

A Major Project Report on

A Fragmentation Technique in
Distributed Databases & Its Implementation

Submitted in partial fulfillment of the

Requirements for the award of the degree
Of

MASTER OF ENGINEERING
In

COMPUTER TECHNOLOGY & APPLICATIONS
By

SHASHI KANT SHARMA

(14/CTA/09)

(University Roll no - 8553)

Under the Guidance of

Dr. Rajni Jindal

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

BAWANA ROAD, DELHI-110042
DELHI UNIVERSITY

ii

Certificate

This is to certify that the major project entitled “A Fragmentation

Technique in Distributed Databases & Its Implementation” is the

work of Shashi Kant Sharma (university roll no - 8553), a student of Delhi

College of Engineering. This work was completed under my direct supervision

and guidance and forms a part of Master of Engineering (Computer Technology

& Applications) course and curriculum for the academic year 2009-2011. The

matter embodied in this project has not been submitted earlier for the award of

any degree or diploma to the best of my knowledge and belief. He has completed

his work with utmost sincerity and diligence.

(Dr. Rajni Jindal)

Associate Professor and Project Guide

Department of Computer Engineering

Delhi College of Engineering

iii

Acknowledgement

It gives me a great pleasure to express my profound gratitude to my project guide

Dr. Rajni Jindal, Associate professor, Department of Computer Engineering,

Delhi College of Engineering, for her valuable and inspiring guidance throughout

the progress of this project. At the same time, I would like to extend my heartfelt

thanks to Dr. Daya Gupta, Head of the department, Department of Computer

Engineering, Delhi College of Engineering, for keeping the spirits high and

clearing the visions to work on the project.

Also I would like to thank Mrs. Narendra Bandarupalli, Team lead, Global Site

Selector, Cisco, for his constant support and encouragement. I would like to thank

Mrs. Amit Gurkha, Software Development Manager, Global Site Selector,

Cisco, for making all the resources available and providing healthy environment

for the successful completion of the project.

Shashi Kant Sharma

(14/CTA/09)

1 | P a g e

Table of Contents
Certificate……………………………………………………………….………..(ii)

Acknowlegement……………………………………………………….………..(iii)

Table of Contents……………………….……………..…………….……………..1

List of Figures……………………………….………..……………….…………...4

List of Tables………………………………….………..……………….………….5

Abstract……………………………………………...……………………………..6

CHAPTER 1 .. 7

Problem Definition ... 7

1.1 Overview .. 7
1.2 Related Work & Motivation .. 8
1.3 Solution Flow ... 9
1.4 Organization of Dissertation .. 11

CHAPTER 2 .. 13

Distributed Databases .. 13

2.1 Introduction .. 13
2.2 Fragmentation .. 14
2.3 Allocation ... 16
2.4 Advantages of Distributed Databases .. 17
2.5 Disadvantages of Distributed Databases .. 18

CHAPTER 3 .. 19

Global Site Selector ... 19

3.1 General Idea ... 19
3.2 DNS Routing .. 20

3.2.1 DNS Name Servers ... 21
3.2.2 DNS Structure ... 21
3.2.3 Request Resolution .. 22

3.3 Globally Load Balancing with the GSS ... 23
3.4 GSS Architecture ... 26
3.5 GSS Mesh .. 27

3.5.1 Primary GSSM .. 27
3.5.2 GSS.. 28
3.5.3 Standby GSS ... 28

3.6 Traffic Management Load Balancing .. 28
3.6.1 DNS Sticky GSLB .. 29
3.6.2 Network Proximity GSLB ... 30

2 | P a g e

Chapter 4 .. 32

Horizontal Fragmentation ... 32

4.1 Basic Approach to Horizontal Fragmentation ... 32
4.1.1 Input & Output Definitions ... 33
4.1.2 Algorithm .. 33
4.1.3 Summing up .. 36

4.2 Graphical Approach For HF .. 38
4.2.1 Definitions ... 38
4.2.2 Example ... 38
4.2.3 Creating affinity graph .. 40
4.2.4 Rules for Selecting the Edges.. 40
4.2.5 Algorithm .. 41
4.2.6 Step by Step Solution .. 42
4.2.7 Optimization of Results ... 47
4.2.8 Advantages .. 48
4.2.9 Disadvantages.. 48

4.3 Advanced Horizontal Fragmentation Technique ... 49
4.3.1 Attribute Locality Precedence ... 49
4.3.2 MCURD Matrix .. 49
4.3.3 Algorithm .. 49
4.3.4 Example ... 52
4.3.5 Construction of MCRUD Matrix .. 53
4.3.6 Calculation of ALP.. 53
4.3.7 Construction of ALP Table ... 54
4.3.8 Generation of Predicate Set ... 54
4.3.9 Fragmentation of Relation ... 54
4.3.10 Addition of a New Site to DDBMS ... 55

CHAPTER 5 .. 57

Vertical Fragmentation ... 57

5.1 Bond Energy Algorithm & Binary Tree Partitioning .. 58
5.1.1 Some Definitions ... 58
5.1.2 Example ... 59
5.1.3 Bond Energy Algorithm .. 59
5.1.4 Binary Vertical Partitioning .. 61
5.1.5 Drawback .. 65

5.2 Graph-Partitioning Algorithm .. 67
5.2.1 Example ... 67
5.2.2 Step by Step Solution .. 68
5.2.3 Advantages .. 73
5.2.4 Disadvantages.. 73

5.3 Heuristic Approach for VF .. 74
5.3.1 Notations and Definitions.. 74
5.3.2 Algorithm .. 76
5.3.3 Example ... 77

3 | P a g e

5.3.4 Advantages of this Approach .. 79

CHAPTER 6 .. 80

Grid Fragmentation .. 80

6.1 Representation Scheme for Fragments .. 80
6.2 Methodology .. 82
6.3 Advantages of Our proposal .. 83
6.4 Allocation of Grid Cells ... 83

CHAPTER 7 .. 85

Implementation & Results ... 85

7.1 Configuring GSS .. 86
7.2 Results .. 86

7.2.1 Observations .. 88

Chapter 8 .. 90

Conclusion & Future Work ... 90

8.1 Conclusion ... 90
8.2 Future Scope .. 91

References ……..…………………………………………..…………90

4 | P a g e

List of Figures

FIGURE 1 : SOLUTION DESIGN FLOW I .. 10
FIGURE 2 : SOLUTION DESIGN FLOW II ... 10
FIGURE 3 : DISTRIBUTED DATABASES ... 14
FIGURE 4 : (A) HV FRAGMENTATION & (B) VH FRAGMENTATION 15
FIGURE 5 : FRAGMENTATION AND ALLOCATION ... 16
FIGURE 6 : DOMAIN NAME SPACE .. 20
FIGURE 7 : DNS REQUEST RESOLUTION .. 23
FIGURE 8 : GSLB USING THE CISCO GLOBAL SITE SELECTOR .. 25
FIGURE 9 : GSS ARCHITECTURE ... 27
FIGURE 10 : PREDICATES & FRAGMENTS ... 36
FIGURE 11 : ENCLOSED AND ENCLOSING CYCLE .. 38
FIGURE 12 : STEP BY STEP SOLUTION OF GRAPHICAL APPROACH FOR HF...................... 42
FIGURE 13 : FLOW CHART FOR FINDING PLP ... 51
FIGURE 14 : SITE MAP FOR BANKING SYSTEM. ... 52
FIGURE 15 : ADDITION OF NEW SITE TO MAP .. 55
FIGURE 16 : ORDERING ATTRIBUTES USING BEA ... 60
FIGURE 17 : GRAPHICAL METHOD FOR VF ... 68
FIGURE 18 : REPRESENTATION OF GRID CELLS .. 81
FIGURE 19 : DIFFERENT TECHNIQUES OF FRAGMENTATION STUDIED 82
FIGURE 20 : GRID ALLOCATION SCHEME ... 84
FIGURE 21 : GRAPH SHOWING THE COMPARISON OF FRAGMENTATION TECHNIQUES . 88

5 | P a g e

List of Tables

TABLE 1 : PREDICATE USAGE MATRIX ... 39
TABLE 2 : PREDICATE AFFINITY MATRIX .. 40
TABLE 3 : ACCOUNT RELATION ... 52
TABLE 4 : MCRUD MATRIX .. 53
TABLE 5 : ALP ... 54
TABLE 6 : RELATION FOR SITE IN DELHI ... 54
TABLE 7 : RELATION FOR SITE IN BANGALORE .. 54
TABLE 8 : RELATION FOR SITE IN MUMBAI.. 55
TABLE 9 : RELATION FOR SITE IN DELHI 1 ... 56
TABLE 10 : RELATION FOR SITE IN DELHI 2 ... 56
TABLE 11 : RELATION FOR SITE IN BANGALORE.. 56
TABLE 12 : RELATION FOR SITE IN MUMBAI ... 56
TABLE 13 : ATTRIBUTE USAGE MATRIX .. 59
TABLE 14 : ATTRIBUTE AFFINITY MATRIX ... 59
TABLE 15 : CLUSTERED AFFINITY MATRIX .. 61
TABLE 16 : CLUSTERED AFFINITY MATRIX .. 62
TABLE 17 : SPLITTING THE RELATION BY BVP ... 63
TABLE 18 : EXAMPLE CLUSTERED AFFINITY MATRIX FOR SPLIT 1 65
TABLE 19 : ATTRIBUTE USAGE MATRIX .. 67
TABLE 20 : ATTRIBUTE AFFINITY MATRIX ... 68
TABLE 21 : ATTRIBUTE USAGE FREQUENCY MATRIX ... 77
TABLE 22 : ATTRIBUTE REQUEST MATRIX ... 78
TABLE 23 : TRANSPORTATION COST FACTORS .. 78
TABLE 24 : ATTRIBUTE PAY MATRIX ... 78
TABLE 25 : ATTRIBUTE ALLOCATION ... 78
TABLE 26 : RESPONSES RECEIVED PER SECOND ... 87

6 | P a g e

Abstract

The distributed database design is an optimization problem that includes various sub-
problems: data fragmentation, allocation and local optimization. Each of these can be
solved in various ways. In context of this research we address fragmentation and
allocation problems simultaneously for distributed databases management systems
(DDBMS) for enhancing the process of server load balancing using Cisco Global Site
Selector (GSS).

Fragmentation is mainly of three types namely: horizontal, vertical and hybrid (grid)
fragmentation. Although there is large work carried out on the design of data
fragmentation but most of them are either horizontal or vertical. The core of this thesis
defines a new type of grid fragmentation technique in the context of relational databases.
Our proposal combines horizontal fragmentation (HF) on the basis of attribute locality
precedence and cost model of vertical fragmentation (VF) to generate grid fragments.
Both of these two techniques also address the problem of fragment allocation in
distributed databases. As part of whole process we discuss and compare various other
algorithms for generating candidate vertical and horizontal partition schemes.

In the end, we compare our approach with one of the graphical grid fragmentation
methods by implementing these techniques as part of Cisco GSS, a product for enhancing
the DNS resolution process. Results shows that proposed grid fragmentation is a superior
approach and it can solve fragmentation and allocation problem of relational database
systems properly.

7 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 1111

Problem

Definition

1.1 Overview

Now a day’s size of databases is so huge that it’s almost impossible to keep all the data at
one place. Even the organizations are spreading their businesses all around the world,
which will create bottleneck problem with that single database server. Many large
organizations of different types have a history of separate business units developing and
maintaining independent customer databases. Typically these legacy systems have been
developed autonomously and use a variety of data structures and identifiers to record
personal information. In addition, these databases are often ‘owned and operated’ by
separate functional units within the organization. Consequently, the personal information
an organization holds about individuals will be fragmented across a number of databases
using a variety of different data structures. This makes accessing and collating personal
information difficult and time-consuming. Rarely in these cases is there a unified and
consolidated view of the information an organization holds about an individual.

This work has been carried out as part of Cisco Global Site Selector (GSS), which is a
server load balancing device. GSS offloads the traditional DNS servers by taking control
of the DNS resolution process for parts of organizations domain name space. Basically

8 | P a g e

GSS performs DNS request resolutions and selects one of the least loaded and nearest
server in terms of round trip time (or some other network parameters) and returns its
address to the requesting client. GSS works in a mesh1 of 16 GSS that can cover all the
data-centers all around world. Whole mesh works like a single cohesive unit, where each
GSS coordinates with the PGSSM2. In the backend, GSS has various hugely populated
and ever-growing databases. Each request resolution in the whole mesh involves various
database operations. To improve the request resolution time we need to optimize these
database operations. So we create distributed data bases where different GSS can access
it without interfering with one another. It may be stored in multiple computers located in
the same physical location, or may be dispersed over a network of interconnected
computers. One problem associated with data quality that erodes GSS’s ability is – the
fragmentation of these databases across multiple databases.

Now, the design of distributed database is an optimization problem and the resolution of
several sub problems such as data fragmentation (horizontal, vertical, and hybrid), data
allocation (with or without redundancy), optimization and allocation of operations
(request transformation, selection of the best execution strategy, and allocation of
operations to sites). There are some different approaches to solve each problem, so this
means that the design of the distributed databases becomes cumbersome. There are many
researches connected to the data fragmentation and they are presented both in the case of
relational database and in the case of object-oriented database. Here we present a new
technique for grid fragmentation in distributed databases, especially to solve the problem
of fragmentation and allocation in distributed databases.

1.2 Related Work & Motivation

The concept of using fragmentation and allocation of data as means of improving the
performance of database management systems has often emerged in the literature. Most
of the past research considers either horizontal fragmentation [9] [10] [11] schemes or
vertical fragmentation schemes [1] [4] [7] [12].

Horizontal partitioning using min-term predicate is first proposed by Certi et. Al [10]. Ra
presented a graphical algorithm for HF in which predicates are clustered on the basis of
predicate affinity [11]. Similar graphical approach was proposed for VF by S.B.Navathe
et al given in [1]. Applying Bond Energy algorithm and Binary Partitioning to perform
vertical fragmentation is studied in [12]. Marwa et al. (2008) uses the instance request
matrix to horizontally fragment object oriented database [13]. Abuelyaman (2008)

1 Mesh is the interconnected network of GSS.
2 PGSSM – Primary GSS which controls and coordinates the complete mesh.

9 | P a g e

proposed a static algorithm StatPart for VF [14]. Mahboubi H. and Darmont J. (2009)
used predicate affinity for HF in data warehouse [15].

