development

4. Testing, support and stability

1. Envisioning the nature and direction of the project

In this phase, the management and developers assigned to the project come together and

establish the goals that the solution must achieve. This includes recognizing the

limitations that are placed on the project, scheduling, and versioning of the application.

9

By the end of this phase, there should be clear documentation on what the application

will achieve.

2. Devising the plan

In this phase, team determine the "hows" of the application. What scripting language is

most appropriate, which features must be included, and how long will it take? These are

some of the questions that must be answered through this planning phase. The main

tangents at this point are the project plan and functional specification. The project plan

determines a timeframe of events and tasks, while the functional specification outlines in

detail how the application will function and flow.

3. Development

Once the project plan and functional specification are ready, a baseline is set for the

development work to begin. The programmer/s or Web developer/s begins coding, testing

and publishing data. This phase establishes the data variables, entities and coding

procedures that will be used throughout the remainder of the project. A milestone

document is prepared by the development team, which is then handed to management for

review.

4. Testing, support and stability

The stability phase of the application project mainly focuses on testing and the removal

of bugs, discrepancies and network issues that may otherwise cause the application to

fail. It is here that policies and procedures are established for a successful support system.

2.2.2. Challenges in Analysis and Modelling Of Web Application

Web applications are evolving rapidly, as many new technologies, languages, and

programming models are used to increase the interactivity and the usability of web

applications. This inherent complexity brings challenges to modelling, analysis, testing,

and verification of this kind of software. Some of these challenges are: the diversity and

complexity of the web application environment increases the risk of non-interoperability

and the complexity of integration. Web applications interact with many components that

10

run on diverse hardware and software platforms. They are written in diverse languages

and they are based on different programming approaches such as procedural, OO,

interpreted, and hybrid languages such as Java Server Pages (JSPs). The client side

includes browsers, HTML, embedded scripting languages and applets. The server side

includes CGI, JSPs, Java Servlets, and .NET technologies. They all interact with diverse

back-end engines and other components that are found on the web server or other servers.

The integration of such components and the web system in general is extremely loose

and dynamically coupled, which provides powerful abstraction capabilities to the

developers, but makes analysis for testing and verification extremely difficult.

Another major challenge comes from the dynamic behavior, including

dynamically generated client components, dynamic interaction among clients and

servers, and the Continual changes in the system context and web technologies.

Web applications may have several entry points, and users can engage in

complicated interactions that the web application cannot prevent. Web applications

often contain database components and may provide the same data to different users. In

these cases, applying access control mechanisms becomes an important requirement

for safe and secure access to web application resources, and the process of implementing

and applying such rules is considered a great challenge.

2.2.3 Influences Produced by changing web Application

A Web page is consisted of many categories of elements, and the changes to some

elements cannot influence others, such as the adjustment for page layout, or the literal

changes to the content, etc. These changes only need specification validation and not

need to consider the inter-relationships among them. As the changes to some elements

may influence other pages, further analysis are needed to check the dependent

relationships among the related pages.

These dependent relationships are divided into two categories: direct dependent and

indirect-dependent. One page can also be consisted of several pages, i.e., there exists

11

including relationship among these pages. But in fact, the pages are independent (except

framework) and these can be disposed as several single pages.

Hyperlink element and form element can connect two pages directly (form can be

Considered as a special hyperlink), i.e., one is the page that contains these elements, and

the other is the page that is pointed by these elements. The basic changes are insert

hyperlink and delete hyperlink. Thus, when insert a hyperlink, the connections are

inspected between the current page and the object page, and the object page can be inside

page (inside the website), outside page (outside the website), or static page, dynamic

page.

If the object page is outside the website, only check whether it is reachable. If it is

inside the website, it is considered in the static and dynamic ways. When the static page

is considered, only 1 is added to the in-degree value of this page. While the dynamic page

is considered, there is still need to validate the function of the form. When a hyperlink is

deleted, the in-degree value is adjusted and it is checked whether it produces an isolate

page. Furthermore, modify a hyperlink is the combination of the two before, i.e., first

delete a hyperlink, and then add a hyperlink.

When the form is researched deeply, it can be found that it produces not only the direct

dependent between pages but also the indirect-dependent among several pages by hidden

transferring data. Otherwise, there may be indirect-dependent between two pages caused

by visiting the shared variables. For example, the script programs in the server side can

execute the actions such as new, modify, visit, delete an item in the database, and the

operations of new, modify, delete are the writing operations to the database while the

operation of visit is the reading one. There are dependent relationships between the

writing and reading operations. The indirect-dependents can be obtained by analyzing the

Definition-usage relationships of variables and the related method is similar to the

traditional software analysis. But since the Web applications change frequently, the

whole system dependent graph cannot be constructed since this task is too hard and

tedious, but adapt the Forward and Backward Search Method to gain the indirect

dependents.

12

2.3 Testing

Testing is one of the most crucial and indispensable part of an effective and efficient

project. It is the phase where the errors remaining from all the previous phases must

be detected. The basic goal of testing is that it performs a very critical role for

quality assurance and for ensuring the reliability of software.

During testing, the program to be tested is executed with a set of test cases, and the

output of the program for the test cases is evaluated to determine if the program is

performing as expected. Thus, testing forms the first step in determining the errors in a

program. Testing a large system is a complex activity, and like any complex activity it

has to be into smaller activities. Due to this, for a project, incremental testing is

generally performed, in which components and subsystems of the system are tested

separately before them to form the system for system testing.

2.3.1 Testing Fundamentals

The theoretical foundations of testing are as follows:

(a) Error: It refers to the discrepancy between a computed,observed,or

measured value and the true, specified, or theoretically correct value.

Error is also used to refer to human action those results in software

containing a defect or fault. This definition is quite general and encompasses

all the phases.

(b) Fault: It is a condition that causes a system to fail in performing its

required function. A fault is the basic reason for software malfunction and is

synonymous with the commonly term bug.

(c) Failure: It is the inability of a system or component to perform a required

function according to its specifications. A software failure occurs if the

13

behavior of the software is different from the specified behavior. Failures may

be caused due to functional or performance reasons.

(d)Test Cases: Test cases basically reveal the presence of faults which is

central to successful testing. Each test case costs money and thus, efforts must

be made to minimize the number of test cases.

(e)Test Oracles: To test any program, we need to have a description of its

expected behaviour and a method of determining whether the observed

behaviour conforms to the expected behaviour. For this we need a test oracle.

A test oracle is a mechanism, different from the program itself that can be used to

check the correctness of the output of the program for the test cases. It can be

depicted diagrammatically as:

 Comparator

 Test Cases Result of

 testing

 Figure 2.2 Testing Process

2.3.2. Different Approaches to Testing

(a) Top-Down and Bottom-Up Approaches :

For this, we assume that a system is a hierarchy of modules. In top-down strategy,

we start by testing the top of the hierarchy, and we incrementally add modules that

Software

under

Testing

 Test

 Oracle

14

it calls and then test the new combined system. This approach requires stubs to be

written. A stub is a dummy routine that simulates a module.

The bottom-up approach starts from the bottom of the hierarchy. First the modules

at the very bottom, which have no subordinates, are tested. Then these modules are

combined with higher-level modules for testing. To perform this approach, drivers

are needed to set up the appropriate environment and invoke the module. It is the

job of the driver to invoke the module under testing with the different set of test

cases.

Both the above approaches are incremental, starting with testing single modules

and then adding untested modules to those that have been tested, until the entire

system is tested.

(b) Functional and Structural Approaches :

In functional testing, the structure of the program is not considered. Test cases are

decided solely on the basis of the requirements or specifications of the program or

module, and the internals of the module or the program are not considered for

selection of test cases. Due to its nature, this testing is also often called ―black box

testing‖.

Structural testing, on the other hand, is concerned with testing the implementation

of the program. The intent of this testing is not to exercise all the different input or

output conditions but to exercise the different programming structures and data

structures used in the program. In this approach, test cases are generated based on

the actual code of the program or module to be tested. This structural approach is

sometimes called ―glass box testing‖ or ―white box testing‖.

2.3.3. Testing Process

As testing is the last phase before the final software is delivered, it has the

enormous responsibility of detecting any type of error that may be in the software.

As testing is the costliest activity in software development, it is important that it be

15

done efficiently. Due to this, different levels of testing are used in the testing

process, each level of testing aims to test different aspects of the system and are

represented graphically as :

 Client Needs Acceptance testing

 Requirements System testing

 Design Integration testing

 Code Unit Testing

 Figure 2.3: Levels Of Testing

The following different levels of testing attempt to detect different types of

faults :

a) Unit Testing : The first level of testing is called unit testing. In this, different

modules are tested against the specifications produced during design for the

modules. It is essentially for verification of the code produced during the

coding phase, and hence the goal is to test the internal logic of the modules. It

16

is typically done by the programmer of the module. It is also called as module

testing.

b) Integration Testing : The next level of testing is often called integration

testing. In this, many unit tested modules are combined into subsystems, which

are then tested. The goal here is to ensure emphasis on testing interfaces

between modules. This testing activity can be considered during testing the

design.

c) System & Acceptance Testing : Here the entire software system is tested. The

reference document for this process is the requirement document and the goal

is to see if the software meets its requirements. This is essentially a validation

exercise, and in many situations it is the only validation activity. Acceptance

testing is sometimes performed with realistic data of the client to demonstrate

that the software is working satisfactorily. Testing here focuses on the external

behaviour of the system.

 The testing process usually commences with a test plan, which is the basic document

guiding the entire testing of the software. It specifies the levels of testing and the units

that need to be tested.

2.3.4 TEST CASES

“A test case has components that describes an input, action or event and an expected

response, to determine if a feature of an application is working correctly.‖

A test case in software engineering is a set of conditions or variables under which a tester

will determine whether an application or software system is working correctly or not. The

mechanism for determining whether a software program or system has passed or failed

such a test is known as a test oracle. In some settings, an oracle could be a requirement

or use case, while in others it could be a heuristic. It may take many test cases to

determine that a software program or system is functioning correctly. Test cases are often

17

referred to as test scripts, particularly when written. Written test cases are usually

collected into test suites.

In order to fully test that all the requirements of an application are met, there must be at

least two test cases for each requirement: one positive test and one negative test; unless a

requirement has sub-requirements. In that situation, each sub-requirement must have at

least two test cases. Keeping track of the link between the requirement and the test is

frequently done using a traceability matrix. Written test cases should include a

description of the functionality to be tested, and the preparation required to ensure that

the test can be conducted.

Formal test cases

A formal written test-case is characterized by a known input and by an expected output,

which is worked out before the test is executed. The known input should test a

precondition and the expected output should test a post condition.

Informal test cases

For applications or systems without formal requirements, test cases can be written based

on the accepted normal operation of programs of a similar class. In some schools of

testing, test cases are not written at all but the activities and results are reported after the

tests have been run.

A test case is usually a single step, or occasionally a sequence of steps, to test the correct

behaviour/functionalities, features of an application. An expected result or expected

outcome is usually given.

Additional information that may be included:

 test case ID

 test case description

 test step or order of execution number

 related requirement(s)

 depth

18

 test category

 author

 check boxes for whether the test is automatable and has been automated.

Additional fields that may be included and completed when the tests are executed:

 pass/fail

 remarks

Larger test cases may also contain prerequisite states or steps, and descriptions. A written

test case should also contain a place for the actual result.

These steps can be stored in a word processor document, spreadsheet, database or other

common repository. In a database system, you may also be able to see past test results

and who generated the results and the system configuration used to generate those results.

These past results would usually be stored in a separate table.

Test suites often also contain

 Test summary

 Configuration

Besides a description of the functionality to be tested, and the preparation required to

ensure that the test can be conducted, the most time consuming part in the test case is

creating the tests and modifying them when the system changes. Under special

circumstances, there could be a need to run the test, produce results, and then a team of

experts would evaluate if the results can be considered as a pass. This happens often on

new products' performance number determination. The first test is taken as the base line

for subsequent test / product release cycles.

Writing effective test cases is a skill and that can be achieved by some experience and in-

depth study of the application on which test cases are being written. For any application

basically all the types of test cases including functional, negative and boundary value test

19

cases should be covered. Test cases should be simple and easy to understand and to the

point without including essay like explanations.

2.4 WEB APPLICATION TESTING

2.4.1. Background

Websites impose some entirely new challenges in the world of software quality. Within

minutes of going live, a Web application can have many thousands more users than a

conventional, non-Web application. The immediacy of the Web creates immediate

expectations of quality and rapid application delivery, but the technical complexities of a

Website and variances in the browser make testing and quality control that much more

difficult, and in some ways, more subtle, than "conventional" client/server or application

testing. Automated testing of Websites is an opportunity and a challenge.

Web testing is the name given to software testing that focuses on web

applications. Complete testing of a web-based system before going live can help address

issues before the system is revealed to the public[20]. Issues such as the security of the

web application, the basic functionality of the site, its accessibility to handicapped users

and fully able users, as well as readiness for expected traffic and number of users and the

ability to survive a massive spike in user traffic, both of which are related to load testing

2.4.2. Defining Website Quality and Reliability

Like any complex piece of software there is no single, all inclusive quality measure that

fully characterizes a Website (by which we mean any web browser enabled application).

2.4.3. Dimensions of Quality:

There are many dimensions of quality; each measure will pertain to a particular Website

in varying degrees. Some common measures are :

 Timeliness: Websites change often and rapidly. This measure indicates how much

has a Website changed since the last upgrade.

20

 Structural Quality: This indicates how well do all of the parts of the Website hold

together. It checks weather all links inside and outside the Website are working or

not.

 Content: It matches the content of critical pages with the specifications.

 Accuracy and Consistency: it checks the data for accuracy and consistency checks

are also performed.

 Response Time and Latency: Website server response to a browser request within

certain performance parameters is evaluated.

 Performance: The Browser --> Web --> Website --> Web --> Browser connection

link is checked for swiftness.

2.4.4. Impact of Quality:

Quality remains is in the mind of the Website user. A poor quality Website, one with

many broken pages and faulty images, with Cgi-Bin error messages, etc., may cost a lot

in poor customer relations, lost corporate image, and even in lost sales revenue. Very

complex, disorganized Websites can sometimes overload the user.

The combination of Website complexity and low quality is potentially lethal to Company

goals. Unhappy users will quickly depart for a different site; and, they probably won't

leave with a good impression.

2.4.5 Website Architectural Factors

A Website can be quite complex, and that complexity -- which is what provides the

power, of course -- can be a real impediment in assuring Website Quality. Features

considered from Quality perspective:

Browser: The browser is the viewer of a Website and there are so many different

browsers and browser options that a well-done Website is probably designed to look

good on as many browsers as possible. This imposes a kind of de facto standard: the

Website must use only those constructs that work with the majority of browsers. But this

still leaves room for a lot of creativity, and a range of technical difficulties. And, multiple

browsers' renderings and responses to a Website have to be checked.

21

Display Technologies: What you see in your browser is actually composed from many

sources:

 HTML. There are various versions of HTML supported, and the Website ought to

be built in a version of HTML that is compatible.

 Java, JavaScript. JavaScript and Java applets will be part of any serious Website,

the quality process must be able to support these.

 Database Access. Interaction with database should be performed easily without

any performance bottlenecks.

Navigation: Users move to and from pages, click on links, click on images (thumbnails),

etc. Navigation in a Website is often complex and has to be quick and error free.

Object Mode: The display you see changes dynamically; the only constants are the

"objects" that make up the display. These aren't real objects in the OO sense; but they

have to be treated that way. So, the quality test tools have to be able to handle URL links,

forms, tables, anchors, buttons of all types in an "object like" manner so that validations

are independent of representation.

Server Response : Server response is a determining factor of the over all quality of a

website.

Interaction & Feedback : For passive, content-only sites the only real quality issue is

availability. For a Website that interacts with the user, the big factor is how fast and how

reliable that interaction is.

Concurrent Users : Multiple user support should be there. While Websites often

resemble client/server structures, with multiple users at multiple locations a Website can

be much different, and much more complex, than complex applications.

2.4.6. Website Test Requirements

Test Context : Tests need to operate from the browser level for two reasons: (1) this is

where users see a Website, so tests based in browser operation are the most realistic; and

22

(2) tests based in browsers can be run locally or across the Web equally well. Local

execution is fine for quality control, but not for performance measurement work, where

response time including Web-variable delays reflective of real-world usage is essential.

Website Dynamic Validation : Confirming validity of what is tested is the key to

assuring Website quality.

Operational Testing : Individual test steps may involve a variety of checks on individual

pages in the Website:

 Page Consistency. Consistency between pages is checked across different versions.

 Table, Form Consistency. To check the content of tables for consistency and

accuracy.

 Page Relationships. Checking for the links consistency and to find missing and

broken links.

 Performance Consistency, Response Times. Response time for a user action should be

same and within the specified range.

Test Suites: Tests can be run in a variety of modes:

 Unattended Testing. Individual and/or groups of tests should be executable singly or

in parallel from one or many workstations.

 Background Testing. Tests should be executable from multiple browsers running "in

the background" on an appropriately equipped workstation.

 Distributed Testing. Independent parts of a test suite should be executable from

separate workstations without conflict.

 Performance Testing. Timing in performance tests should be resolved to the

millisecond; this gives a strong basis for averaging data.

 Random Testing. There should be a capability for randomizing certain parts of tests.

 Error Recovery. While browser failure due to user inputs is rare, test suites should

have the capability of re synchronizing after an error.

23

Content Validation : Apart from how a Website responds dynamically, the content

should be checkable either exactly or approximately. Here are some ways that content

validation could be accomplished :

 Structural. All of the links and anchors should match with prior "baseline" data.