Shamkant B. Navathe, K Karlapalemand M. Ra proposed a mixed fragmentation
methodology by means of graphical approach to both HF and VF in [5]. This uses the
graphical approach using partitioning algorithm given in [1] for both horizontal and
vertical partitioning. This is not a cost model hence it does not deal with the problem of
allocation. Allocation of fragments to sites would normally involve a cost model. To the
best of our knowledge no such hybrid fragmentation approach exists that performs
fragmentation and allocation simultaneously. Our emphasis in this paper is a grid
fragmentation which is a type of mixed or hybrid fragmentation. We have developed a
cost model that addresses the problem of allocation in distributed databases. Our
methodology uses heuristic approach [7] for vertical fragmentation by H. Ma, KD
Schewe and M. Kirchberg and horizontal fragmentation on the basis of query frequency
and cost of operation [9] by S. I. Khan & A.S.M. Latiful Hoque. Both of these techniques
do allocation of fragments simultaneously with fragmentation. This provides us the
flexibility of allocating fragments either by using one of them or both of them. We will
discuss this in detail in later chapters.

1.3 Solution Flow

The complete distributed database design is a three step process, namely: initial design,
application of design and redesign. Initial design consists of selecting fragmentation and
allocation algorithms. Second and third step are iterative processes that depends upon
logical and physical changes in the distributed database environment.

In this thesis we use a similar methodology as given in [5], for generating a hybrid
fragmentation scheme for the DDBMS to optimize the GSS operations. Figure 1 shows
outline of our proposal where allocation is handled along with Fragmentation. Input
consists of a set of relations, together with information about the important transactions
on the proposed database. It is not necessary to collect information about 100% of
transactions. According to 80-20 rule [4], 20% of heavily used transactions account for
the 80% of database activity. Hence we provide information about 20% of heavily used
transaction. Input to the fragmentation techniques is defines as follows:

• Schema information includes relations, attributes, cardinalities, attribute sizes,
predicates used by the database operations.

• Information on transactions includes type (read or write), frequency, attribute
usage and predicates usage.

10 | P a g e

• Other input consists of preferences or special considerations that would influence
the fragmentation and allocation, like predete

After gathering input, next is the grid fragmentation which is composed of two modules,
namely: vertical fragmentation and horizontal fragmentation, as
Horizontal and vertical fragmentation can be done concurrently. We will explain various
methods for HF and VF that will result into various ways to perform grid fragmentation.
A scheme for representation of grid cells and the binary
Grid optimizer merges the grid cells by applying various binary operations to the grid
cells. This is anti-fragmentation but this applies to those fragments or grid cells which
belong to the same site. Grid optimizer is not
considered in future work.

Other input consists of preferences or special considerations that would influence
the fragmentation and allocation, like predetermined partitions or fixed allocation.

Figure 1 : Solution Design Flow I

After gathering input, next is the grid fragmentation which is composed of two modules,
namely: vertical fragmentation and horizontal fragmentation, as shown in the figure 2.
Horizontal and vertical fragmentation can be done concurrently. We will explain various
methods for HF and VF that will result into various ways to perform grid fragmentation.
A scheme for representation of grid cells and the binary operations is developed in [5].
Grid optimizer merges the grid cells by applying various binary operations to the grid

fragmentation but this applies to those fragments or grid cells which
belong to the same site. Grid optimizer is not discussed as part of this thesis

in future work.

Figure 2 : Solution Design Flow II

Other input consists of preferences or special considerations that would influence
rmined partitions or fixed allocation.

After gathering input, next is the grid fragmentation which is composed of two modules,
shown in the figure 2.

Horizontal and vertical fragmentation can be done concurrently. We will explain various
methods for HF and VF that will result into various ways to perform grid fragmentation.

operations is developed in [5].
Grid optimizer merges the grid cells by applying various binary operations to the grid

fragmentation but this applies to those fragments or grid cells which
discussed as part of this thesis. It will be

11 | P a g e

1.4 Organization of Dissertation

The rest of this thesis is organized as follows. In chapter 2, we have presented literature
review for distributed databases. It describes the various distributed databases design
techniques.

Chapter 3 introduces global site selector (GSS), a Cisco product that improves the DNS
request resolution with many added features. It is a Server Load Balancer (SLB) device
that can balance content requests among two or more servers containing the same
content. Server load-balancing devices ensure that the content consumer is directed to the
host that is best suited to handle that consumer’s request. This work has been carried out
as part of GSS to improves the working of GSS by fragmenting the underlying various
GSS’s databases. We will discuss the traditional DNS request resolution and same using
GSS. We clarify the need for fragmentation with a brief overview about server load
balancing features.

We start with our core work in chapter 4. Mainly we will explain three horizontal
fragmentation schemes. First one is a basic technique that uses min-term predicate and
optimizes these min-terms by removing the redundant and non-satisfactory predicates.
Second approach for HF is a graphical approach for forming clusters using predicate
affinity. We have modified and simplified the partitioning algorithm given in [1], which
is to be used for this graphical approach. For reference we call this algorithm as Graph
Partitioning Algorithm. Thirdly we explain a new approach for HF [9] using MCURD
matrix1 to generate attribute locality precedence. We presented an example to explain
each of the above techniques.

Moving to the chapter 5 we discuss three approaches for vertical fragmentation. First one
uses Bond Energy Algorithm [2] to group the attributes of a relation based on Attribute
Affinity Matrix2 and then using Binary Partitioning [3] algorithm to partition the relation.
Second method is the same used for HF. Graphical approach using graph partitioning
algorithm that partition the relation using attribute affinity. Thirdly we discussed a
heuristic approach for VF that uses a attribute usage matrix and cost model. We presented
an example to explain each of the above techniques.

1 A data-to-location MCURD matrix is a table of which rows indicate predicates of the entries of a relation and
columns indicate different locations.
2 Attribute Affinity Matrix specifies the use of attributes by the transaction and there access frequency.

12 | P a g e

In chapter 6 we introduce how to perform grid fragmentation. We present representation
of the grid cells and the various binary operations over them. In the end we discuss when
to perform allocation of fragments.

In chapter 7, we start with brief review about implementation. We have shown
implementation results of six fragmentation techniques as part of Cisco Global Site
Selector. Finally we discuss various observations about the result.

Finally we conclude with a short summary and the future modifications of the proposed
methodology in chapter 8.

13 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 2222

Distributed
Databases

In the previous chapter we discussed about our approach and motivation behind our
work. This chapter explains the various aspects of a distributed database design problem,
advantages and disadvantages of distributed databases.

2.1 Introduction

A distributed database is a database that is under the control of a central database
management system (DBMS) in which storage devices are not all attached to a common
CPU. It may be stored in multiple computers located in the same physical location, or
may be dispersed over a network of interconnected computers. Collections of data in a
distributed database can be distributed across multiple physical locations. A distributed
database can reside on network servers on the Internet, on corporate intranets or
extranets, or on other company networks. Primary concern of distributed database system
design is to making fragmentation of the relations in case of relational database or classes
in case of object oriented databases, allocation and replication of the fragments in
different sites of the distributed system, and local optimization in each site.

The fragmentation and allocation of databases improves database performance at end-
user worksites. We can influence communication costs, load balancing and availability
by fragmenting a relation and allocating it accordingly using an optimized approach.
Fragmentation decomposes a relation into smaller, disjunctive fragments. These

14 | P a g e

fragments are distributed across nodes or may be replicated. Replication involves using
specialized software that looks for changes in the distributive database. Once the changes
have been identified, the replication process makes all the databases look the same. The
replication process can be very complex and time consuming depending on the size and
number of the distributive databases. This process can also require a lot of time and
computer resources. On the other hand allocation deals with keeping the fragments at the
sites where they are required most. Assigning fragments to sites in the computer network
depends upon communication cost and transaction information. Using a cost model we
can efficiently minimize the cost of remote access and avoid bottleneck problem. In this
thesis we are concentrating on fragmentation and allocation schemes.

Figure 3 : Distributed Databases

The design of distributed databases is an optimization problem requiring solutions to
following two problems:

• Designing the fragmentation of global relations
• Designing the allocation of fragments to the sites of communication network

2.2 Fragmentation

Distributed processing on database management systems (DBMS) is an efficient way of
improving performance of applications that manipulate large volumes of data. This may
be accomplished by removing irrelevant data accessed during the execution of queries

15 | P a g e

and by reducing the data exchange among sites,
design of distributed databases

• increase locality of reference of the queries submitted to database
• improve reliability and availability of data and performance

balance storage capacities and minimize communication costs among sites

Fragmentation is a design technique to divide a single relation or class of a database into
two or more partitions such that the combination of the partitions provides
database without any loss of information. This reduces the
accessed by the applications of the database, thus reducing the number of disk accesses.
Fragmentation can be horizontal, vertical or mixed/hybrid.

• Horizontal fragmentation
disjoint tuples or instances.

• Vertical fragmentation
disjoint sets of columns or attributes except the primary key.

• Combination of horizontal and vertical fragmentations to
hybrid fragmentations
To perform hybrid fragmentation we can perform HF first and then VF (HV
fragmentation) or vice versa (VH
result is independent

(a)

Figure 4

The problem of fragmenting the database is difficult one in
approaches exist for fragmenting the database.
horizontal have been researched before. Some of them are graphical approaches that
consider predicate affinity [5] or attribute affinity [1] to form clust
fragmentation technique [5] uses graphical approach for both HF and VF for creating grid

and by reducing the data exchange among sites, which are the two main goals of the
ign of distributed databases. The main reasons of fragmentation of the relations are to

increase locality of reference of the queries submitted to database
improve reliability and availability of data and performance
balance storage capacities and minimize communication costs among sites

Fragmentation is a design technique to divide a single relation or class of a database into
two or more partitions such that the combination of the partitions provides
database without any loss of information. This reduces the amount of irrelevant data
accessed by the applications of the database, thus reducing the number of disk accesses.
Fragmentation can be horizontal, vertical or mixed/hybrid.

l fragmentation (HF) allows a relation or class to be partitioned into
s or instances.

Vertical fragmentation (VF) allows a relation or class to be partitioned into
disjoint sets of columns or attributes except the primary key.
Combination of horizontal and vertical fragmentations to grid
hybrid fragmentations (MF) are also proposed, which have properties of
To perform hybrid fragmentation we can perform HF first and then VF (HV
fragmentation) or vice versa (VH fragmentation) as shown in the figure 4. Final
result is independent of the order of HF and VF.

 (b)

4 : (a) HV fragmentation & (b) VH fragmentation

The problem of fragmenting the database is difficult one in itself and variety of
approaches exist for fragmenting the database. Many approaches for vertical and
horizontal have been researched before. Some of them are graphical approaches that
consider predicate affinity [5] or attribute affinity [1] to form clust
fragmentation technique [5] uses graphical approach for both HF and VF for creating grid

which are the two main goals of the
. The main reasons of fragmentation of the relations are to

improve reliability and availability of data and performance of the system,
balance storage capacities and minimize communication costs among sites

Fragmentation is a design technique to divide a single relation or class of a database into
two or more partitions such that the combination of the partitions provides the original

mount of irrelevant data
accessed by the applications of the database, thus reducing the number of disk accesses.

(HF) allows a relation or class to be partitioned into

(VF) allows a relation or class to be partitioned into

grid or mixed or
(MF) are also proposed, which have properties of both.

To perform hybrid fragmentation we can perform HF first and then VF (HV
fragmentation) as shown in the figure 4. Final

itself and variety of
Many approaches for vertical and

horizontal have been researched before. Some of them are graphical approaches that
consider predicate affinity [5] or attribute affinity [1] to form clusters. A mixed
fragmentation technique [5] uses graphical approach for both HF and VF for creating grid

16 | P a g e

cells. . In this thesis we propose a new type of Grid Fragmentation method which uses
cost model for both HF and VF and performs allocation simultaneously. It uses query
frequency and cost of a query to calculate attribute locality precedence for HF [9]. For
VF it uses cost of allocating a particular attribute to particular site on the basis of
transaction information [7].

2.3 Allocation

Allocation is the process of assigning the fragments of a database on the sites of a
distributed network. When data is allocated, it may either be replicated or maintained as a
single copy. The replication of fragments improves reliability and efficiency of read-only
queries but increase update cost.

The problem of allocating data in a distributed database system has an important impact
upon the performance and reliability of the system as a whole. The aim is to store the
fragments closer to where they are more frequently used in order to achieve best
performance.

So, one key principle in distribution design is to achieve maximum locality of data and
applications. Since, distributed databases enable more sophisticated communication
between sites; the major motivation for developing a distributed database is to reduce
communication by allocating data as close as possible to the applications which use them.
Thus in a well-designed distributed database 90 percent of the data should be found at the
local site, and only 10 percent of the data should be accessed on a remote site. A poorly
designed data allocation can lead to inefficient computation, high access cost and high
network loads. Various approaches have already evolved for allocation of data in

Figure 5 : Fragmentation and Allocation

17 | P a g e

distributed database. In most of these approaches, data allocation has been proposed prior
to the design of a database depending on some static data access patterns and/or static
query patterns. In a static environment, where the access probabilities of nodes to
fragments never change, a static allocation of fragments provides the best solution.
However, in a dynamic environment where these probabilities change over time, the
static allocation solution would degrade the database performance.

2.4 Advantages of Distributed Databases

There are multiple advantages of DDB over a CDB. Few of them are listed below.

• Management of distributed data with different levels of transparency.
• Increase reliability and availability.
• Easier expansion.
• Reflects a proper organizational structure — database fragments are located in the

departments which they relate to.
• Local autonomy — a department can control the data about them (as they are the

ones familiar with it.)
• Protection of valuable data — if there were ever a catastrophic event such as a

fire, all of the data would not be in one place, but distributed in multiple locations.
• Improved performance — data is located near the site of greatest demand, and the

database systems themselves are parallelized, allowing load on the databases to be
balanced among servers. (A high load on one module of the database won't affect
other modules of the database in a distributed database.)

• Economics — it costs less to create a network of smaller computers with the
power of a single large computer.

• Modularity — systems can be modified, added and removed from the distributed
database without affecting other modules (systems).

• Reliable transactions - Due to replication of database.
• Hardware, OS, N/w, Fragmentation, DBMS, Replication and Location

Independence.
• Continuous operation…
• Distributed Query processing.
• Distributed Transaction management.
• Single site failure does not affect performance of system. All transactions follow

A.C.I.D. property: a-atomicity, the transaction takes place as whole or not at all;
c-consistency, maps one consistent DB state to another; i-isolation, each
transaction sees a consistent DB; d-durability, the results of a transaction must

18 | P a g e

survive system failures. The Merge Replication Method used to consolidate the
data between databases.