 Checkpoints, Exact Reproduction. One or more text elements -- or even all text

elements -- in a page should be markable as "required to match".

2.5 Regression Testing

To validate the correctness and influence of the changes, the regression testing must be

carried out. Regression testing is the process of testing modified software to detect

whether new faults have been introduced into previously tested code. One approach to

regression testing is to save the test suites for a product and reuse them to retest the

product after it is modified, but this retest-all technique can be excessively expensive.

Regression testing refers to testing the modified version of a system, w’, using a test set T

used previously to test the original system, w. The selection of suitable test cases from T

can be made in different ways and a number of regression-testing methods have been

proposed. These methods are based on different objectives and techniques, such

as:procedure and class firewalls , semantic differencing ; textual differencing slicing-

based data-flow technique, test case reduction and safe algorithm based on program‘s

control graph.

. Studies suggest that a significant portion of development and maintenance costs go to

this retesting, which is known as regression testing. Reports estimate that regression

testing consumes as much as 80% of the overall testing budget and can consume up to

50% of the cost of software maintenance. Rapidly changing software and computing

environments present many challenges for effective and efficient regression testing in

practice. Regression testing can be performed after changes are made to the software,

such as after nightly or regular builds, before a new version of the software is released,

every time the software is saved and compiled, such as in an agile development

environment, or before patches, such as security patches, are released. Regardless of the

environment or when it is performed, the goals of regression testing are the same: to

24

improve confidence that the changes behave as intended and that they have not adversely

affected unchanged parts of the software. Because regression testing is important, but

expensive, much research has been performed, both in industry and in academia, to

develop techniques to make regression testing more effective and efficient. This research

has also produced many tools and systems that have been used for empirical studies that

investigate the effectiveness, scalability, and practicality of the techniques. Researchers

have developed techniques for addressing a number of issues related to regression testing.

First, techniques attempt to reduce the regression testing time by creating effective

regression test suites that test the changed part of the software, by identifying test cases in

the regression test suite that do not need to be rerun on the changed software, and by

identifying and removing obsolete test cases. Second, techniques can reuse test suites

created for one version of the software by identifying those test cases that need to be

rerun for testing subsequent versions of the software and by computing an effective

ordering for running the test cases. Third, techniques can recycle test cases by monitoring

executions to gather test inputs that can be used for retesting and by creating unit test

cases from system test cases. Finally, techniques could recover test cases by identifying,

manipulating, and transforming obsolete test cases, by generating new test cases from old

ones, and by repairing test cases when new changes are introduced in the software for

maintenance purposes.

2.5.1Regression Test Selection Techniques

As developers maintain a software system, they periodically regressions test it, hoping to

find errors caused by their changes, and provide confidence that their modifications are

correct. To support this process, developers often create an initial test suite, and then

reuse it for regression testing. The simplest regression testing strategy, retest all, reruns

every test case in the initial test suite. This approach, however, can be prohibitively

expensive rerunning all test cases in the test suite may require an unacceptable amount of

time. An alternative approach, regression test selection, reruns only a subset of the initial

test suite. Of course, this approach is imperfect as well regression test selection

techniques can have substantial costs, and can discard test cases that could reveal faults,

25

possibly reducing fault detection effectiveness. These tradeoffs between the time required

selecting and running test cases and the fault detection ability of the test cases that are run

is central to regression test selection.

 Minimization Techniques

Minimization-based regression test selection techniques hereafter referred to as

minimization techniques, attempt to select minimal sets of test cases from original test set

T, that yield coverage of modified or affected portions of program P.

Dataflow Techniques

Dataflow-coverage-based regression test selection techniques hereafter referred to as

dataflow techniques, select test cases that exercise data interactions that have been

affected by modifications.

.

Safe Techniques

Most regression test selection techniques | minimization and dataflow techniques among

them | are not designed to be safe. Techniques that are not safe can fail to select a test

case that would have revealed a fault in the modified program. In contrast, when an

explicit set of safety conditions can be satisfied, safe regression test selection techniques

guarantee that the selected subset, T , contains all test cases in the original test suite T that

can reveal faults in P.

.

Ad Hoc / Random Techniques

When time constraints prohibit the use of a retest-all approach, but no test selection tool

is available, developers often select test cases based on \hunches", or loose associations

of test cases with functionality. One simple approach is to randomly select a

predetermined number of test cases from T.

2.5.2 Regression Testing Process

The most crucial phase in the software development life cycle is maintenance phase, in

which the development team is supposed to maintain the software which is delivered to

26

the clients by them. Software maintenance results for the reasons like error corrections,

enhancement of capabilities, deletion of capabilities and optimization. Now the changed

or modified software needs testing known as regression testing. Software maintenance is

an activity which includes enhancements, error corrections, optimization and deletion of

obsolete capabilities. These modifications in the software may cause the software to work

incorrectly and may also affect the other parts of the software, so to prevent this

Regression testing is performed. Regression testing is used to revalidate the

modifications of the software. Regression testing is an expensive process in which test

suites are executed ensuring that no new errors have been introduced into previously

tested code.

Let P be a program, let P′ be a modified version of P, and let T be a test suite for P.

Regression testing consists of reusing T on P′, and determining where the new test cases

are needed to effectively test code or functionality added to or changed in producing P′.

There are various regression testing techniques (1) Retest all; (2) Regression Test

Selection; (3) Test Case Prioritization; (4) Hybrid Approach. Figure 1 shows various

regression testing techniques. Figure1. Regression Testing Techniques

Figure 2.4: Regression Testing Techniques

27

(2) Retest All

Retest all method is one of the conventional methods for regression testing in which all

the tests in the existing test suite are rerunned. So the retest all technique is very

expensive as compared to techniques which will be discussed further as regression test

suites are costly to execute in full as it require more time and budget.

(2) Regression Test Selection (RTS)

Due to expensive nature of ―retest all‖ technique, Regression Test Selection is performed.

In this technique instead of rerunning the whole test suite we select a part of test suite to

rerun if the cost of selecting a part of test suite is less than the cost of running the tests

that RTS allows us to omit. RTS divides the existing test suite into (1) Reusable test

cases; (2) Retestable test cases; (3) Obsolete test cases. In addition to this classification

RTS may create new test cases that test the program for areas which are not covered by

the existing test cases. RTS techniques are broadly classified into three categories.

1) Coverage techniques: they take the test coverage criteria into account. They find

coverable program parts that have been modified and select test cases that work on these

parts.

2) Minimization techniques: they are similar to coverage techniques except that they

select minimum set of test cases.

3) Safe techniques: they do not focus on criteria of coverage, in contrast they select all

those test cases that produce different output with a modified program as compared to its

original version.

Various categories in which Regression Test Selection Technique can be evaluated and

compared are: (a) Inclusiveness; (b) Precision; (c) Efficiency; (d) Generality.

a) Inclusiveness is the measure of extent up to which a technique chooses the test cases

which will cause the changed program to produce different output than the original

program, resulting in exposure of faults due to modifications.

b) Precision is the measure of ability of technique to prevent choosing test cases that will

not make the changed program to produce different output than the original program.

c) Efficiency measures the practicality (computational cost) of a technique.

28

d) Generality is the measure of ability of a technique to handle complex modifications,

realistic language constructs and realistic testing applications.

Various techniques of Regression Test Selection as given by various researchers are:

1) Modified non core function technique: defined in selects test cases that exercise

functions in program that have been changed or deleted in producing changed program,

or that exercise functions using variables or structures that have been deleted or changed

in producing changed program.

2) Modification focused Minimization technique: seeks a subset of test suite that is

minimal in covering all functions in program identified as changed.

3) Coverage focused Minimization technique: uses the suite reduction technique to

find a subset of test suite that is minimal in covering all functions in program.

(3) Test Case Prioritization

This technique of regression testing prioritize the test cases so as to increase a test suite‗s

rate of fault detection that is how quickly a test suite detects faults in the modified

program to increase reliability. This is of two types:(1) General prioritization which

attempts to select an order of the test case that will be effective on average subsequent

versions of software .(2)Version Specific prioritization which is concerned with

particular version of the software.

There are 18 different test case prioritizations techniques which are divided into three

groups as shown in figure.

29

Figure 2.5: Classification of Test Case Prioritization

Comparator techniques:

Random ordering: in which the test cases in test suite are randomly prioritized. P2:

Optimal ordering: in which the test cases are prioritized to optimize rate of fault

detection. As faults are determined by respective test cases and we have programs with

known faults, so test cases can be prioritized optimally.

Statement level techniques: (Fine Granularity)

Total statement coverage prioritization: in which test cases are prioritized in terms of

total number of statements by sorting them in order of coverage achieved. If test cases are

having same number of statements they can be ordered pseudo randomly.

Additional statement coverage prioritization: which is similar to total coverage

prioritization, but depends upon feedback about coverage attained to focus on statements

not yet covered. This technique greedily selects a test case that has the greatest statement

coverage and then iterates until all statements are covered by at least one test case. The

moment all statements are covered the remaining test cases undergo Additional statement

coverage prioritization by resetting all statements to ―not covered‖.

Function level techniques: (Coarse Granularity)

30

Total function coverage prioritization: it is similar to total statement coverage but instead

of using statements it uses functions. As it has got coarse granularity so the process of

collecting function level traces is cheaper than the process of collecting statement level

traces in total statement coverage.

Additional function coverage prioritization: it is similar to Additional statement coverage

prioritization with only difference that instead of statements, it is considering function

level coverage.

(4) Hybrid Approach

The fourth regression technique is the Hybrid Approach of both Regression Test

Selection and Test Case Prioritization. There are number of researchers working on this

approach and they have proposed many algorithms for it. For example,

1) Hybrid technique proposed by Wong et al which combines minimization, modification

and prioritization based selection using test history [21].

2) Hybrid technique proposed by Yogesh Singh et al is based on Regression Test

Selection and Test Case Prioritization.

Regression testing is done in the maintenance phase of the software development life

cycle to retest the software for the modifications it has undergone. Approximately 50% of

the software cost is involved in the maintenance phase so researchers are working hard to

come up with best results by developing new Regression Testing techniques so that the

expenditure made in this phase can be reduced to some extent. Many foundations like US

National Science Foundation (NSF), Galileo Research Group at Oregon State University,

Mapstext Group at University of Nebraska Lincoln, Aristotle Research Group at Georgia

Institute of Technology, NCSU Software Engineering Realsearch Group, National

Natural Science Foundation of China are few of the many names who are working on

development of new regression testing techniques and improving existing techniques on

different aspects.The main aim is to fix the bugs and to make sure the problems are

solved. Regression testing is acting as the control measure for maintaining the quality of

the product with its specified requirements and the code[20].

31

2.6 Modelling web Application

Models represent a solid starting point for the implementation of a Web application

taking into account static and dynamic aspects of the content, hypertext, and presentation

levels of a Web application.While the content model of a Web application which aims at

capturing underlying information and application logic is similar to the corresponding

model of a non-Web application, the need to consider the hypertext is particular to Web

applications. The hypertext model represents all kinds of navigation possibilities based on

the content. The presentation model maps hypertext structures to pages and their links

thus represent the graphical user interface. The inclusion of context information, such as

user, time, location, and device used, and the adaptation of the Web application which is

‗‗derived‘‘ from this information, has gained increasing attention in modeling efforts.

This is undoubtedly a consequence of ubiquitous Web applications that have become

increasingly popular. This chapter discusses the spectrum of existing methods and some

tools available to model Web applications and their highlights to help the reader select a

suitable modeling method. Such methods are the basis for model-based development and

code-generation tools, which allow us to consider the use of different Web clients and

run-time platforms.

To model Web applications, the document-like character of its content as well as its non-

linear hypertext navigation has to be taken into account. This is the reason why we

distinguish three levels when modeling Web applications, as shown in Figure, in contrast

to the two levels used in the modeling methods for traditional applications. The three

levels are content, i.e., the information and application logics underneath the Web

application, hypertext, i.e., the structuring

of the content into nodes and links between these nodes, and the presentation, i.e., the

user interface or page layout. Most methods which are used to model Web applications

follow this separation into three levels (Fraternali 1999).

A clear separation of these three levels allows reuse and helps to reduce complexity. For

example, we could specify a number of different hypertext structures that will do justice

32

to the specific requirements of different user groups and used devices for a given content.

The aim of a content model is the explicit definition of the information structure.

Comparable to a database schema in data modeling this eliminates redundancies. This

means that the structure of the information will remain unchanged, even if the

information itself changes frequently.

2.7 Chapter Summary

In this chapter we had elaborated the literature review or the research work done on the

Testing web application using regression testing.

33

CHAPTER 3

Design and Architecture

In this chapter we will elaborate the two paradigm approaches used to design such

systems and discusses that which approach we had used in our Modelling. This chapter

also involves the discussion of the two models Event Dependency graph (EDG) and

Event Test Tree (ETT) with their detailed design, working, and algorithm. Chapter finally

ends with an example.

3.1 Web Application Modelling

Web services and their underlying systems grow over time and need to be retested

whenever there is a change, to verify that the quality has not regressed. Testing requires

time and effort. If we have modified only a small part of the system, it should be

possible to reuse existing tests provided that the impact of the changes made can be

isolated. There are two goals of regression testing – assuring system stability and

establishing confidence in continued software quality. In recent years, Web applications

are attracting more and more users with their important characters of universality,

interchangeability and usability. Compared with the traditional software, Web

applications have special properties, such as numerous users, heterogeneous and

autonomous environments, and focused on information publication, index and

retrieval.Traditional testing methods cannot meet the demands of Web applications and

a unique suit of testing system is needed to fulfill the tasks of Web testing.

34

 Figure 3.1 Architecture of System

3.1.1 Event Dependency Graph

.

Web applications can be viewed as event driven environment. Such applications are

constructed by integrating interacting components that are invoked via events. The

interaction is based on data dependence, control dependence and call dependence. The

data dependence holds between two statements if one defines the value of a variable

used by the other. The control dependence exists between elements of the same page if

there is a flow control between the first element and the second element. The call

dependence holds between a calling statement and a server program or procedure to be

invoked. Such dependences are differentiated through two classification types, the

internal and the inheritance call dependences.

Event-based dependence can be classified into three types which are the link, visible

effect, and invisible effect dependences. The link dependence holds between two pages if

the first requests the second via an event (usually by enabling a graphics element or a

hyperlink). Visible effect dependence exists between two pages if the requesting page

modifies the other via and event and the second page opens with the modified data.

Invisible effect dependence holds between two pages when a page modifies another

without displaying the effect. Semantic dependences hold between an informative object

Extract

% reduction

in test caes

Path

Expression

Web
Application

Test

Suit

Analyze

Derive

Input

Access

 EDG1

 ETT1 Test Engine

Generate &

Execute

Identify

Changed
 node

Identify the

Potentially

Affected

Node

35

(graphics, textual, processing) and a page or another informative object if the former

provides information to the latter.

To model web applications, we suggest an event dependency graph (EDG) that combines

all of these dependences with interacting components. As for the link dependence, the

requested page is represented in the EDG by a solid square arrow. The visible effect

dependence is represented by a square dashed arrow points to the affected page.. The

invisible effect dependence is represented by a square dotted arrow pointing to the

affected page.

In order to model semantic dependence new notational elements to the dependency graph

are introduced: web page (the building block of a web application), textual element (text

included on a page), graphic (button,text-field, drop down, etc.), and event.p5 to p1

shows invisible effect with arrow pointing to affected page p1.p1 to p2 is link

dependence as p1 is requesting p3 through a hyperlink.p5 to p6 is direct dependence as

p5 opens p6 with some modified data.

 Figure 3.2 Event Dependency graph

3.1.2 Event Test Tree

With Event dependency graph the main problem is that we often cannot verdict the

termination of a path and the path is cyclic, this will complicate the testing process, thus,

P2 P3

P5

P4

P6

P1

 k2

K1

K3

K4

 K5

 K6

K8

9

 K7

K9 K12

K11

K10

36

driving the testing process using the EDG is difficult and unwieldy. Therefore, A ETT

(Event Test Tree), which is based on the EDG is used. From the ETT, shorter paths can

be generated than the EDG without the loss of page and link coverage. An ETT is a

spanning tree constructed from an EDG,

 Figure 3.2 Event Test Tree

By coverting the EDG to ETT we obtain an expression and we get information that P1 is

root node and p2, p3 and p4 are the child node of that. we also know that there is a path

expression which shows path like P1->p2->p5(p6+p1).in next step we will identify the

nodes which are changed and potentially affected nodes.

3.2 Algorithm

3.2.1 EDG to ETT

In step 1 we have made Event dependency graph which is followed by the link, visible

effect, and invisible effect dependences. The link dependence holds between two pages

if the first requests the second via an event (usually by enabling a graphics element or a

P1

 P2 P3 P4

 P5

 P6

 P4 P5 P5 P6

pp

Pp

P1

 k2
K3

k4

K8

9

 K5 K9 K7
K10

K11 K6

 P1

 K`12

 P1

37

hyperlink). Visible effect dependence exists between two pages if the requesting page

modifies the other via and event and the second page opens with the modified data.

Invisible effect dependence holds between two pages when a page modifies another

without displaying the effect. Semantic dependences hold between an informative object

(graphics, textual, processing) and a page or another informative object if the former

provides information to the latter.