2.5 Disadvantages of Distributed Databases

There some disadvantages of a DDB. Few of them are listed below.

• Complexity — extra work must be done by the DBAs to ensure that the
distributed nature of the system is transparent. Extra work must also be done to
maintain multiple disparate systems, instead of one big one. Extra database design
work must also be done to account for the disconnected nature of the database —
for example, joins become prohibitively expensive when performed across
multiple systems.

• Economics — increased complexity and a more expansive infrastructure means
extra costs.

• Security — remote database fragments must be secured, and they are not
centralized so the remote sites must be secured as well. The infrastructure must
also be secured (e.g., by encrypting the network links between remote sites).

• Difficult to maintain integrity — in a distributed database, enforcing integrity
over a network may require too much of the network's resources to be feasible.

• Inexperience — distributed databases are difficult to work with, and as a young
field there is not much readily available experience on proper practice.

• Lack of standards — there are no tools or methodologies yet to help users convert
a centralized DBMS into a distributed DBMS.

• Database design more complex — besides of the normal difficulties, the design of
a distributed database has to consider fragmentation of data, allocation of
fragments to specific sites and data replication.

• Additional software is required.
• Operating System should support distributed environment.
• Concurrency control: it is a major issue. It is solved by locking and time

stamping.

19 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 3333

Global Site
Selector

In this chapter we will discuss about Cisco Global Site Selector and its key features. At
the end of this chapter we explain the demand and application of our fragmentation
techniques.

3.1 General Idea

Organizations with a global reach or businesses that provide web and application hosting
services require network devices that can perform complex request routing to two or
more redundant, geographically dispersed data centers. These network devices need to
provide fast response time and disaster recovery and failover protection through global
server load balancing (GSLB).

Server load-balancing devices, such as the Cisco Content Services Switch (CSS), Cisco
Content Switching Module (CSM), and Cisco Application Control Engine (ACE) that are
connected to a corporate LAN or the Internet, can balance content requests among two or
more servers containing the same content. Server load-balancing devices ensure that the
content consumer is directed to the host that is best suited to handle that consumer’s
request.

The Cisco Global Site Selector (GSS) platform allows us to leverage global content
deployment across multiple distributed and mirrored data locations, optimizing site

20 | P a g e

selection, improving Domain Name System (DNS) responsiveness, and ensuring data
center availability.

The GSS is inserted into the traditional DNS routing hierarchy and is closely integrated
with the Cisco CSS, Cisco CSM, Cisco ACE, or third-party server load balancers (SLBs)
to monitor the health and load of the SLBs in your data centers. The GSS uses this
information and user-specified routing algorithms to select the best-suited and least-
loaded data center in real time.

The GSS can detect site outages, ensuring that web-based applications are always online
and that customer requests to data centers that suddenly go offline are quickly rerouted to
available resources. The GSS offloads tasks from traditional DNS servers by taking
control of the domain resolution process for parts of your domain name space, responding
to requests at a rate of thousands of requests per second.

3.2 DNS Routing

This section explains some of the key DNS routing concepts behind the GSS. Since the
early 1980s, content routing on the Internet has been handled using the Domain Name
System (DNS), a distributed database of host information that maps domain names to IP
addresses. Almost all transactions that occur across the Internet rely on DNS, including
electronic mail, remote terminal access such as Telnet, file transfers using the File
Transfer Protocol (FTP), and web surfing. DNS uses alphanumeric hostnames instead of
numeric IP addresses that bear no relationship to the content on the host. With DNS, you
can manage a nearly infinite number of hostnames referred to as the domain name space
(see figure 6). DNS allows local administration of segments (individual domains) of the
overall database, but allows for data in any segment to be available across the entire
network. This process is referred to as delegation.

Figure 6 : Domain Name Space

21 | P a g e

3.2.1 DNS Name Servers
Information about the domain name space is stored on name servers that are distributed
throughout the Internet. Each server stores the complete information about its small part
of the total domain name space. This space is referred to as a DNS zone. A zone file
contains DNS information for one domain (“mycompany.com”) or sub-domain
(“gslb.mycompany.com”).
The DNS information is organized into lines of information called resource records.
Resource records describe the global properties of a zone and the hosts or services that
are part of the zone. They are stored in binary format internally for use by the DNS
software. However, resource records are sent across the network in a text format while
they perform zone transfers.
Resource records are composed of various types of records including:

• Start of Authority (SOA)
• Name Service (NS)
• Address (A)
• Host Information (HINFO)
• Mail Exchange (MX)
• Canonical Name (CNAME)
• Pointer (PTR)

3.2.2 DNS Structure
End users who require data from a particular domain or machine generate a recursive
DNS request on their client that is sent first to the local name service (NS), also referred
to as the D-proxy. The D-proxy returns the IP address of the requested domain to the end
user.

The DNS structure is based on a hierarchical tree structure that is similar to common file
systems. The key components in this infrastructure are as follows:

• DNS Resolvers—Clients that access client name servers.
• Client Name Server—Server that runs DNS software that has the responsibility

of finding the requested web site. The client name server is also referred to as the
client DNS proxy (D-proxy).

• Root Name Servers—Server that resides at the top of the DNS hierarchy. The
root name server knows how to locate every extension after the period (.) in the
hostname. There are many top-level domains. The most common top-level
domains include .org, .edu, .net, .gov, and .mil. Approximately 13 root servers
worldwide handle all Internet requests.

22 | P a g e

• Intermediate Name Server—Server that is used for scaling purposes. When the
root name server does not have the IP address of the authoritative name server, it
sends the requesting client name server to an intermediate name server. The
intermediate name server then refers the client name server to the authoritative
name server.

• Authoritative Name Server—Server that is run by an enterprise or outsourced to
a service provider and is authoritative for the domain requested. The authoritative
name server responds directly to the client name server (not to the client) with the
requested IP address.

3.2.3 Request Resolution
If the local D-proxy does not have the information requested by the end user, it sends out
iterative requests to the name servers that it knows are authoritative for the domains close
to the requested domain. For example, a request for www.cisco.com causes the local D-
proxy to check first for another name server that is authoritative for www.cisco.com.
Figure 7 summarizes the sequence performed by the DNS infrastructure to return an IP
address when a client tries to access the www.cisco.com website.

1. The resolver (client) sends a query for www.cisco.com to the local client name
server (D-proxy).

2. The local D-proxy does not have the IP address for www.cisco.com so it sends a
query to a root name server (“.”) asking for the IP address. The root name server
responds to the request by doing one of the following:

a. Referring the D-proxy to the specific name server that supports the .com
domain.

b. Sending the D-proxy to an intermediate name server that knows the address
of the authoritative name server for www.cisco.com. This method is
referred to as an iterative query.

3. The local D-proxy sends a query to the intermediate name server that responds by
referring the D-proxy to the authoritative name server for cisco.com and all the
associated sub-domains.

4. The local D-proxy sends a query to the cisco.com authoritative name server that is
the top-level domain. In this example, www.cisco.com is a sub-domain of
cisco.com, so this name server is authoritative for the requested domain and sends
the IP address to the name server (D-proxy).

23 | P a g e

Figure 7 : DNS Request Resolution

5. The name server (D-proxy) sends the IP address (172.16.56.76) to the client
browser. The browser uses this IP address and initiates a connection to the
www.cisco.com website.

3.3 Globally Load Balancing with the GSS

The GSS addresses critical disaster recovery requirements by globally load balancing
distributed data centers. The GSS coordinates the efforts of geographically dispersed
SLBs in a global network deployment for the various other Routing and Switching Cisco
products.

24 | P a g e

The GSS supports over 4000 separate virtual IP (VIP) addresses. It coordinates the
activities of SLBs by acting as the authoritative DNS server for those devices under its
control.
Once the GSS becomes responsible for GSLB services, the DNS process migrates to the
GSS. The DNS configuration is the same process as described in the “Request
Resolution” section. The only exception is that the NS-records point to the GSSs located
at each data center. The GSS determines which data center site should receive the client
traffic.
As the authoritative name server for a domain or sub-domain, the GSS considers the
following additional factors when responding to a DNS request:
• Availability — Servers that are online and available to respond to the

query
• Proximity — Server that responded to a query most quickly
• Load — Type of traffic load handled by each server in the

domain
• Source of the Request — Name server (D-proxy) that requests the content
• Preference — First, second or third choice of the load-balancing

algorithm to use when responding to a query
This type of global server load balancing ensures that the end users are always directed to
resources that are online, and that requests are forwarded to the most suitable device
resulting in faster response time for users.
When resolving DNS requests, the GSS performs a series of distinct operations that take
into account the resources under its control and return the best possible answer to the
requesting client’s D-proxy.

25 | P a g e

Figure 8 : GSLB Using the Cisco Global Site Selector

Figure 8 outlines how the GSS interacts with various clients as part of the website
selection process to return the IP address of the requested content site.

1. A client starts to download an updated version of software from www.cisco.com
and types www.cisco.com in the location or address field of the browser. This
application is supported at three different data centers.

2. The DNS global control plane infrastructure processes the request and the request
arrives at a GSS device.

3. The GSS sends the IP address of the “best” server load balancer to the client, in
this case the SLB at Data Center 2.

4. The web browser processes the transmitted IP address.

26 | P a g e

5. The client is directed to the SLB at Data Center 2 by the IP control and
forwarding plane.

6. The GSS offloads the site selection process from the DNS global control plane.
The request and site selection are based on the load and health information with
user-controlled load-balancing algorithms. The GSS selects in real time a data
center that is available and not overloaded.

3.4 GSS Architecture

The architecture of GSS is a layered structure where each layer has a specific function as
shown in the figure 9. For configuration and control, administrators have a Cisco IOS
Software-like command-line interface (CLI) and an intuitive, embedded GUI. The CLI
and the GUI is used for the configuration of all global load-balancing parameters. All the
DNS request that come, go to monitoring module which filter the incoming packet and
send them to different modules depending upon the kind of request. One request may be
processed by more than one module. One particular answer is selected and returned to D-
Proxy/Client as per the requirement. Most of the modules have an underlying database.
For example Sticky module stores all the entries in a particular database. It returns an
answer on the basis of the entries stored in the sticky database. Similarly we have one
database for DNS rules and each answer is selected by matching the request parameters
with the DNS rule parameter. Each DNS rule in itself is very big with more than 20
parameters in it. Hence most of the DNS request resolution time is spent in searching a
particular DNS rule in the database.

These databases are the main area of concern for us in this thesis. We propose various
techniques to fragment and allocate the database. As discussed size of databases are huge
and searching for one entry will make the whole request resolution process a time
consuming one. Database searching time is nearly 70% of the DNS request resolution
total time. Hence we need to fragment these databases so that we can fasten the DNS
resolution process significantly.

27 | P a g e

3.5 GSS Mesh

Interconnected network of various GSS is called GSS mesh, where each of the GSS
works in coordination with the primary GSS. Maximum 16 GSS
mesh which is enough to cover the data centers all around the world. GSS mesh consists
of following three types of GSS.

• Primary GSSM
• GSS
• Standby GSSM

3.5.1 Primary GSSM
The primary GSSM is a GSS that runs the GSS software. It performs conten
addition to centralized management and shared global server load
the GSS network.
The primary GSSM hosts the embedded GSS database that contains configuration
information for all your GSS resources, such as individual G
connected GSS devices report their
On the primary GSSM, one monitors and administers GSS
following interfaces:

Figure 9 : GSS Architecture

Interconnected network of various GSS is called GSS mesh, where each of the GSS
works in coordination with the primary GSS. Maximum 16 GSS can be included in a
mesh which is enough to cover the data centers all around the world. GSS mesh consists
of following three types of GSS.

Primary GSSM
The primary GSSM is a GSS that runs the GSS software. It performs conten

centralized management and shared global server load-balancing functions for

The primary GSSM hosts the embedded GSS database that contains configuration
your GSS resources, such as individual GSSs and DNS rules. All

connected GSS devices report their status to the primary GSSM.
GSSM, one monitors and administers GSS devices using

Interconnected network of various GSS is called GSS mesh, where each of the GSS
can be included in a

mesh which is enough to cover the data centers all around the world. GSS mesh consists

The primary GSSM is a GSS that runs the GSS software. It performs content routing in
balancing functions for

The primary GSSM hosts the embedded GSS database that contains configuration
SSs and DNS rules. All

devices using either of the

28 | P a g e

• CLI commands
• GUI (graphical user interface) functions

All configuration changes are communicated automatically to each device managed by
the primary GSSM. Any GSS device can serve as the single, primary GSSM on a
configured system.

3.5.2 GSS
The GSS runs the GSS software and routes DNS queries based on DNS rules and
conditions configured using the primary GSSM. Each GSS is known to and synchronized
with the primary GSSM. We manage each GSS individually through its command-line
interface (CLI). Support for the graphical-user interface (GUI) is not available on a GSS
or on a standby GSSM.

3.5.3 Standby GSS
The standby GSSM is a GSS that runs the GSS software and routes DNS queries based
on DNS rules and conditions configured using the primary GSSM. Additionally, the
standby GSSM is configured to function as the primary GSSM if the designated primary
GSSM goes offline or becomes unavailable to communicate with other GSS devices.

When the standby GSSM operates as the interim primary GSSM, it contains a duplicate
copy of the embedded GSS database currently installed on the primary GSSM. Both CLI
and GUI support are also available on the standby GSSM once you configure it as the
interim primary GSSM. While operating as the primary GSSM, you can monitor GSS
behavior and make configuration changes, as necessary.

Any configuration or network changes that affect the GSS network are synchronized
between the primary and the standby GSSM so the two devices are never out of
sequence.

3.6 Traffic Management Load Balancing

The GSS includes DNS sticky and network proximity traffic management functions to
provide advanced global server load-balancing capabilities in a GSS network. DNS sticky
ensures that e-commerce sites provide undisrupted services and remain open for business
by supporting persistent sticky network connections between customers and e-commerce
servers. Persistent network connections ensure that active connections are not interrupted
and shopping carts are not lost before purchase transactions are completed.

29 | P a g e

Network proximity selects the closest or most proximate server based on measurements
of round-trip time to the requesting client’s D-proxy location, improving the efficiency
within a GSS network. The proximity calculation is typically identical for all requests
from a given location (D-proxy) if the network topology remains constant. This approach
selects the best server based on a combination of site health (availability and load) and
the network distance between a client and a server zone.
Note: In context of GSS, Answer or A-record refers to the IPv4 address of the resource
located in the datacenter.