STEP FIRST SECOND

1 P1 NULL

2 P2,p3,p4 P1

3 P3,p4,p5 P1,p2

4 P4,p5,p4,p5 P1,p2,p3

5 P5,p4,p5,p5,p6 P1,p2,p3,p4

6 P4,p5,p5,p6,p6,p1 P1,p2,p3,p4,p5

7 p5,p5,p6,p6,p1 P1,p2,p3,p4,p5

8 p5,p6,p6,p1 P1,p2,p3,p4,p5

9 p6,p6,p1 P1,p2,p3,p4,p5

10 p6,p1 P1,p2,p3,p4,p5,p6

11 p6,p1 P1,p2,p3,p4,p5,p6

12 p1 P1,p2,p3,p4,p5,p6

13 Null P1,p2,p3,p4,p5,p6

Table 3.1:EDG to ETT

EDG to ETT

Input: a EDG

Output: a ETT derived from the EDG

begin

(1) add the initial page identifier of the PFD into FIRST;

(2) if FIRST is empty, then go to (6);

(3) select the first page identifier denoted by pid from FIRST. If pid is within SECOND,

then go to (5).

 Otherwise, add it into the end of SECOND;

(4) if pid is linking to other pages, then

38

 � if some of the other page identifiers are Within FIRST or SECOND, then generate

their copies; retain the links between pid and the other pages (or their copies) of the PFD,

and

� add the other page identifiers (or their copies) into the end of FIRST;

(5) delete pid from FIRST and then go to (2);

(6) output the derived PTT, which is the PFD with only the retained links.

End

The initial page (node) is called root page (node), the link entering into the root page is

called root link, the leaf page (node) is called tail page, the link entering into the tail page

is called tail link, and each of all the other pages (links) is called branch page (link).A tail

page may also be a branch page or a root page.

Each page underlined is a copy of its corresponding page derived in one or more

previous steps. Null denotes that FIRST or SECOND is empty. The pages in FIRST and

SECOND, as shown in table 1, are changed during the process of generation using

algorithm PFD2PTT.

3.2.2 Compare potentially affected and affected nodes.

In previous two sections we have made Event Dependency Graph and Event Test tree of

Web Application we have made graph as well as tree for both original and modified web

application. Now we compare both Event dependency tree to find affected nodes means

nodes which are changed and potentially affected nodes.

The Event dependency graph of original web application and modified web application

made in step 1 and then we have converted Event dependency graph in to Event test tree

in step2 .Now we compare both ETT which represent the changed elements and

dependences.

 1. For each element pi in original ETT find the corresponding node pi‘ in the

modified ETT.

 2. If pi‘ is found in modified web application then for each neighbour in the original

graph, find the corresponding neighbour in the modified graph

39

 3. If we did not found element in the modified EDG means node has been removed

from the modified web application. We consider this node as changed node.

In the Next step we find those nodes that may be affected by the change. The potentially

affected nodes are the nodes that are connected either directly or indirectly to the affected

nodes. All the dependences are considered to identify the affected nodes. For each

neighbour of the affected node, add it to the affected nodes list and check its neighbours

and do the same for the neighbours. The details of how the potentially affected nodes are

selected are as follows:

1. Go through all the neighbours of the selected node

 2 checks if the neighbour is already added to the selected nodes list do nothing

3. If the neighbour is not added to the list of selected nodes, add it to the list. Each

new Neighbour is considered as the selected node, repeat the procedure from (1) for

each new Neighbour.

Second Method is

1. Select a node that has still not been selected from the original tree..

2. Find all the child nodes of the selected node.

3. Store the nodes in 2 d array with first element as the selected node and rest

elements as the children of selected node,

4. Repeat steps 1 to 4 till all the nodes have been covered.

5. Make a similar 2d array for the new tree.

6. Compare the 2 d array element by element.

7. If there is a difference in the two arrays in any row return the first element of the

row i.e. the parent node.

Using these Algorithms we can find affected and potentially affected nodes.now

we got an text expression from tree. We give this expression to c compiler and

test cases will be generated on basis of this.Finally we calculate reduction in test

cases from original and modified one.

40

3.3 Test Case Reduction

Finally we will calculate reduction in Number of test cases.we find Test cases in original

system and modified system and finally calculate the reduction in test cases

Test cases in original system : a

Test cases in modified system : b

No of test cases eliminated : a-b

Percentage reduction in test cases:

(a-b/a) X 100% = ?%

3.4 Chapter Summary

In this chapter we had elaborated the two algorithms and discuss the approach

used in our model.This chapter also include the method how we have reduces the test

cases..

41

CHAPTER 4

IMPLEMENTATION

In this chapter we will implement the design proposed in the previous chapter using

some algorithms and coding.

Regression testing is an important part of maintenance. It is performed when the software

is modified to ensure that it has not lost the desired functionality. Regression test suites

can be expensive to execute in full; thus test engineers may adopt a suitable strategy to

reduce the testing time. Many techniques are proposed for minimizing cost related to

regression testing

While doing implementation we get to know the ultimate requirement of the users

who is directly related to the system. The ways on which we are working now is quite

tough and require a heavy type of requirement to satisfy the need of the researchers.

Today is the world of challenge and at every moment of time we face a new kind of

situation. To be at the top the system designed should be a best system and also the cost

is one of the major factors. Today we have seen that people can switch over from one

system to another system design and that is not because of bad performance but due to

some other factors also. Some of the factors are fast response, accuracy etc. All these

things are possible but to maintain now a days the cost is become a very crucial factor.

Up to a certain level cost is immaterial but beyond that one cost matters.

To overcome the above problems and to provide a new intelligent system one has

to move from the current environment to another one or modify the existing environment.

Now before going to implement the system we can recollect the main things that are the

part of the thesis.

42

In this we have developed a website Student Information System. Which contains

all the student Information. Student can login, download study material, can check their

fee status etc.

Next we have made Event dependency graph of original and modified web application. In

Next Step we have converted Event dependency graph to Event Test Tree. Now we got a

Test expression which is known as test path. Now we have given this to c compiler and

.finally generated test cases of original and modified system and calculates the reduction

in test cases.

In section 4.1 we have given all the details and techniques we have used to implement

our website student Information system.

In section 4.2 we have made Event Dependency Graph and Event test Tree of original

and modified web application. Now we compare original and modified web application

and compare the affected and potentially affected nodes.

In section 4.3 we have given this test expression to c compiler and In section 4.4 we

calculate the reduction in number of test cases

4.1 Technology Used

We have developed a web application Student Information system in J2EEE. The Java 2

Platform, Enterprise Edition (J2EE) defines the standard for developing multitier

enterprise applications. The J2EE platform simplifies enterprise applications by basing

them on standardized, modular components, by providing a complete set of services to

those components, and by handling many details of application behaviour automatically

without complex programming. There are four tiers in J2EE application model: client

tier, web tier, business tier and enterprise information system (EIS) tier. Business and

web tiers are generally existed in a server application called application server or J2EE

server. Application server provides complex services needed by components in business

and web tiers.

4.1.1. HARDWARE & SOFTWARE SPECIFICATION:

 Technology Used : J2EE(Advanced Java)

43

 Operating System Used: Windows XP

 Hardware Used: Computer with a broadband Internet connection

 Software Used: Net Beans IDE 6.8

 Backend Used: MS Access

 Server Used: Apache Tomcat and Glassfish

4.2 Methodology

In our proposed system, we have made Event dependency graph of our original and

modified web application. Event Dependency Graph (EDG) combines all of these

dependences with interacting components. In link dependence, the requested page is

represented in the EDG by a solid square arrow. The link dependence holds between two

pages if the first requests the second via an event (usually by enabling a graphics element

or a hyperlink). Visible effect dependence exists between two pages if the requesting

page modifies the other via and event and the second page opens with the modified data..

The visible effect dependence is represented by a square dashed arrow points to the

affected page.The invisible effect dependence is represented by a square dotted arrow

pointing to the affected page. Invisible effect dependence holds between two pages when

a page modifies another without displaying the effect.

44

4.2.1 Event Dependency Graph of original Application

 Figure 4.1 Event Dependency Graph of original Application

KI is default link. Index page is first page to which student can log in. he can go to forget

password link,can login,can sign in and can do validation as shown in Figure. After

login he can manage his account can mail,test,download as well as can change his

password.In test in web page he can give test and can see the result.

4.2.2 Event Dependency Graph of modified Web Application

In modified web application we have added one fee detail page if student have paid fees

then only he can log in and can give test else not.other links are same like change

password,manage account etc.

index

Forget

pwd
login

 K2

 K5 k3

Valid

ation
Sign
up

Manag
e
Accoun
t

K6 k4

K18

K22

k7

Mai

l

K12 k13

K10
K8 k9 K14

Test
up

welcome
up

Test_n

o
up

result
up

 K15

K19

 K21

K20

change

Paasw

d
up

downloa
d

k14 K156 k11 K17

 K1

45

4.2 Event Dependency Graph of Modified Application

index

Forget
pwd

login

 K2

 K5

K3

Valid

ation
Sign
up

Fee
detail

K6

K4

K21

K13

K

14

Manag
e
Acc

K7 K15

K8 K9

K16

Mail
up

welcome Test_

no
up

result
up

K18

 K24

K23

test Change
passwd

K10 K17 K11 K19 K20

k12

 K1

Download

K22

46

4.2.3 Event Test Tree of original Web Application

The cyclic redundancy is avoided in this in which we have converted graph of original

and modified web application to tree.

Figure 4.3 Event Test Tree of original application

INDEX
INDEX

INDEX
 Forget pwd

INDEX INDEX

INDEX validation INDEX login

INDEX INDEX

INDEX INDEX INDEX ACC MGE INDEX MAIL INDEX TEST PWD
CHANG
E

DOWN
LOAD

SIGNUP

INDEX
LOGIN LOGIN

LOGIN

TEST LOGIN

LOGIN

LOGIN

TESTNO

RESULT

 TEST

 K6 K7 K8 K9 K10 K11

K1

K2

K3

K4

K22

 K21

K12

K19

K5

K13 k14 k15 k16 k17 k18

K20

47

4.2.4 Event Test Tree of Modified Web Application

 Figure 4.4 Event Test Tree of modified Application

4.2.5 Test Path

FOR ORIGINAL SYSTEM

Path expression

k1(k2k5+k3(k6+k7k13+k8k14+k9(k15+k16k20k21k22)+k10

k17+k11k18)+k4k12k19

INDEX
INDEX

INDEX
 Forget pwd

INDEX INDEX

INDEX validation INDEX login

INDEX INDEX

INDEX INDEX INDEX ACC MGE INDEX MAIL INDEX TEST PWD
CHANG
E

DOWN
LOAD

SIGNUP

INDEX

LOGIN
LOGIN

LOGIN

WEL LOGIN

LOGIN

LOGIN

TESTNO

RESULT

TEST

 K6 K7 K8 K9 K10 K11 k12

K1

K2

K3

K4

K25

 K24

K13

K21

K5

 K14 k15 k16 k17 k18 k19 K20

K23

FEE

LOGIN

FEE 1

K22

WELCOM
E

48

Test path

k1k2k5

k1k3k6

k1k3k7k13

k1k3k8k14

k1k3k9k15

k1k3k9k16k20.k21k22

k1k3k10k17

k1k3k11k18

k1k4k12k19

FOR MODIFIED SYSTEM

Path expression

k1(k2k5+k3(k6+k7k14+k8k15+k9k16+k10(k17+k18k23k25

k26)+k11k19+k12k20)+k4k13(k21+k22k24)

Test path

k1k2k5

k1k3k6

k1k3k7k14

k1k3k8k15

k1k3k9k16

k1k3k10k17

k1k3k10k18k23.k25k26

k1k3k11k19

k1k3k12k20

k1k4k13k21

k1k413k22k24

4.3 Analysis and Results

We had implemented the above mentioned Test Expression and generated Test

cases as shown below.

49

4.3.1 Test Cases for original System

Test

ID

Description Input Expected

result

Actual

Result

General

1 . Entering URL in to

the web browser and

clicking GO button

URL Site opens Site opens

2 . Opening the website

– checking for focus

- Focus on user

name text

box

Focus on

user name

text box

3 . TAB key control - Follow TAB

key functions

Follows

TAB key

functions

4. Checking proper

working of links

- All linked

pages open

Links

working

properly

For Sign In

5. Entering valid user

name and password

on index page

Username and

password

Respective

login page

opens

Respective

login page

opens

6 . Entering invalid

username and valid

password

Username and

password

Error

message

comes

Error

message

comes

7 . Entering valid

username and invalid

password

Username and

password

Error

message

comes

Error

message

comes

8 . Entering valid

username and

leaving password

field blank

Username Error

message

comes

Error

message

comes

9 . Entering invalid

username and

leaving password

field blank

Username Error

message

comes

Error

message

comes

10. Entering valid

password and

leaving username

field blank

Password Error

message

comes

Error

message

comes

11. Entering invalid

password and

leaving username

field blank

Password Error

message

comes

Error

message

comes

50

For Forget Password

14. Entering valid

username,

registration ID,

security question and

security answer

Username,

registration ID,

security

question and

security

answer

Password

comes

Password

comes

15. Entering invalid

registration ID and

valid username,

security question and

security answer

Username,

registration ID,

security

question and

security

answer

Error

message

comes

Error

message

comes

16. Entering valid

username, security

question and

registration ID and

invalid security

answer

Username,

registration ID,

security

question and

security

answer

Error

message

comes

Error

message

comes

17. Entering invalid

security question and

valid registration ID,

security answer and

username

Username,

registration ID,

security

question and

security

answer

Error

messages

comes

Error

message

comes

18. Leaving registration

ID field blank and

entering valid

username, security

question and security

answer

Username,

security

question and

security

answer

Error

messages

comes

Error

message

comes

19. Leaving security

answer field blank

and entering valid

username, security

question and

registration ID

Username,

registration ID

and security

question

Error

message

comes

Error

message

comes

20. Leaving username Registration Error Error

12. Keeping both

password and

username field

blanks

- Error

message

comes

Error

message

comes

13. Entering valid

username and

password in CAPS

Username and

password

Error

message

comes

Login

page

comes

51

field blank and

entering valid

security question,

security answer and

registration ID

ID, security

question and

security

answer

message

comes

message

comes

21. Entering valid

username in CAPS,

security question,

security answer and

registration ID

Username,

registration ID,

security

question and

security

answer

Error

message

comes

Password

comes

For Sign Up

22. Entering invalid ID,

name and type

combination

ID, name and

type

Account

cannot be

created

message

comes

Account

cannot be

created

message

comes

23. Entering an already

registered persons

information

ID, name and

type

You are

already

registered

message

comes

You are

already

registered

message

comes

24. Entering valid name

and type and leaving

registration ID blank

Name and type Account

cannot be

created

message

comes

Account

cannot be

created

message

comes

25. Entering valid name,

ID and type for a

person registering

for first time

Name, ID and

type

Form 2

opens

Form 2

opens

For Sign Up (continued)

26. Leaving some field

blank and clicking

create button

- Error message

comes

Error

message

comes

27. Not checking

username

availability

- Not allowed

to proceed

further

Not

allowed

to

proceed

further

28. Entering previously

used username

- Username not

available

message

comes

Username

not

available

message

comes

52

29. Entering password of

less than 3 characters

- Error message

comes

Error

message

comes

30. Confirm password

and password field

does not match

- Error message

comes

Error

message

comes

31. Entering all valid

and correct

information

- Your account

is created

message

comes

Your

account is

created

message

comes

For Account Management

32. Entering all valid

and correct

information

- Account is

created

message

comes

Account

is created

message

comes

33. Leaving all the field

blank and clicking

create button

- Error message

comes

Error

message

comes

34. Entering some

information in valid

and some in invalid

format

- Error message

comes

Error

message

comes

35. Entering some

information in valid

format and leaving

some fields blank

- Error message

comes

Error

message

comes

Table 4.1 Test cases for Original System

4.3.2. Test Cases for Modified System

Test ID Description Input Expected result Actual Result

General

1. Entering URL in to the

web browser and clicking

GO button

URL Site

opens

Site opens

For Sign In

2. Entering valid user name

and password on index

page

Username and

password

Respective login

page opens

Respective

login page

opens

53

3. Entering invalid

username and valid

password

Username and

password

Error message

comes

Error message

comes

4. Entering valid username

and invalid password

Username and

password

Error message

comes

Error message

comes

5. Entering valid username

and leaving password

field blank

Username Error message

comes

Error message

comes

6. Entering invalid

username and leaving

password field blank

Username Error message

comes

Error message

comes

7. Entering valid password

and leaving username

field blank

Password Error message

comes

Error message

comes

8. Entering invalid

password and leaving

username field blank

Password Error message

comes

Error message

comes

9. Keeping both password

and username field

blanks

- Error message

comes

Error message

comes

10. Entering valid username

and password in CAPS

Username and

password

Error message

comes

Login page

comes

For Sign Up

 11. Entering invalid ID,

name and type

combination

ID, name and type Account cannot

be created

message comes

Account

cannot be

created

message comes

12. Entering an already

registered persons

information

ID, name and type You are already

registered

message comes

You are

already

registered

message comes

13. Entering valid name and

type and leaving

registration ID blank

Name and type Account cannot

be created

message comes

Account

cannot be

created

message comes

14. Entering valid name, ID

and type for a person

registering for first time

Name, ID and type Form 2 opens Form 2 opens

For Sign Up (continued)

15. Leaving some field blank

and clicking create button

- Error message

comes

Error message

comes

16. Not checking username

availability

- Not allowed to

proceed further

Not allowed to

proceed further

17. Entering previously used

username

- Username not

available message

Username not

available

54

comes message comes

18. Entering password of less

than 3 characters

- Error message

comes

Error message

comes

19. Confirm password and

password field does not

match

- Error message

comes

Error message

comes

20. Entering all valid and

correct information

- Your account is

created message

comes

Your account is

created

message comes

For Account Management

21. Entering all valid and

correct information

- Account is

created message

comes

Account is

created

message comes

22. Leaving all the field

blank and clicking create

button

- Error message

comes

Error message

comes

23. Entering some

information in valid and

some in invalid format

- Error message

comes

Error message

comes

24. Entering some

information in valid

format and leaving some

fields blank

- Error message

comes

Error message

comes

Table 4.2 Test cases for Modified System

 Figure 4.5 Main Menu

55

We have generated test cases using c.First we have to sign up as a new user.All records

are maintained in signup format.