3.6.1 DNS Sticky GSLB
Stickiness, also known as persistent answers or answer caching, enables a GSS to
remember the DNS response returned for a client D-proxy and to later return that same
answer when the client D-proxy makes the same request. When you enable stickiness in a
DNS rule, the GSS makes a best effort to always provide identical A-record responses to
the requesting client D-proxy, assuming that the original VIP continues to be available.

DNS sticky on a GSS ensures that e-commerce clients remain connected to a particular
server for the duration of a transaction even when the client’s browser refreshes the DNS
mapping. While some browsers allow client connections to remain for the lifetime of the
browser instance or for several hours, other browsers impose a connection limit of 30
minutes before requiring a DNS re-resolution. This time may not be long enough for a
client to complete an e-commerce transaction.

With local DNS sticky, each GSS device attempts to ensure that subsequent client D-
proxy requests to the same domain name to the same GSS device will be stuck to the
same location as the first request. DNS sticky guarantees that all requests from a client D-
proxy to a particular hosted domain or domain list are given the same answer by the GSS
for the duration of a user-configurable sticky inactivity time interval, assuming the
answer is still valid.

With global DNS sticky enabled each GSS device in the network shares answers with the
other GSS devices in the network, operating as a fully connected peer-to-peer mesh. Each
GSS device in the mesh stores the requests and responses from client D-proxies in its
own local database and shares this information with the other GSS devices in the
network. As a result, subsequent client D-proxy requests to the same domain name to any
GSS in the network causes the client to be stuck.

30 | P a g e

3.6.2 Network Proximity GSLB
The GSS responds to DNS requests with the most proximate answers (resources) relative
to the requesting D-proxy. In this context, proximity refers to the distance or delay in
terms of network topology (not geographical distance) between the requesting client’s D-
proxy and its answer.

To determine the most proximate answer, the GSS communicates with a proximity
probing agent, a Cisco IOS-based router or another GSS configured as a DRP agent,
located in each proximity zone to gather round-trip time (RTT) metric information
measured between the requesting client’s D-proxy and the zone. Each GSS directs client
requests to an available server with the lowest RTT value

The proximity selection process is initiated as part of the DNS rule balance method
clause. When a request matches the DNS rule and balance clause with proximity enabled,
the GSS responds with the most proximate answer.

The GSS responds to DNS requests with the most proximate answers relative to the
requesting D-proxy. In earlier releases, proximity refers to the distance or delay in terms
of network topology, not geographical distance, between the requesting client’s D-proxy
and its answer.

To determine the most proximate answer, the GSS communicates with a probing device,
a Cisco IOS-based router, located in each data center (proximity zone) to gather round-
trip time (RTT) metric information measured between the requesting client D-proxy and
the zone. Each GSS directs client requests to an available server with the lowest RTT
value.

While it may often provide the best answer for the most relevant content server, it has the
following limitations:

1. It has to be computed inline i.e. the DNS resolution has to wait while proximity to
D-proxy is being computed unless the result has been cached.

2. If RTT computation is infrequent, then the RTT values may be stale and incorrect.

3. RTT values are transient, and hence cannot be assumed to be accurate at every
point of time in the future.

In the recent times, various applications like fraud prevention, web analytics have
evolved based on physical location (latitude and longitude) of a client machine. Various
vendors are providing IP databases for these applications. We shall use one such database

31 | P a g e

to decide proximity based on geographical distance (from client D-proxy) instead of RTT
value. This will open up a new avenue for GSS to provide various value-added features.

We introduced location-based load balancing using an IP database. This database
contains the range of IP address and their corresponding location. As the number of IP
addresses can be huge, so is the size of this database. With the depletion of IPv4
addresses, IPv6 address will come into market. That will again lead to the increase in the
size of database.

In the last section we mentioned about sticky database which is shared between all the
GSS in the mesh through replication. Similarly GSS contains various other ever growing
databases.

As part of this project our job is to propose an optimized fragmentation and allocation
method. The size of all these databases is large due to that the cost of even a simple query
will be high. Frequency of queries is very fast because for every DNS request that come
has to be resolved on the basis of these databases. So an effective fragmentation
technique is needed to fragment and allocates these databases to different GSSs.

In addition we discuss various fragmentation techniques to partition the database
horizontally & vertically both. At the end we also show that better than partitioning either
horizontally or vertically, we can do both one after another which is called grid
fragmentation. We also show various combinations of HF and VF to perform different
types of grid fragmentations and there benefits in different scenarios. Some of these are
already proposed.

32 | P a g e

CHAPTER 4CHAPTER 4CHAPTER 4CHAPTER 4

Horizontal
Fragmentation

In the previous chapters we have studied about fragmentation, its types, need for
fragmentation and overview of Cisco GSS. From this chapter onwards we will explain
the core work on our research. We explain here following Horizontal Fragmentation
techniques:
1. Horizontal fragmentation using min-term predicates [10].
2. We have modified the graph-partitioning algorithm [11] and used the modified one to

execute fragmentation.
3. Third approach calculates the attribute locality precedence [9] and fragments the

databases accordingly.

4.1 Basic Approach to Horizontal Fragmentation

First of all we will discuss a simple algorithm to fragment a relation horizontally. This
approach was first studied by S. Ceri, M. Negri, and G. Pelagatti in [10]. At the outset it
creates all the possible min-terms using all the predicates. Then we eliminate some non-
satisfactory min-terms & dependent min-terms. Finally we optimize the predicates that
define our fragments. This approach is fairly simple enough to understand, but the
amount of min-terms that can be created in the intermediate stages will be too high. This
makes it difficult to use this in the real time scenarios. It does not use the query frequency

33 | P a g e

for fragmentation. Further it can only be used in centralized database as it does not
propose any allocation scheme.

4.1.1 Input & Output Definitions
Input to the algorithm is:

• Relation R (A1, , An), where Ai is an attribute defined over domain Di =
Dom(Ai)

• Set of queries.
A predicate is defined as follows:

• pj : Ai <operator> Value, with operator ∈ { <, <=, >, >=, =, !=} & Value ∈
Dom(Ai)

• pj : defines potential binary fragmentation of R.
It gives Set of selection expressions M for fragmentation as output.

4.1.2 Algorithm
Now we will explain this algorithm in a stepwise fashion with help of an example.
1. Obtain user queries and statstics

Using following set of queries as an example we will explain the complete
algorithm.

Given Queries:
• q1: SELECT DName FROM Department WHERE DCode = ‘DCAS’
• q2: SELECT Location FROM Department WHERE Budget BETWEEN

50,000 AND 200,000
2. Identify simple predicates in the queries

Predicates identified out of above given queries:
• p1: DCode = ‘DCAS’
• p2: Budget >= 50,000
• p3: Budget <= 200,000

3. Definition of all possible min-terms

Set Mn(P) of all n-ary min-terms for a set of predicates P. A min-term m is a
conjunction of simple predicates or negation of predicates. One min-term cannot
contain both versions of a predicate i.e. predicate and its negation. Initially each
min-term contains every predicate either in normal form or in negated form. All the
min-terms define a complete and disjoint fragmentation of R.
We denote σm(R) as fragment defined by min-term m. Union of all the fragments
give the original relation without any loss of information.

• R = U σm(R) , where m є Mn(P)

34 | P a g e

No two fragments have any tuple in common i.e. intersection of any two fragments
is null.

• Vmi, mj, є Mn(P), mi != mj : σmi(R) ∩ σmj(R) = Ø

We can drive following set of min-terms M3(P):
• m1 : p1

+ Λ p2
+ Λ p3

+
• m2 : p1

+ Λ p2
+ Λ p3

-
• m3 : p1

+ Λ p2
- Λ p3

+
• m4 : p1

+ Λ p2
- Λ p3

-
• m5 : p1

- Λ p2
+ Λ p3

+
• m6 : p1

- Λ p2
+ Λ p3

-
• m7 : p1

- Λ p2
- Λ p3

+
• m8 : p1

- Λ p2
- Λ p3

-

Here p+ denotes he normal form of the predicate without any change & p- denotes the
negation of the predicate.

After putting the respective predicates, we get the following min-terms Mn(P):

• m1 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m2 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬(Budget <= 200,000)
• m3 : (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <= 200,000)
• m4 : (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)
• m5 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m6 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)
• m7 : ¬ (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <=

200,000)
• m8 : ¬ (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)

4. Elimination of non-satisfactory min-terms

As we can see 4th min-term defines as fragment where budget is less than 50000
and budget is more than 200,000 as well, which is not possible. Similarly, we can
eliminate 8th predicate.

• m1 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m2 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬(Budget <= 200,000)
• m3 : (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <= 200,000)
• m4 : (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)

35 | P a g e

• m5 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m6 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)
• m7 : ¬ (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <=

200,000)
• m8 : ¬ (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)

5. Elimination of dependent predicates

Eliminate predicates in a min-term that are dependent (implications & functional
dependencies)

• m1 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m2 : (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬(Budget <= 200,000)
• m2 : (DCode = 'DCAS`) Λ (Budget > 200,000)
• m3 : (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <= 200,000)
• m3 : (DCode = 'DCAS`) Λ (Budget < 50,000)
• m5 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)
• m6 : ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ ¬ (Budget <=

200,000)
• m6 : ¬ (DCode = 'DCAS`) Λ (Budget > 200,000)
• m7 : ¬ (DCode = 'DCAS`) Λ ¬ (Budget >= 50,000) Λ (Budget <=

200,000)
• m7 : ¬ (DCode = 'DCAS`) Λ (Budget < 50,000)

6. Estimate selectivity of each min-term
7. Find minimal & complete sets of min-terms for defining fragments

Ø Minimal: at least one query accesses fragment
Ø Complete: each and every tuple is the part of some fragment.

Given predicates:
• p1: DCode = ‘DCAS’
• p2: Budget >= 50,000
• p3: Budget <= 200,000

As shown in the figure 10 we have divided our database into five fragments. Each
fragment is shown belonging to different predicates. This is just the initial
fragmentation defined on the basis of given predicates. It has nothing to do with the
actual fragmentation.

Given Min-term:

36 | P a g e

• m1 : (DCode = '

Fragmentation on m1

• R1 = { F2 }

Similarly for other min

• m2 : (DCode
• m3 : (DCode
• m5 : ¬ (

200,000), R
• m6 : ¬ (DCode
• m7 : ¬ (DCode

Obtained Fragmentation

• R1 = { F2
• R2 = { F3
• R3 = { F1
• R6 = { F4, F

4.1.3 Summing up
Over all the process is very much simple and straight forward. Number of min
generated in the intermediate steps is exponential to number of predicates. Applying this

: (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)

1

Similarly for other min-terms we have,
DCode = 'DCAS`) Λ (Budget > 200,000), R2 = { F3

DCode = 'DCAS`) Λ (Budget < 50,000) , R3 = { F1 }
: ¬ (DCode = 'DCAS`) Λ (Budget >= 50,000) Λ (Budget <=

, R5 = { }
DCode = 'DCAS`) Λ (Budget > 200,000), R6 = { F
DCode = 'DCAS`) Λ (Budget < 50,000), R7 = { }

Figure 10 : Predicates & Fragments

Obtained Fragmentation
 }
 }
 }
, F5 }

Over all the process is very much simple and straight forward. Number of min
generated in the intermediate steps is exponential to number of predicates. Applying this

`) Λ (Budget >= 50,000) Λ (Budget <= 200,000)

3 }
}

,000) Λ (Budget <=

= { F4, F5 }

Over all the process is very much simple and straight forward. Number of min-terms
generated in the intermediate steps is exponential to number of predicates. Applying this

37 | P a g e

process to databases would be very mind-numbing. Process includes all the predicates
where some may not be involved in the final fragmentation. As in the previous example if
we had taken p2 and p3, it would have led to the same fragmentation as using all three
predicates. In the upcoming sections we will not consider this approach as candidate
partitioning technique as implementation of this is not feasible.

38 | P a g e

4.2 Graphical Approach For HF

Previously what we studied is a naïve approach to horizontal fragmentation with limited
application. In this technique we have modified graph partitioning procedure in [1]. This
algorithm was first proposed by S. B. Navathe and M. Ra in [1] for vertical partitioning
and later on it was proposed for horizontal partitioning by M. Ra in [11]. We have
changed the method but the approach is quite similar i.e. creating the partition by forming
cycles in the graph.

4.2.1 Definitions
• Cycle completing edge denotes edges that would complete a cycle.
• Cycle connecting edge denotes edges that connect two cycles or partitions.
• Every node in a cycle is called Cycle node.
• End Nodes are the end points of linearly connected tree. Only two end nodes

exist in a linearly connected tree.
• When a cycle encloses any smaller cycle, then the smaller cycle is called

Enclosed Cycle and bigger cycle is called Enclosing cycle. For Example, as
shown in the figure 11 cycle ABCDA is enclosing cycles and the cycle BCDB is
enclosed cycle.

Figure 11 : Enclosed and Enclosing Cycle

4.2.2 Example
We explain our horizontal partitioning methodology by using a simple example below.
We use following set of predicates & transactions that uses these predicates.

• p1: ENo < 10
• p2: ENo < 20
• p3: ENo > 20
• p4: 30 < ENo < 50
• p5: ENo < 15
• p6: ENo > 40
• p7: Sal > 80k

B

C

D

A

39 | P a g e

• p8: Sal < 80k

Transactions and the predicates used by them:
• T1: p1 & p7
• T2: p2 & p7
• T3: p3 & p7
• T4: p4 & p8
• T5: p5 & p8
• T6: p6 & p8
• T7: p5 & p8
• T8: p6 & p8

Input to our algorithm is predicate usage matrix (PUM) which represents the use of
predicates in important transactions. The predicate usage matrix for the example is shown
in table 1. Each row refers to one transaction & column refers to the predicates. The ‘1’
entry indicates the transaction uses the corresponding predicate. Depending upon whether
transaction performs a write or read operation we put R or W in the type column. Last
column is where frequency of the transaction is stored.

Table 1 : Predicate Usage Matrix

Transactions p1 p2 p3 p4 p5 p6 p7 p8 Type Access Freq
T1 1 0 0 0 0 0 1 0 R 25
T2 0 1 0 0 0 0 1 0 R 50
T3 0 0 1 0 0 0 1 0 R 25
T4 0 0 0 1 0 0 0 1 R 35
T5 0 0 0 0 1 0 0 1 W 25
T6 0 0 0 0 0 1 0 1 W 25
T7 0 0 0 0 1 0 0 1 W 25
T8 0 0 0 0 0 1 0 1 W 15

Now from this Predicate usage matrix (PUM) we generate predicate affinity matrix. The
numerical value of the (i, j) element in this matrix gives the combined frequency of all
transactions accessing both predicates i and j. The value “=>” of the (i, j) element
indicates that predicate i implies predicate j, the value “<=” of the (i, j) element indicates
that predicate j implies predicate i & the value “*” means that two predicates i and j are
close [5]. Two predicate i and j are ‘close’ when the following conditions are satisfied:

(i) i and j must be defined on the same attribute,
(ii) i and j must be jointly used with some common predicate c, and

40 | P a g e

(iii) c must be defined on an attribute other than the attribute used in i and j.