4.6 Signup Menu

After signing up user can login by using their user name and password.If username and

password matched than access granted else denied.

4.7 login Entry

If user forgets his password he can retrieve his password by giving his id and user name.

56

4.8 Forget Password Menu

Suitable test cases can be generated for login functionality by giving valid and invalid

entries.expected and actual results are compared

4.9 Test cases for LogIn Functionality

Testcases of forgetpassword and signup are attached in appendix

4.4 Result

Test cases in original system: 35

Test cases in modified system: 20

No of test cases eliminated: 15

57

Percentage reduction in test cases:

(15/35) X 100% = 42.8%

4.5 Chapter Summary

In this chapter we had elaborated the implementation of the both original and modified

system. We had also discussed all the test cases used in the system and how these test

cases are used in the system at different . We had also discussed the analysis and result of

the system and shows screenshots of testcases generated.

58

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion:

Regression testing is selective retesting of the system; executed with an objective to

ensure the bug fixes work and those bug fixes have not caused any un-intended effects in

the system. A "final regression testing" is done to validate the gold master builds, and

"Regression testing" is done to validate the product and failed test cases between system

test cycles.

The final regression test cycle is conducted on an "unchanged build for a period of x

days" or for a period, which was agreed as the "cook-time" for release. The product is

continuously exercised for the complete duration of this cook-time. Some of the test cases

are even repeated to find out whether there are failures in the final product that will reach

the customer. All the bug fixes for the release should have been completed for the build

used for the final regression test cycle. The final regression test cycle is more critical than

any other type or phase of testing, as this is the only testing which ensures "the same

build of the product that was tested reaches the customer".

A normal regression testing can use the builds for a time period that is needed for the test

cases to be executed. However unchanged build is highly recommended for each cycle of

regression testing.

A web application entitled ―Student Information System‖ was developed using J2EE

technology. For the system test cases were generated and the Event Dependency

Graph (EDG) was drawn. Then the system was modified by adding the FEE

DETAIL module and EDG was drawn for the modified system. With the help of

the EDG. An algorithm was then employed to convert EDG to Event Test Tree‘s

(ETT‘s). ETT‘s of both, the original and the modified system were compared to get

the changed and the potentially affected nodes and on this basis test case subset was

selected from the original test case set. The test case reduction percentage was

59

calculated and was compared with the one obtained from EDG comparison

technique to obtain the most effective method for test case reduction.

A new technique to select test cases for regression testing of web applications based on

the Edge Test Tree is implemented. The regression test selection technique is based on

identifying changed and potentially changed components. Empirical results show that this

technique selects a reduced number of test cases and in our implementation of the same,

42% of the tests were eliminated, yet the selected test sequences cover the whole of the

modified system.

Then we compared the test case reduction percentage of EDG methodology and ETT

technique and came to the conclusion that ETT is a more effective method for the test

cased reduction.

Finally, the above results show that the proposed ETT technique leads to greater

reduction in the number of test cases to be rerun for the modified system testing.

However, the reduced set of test cases still covers affected and potentially affected

components that are determined by the program change.

The main Problem with the proposed system:

First, Tree is not an AVL balanced tree and it is not possible to create it for our

web application because our home page is first page to which hyperlink to all pages are

there . and with AVL tree our first page will not be home page and nodes in left are less

than nodes in right.

Second, test expression must be calculated using some proposed algorithm.

Third, this work is more theoretical and has less practical applications.

5.2 Future Work:

The model proposed and designed in this thesis is only being executed on the predefined

and assumed test cases. Automatic test cases can be generated by this method.

60

The proposed methodology for testing in this project helps reduce the test cases to a very

large extent. There are various other methods besides the Edge Test Tree on which we

can work upon, for example Ricca, a scientist proposed a UML model of web application

and propose that all paths that satisfy selected criteria be selected for regression testing.

We can also deploy System Dependent Graph (SDG) instead of (EDG). It is based on

slicing. But the disadvantage of using this methodology is that it can increase the

workload and cost of the testing process.

Various other techniques have been mentioned in the paper which can be implemented

and the results thus obtained can be compared with the present findings

We have made Event Dependency graph and converted that graph to Event Test

Tree.A suitable algorithm is provided.we can make that automatically

Means some automation can be done to convert that graph to tree.

61

BIBLIOGRAPHY

Bibliography

1. Yogesh Singh,Arvinder Kaur,Bharti SuriA New Technique for Version –

Specific Test Case Selection and Prioritization for Regression Testing, Journal

of the CSI

2. Praveen Ranjan Srivastava,Test case priortization Journal of Theoretical and

Applied Information Technology

3. Tarhini, Z. Ismail and N. Mansour. Regression Testing Web Applications.

International Conference on Advanced Computer Theory and Engineering

IEEE Computer Society 2008, 902- 906.

4. F. Ricca and P. Tonells. Analysis and testing of Web applications.

InternationalConference on Software Engineering Proceedings of the 23rd

International Conference on Software Engineering. IEEE Computer

Society 2001, 25-34.

5. Huai-kou Miao, Zhongsheng Qian and hongwei Zeng. A Practical Web

Testing Model for Web Application Testing. Third International IEEE

Conference on Signal Image Technologies and Internet-Based System.

6. K.K.Aggrawal, Yogesh Singh, A.Kaur Code Coverage Based Technique For

Prioritizing Test Cases For Regression Testing ACM SIGSOFT Software

Engineering September 2004 Volume 29 Number 5

7. Shengbo Chen, Huaikou Miao, Zhongsheng Qian Automatic Generating Test

Cases for Testing Web Applications Third International IEEE Conference on

Signal-Image Technologies and Internet-Based System

62

8. Srinivasan Desikan A test methodology for an effective regression testing

9. Alex Chaffee (2000-08-17). "What is a web application (or "webapp")?".

http://www.jguru.com/faq/view.jsp?EID=129328. Retrieved 2008-07-27.

10. A. Andrews, J. Offutt, and R. Alexander, ―Testing Web Applications by

Modeling with FSMs‖, Software and Systems Modeling. 2004.

 11.Testing‖,http://www.soft.com/products/web/technology/websitetesting.html.

12. G. A. D. Lucca and A. R. Fasolino, ―Testing Web-based Applications: The

State of the Art and Future Trends‖,Information and Software Technology,

vol. 48, 2006, pp.1172-1186

13. Software Testing by Kaner and Bach

14.Multiple (wiki). "Web application framework". Docforge.

htp://docforge.com/wiki/Web_application_framework. Retrieved 2010-03-

06.

15. A. Tarhini, H. Fouchal, and N. Mansour, Regression Testing Web Services-

based applications, ACS/IEEE Int.Conf. on Computer Systems and

Applications, 2006, pp.163-170.

16. N. Mansour, and M. Houri, Testing Web Applications,Information and

Software Technology, 2006, 48(1), pp. 31-42.

17.K.K.Aggrawal, Yogesh Singh, A.Kaur, Code Coverage Based Technique for

Prioritizing Test Cases For Regression Testing, September 2004 Volume 29

Number 5

63

 18. http://en.wikipedia.org/wiki/Web_application

 19. http://www.sitepoint.com/development-guide-success/

 20 http://testinginterviewquestionsandanswers.com/what-is-regression-

testing.html

21 http://en.wikipedia.org/wiki/Web_testing

 22. Seven Principles of Software Testing Bertrand Meyer, ETH Zürich and Eiffel

Software

23. Software Testing Fundamentals—Concepts, Roles, and Terminology John E.

Bentley, Wachovia Bank, Charlotte NC

64

APPENDIX A

Appendix A

A.1 Code of the System

#include<iostream.h>

#include<conio.h>

#include<fstream.h>

#include<string.h>

#include<stdio.h>

#include<process.h>

struct student

{

 int id;

 char dt[10], mm[10], yr[10];

 char mob[10];

 char username[50], password[50];

 char type[50];

}s1,s2;

struct student2

65

{

 int id;

 char username[50];

 char type[50];

}s3;

int flag =0,flag1=0, flag2=0,flag3=0, flag4=0, flag5=0, flag6=0;

char

name[20],pwd[20],name2[20],pwd2[20],name3[20],pwd3[20],name4[20],pwd4[20];

int id1, id2,id3,id4;

void testlogin();

void testlogin_display();

void testforpass() ;

void testforget_display() ;

void testsignup() ;

void testsignup_display();

void check_uname_pwd();

void check_userpass() ;

void check_userpass2() ;

void check_userpass3() ;

void check_forgetpass();

void check_uname_pass1();

void check_uname_pass2();

void check_uname_pass3();

void testlogin()