In the given example, p1 and p2 are “close” because of their usage with common predicate
p7 in the transaction T1 and T2. Predicate affinity matrix for the given PUM is shown in
table 2.

Table 2 : Predicate Affinity Matrix

Predicates p1 p2 p3 p4 p5 p6 p7 p8
p1 =>, “*” “*” 0 0 0 25 0
p2 <=, “*” “*” 0 0 0 50 0
p3 “*” “*” <= 0 0 25 0
p4 0 0 => “*” “*” 0 35
p5 0 0 0 “*” “*” 0 50
p6 0 0 0 “*” “*” 0 40
p7 25 50 25 0 0 0 0
p8 0 0 0 35 50 40 0

4.2.3 Creating affinity graph
First of all we create affinity graph from predicate affinity matrix (PAM). In this graph,
nodes represent a predicate and edge value represents the affinity between the two
predicates. Forming linearly connected spanning tree, linearly connected tree is
constructed by including one edge at a time such that only edges at the first and the last
node of the tree would be considered for inclusion. We include edges with high affinity
value & growing the tree as much as possible. In the end we have to form cycles.
Different cycles are separated by cycle connecting edges. Let’s go through some rules
that would be followed while selecting the edges.

4.2.4 Rules for Selecting the Edges
1. A numerical value (except zero) has higher priority than the values “=>”, “<=” and

“*” when selecting a next edge during the progression of the algorithm. This is
because more importance is placed on affinity values which are obtained from
transaction usage rather than on logical connectivity among the predicates.

2. “<=” and “=>” are considered to have higher affinity than “*” since the latter only
represents logical connectivity between the two predicates through their usage with
common predicate.

3. If there are two “=>” relationships in a column corresponding to predicate pk, one
implied by predicate pi and other implied by predicate pj, then

41 | P a g e

(i) the entry (i, k) has higher priority than the entry (j, k), if the entry (i, j) is
equal to “<=” or

(ii) the entry (j, k) has higher priority than entry (i, k) if the entry (i, j) is equal to
“=>”.

4.2.5 Algorithm
First of all create affinity graph of the predicates. Note: that PAM is itself an adequate
data structure to represent this graph. Algorithm for partitioning the graph by forming
linearly connected tree and cycles later on is as follows:

1. Start from any node
2. Select an edge which satisfies the following conditions:

a) Go to step 5 if all nodes are used for tree construction
b) It should be linearly connected to the tree already constructed.
c) It should have the largest value among the possible choices of edges at each

end of the tree. Note that if there are several largest values, anyone can be
selected.

3. When the next selected edge form a cycle and it does not connect to the cycle
node of any cycle except the enclosed cycle.
a) Mark this edge as cycle-completing edge but this edge is not considered as

part of the tree and end nodes remain the same.
b) If this cycle encloses any cycle whose cycle-completing edge have low or

equal affinity than this edge then
(i) remove the cycle-completing tag from the edge of enclosed cycle and

(ii) remove the cycle separating tag from the edge that have it inside the
enclosing cycle so formed.

c) Go to step 2.
4. When the next edge selected does not form a cycle

a) Change the end node to the next node to which this edge is connected.
b) If the first node of this edge is cycle node then mark this edge as cycle-

connecting edge.
c) Go to step 2.

5. When all the nodes get traversed & become a part of the tree.
a) Choose the non-selected edge from the any non-cycle node with the highest

affinity & go to step 3.
b) Then mark the selected-edge connecting this cycle with the rest of the graph

as cycle-separating edge.
6. Separating out cycles.

a) Choose the cycle completing-edge with highest affinity and complete the
cycle. If the cycle so formed contains a cycle-separating edge then ignore this
cycle. Keep doing this until we get all the nodes as part of some cycle.

42 | P a g e

4.2.6 Step by Step Solution
Now we will show the complete solution of the example we had given in the section 4.2.1
graphically by applying the above given algorithm. Step by step solution of the complete
approach is shown in the figure 12.

Figure 12 : Step by Step Solution of Graphical Approach for HF

1 2

3 4

P1 P1 P7 25

P1 P7 25

P2

50

P1 P7 25

P2

50 =>, “*”

This line is completing the cycle. We
will not consider it as part of the tree &
mark it as cycle-completing edge. Now
choose the next edge either from P1 or
P2 which will be called as the cycle-
separating edge.

43 | P a g e

5 6
P1 P7 25

P2

50 =>, “*”

P3

“*”

“*”

We can choose either p2-p3 or p1-p3.
Whichever we choose it will become cycle
connecting edge.

P1 P7 25

P2

50 =>, “*”

P3

“*”

25

P4

=>

44 | P a g e

7

8

P1 P7 25

P2

50 =>, “*”

P3

“*”

25

P4

=>

P8

35

P1 P7 25

P2

50 =>, “*”

P3

“*”

25

P4

=>

P8

35

P5

50

45 | P a g e

9

10

P6
“*”

P1 P7 25

P2

50 =>, “*”

P3

“*”

25

P4

=>

P8

35

P5

50

40

P6
“*”

P1 P7 25

P2

50 =>, “*”

P3

“*”

25

P4

=>

P8

35

P5

50

46 | P a g e

11

40

P6
“*”

P5

50

P8

35

P1 P7 25

P2

50 =>, “*”

P3

“*”

P4

=>

Now we choose cycle completing edges.
1) P6-P8, as it has highest affinity.
2) P3-P7, will not be chosen because the cycle formed by this {P7-P2-P3}

involves the cycle-connecting edge P2-P3 whose affinity is lowest of all
the edges in the cycle {P1-P7-P2}. Hence we choose P1-P2.

47 | P a g e

12

4.2.7 Optimization of Results
As result of algorithm applied on the given example we obtained following three set of
predicates:

• (p1, p2, p7)
• (p3, p4)
• (p5, p6, p8)

Putting the values of respective predicates we get:
• (Eno < 10, Eno < 20, Sal > 80K)
• (Eno > 20, 30 < Eno < 50)
• (Eno > 40, Eno < 15, Sal < 80K)

We can refine these predicates sets further by checking for dependencies and inclsion. In
the first subset, Eno < 10 è Eno < 20 hence it is refined into (Eno < 20, Sal > 80K).
Similarly, in the second 30 < Eno < 50 è Eno > 20 hence it is refined into (Eno > 20).
Third one cannot be refined further. Now we have:

• (Eno < 20, Sal > 80K)
• (Eno > 20)

Eno < 10 Sal > 80K

Eno < 20

Eno > 40

Sal < 80K

Eno < 15

Eno > 20

30 < Eno < 50

40

P6
“*”

P5

50

P8

P4

=>

P1 P7 25

P2

50 =>, “*”

P3

48 | P a g e

• (Eno > 40, Eno < 15, Sal < 80K)
If the predicates belonging to the same set refer to the same attributes then they are OR-
ed, otherwise they are AND-ed.

• (Eno < 20 AND Sal > 80K)
• (Eno > 20)
• ((Eno > 40 OR Eno < 15) AND Sal < 80K)

Applying the law of distributivity:
• (Eno < 20 AND Sal > 80K)
• (Eno > 20)
• (Eno > 40 AND Sal < 80K)
• (Eno < 15 AND Sal < 80K)

Further we can merge the overlapping sets. As 2nd set will be superset of the 3rd set. So
we can write:

• (Eno < 20 AND Sal > 80K)
• (Eno > 20)
• (Eno < 15 AND Sal < 80K)

These will form the final set of fragments. But these will not include all the tuples of the
relation. There may be some tuples which will not fall into any of the fragment. Hence
number of fragments is at most equal to the number of predicate terms plus one.

4.2.8 Advantages
Following are some of the advantages of the approach we discussed:

1. Fragments are bases on actual predicates. By applying implication the number of
fragments is reduced.

2. Amount of data involved is much less than the previous approach.

4.2.9 Disadvantages
Besides having some advantages this approach is still not the one that suites distributed
databases. Here we discuss some of the disadvantages of this approach:

1. Need of optimization. Fragments obtained are needed to be refined. There is no
particular method to refine the fragments.

2. Problem of allocation remain unsolved.
3. Only simple predicates are used. And how to select the predicates for fragmentation

is another major task.

49 | P a g e

4.3 Advanced Horizontal Fragmentation Technique
To solve the problem of allocation along with fragmentation in distributed database, we
have provided this technique of fragmentation. It forms the part of our final proposal of
grid fragmentation. This technique was proposed by S. I. Khan & Dr. A.S.M. Latiful
Hoque in [9]. It also solves the problem of fragmentation decision at the initial stage of a
distributed database. It fragments the relation horizontally according to locality of
precedence of its attributes.

4.3.1 Attribute Locality Precedence
Attribute locality precedence (ALP) can be defined as the value of importance of an
attribute with respect to sites of distributed database. ALP table will be constructed by
database designer for each relation of a DDBMS at the time of designing the database
with the help of modified CRUD (Create, Read, Update, and Delete) matrix and cost
functions.

“A data-to-location CRUD matrix is a table of which rows indicate attributes of the
entities of a relation and columns indicate different locations of the applications.”

4.3.2 MCURD Matrix
A relation in a database contains different types of attributes those describe properties of
the relation. But the important thing is that the attributes of a relation do not have same
importance with respect to data distribution in different sites. According to above
importance we can calculate locality precedence of each attribute for each relation and
construct ALP table for the relations. CRUD matrix is used by the system analysts and
designers in the requirement analysis phase of system development life cycle for making
decision of data mapping to different locations [16]. We have modified the existing
CRUD matrix according to our requirement of Horizontal Fragmentation and name it
Modified Create, Read, Update, and Delete (MCRUD) matrix.

“MCRUD matrix is a table constructed by placing predicates of attributes of a relation
as the rows and sites of a DDBMS as the columns.”

4.3.3 Algorithm
We have used MCRUD matrix to generate ALP table for each relation. We treated cost as
the effort of access and modification of a particular attribute of a relation by an
application from a particular site. For calculating precedence of an attribute of a relation
we take the MCRUD matrix of the relation as an input and use the cost functions given in
equation 4.1 for calculating cost of predicate j of attribute i accessed by an application at
site k. This gives us the cost of a predicate at different sites. Predicate locality precedence

50 | P a g e

(PLP) is equal to the maximum cost minus sum of all other costs of that predicate.
Attribute locality precedence (ALP) is equal to the sum of PLP of the predicates of that
attribute.

Ci,j,k = fc * C + fr * R + fu * U + fd * D………………………(4.1)

PLPi,j = Ci,j,m - � ��

������	
� i,j,k……………………………….(4.2)

ALPi = ∑ PLPi,j……………………………………………….(4.3)

Where,
fc - frequency of create operation
fr - frequency of read operation
fu - frequency of update operation
fd - frequency of delete operation
C - weight of create operation
R - weight of read operation
U - weight of update operation
D - weight of delete operation
Ci,j, k = cost of predicate j of attribute i accessed by an application at site k
C i,j,m = maximum cost among the sites for predicate j of attribute i
PLPi,j = actual cost for predicate j of the attribute i
ALPi = total cost of attribute i(locality precedence)

For simplicity we have assumed that fc, fr, fr and fd=1 and C=2, R=1, U=3 and D=2. The
justification of the assumption is that at the design time of a distributed database, the
designer will not know the actual frequencies of read, delete, create and update of a
particular attribute from different applications of a site. Later when database is actually
used we update these frequencies in the MCURD matrix and recalculate the ALP. We
can do this recalculation periodically.

Generally update incurs more cost than create and delete, and reading from database
always incurs least cost. After construction of ALP table for a relation, predicate set P
will be generated for the attribute with highest precedence value in the ALP table. Finally
each relation will be fragmented horizontally using the predicates of P as selection
predicate. For further fragmentation of the fragments select the attribute with next highest
ALP and use its predicates for fragmenting. The procedures can be clearly understood
from the following pseudo code.

51 | P a g e

Figure 1 : Flow Chart for Finding PLP

52 | P a g e

 Now we elaborate all these steps with the help of an example.

4.3.4 Example
To explain this method in more detail we have taken a distributed banking database
system. One of the relations of the bank database is Accounts as shown in table 3.
Initially number of sites of the distributed system is three as shown in figure 14.

Table 3 : Account Relation

Acc_num Type Id Branch City Balance
01 Sav 101 Rohini Delhi 230000
02 Cur 102 K.B.Hali Bangalore 120000
03 Sav 103 Kormangla Bangalore 6500
04 Sav 104 R.K.Puram Mumbai 32100
05 Cur 105 NSP Delhi 400000

Figure 14 : Site Map for Banking System.

Delhi

Bangalore

Mumbai

Rohini

Kormangla

R.K.Puram

NSP

K.B.Hali

53 | P a g e

4.3.5 Construction of MCRUD Matrix
Part of MCRUD matrix for accounts relation is shown in table 4.

Table 4 : MCRUD Matrix

 Sites
Predicates Site 1(Delhi) Site 2 (Bangalore) Site 3(Mumbai)

C R U D C R U D C R U D
Acc.acc_num < 100 1 1 1 1
Acc.acc_num >=100 1
Acc.type = ‘Sav’ 1 3 2 2 1
Acc.type = ‘Cur’ 2 1 1 3 2 1
 ……….
 ……….
 ……….
 ……….
Acc.balance < 10000 2 1 1 1 1 1
Acc.balance >= 10000 1 1
Acc.city = ‘Delhi’ 2 3 3 2 1 1
Acc.city = ‘Bangalore’ 1 2 3 2 2 1
Acc.city = ‘Mumbai’ 2 3 2 2

4.3.6 Calculation of ALP
We have calculated locality precedence of each attribute from the MCRUD matrix of
account relation according to the cost functions given in the equations 4.1, 4.2 and 4.3.
Calculating the locality precedence of the attribute City is as follows:

PLPacc.city = ‘Delhi’ = (2*2 + 3*1 + 3*3 + 2*2) – { (1*1) + (1*1) } = 18

PLPacc.city = ‘Banngalore’ = (2*2 + 3*1 + 2*3 + 2*2) – { (1*1) + (1*1) } = 15

PLPacc.city = ‘Mumbai’ = (2*2 + 3*1 + 2*3 + 2*2) = 17

So ALP of City is

ALPcity = 18 + 15 + 17 = 50

54 | P a g e

4.3.7 Construction of ALP Table
ALP values of all the attributes of the Accounts relation computed from its MCRUD
matrix is shown in the table 5. The attribute with highest precedence value will be treated
as most important attribute for fragmentation.