{ clrscr();

 fstream fout, fin;

 cout<<"\n Test Case for Valid Username and valid Password \n";

 cout<<"\n Username :";gets(s1.username);

 strcpy(name,(s1.username));

 cout<<"\n Password :";gets(s1.password);

 strcpy(pwd,(s1.password));

66

 //fout.write((char*)&s1, sizeof(s1));

 check_uname_pwd();

 if(flag != 1)

 {

 flag=1;

 cout<<"\n Test Case for valid Username and invalid Password \n";

 cout<<"\n Username :";gets(s1.username);

 strcpy(name2,(s1.username));

 cout<<"\n Password :";gets(s1.password);

 strcpy(pwd2,(s1.password));

 //fout.write((char*)&s1, sizeof(s1));

 check_userpass();

 if(flag2 != 1)

 {

 flag2=1;

 cout<<"\n Test Case for invalid username and valid password\n" ;

 cout<<"\n Username :";gets(s1.username);

 strcpy(name3,(s1.username));

 cout<<"\n Password :";gets(s1.password);

 strcpy(pwd3,(s1.password));

 //fout.write((char*)&s1, sizeof(s1));

 check_userpass2();

 if(flag3 != 1)

 {

 flag3=1;

 cout<<"\n Test Case for invalid username and invalid password\n";

 cout<<"\n Username :";gets(s1.username);

 strcpy(name4,(s1.username));

 cout<<"\n Password :";gets(s1.password);

 strcpy(pwd4,(s1.password));

 //fout.write((char*)&s1, sizeof(s1));

67

 check_userpass3();

 fout.close();

 }

 }

 }

}

 void testlogin_display()

 {

 testlogin();

 cout<<"\n Record Entered Successfully\n";

 //flag=1, flag2=1;

 fstream fin;

 fin.open("user3.dat",ios::in|ios::binary);

 cout<<"\n The following generated test cases for LOGIN functionality are

\n\n\n";

 fin.seekg(0L,ios::end);

 long int l=fin.tellg();

 int count = (l/sizeof(s1));

 fin.seekg(0L,ios::beg);

// clrscr();

 cout<<"S.NO."<<"\t"<<"DESCRIPTION"<<"\t"<<"INPUT

DATA"<<"\t"<<"EXPECTED OUTPUT"<<"\t "<<"ACTUAL OUTPUT\n";

 for(int i=0;i<count;i++)

 {

 cout<<"\n\n";

 cout<<i+1<<"\t";

 switch(i+1)

 {

 case 1: cout<<"valid username \n \tvalid password";

 fin.read((char*)&s1, sizeof(s1));

 cout<<"\t "<<s1.username<<","<<s1.password; break;

 case2:cout<<"validusername\n"<<"\t"<<"invalidp

68

password";

 fin.read((char*)&s1, sizeof(s1));

 cout<<" "<<s1.username<<","<<s1.password; break;

 case 3: cout<<"invalid username \n \tvalid password";

 fin.read((char*)&s1, sizeof(s1));

 cout<<"\t "<<s1.username<<","<<s1.password; break;

 case 4: cout<<"invalid username \n"<<"\t"<<"invalid

password";

 fin.read((char*)&s1, sizeof(s1));

 cout<<" "<<s1.username<<","<<s1.password; break;

 }

 switch(i+1)

 {

 case 1: cout<<"\tAcess granted"; cout<<"\t Acess

granted";break;

 case 2: cout<<"\tAcess denied "; cout<<"\t Acess denied";

break;

 case 3: cout<<"\tAcess denied "; cout<<"\t Acess denied";

break;

 case 4: cout<<"\tAcess denied "; cout<<"\t Acess denied";

break;

 }

 }

 getch();

 fstream fout;

 fout.open("user3.dat",ios::out|ios::binary);

 fout.close();

 }

void check_uname_pwd()

69

{

 fstream fin,fout;

 flag2=0;

 flag3=0;

 int check=0;

 fin.open("user2.dat",ios::in|ios::binary);

 fin.seekg(0L,ios::end);

 long int l=fin.tellg();

 int count = (l/sizeof(s1));

 fin.seekg(0L,ios::beg);

 for(int i=0;i<count;i++)

 {

 fin.read((char*)&s1, sizeof(s1));

 if(strcmp(name,s1.username)==0)

 {

 if(strcmp(pwd,s1.password)==0)

 {

 cout<<"\nCorrect entries";

 check =1; flag=0;

 fstream ankit;

 ankit.open("user3.dat",ios::app|ios::binary);

 strcpy((s2.username),name);

 strcpy((s2.password),pwd);

 ankit.write((char*)&s2, sizeof(s2));

 ankit.close();

 }

 else

 {

 cout<<"\n Valid username BUT INCORRECT password";

70

 }

 }

 else

 {

 //username entered is invalid

 }

 }

 fin.close();

 if(check==0)

 {

 cout<<"\nIncorrect entries";

 getch();

 //goto abc;

 fstream fout;

 fout.open("user3.dat",ios::out|ios::binary);

 fout.close();

 testlogin();

 }

}

void check_userpass()

{

 flag3=0;

 fstream fin;

 int check1=0;

 fin.open("user2.dat",ios::in|ios::binary);

71

 fin.seekg(0L,ios::end);

 long int l=fin.tellg();

 int count = (l/sizeof(s1));

 fin.seekg(0L,ios::beg);

 for(int i=0;i<count;i++)

 {

 fin.read((char*)&s1, sizeof(s1));

 if(strcmp(name2,s1.username)==0)

 {

 if(strcmp(pwd2,s1.password)!=0)

 {

 cout<<"\nCorrect entries";

 check1 =1;

 fstream ankit;

 ankit.open("user3.dat",ios::app|ios::binary);

 strcpy((s2.username),name2);

 strcpy((s2.password),pwd2);

 ankit.write((char*)&s2, sizeof(s2));

 ankit.close();

 }

 else

 {

 //cout<<"incorrect entries";

 check1=0;

 //flag2=1;

 }

 }

 else

72

 {

 //username entered is invalid

 }

 }

 fin.close();

 if(check1==0)

 {

 cout<<"\nIncorrect entries";

 //cout<<"\n flag2=1";

 getch();

 //goto abc;

 //flag2=1;

 fstream fout;

 fout.open("user3.dat",ios::out|ios::binary);

 fout.close();

 testlogin();

 }

}

void check_userpass2()

{

 fstream fin;

 int check2=0;

 fin.open("user2.dat",ios::in|ios::binary);

 fin.seekg(0L,ios::end);

73

 long int l=fin.tellg();

 int count = (l/sizeof(s1));

 fin.seekg(0L,ios::beg);

 for(int i=0;i<count;i++)

 {

 fin.read((char*)&s1, sizeof(s1));

 if(strcmp(pwd3,s1.password)==0)

 {

 if(strcmp(name3,s1.username)!=0)

 {

 cout<<"\nCorrect entries";

 check2 =1;

 fstream ankit;

 ankit.open("user3.dat",ios::app|ios::binary);

 strcpy((s2.username),name3);

 strcpy((s2.password),pwd3);

 ankit.write((char*)&s2, sizeof(s2));

 ankit.close();

 }

 else

 {

 check2=0;

 //flag2=1;

 }

 }

 else

 {

 //username entered is invalid

74

 }

 }

 fin.close();

 if(check2==0)

 {

 cout<<"\nIncorrect entries";

 //cout<<"\n flag3=1";

 getch();

 //goto abc;

 //flag3=1;

 fstream fout;

 fout.open("user3.dat",ios::out|ios::binary);

 fout.close();

 testlogin();

 }

}

void check_userpass3()

{

 fstream fin;

 int check3=1;

 fin.open("user2.dat",ios::in|ios::binary);

 fin.seekg(0L,ios::end);

 long int l=fin.tellg();

 int count = (l/sizeof(s1));

 fin.seekg(0L,ios::beg);

75

 for(int i=0;i<count;i++)

 {

 fin.read((char*)&s1, sizeof(s1));

 if(strcmp(name4,s1.username)==0)

 { check3=0;

 if(strcmp(pwd4,s1.password)==0)

 {

 check3 =0;

 }

 }

 }

 fin.close();

 if(check3==0)

 {

 cout<<"\nIncorrect entries";

 getch();

 //goto abc;

 fstream fout;

 fout.open("user3.dat",ios::out|ios::binary);

 fout.close();

 testlogin();

 }

 else

 {

 cout<<"\n Correct Entries";

 fstream ankit;

 ankit.open("user3.dat",ios::app|ios::binary);

 strcpy((s2.username),name4);

76

 strcpy((s2.password),pwd4);

 ankit.write((char*)&s2, sizeof(s2));

 ankit.close();

 }

}

A.2 Screenshots of system

A.2.1 test Case for Login functionality

77

A.2.2 test Case for Login functionality