Table 5 : ALP

Attribute ALP
Acc_num 6

Type 22
ID 6

Branch 7
Balance 8

City 50

4.3.8 Generation of Predicate Set
Predicate set generated for City, the attribute with highest locality precedence of Account
relation.

P= { p1: city = ‘Delhi’, p2: city = ‘Bangalore’, p3: city = ‘Mumbai’ }

4.3.9 Fragmentation of Relation
According to the predicate set P, Account relation is fragmented and allocated to 3 sites.
The relation allocated to site in Delhi is shown in table 6. Similarly, for site in Bangalore
and Mumbai is shown in table 7 and 8 respectively.

Table 6 : Relation for site in Delhi

Acc_num Type Id Branch City Balance
01 Sav 101 Rohini Delhi 230000
05 Cur 105 NSP Delhi 400000

Table 7 : Relation for site in Bangalore

Acc_num Type Id Branch City Balance
02 Cur 102 K.B.Hali Bangalore 120000
03 Sav 103 Kormangla Bangalore 6500

55 | P a g e

Table 8 : Relation for site in Mumbai

Acc_num Type Id Branch City Balance
04 Sav 104 R.K.Puram Mumbai 32100

4.3.10 Addition of a New Site to DDBMS
We have added another site in Delhi to the current DDBMS (see figure 15). In this case
the fragment in Delhi is re-fragmented horizontally based on the attribute with next
highest locality precedence which is Type.

Figure 15 : Addition of New Site to Map

Here attribute Type have the ALP equal to 22. Predicate set generated for Type
P = { p1: Type = Sav, p2: Type = Cur }

These two predicates produce min-term with the former predicate of site in Delhi as
follows:

p11 : branch=Delhi Λ Type= Sav ,
p12 : branch=Delhi Λ Type= Cur.

Hence the final predicate set is
P={ p11, p12, p2, p3 }

Account relation was then fragmented according to P and allocated to 4 sites as shown in
table 9, 10, 11 and 12.

Delhi 2

Delhi 1

Bangalor
e

Mumbai

Rohini

Kormangla

R.K.Puram

NSP

K.B.Hali

56 | P a g e

Table 9 : Relation for site in Delhi 1

Acc_num Type Id Branch City Balance
01 Sav 101 Rohini Delhi 230000

Table 10 : Relation for site in Delhi 2

Acc_num Type Id Branch City Balance
05 Cur 105 NSP Delhi 400000

Table 11 : Relation for site in Bangalore

Acc_num Type Id Branch City Balance
02 Cur 102 K.B.Hali Bangalore 120000
03 Sav 103 Kormangla Bangalore 6500

Table 12 : Relation for site in Mumbai

Acc_num Type Id Branch City Balance
04 Sav 104 R.K.Puram Mumbai 32100

From the above result we can see that this technique has successfully fragmented the
account relation and allocated the fragments among the sites of the distributed system. As
we have only taken highest valued attribute from ALP table, no unwanted fragments are
created. For simplicity we have considered only four sites of the system for allocation. It
is worth mentioning that this fragmentation technique will work in the same way for large
number of sites of any distributed system.

Using this technique no additional complexity is added for allocating the fragments to the
sites of a distributed database as fragmentation is synchronized with allocation. So
performance of a DBMS can be improved significantly by avoiding frequent remote
access and high data transfer among the sites. We use this technique as part of our grid
fragmentation proposal later in the chapter 6. We also implement this technique as part of
Cisco GSS and compare the results with other techniques in chapter 7.

57 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 5555

Vertical
Fragmentation

In the previous chapter we studied the 1st part of our proposal. Now we will study various
techniques for vertical fragmentation which forms the 2nd part of it.

Vertical Partitioning is the process of subdividing the attributes of a relation into groups,
creating fragments. Vertical partitioning is used to store the most closely accessed
attributes in the primary memory. During distributed database design, fragments are
allocated and replicated at different sites that improve the performance of transaction
processing. For better performance, fragments must be closely matched with the
transaction requirements.

First of all, in this chapter we explain the Bond Energy Algorithm [2] to order the
attribute in a proper manner on the basis of attribute affinity and then we use Binary
partitioning algorithm [4] to make partition from that order [12]. Second approach is
similar to the second approach used for horizontal partitioning, where we form attribute
affinity graph and then partition it using modified graph partitioning algorithm. Finally
we explain a cost model that will address the problem of allocation along with
fragmentation [7]. Basis of this approach lies in the need or request of a particular
attribute from a particular site.

58 | P a g e

5.1 Bond Energy Algorithm & Binary Tree Partitioning

Algorithms such as Bond Energy Algorithm (BEA) and Binary Vertical Partitioning
Algorithm use the attribute affinity matrix (AAM) formed from the attribute usage matrix
(AUM). This technique was proposed by J. Muthuraj, S.Chakravarthy, R. Varadarajan
and S.B.Navathe in [12]. Complete method has been divided into two major steps. First
step is BEA which groups the attributes and form clustered affinity matrix. Second step
selects the best partition out of all the possible by calculating the quality of each split.

5.1.1 Some Definitions
Attribute usage matrix (AUM) gives the use of each attribute by the all the queries.
Attribute affinity measures the bond between two attributes of a relation according to
how they are accessed by applications. AAM is obtained from Attribute Usage Matrix
(AUM). Attribute affinity between attributes i and j is defined as

Affij = � �

��� t,ij ……………………….…………………………………(5.1)

Where qt,ij is the number of accesses of transaction t referencing both attributes i and j.

The bond between two attributes i and j is defined as:

bondij =� ���
��� fzi * Af fzj ………………………..……….……………(5.2)

Contribution is defined as the value of placing an attribute between other two attributes.
Our aim is to maximize the contribution at each step. The contribution of placing the
attribute k between i and j is

cont ikj = bondik + bondkj - bondij ………………….……………(5.3)

where bond0i = 0 and bondj0 = 0.

The last set of conditions takes care of the cases where an attribute is being placed in
CAM to the left of the leftmost attribute or to the right of the rightmost attribute during
column permutations, and prior to the topmost row and following the last row during row
permutations.

59 | P a g e

5.1.2 Example
For explaining this approach we use AUM given in the table 13.

Table 13 : Attribute Usage Matrix

Attributes
Name (A1) Family (A2) Age (A3) Position (A4) Location (A5)

Queries

T1 21 21 21 0 0
T2 0 0 24 24 0
T3 0 90 0 90 90
T4 0 0 11 0 11

The AAM matrix obtained from the given AUM using equation (5.1) is shown in the
table 14.

Table 14 : Attribute Affinity Matrix

Attributes A1 A2 A3 A4 A5
A1 21 21 21 0 0
A2 21 111 21 90 90
A3 21 21 56 24 11
A4 0 90 24 114 90
A5 0 90 11 90 101

5.1.3 Bond Energy Algorithm
This algorithm takes as input the attribute affinity matrix, permutes its rows and columns,
and generates a clustered affinity matrix (CAM). The permutation is done in such a way
to maximize the contribution.

Generation of the Clustered Affinity Matrix is done in three steps:

1. Initialization: Place and fix one of the columns of AAM arbitrarily into CAM.
2. Iteration: Pick each of the remaining n-i columns (where i is the number of

columns already placed in CAM) and try to place them in the remaining i+1
positions in the CAM matrix. Choose the placement that makes the greatest
contribution to the global affinity measure described above. Continue this until no
more columns remain to be placed.

3. Row Ordering: Once the column ordering is determined, the placement of the rows
should also be changed so that their relative positions match the relative positions of
the columns.

60 | P a g e

Initially place attributes A1 and A2 in the same order. Now we place rest of the attributes
using the above equations (5.2) and (5.3). Complete procedure of calculating and
ordering attribute is shown in the figure 16.

Figure 16 : Ordering attributes using BEA

Place A3
Contribution as pos 0 = 2058
Contribution as pos 1 = 5943
Contribution as pos 2 = 7098
Attribute A3 is placed at pos 3 : [A1 A2 A3]

Place A4
Contribution as pos 0 = 2394
Contribution as pos 1 = 28035
Contribution as pos 2 = 28716
Contribution as pos 3 = 6960
Attribute A4 is placed at pos 2 : [A1 A2 A4 A3]

Place A5
Contribution as pos 0 = 2121
Contribution as pos 1 = 26319
Contribution as pos 2 = 26271
Contribution as pos 3 = 26531
Contribution as pos 4 = 5777
Attribute A5 is placed at pos 3 : [A1 A2 A4 A5 A3]

Resulting order [A1 A2 A4 A5 A3]

We use the same ordering for the rows as well and form the clustered affinity matrix as
shown in the table 15.

61 | P a g e

Table 15 : Clustered Affinity Matrix

Attributes A1 A2 A4 A5 A3
A1 21 21 0 0 21
A2 21 111 90 90 21
A4 0 90 114 90 24
A5 0 90 90 101 11
A3 21 21 24 11 56

The Bond Energy Algorithm is used to group the attributes of a relation based on the
attribute affinity values in AAM. It is considered appropriate for the following reasons
[12]:

• It is designed specifically to determine groups of similar items as opposed to a

linear ordering of the items. (i.e. It clusters the attributes with larger affinity values
together, and the ones with smaller values together).

• The final groupings are insensitive to the order in which items are presented to the
algorithm.

• The AAM is symmetric, and hence allows a pair wise permutation of rows and
columns, which reduces complexity.

• Because of the definition of Affij, the initial AAM is already semiblock diagonal, in
that each diagonal element has a greater value of any element along the same row
or column.

• The computation time of the algorithm is reasonable. O(n2), where n is the number
of attributes.

The following algorithm extends bond energy algorithm to identify all the clusters in the
CAM matrix

5.1.4 Binary Vertical Partitioning

Now we have determined the order of attributes & next step is fragmenting using this
order of attributes. For this we have the algorithm called Binary Vertical Partitioning [4].
The approach taken behind this algorithm is splitting rather than grouping. The rationale
behind this approach is that the “optimal” solution is much closer to the group composed
of all attributes, assumed to be the starting point, than to groups that are single attribute
partitions. The objective of splitting activity is to find sets of attributes that are accessed
solely, or for the most part, by distinct sets of applications. The binary vertical
partitioning algorithm uses the clustered affinity matrix to partition an object into two

62 | P a g e

non-overlapping fragments. When the CAM is big, usually more than two clusters are
formed and there is more than one candidate partition.

Assume that a point x is fixed along the main diagonal of the CAM, as shown in table 16.
The point x defines two blocks U (for “upper”) and L (for “lower”). Each block defines a
vertical fragment given by the set of attributes in that block.

Table 16 : Clustered Affinity Matrix

Attributes A1 A2 A4 A5

A3
A1 21 21 0 0 21
A2 21 111 90 90 21
A4 0 90 114 90 24
A5 0 90 90 101 11

 X
A3 21 21 24 11 56

Let At be the set of attributes used by transaction t defined as follows:

At = (i | qti > 0)…………..…………………………………………………(5.4)

Using At, it is possible to compute the following sets:

T = (t | t is a transaction) ……….……….………..………………..…(5.5)

LT = (t | At ⊆⊆⊆⊆ L)………..…………….……………………………………(5.6)

UT = (t | At ⊆⊆⊆⊆ U)………………………..…………………………………(5.7)

IT = T - (LT ∪∪∪∪ UT)……………...….……………………………………(5.8)

T represents the set of all transactions. LT and UT represent the set of transactions that
“match” the partitioning, as they can be entirely processed using attributes in the lower or
upper block, respectively. IT represents the set of transactions that needs to access both
fragments.

CT = � �����
 t ………………………………………………………………..(5.9)

63 | P a g e

CL = � ������
 t ……..………………………..…..………………………….(5.10)

CU = � ������
 t ….…….…………………….…………..…………………(5.11)

 CI = � ������
 t …………………………..…………………..…………….(5.12)

CT counts the total number of transaction accesses to the considered object. CL and CU
count the total number of accesses of transactions that need only one fragment either
lower or upper. CI counts the total number of accesses of transactions that need both
fragments. Totally n-1 possible locations of point x along the diagonal is considered,
where n is the size of the input matrix (i.e. the number of attributes).

A non-overlapping partition is obtained by selecting the point x along the diagonal such
that the following objective function z is maximized:

max z = CL * CU – CL2
 ………………………………………………(5.13)

The partitioning that corresponds to the maximal value of the z function is accepted. The
objective function shown above comes from an empirical judgment of what should be
considered a “good” partitioning. The function is increasing in CL and CU and
decreasing in CI. For a given value of CI, it selects CL and CU in such a way that the
product CL*CU is maximized. This result in selecting values for CL and CU, that is as
nearly equal as possible. Thus the above z function will produce fragments that are
“balanced” with respect to the transaction load.

Now we apply binary partitioning algorithm to the order of attribute we obtained in
previous section for the given example. In total 10 partitions are possible. Table 17 shows
split quality calculation for each of them.

Table 17 : Splitting the Relation by BVP

1

Split at [A1 A2 A4 A5] [A3]
Access fragment-1 alone = 90
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 56
Split Quality = -3136

64 | P a g e

2

Split at [A1 A2 A4] [A5 A3]
Access fragment-1 alone = 11
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 135
Split Quality = -18225

3

Split at [A1 A2] [A4 A5 A3]
Access fragment-1 alone = 35
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 111
Split Quality = -12321

4

Split at [A1] [A2 A4 A5 A3]
Access fragment-1 alone = 0
Access fragment-2 alone = 125
Access fragment-1 & fragment-2 = 21
Split Quality = -441

5

Split at [A1 A2 A4 A3] [A5]
Access fragment-1 alone = 45
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 101
Split Quality = -10201

6

Split at [A1 A2 A3] [A4 A5]
Access fragment-1 alone = 21
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 125
Split Quality = -15625

7

Split at [A1 A3] [A2 A4 A5]
Access fragment-1 alone = 90
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 56
Split Quality = -3136

8

Split at [A1 A5 A3] [A2 A4]
Access fragment-1 alone = 11
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 135
Split Quality = -18225

65 | P a g e

9

Split at [A1 A2 A5 A3] [A4]
Access fragment-1 alone = 32
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 114
Split Quality = -12996

10

Split at [A1 A4 A5 A3] [A2]
Access fragment-1 alone = 35
Access fragment-2 alone = 0
Access fragment-1 & fragment-2 = 111
Split Quality = -12321

Optimal Split : [A1] [A2, A3, A4, A5] with Split Quality = -441

Table 18 : Example Clustered Affinity Matrix for split 1

Attributes A1 A2 A4 A5

A3
A1 21 21 0 0 21
A2 21 111 90 90 21
A4 0 90 114 90 24
A5 0 90 90 101 11

 X
A3 21 21 24 11 56

We obtained two fragments using BVP as shown in the table 17.

5.1.5 Drawback
This algorithm has the disadvantage of not being able to partition an object by selecting
out an embedded “inner” block. This disadvantage can be avoided by using the procedure
SHIFT, which moves the leftmost column of the AAM to the extreme right, and the
topmost row of the matrix to the bottom. SHIFT is called a total of n times, so that every
diagonal block gets the opportunity of being brought to the upper left corner in the
matrix. When the SHIFT procedure is used, the complexity of the algorithm increases by
factor n. Experience has shown that the use of the SHIFT procedure improves the
solution of the binary vertical partitioning problem in several cases.

Secondly the overall complexity of the algorithm is very high. Whole process is divided
into two major algorithms which make the process tedious.

66 | P a g e

Thirdly it does not solve the problem of allocation hence it does not go well with the
distributed databases. Due to these drawbacks we will not consider this process as part of
our final comparison in chapter 7.

67 | P a g e

5.2 Graph-Partitioning Algorithm
In the previous approach, a clustering algorithm is applied to the AAM. In this approach
we consider AAM as a complete graph called affinity graph. This approach is similar to
the graphical approach for horizontal partitioning we studied in section 4.2. This method
was proposed by S. B. Navathe and M. Ra for VF in [1]. It uses Attribute Affinity Matrix
instead of Predicate Affinity Matrix used in horizontal partitioning. Then it forms linearly
connected tree & form cycles out of that [12]. Each cycle would be considered as a
separate partition. For algorithm refer to section 4.2.

5.2.1 Example
We will not discuss the algorithm details but explain its application with the help of an
example. First of all we consider an attribute usage matrix as shown in the table 19,
which specifies which attributes are used in which transaction and frequency of
transaction.

Table 19 : Attribute Usage Matrix

Trans \ Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
T1 25 0 0 0 25 0 25 0 0 0
T2 0 50 50 0 0 0 0 50 50 0
T3 0 0 0 25 0 25 0 0 0 25
T4 0 35 0 0 0 0 35 35 0 0
T5 25 25 25 0 25 0 25 25 25 0
T6 25 0 0 0 25 0 0 0 0 0
T7 0 0 25 0 0 0 0 0 25 0
T8 0 0 15 15 0 15 0 0 15 15

Table 20 shows the attribute affinity matrix for above attribute usage matrix. Affinity of
two attributes is the sum of frequencies of the transactions which access both of these two
attributes. Attribute affinity matrix represents the affinity graph. We will apply modified
graph partitioning algorithm on this graph and form subsets of attributes. Resultant subset
of attributes defines the fragments.

68 | P a g e

Table 20 : Attribute Affinity Matrix

Attr\Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
A1 75 25 25 0 75 0 50 25 25 0
A2 25 110 75 0 25 0 60 110 75 0
A3 25 75 115 15 25 15 25 75 115 15
A4 0 0 15 40 0 40 0 0 15 40
A5 75 25 25 0 75 0 50 25 25 0
A6 0 0 15 40 0 40 0 0 15 40
A7 50 60 25 0 50 0 85 60 25 0
A8 25 110 75 0 25 0 60 110 75 0
A9 25 75 115 15 25 15 25 75 115 15
A10 0 0 15 40 0 40 0 0 15 40

5.2.2 Step by Step Solution
Now we will describe the complete solution of given example graphically using our
modified graph-partitioning algorithm. Complete step by step solution is shown in the
figure 17.

Figure 17 : Graphical Method for VF

1 2

A5 A5 A1 75

69 | P a g e

3 4

5

A5 A1 75

A7

50

A2

60

A5 A1 75

A7

50

A2

60

A5 A1 75

A7

50

A8

110

A3

75

A9

115

70 | P a g e

6

7

75

A2

60

A5 A1 75

A7

50

A8

110

A3

75

A9

115

Next edge A9-A8 is cycle-completing edge.
Hence A2-A8 becomes a cycle Separating
edge.

75

A8

110

A3

75

A9

115

A2

60

A5 A1 75

A7

50

Next edge A9-A2 is also a cycle-completing edge.
A2-A8-A3-A9-A2 is enclosing-cycle encapsulates
A8-A3-A9-A8 enclosed-cycle. Affinity of cycle
completing edge for both is equal. Hence A8-A9 is
not considered as cycle-completing edge and A2-
A8 is not a cycle-completing edge. A2-A7
becomes the new cycle-completing edge.

71 | P a g e

8

9

75

A8

110

A3

75

A9

115

A2

60

A5 A1 75

A7

50 50

75

A8

110

A3

75

A9

115

A2

60

A5 A1 75

A7

50 50

A4

15

All other edges from A9 &
A5 are forming cycles
with low affinity of cycle-
completing edges then
already existing one.

72 | P a g e

10

11

75

A8

110

A3

75

A9

115

A2

60

A5 A1 75

A7

50 50

A4

A6

A10

40

40

40

50

A5 A1 75

A7

50

75

A8

110

A3

75

A9

115

A2

A4

A6

A10

40

40

40

15

73 | P a g e

The resulting vertical fragments are:
1) (A1, A5, A7)
2) (A2, A3, A8, A9)
3) (A4, A6, A10)

5.2.3 Advantages
We summarize the major advantages of this method over the previous approaches:

1. There is no need for iterative binary partitioning. The major weakness of iterative
binary partitioning discussed in the previous section is that at each step two new
problems are generated increasing the complexity.

2. The complexity of the approach is O(n2) as opposed to O(n2log(n)) of the
previous approach.

5.2.4 Disadvantages
Although the overall process is very effective one but it also has some drawbacks. It suits
centralized databases, as it does not address the problem of allocation of fragments to
different sites.

74 | P a g e

5.3 Heuristic Approach for VF

In last sections we discussed algorithms for VF using attribute affinities. There are many
other algorithms proposed in the literature using attribute affinities. Fragmentation,
allocation and replication are database distribution design techniques that aim at
improving the system performance. Among the two fragmentation techniques, vertical
fragmentation is often considered more complicated than horizontal fragmentation,
because the huge number of alternatives makes it nearly impossible to obtain an optimal
solution to the vertical fragmentation problem. Therefore, we can only expect to find out
a heuristic solution. Often fragmentation and allocation are considered separately,
disregarding that they are using the same input information to achieve the same objective,
i.e. improve the overall system performance. Here we discuss vertical fragmentation and
allocation simultaneously in the context of the relational model. The core of our approach
is a heuristic approach to vertical fragmentation, which uses a cost model and is targeted
at globally minimizing these costs. This algorithm was proposed by Hui Ma, Klaus-
Dieter Schewe and Markus Kirchberg in [7].

We will incorporate all query information, including the site information, by using a
simplified cost model for VF. Doing this way, we can obtain vertical fragmentation and
fragment allocation simultaneously with low computational complexity and resulting
high system performance.

5.3.1 Notations and Definitions
We now define some terms that will be used in our discussion.

• Assume a relation R = {a1, . . . , an} being accessed by a set of queries Qm = {Q1, .
. .,Qj, . . . Qm} with frequencies f1, . . . , fm, respectively.

• To improve the system performance, relation R is vertically fragmented into a set
of fragments {F1, . . ., Fu, . . . , Fv}, each of which is allocated to one of the
network nodes N1, . . .,Nh, . . . , Nk. Note that the maximum number of fragments is
k, i.e.,v ≤ k.

• We use λ(Qj) to indicate the site that issues query Qj and use Aj = {ai|fji = fj} to
indicate the set of attributes that are accessed by Qj, with fji as the frequency of the
query Qj accessing attributes ai. Here, fji = fj if the attribute ai is accessed by Qj.
Otherwise fji = 0.

Input to this cost model for optimal vertical fragmentation is:

• Frequency of queries that access the object. When the same query is issued at
different sites it is treated as different queries.

• The subset of attributes used by queries.

75 | P a g e

• The size of each attribute of the object.
• The site that issue the queries.

To record the above input information we introduce Attribute Usage Frequency Matrix
(AUFM) which is similar to AUM. Each row represents one query Qj; the head of
column is the set of attributes of a relation E. In addition, there are two columns with one
column indicating the site that issues the queries and the other indicating the frequency of
the queries. The values on a column indicate the frequency fji of the query Qj that use the
corresponding attributes ai grouped by the site that issues queries. Note that we treat the
same query at different sites as different queries. Doing this way we only need one matrix
to record all the information rather than two matrices, Attribute Usage Matrix and Access
Matrix that are used in our previous approach. Subsequently, the following up calculation
is easy to be formulated.

From one site each attribute is requested by multiple queries. The request of an attribute
at a site h is the sum of frequencies of all queries at the site h accessing the attribute. It
can be calculated with the formula below:

requesth(ai) = � ��
�������������� ji ………...…………………………….(5.14)

Let fji be the frequency of a query accessing an attribute ai and li be the length of this
attribute. The need of this attribute at a site h is calculated with the following formula:

needh(ai) = li * � ��
�������������� ji …………………………………….(5.15)

needh(ai) = li * request(ai) ……………………………………………(5.16)

Finally, a term pay to measure the costs of allocating a single attribute to a network node.
The pay of allocating an attribute ai to a site h measures the costs of accessing attribute ai
from all queries at the other sites h` which is different from h. It can be calculated using
the following formula:

payh(ai) = � � �! "��
�#�����
�# h`(ai) * chh` ……………………(5.17)

Note that the cost factor chh’ = 0, if h = h’.

76 | P a g e

In distributed databases, costs of queries are dominated by the cost of data transportation
from a remote site to the site that issues the queries. To compare different vertical
fragmentation scheme we would like to compare how it affect the transportation costs.

Taking the simplified cost model we now analyze the relationships between cost, the pay
and the request. We compute the following formulae:

costh(ai) = � � $�
�#�����
�# h`(ai) * chh` ……………….....…..……(5.18)

 = li * � � �! "��
�#�����
�# h`(ai) * chh` ………...…..…(5.19)

costh(ai) = li * payh(ai) ……………………..……………...……..…….(5.20)

The above formula give rise to two alternative heuristics for the allocation of an attribute
ai (i = 1, . . . , n).

• The first heuristic allocates ai to a network node Nw such that payw(ai) is minimal,
i.e., we choose a network node in such a way that the total transport costs for all
queries arising from the allocation are minimized.

• The second heuristic allocates ai to a network node Nw such that requestw(ai) is
maximal. i.e., we choose the network node with the highest request of the
attribute ai. This guarantees that there is no transportation cost associated with
data of attribute ai for those queries that need the data of ai most frequently. In
addition, the availability of data of attribute ai will be maximized.

5.3.2 Algorithm
Taking the first heuristic we perform vertical fragmentation with the following steps. We
do not distinguish read and write queries. Take the most frequently used 20% queries Qn.

1. Optimize all the queries and construct an AUFM for each relation based on the
queries.

2. Calculate the request at each site for each attribute to construct an Attribute
request matrix using equation (5.14).

3. Calculate the pay at each site for each attribute to construct an attribute pay matrix
using equation (5.17).

4. Cluster all attributes to the site which has the lowest value of the pay.
5. Attach the primary key to each fragment.

77 | P a g e

5.3.3 Example
We take the example problem [1] to illustrate how our approach works. Firstly, we take
the Attribute Usage Matrix and Attribute Access Matrix to construct an AUFM grouped
by site that issues the queries. The AUFM is shown in Table 21.

Table 21 : Attribute Usage Frequency Matrix

Site Query Frequency a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1
1
1
1
1
1
1

T1

T2
T4
T6
T5
T7
T8

10
10
10
10
5
5
5

10
0
0

10
5
0
0

0
10
10
0
5
0
0

0
10
0
0
5
5
5

0
0
0
0
0
0
5

10
0
0

10
5
0
0

0
0
0
0
0
0
5

10
0

10
0
5
0
0

0
10
10
0
5
0
0

0
10
0
0
5
5
5

0
0
0
0
0
0
5

2
2
2
2
2
2

T2

T1
T5
T7
T6
T8

20
15
10
10
5
5

0
15
10
0
5
0

20
0
10
0
0
0

20
0

10
10
0
5

0
0
0
0
0
5

0
15
10
0
5

10

0
0
0
0
0
5

0
15
10
0
0
0

20
0

10
0
0
0

20
0

10
10
0
5

0
0
0
0
0
5

3
3
3
3
3
3
3

T3

T4
T2
T5
T6
T7
T8

15
15
10
5
5
5
3

0
0
0
5
5
0
0

0
15
10
5
0
0
0

0
0

10
5
0
5
3

15
0
0
0
0
0
3

0
0
0
5
5
0
0

15
0
0
0
0
0
3

0
15
0
5
0
0
0

0
15
10
5
0
0
0

0
0

10
5
0
5
3

15
0
0
0
0
0
3

4
4
4
4
4
4
4

T2

T3
T4
T5
T6
T7
T8

10
10
10
5
5
5
2

0
0
0
5
5
0
0

10
0
10
5
0
0
0

10
0
0
5
0
5
2

0
10
0
0
0
0
2

0
0
0
5
5
0
0

0
10
0
0
0
0
2

0
0

10
5
0
0
0

10
0

10
5
0
0
0

10
0
0
5
0
5
2

0
10
0
0
0
0
2

Secondly, we compute the request using equation (5.14) for each attribute at each site and
get the Attribute request Matrix shown in Table 22.

78 | P a g e

Table 22 : Attribute request Matrix

Site a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
1 25 25 25 5 25 5 25 25 25 5
2 30 30 45 5 30 5 25 30 45 5
3 10 30 23 18 10 18 20 30 23 18
4 10 25 22 12 10 12 15 25 22 12

Thirdly, assuming we have been given the values of transportation cost factors in Table
23. We can now calculate the pay of each attribute at each site by putting the values of
the request given in Table 22 and values of cost factors given in Table 23 in equation
(5.17).

Table 23 : Transportation Cost Factors

Site 1 2 3 4
1 0 10 25 20
2 10 0 20 15
3 25 20 0 15
4 20 15 15 0

The resultant attribute pay matrix is shown in Table 24.

Table 24 : Attribute pay Matrix

Attribute 1 2 3 4 5 6 7 8 9 10
pay1(ai) 750 1550 1465 740 750 740 1050 1550 1465 740
pay2(ai) 600 1225 1040 590 600 590 875 1225 1040 590
pay3(ai) 1375 1600 1855 405 1375 405 1350 1600 1855 405
pay4(ai) 1100 1400 1520 445 1100 445 1175 1400 1520 445

Finally, for each attribute we compare all the pay at all sites to find the minimal one. We
subsequently allocate attribute ai to the site with minimal pay. The allocation of attributes
to sites is shown in Table 25.

Table 25 : Attribute Allocation

Attribute ai 1 2 3 4 5 6 7 8 9 10
Site Nj 2 2 2 3 2 3 2 2 2 3

79 | P a g e

Therefore, relation R has been fragmented into two fragments with F1 = {a1, a2, a3, a5, a7,
a8, a9} and F2 = {a4, a6, a10}, which have been allocated to site 2 and 3 respectively.

5.3.4 Advantages of this Approach
The advantages of this heuristic approach for vertical fragmentation and allocation are:

• Except primary-key attributes, there is no overlap among all the vertical
fragments. Therefore, we do not need extra procedure to remove overlaps.

• The change of queries will be reflected by the fragmentation solution. Query
information may reflect the needs to retain attributes from some sites more often
than some other sites. Even though on the affinity graph the cutting edges will be
same.

• The complexity of this approach is low. Let m be the number of queries, n be the
number of attributes, k be the number of network nodes. The complexity of our
approach, which deals with vertical fragmentation and allocation, is O(m * n + k2
* n), while the complexity of graphical approach is O(n2 * m + k * n) for the
whole design procedure, including building the affinity matrix, vertical
fragmentation and allocation.

• This approach suits the situation that for each relation the number of attributes is
small and the number of queries is big. Usually, the number of queries taken into
consideration is bigger than the number of attributes of a relation.

We have studied various VF techniques and heuristic approach is the only one which
addresses the problem of allocation. Hence the heuristic approach to vertical
fragmentation forms 2nd half of our grid fragmentation proposal.

80 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 6666

Grid
Fragmentation

In the last two chapters the algorithms for generating the vertical and horizontal
fragmentation schemes have been described. We discussed three algorithms for each
vertical and horizontal fragmentation. In this chapter we discuss grid fragmentation. One
of the methodology for grid fragmentation is proposed by Shamkant B. Navathe, K
Karlapalem,and M. Ra in [5]. This technique does not address the problem of allocation.
Second we proposes a new technique for grid fragmentation using techniques for HF and
VF discussed in previous chapters.

The grid cells are generated by either applying the horizontal fragmentation scheme on
each of the vertical fragments or by applying the vertical fragmentation scheme on each
of the horizontal fragments. If the vertical fragmentation scheme generates n vertical
fragmentation and the horizontal fragmentation scheme generates m horizontal fragments,
then n x m grid cells will be generated.

6.1 Representation Scheme for Fragments

A grid is created by applying both the horizontal and vertical fragmentation schemes on
the relation. Let H = {1, 2,…, n} be set of horizontal fragments and V = {a, b,…, m} be
the set of vertical fragments of a relation respectively. Each grid cell belongs to exactly
one horizontal and one vertical fragment of the relation. The set of grid cells represented
as (1a, 1b, . . . , 1m ; 2a, 2b, . . . , 2m ; . . . ; na, nb, . . . , nm).

81 | P a g e

The set of vertical fragments of a horizontal fragment form horizontal grid cells. For a
horizontal fragment p they are represented as (pa, pb, . . . , pm). In figure 18, the set (2a, 2b,
. . . , 2m) forms the set of horizontal grid cells for the horizontal fragment 2. The set of
horizontal fragments of a vertical fragment are known as vertical grid cells of that
fragment. The vertical grid cells of a vertical fragment i are represented as (1i, 2i, . . . , ni
). In figure 18 the set of grid cells (1b, 2b, . . . , nb) form the vertical grid cells for the
vertical fragment b.

Following are the two binary operations defined over these grid cells [5]:
• Concatenate: the horizontal merging operator. The concatenate operator is a

special case of join operator where only corresponding tuple id’s of the relation
are matched. All the relations involved in the concatenate operation have the same
number of tuples and same set of tuple identifiers.

(ip, iq) = ip || iq
Two grid cells are concatenated only if they are horizontal grid cells of the same
horizontal fragment.

• Union: the vertical merging operator. All the relation involved in the Union
operator have the same set of attributes.

(ip, jp) = ip U jp
Union of two grid cells is allowed only if they are vertical grid cells of the same
vertical fragment.

Both of these two binary operations are commutative and associative over the set of
vertical grid cells and horizontal grid cells.

1a 1b 1m

2a 2b 2m

na nb nm

Figure 18 : Representation of Grid cells

82 | P a g e

6.2 Methodology

We have explained three techniques of each Horizontal Fragmentation & Vertical
Fragmentation in chapter 4 and 5 respectively. Figure 19 Error! Reference source not
found.shows these different Horizontal Fragmentation & Vertical Fragmentation
techniques that we studied. Next step is to apply HF algorithm and VF algorithm together
to form a grid on a relation giving rise to a set of grid cells. We can form various
combinations of HF and VF techniques that can result into grid fragmentation of the
relation. As we have explained advantages and disadvantages of various techniques in
previous chapters, we can select a particular algorithm for each of the type depending
upon the requirements.

Figure 19 : Different Techniques of Fragmentation Studied

Secondly we need not to consider the order of fragmentation either HF first then VF (HV
partitioning) or VF first and then HF (VH Partitioning). Both the cases will result into
similar grid fragmentation.

While performing grid fragmentation we can consider all the combination but some of
the techniques mentioned above have few big drawbacks. Basic horizontal partitioning
cannot be implemented because it is more of a theoretical approach. Number of min-
terms involved in the intermediate steps makes it very difficult to implement. Similarly
complexity of vertical fragmentation using bond energy algorithm and binary partitioning
makes it inefficient approach. Overall process is divided into two major parts that makes
it even more complex.

Horizontal Fragmentation

Basic Horizontal Partitioning

Graphical Approach

Advanced Horizontal Fragmentation
using MCRUD matrix.

Vertical Fragmentation

Bond Energy Algorithm & Binary
Vertical Partitioning.

Graphical Approach

Heuristic Approach

83 | P a g e

Graphical approach for horizontal fragmentation needs further optimization hence
combining it with other approaches does not give any further advantage. It does not solve
the problem of allocation. A mixed fragmentation technique given in [5] combines
graphical approach for HF and VF.

Along with fragmentation we are also aiming allocation of fragments to different sites.
Hence the techniques we choose for HF and VF are Advanced HF using MCRUD matrix
and Heuristic Approach for VF respectively. We propose advanced grid fragmentation
using these two techniques. These techniques both take care of fragmentation &
allocation of fragments to different sites simultaneously.

6.3 Advantages of Our proposal

Here we discuss some advantages of our grid fragmentation proposal:

1. Our grid fragmentation model addresses both the distributed databases design
problem i.e., fragmentation and allocation.

2. It combines the cost model of both HF and VF. It uses the transaction frequency
as input. When frequency changes we can re-fragment the relation.

3. Complexity of both the processes is low as discussed in previous chapters.
4. Both the approaches are mathematical, hence easy to implement.

Next we will explain when to allocate fragments in grid fragmentation.

6.4 Allocation of Grid Cells
We are mixing the two techniques to form grid fragments. Each technique has its own
allocation scheme. So question is when and how to allocate the fragments to different
sites? We can do this in following 3 ways:

1. First of all fragmenting the database using Horizontal Fragmentation and
allocating the horizontal fragments to different sites according to horizontal
fragmentation schemes only. Then fragmenting vertically the each horizontal
fragment at their respective site.

2. Otherwise we can do the reverse of this. Performing vertical fragmentation and
then allocating accordingly. Finally fragmenting horizontally each vertical
fragment at their respective sites.

3. Third approach that we can take is little bit different where we first perform both
the fragmentation over the relation before allocation. Figure 20 shows a relation
fragmented with site allocation using arrow heads.

84 | P a g e

Fragment 1a belongs to vertical fragment which is allocated to the site 1 and also belongs
to the horizontal fragment which is also allocated to the site 1, hence we can allocate 1
site 1. Similarly we can allocate fragment 3
them to both the sites they belong. For example we can keep 1

We will implement and compare the following techniques as part of our research in Cisco
GSS and give the results in the next chapter:

I. Graphical Horizontal Fragmentation
II. Graphical Vertical Fragmentati
III. Horizontal Fragmentation using MCURD matrix.
IV. Vertical Fragmentation Cost Model.
V. Graphical Grid Fragmentation.
VI. Advanced Grid Fragmentation.

Figure 20 : Grid Allocation Scheme

to vertical fragment which is allocated to the site 1 and also belongs
to the horizontal fragment which is also allocated to the site 1, hence we can allocate 1
site 1. Similarly we can allocate fragment 3b site 3. For other fragments we can replicate
them to both the sites they belong. For example we can keep 1b at site 1 and 3 both.

We will implement and compare the following techniques as part of our research in Cisco
GSS and give the results in the next chapter:

Graphical Horizontal Fragmentation using modified graph-partitioning
Graphical Vertical Fragmentation using modified graph-partitioning
Horizontal Fragmentation using MCURD matrix.
Vertical Fragmentation Cost Model.
Graphical Grid Fragmentation.
Advanced Grid Fragmentation.

to vertical fragment which is allocated to the site 1 and also belongs
to the horizontal fragment which is also allocated to the site 1, hence we can allocate 1a to

site 3. For other fragments we can replicate
at site 1 and 3 both.

We will implement and compare the following techniques as part of our research in Cisco

partitioning
partitioning.

85 | P a g e

CCCCHAPTER HAPTER HAPTER HAPTER 7777

Implementation

& Results

We have discussed various fragmentation techniques of all types i.e. horizontal, vertical
and grid fragmentation in the previous chapters. We also discussed the need for these
fragmentation techniques in the global site selector for improving the DNS request
resolution process by improving the query processing in database. In this chapter we will
explain the results after applying these fragmentation techniques on the distributed
databases of Cisco GSS.

As mentioned in the previous chapter we will study the results of applying following
fragmentation techniques:

I. Graphical Horizontal Fragmentation using modified graph-partitioning.
II. Graphical Vertical Fragmentation using modified graph-partitioning.

III. Horizontal Fragmentation using MCURD matrix.
IV. Vertical Fragmentation Cost Model.
V. Graphical Grid Fragmentation.

VI. Advanced Grid Fragmentation.

86 | P a g e

7.1 Configuring GSS

Here we explain how to install a particular fragmentation technique inside GSS. How to
configure GSS? Step by step description of the complete process is as follows:

1. Implementation: First of all we implement the fragmentation scheme inside the
GSS code base. We can implement it for all the databases of GSS.

2. Compilation: After successful compilation of the code, it generates an .upg file
which is called the image of the GSS.

3. Installation: Then we will install the image on the GSS and boot it in run-mode
5. Each GSS runs in various run-modes, where run-mode 5 means that GSS is
running perfectly well.

4. DNS Rule Creation: After ensuring that GSS is running in run-mode 5 we start
creating DNS rules. Each DNS rule specifies many parameters some of them are:

• source address,
• domain name,
• answer IP address to be returned
• sticky enabled/disabled
• proximity enabled/disabled

5. Sending Request: Once all the DNS rules are created GSS is ready to receive
request. We start sending packets from a traffic generating tool outside GSS. The
traffic generating tool that we used was Tarantula. This traffic generating tool
simulates client sending DNS request. We define the kind of request to be sent
and domain name for the request. We can set number of request sent per second.
This tool also receives the responses sent by GSS and records the time taken to
receive them. For each of the above mentioned techniques we will record the
response time by varying the number of requests sent per second. Hence we can
measure the performance of the system.

7.2 Results
We followed the above procedure for each fragmentation scheme we mentioned. We
configured traffic generator tool to send 100 requests per second in each case for six
seconds. This tool also records the number of responses received back each second. Table
26 shows the reading. Last row shows the total time taken to receive all the responses
back. Number of requests sent in 6 seconds are 600, so readings are recorded till all the
responses are received back.

87 | P a g e

Table 26 : Responses Received Per Second

Fragmentation Schemes Non-
Fragmented

I II III IV V VI
Time (in secs)

1 39 59 73 78 81 78 97

2 74 117 141 152 161 156 196

3 104 170 207 232 235 221 285

4 128 220 270 308 315 288 361

5 148 270 339 377 390 352 442

6 165 325 402 448 470 409 511
7 177 366 447 498 514 454 564

8 188 398 483 534 554 487 599

9 197 429 511 565 589 509

10 207 457 534 587 531

11 216 478 554 553

12 228 501 571 570

13 238 520 587 588

14 247 539 596 598

Total Time Taken (in sec) 72.33 16.20 14.05 10.11 9.13 14.07 8.01

We plotted the table 26 on a two-dimensional graph as shown in figure 21. Where,

• x-axis corresponds to the time-line. Maximum limit for the time-line is set to
15seconds.

• y-axis represents number of responses received per second. Maximum limit for
this is set to 600 since we sent 600 requests per second.

88 | P a g e

Figure 21 : Graph showing the Comparison of Fragmentation Techniques

7.2.1 Observations
Following are some of the important

1. None of the graphs are perfectly straight line. As the
increasing, length of the request queues before the databases keep on increasing.
This results in slowing down of the overall request resolution. Hence each graph
is leaning towards right side.

2. Difference between non
Blue line corresponds to non
We can observe the gain due to fragmentation.

3. Vertical fragmentation gives the better results than horizontal fragmentation.
Reason behind this
fragments as compared to horizontal fragments. In horizontal fragment we need to
read the complete tuple.

0

50

100

150

200

250

300

350

400

450

500

550

600

0 1 2 3

Re
sp

on
se

s R
ec

ei
ve

d

Comparision of Fragmentation Techniques

Graph showing the Comparison of Fragmentation Techniques

Following are some of the important observations of the above graph:

None of the graphs are perfectly straight line. As the number of requests keeps on
increasing, length of the request queues before the databases keep on increasing.
This results in slowing down of the overall request resolution. Hence each graph
is leaning towards right side.

Difference between non-fragmented and fragmented techniques i
Blue line corresponds to non-fragmented technique and all other are fragmented.
We can observe the gain due to fragmentation.

Vertical fragmentation gives the better results than horizontal fragmentation.
Reason behind this behavior is that the size of tuple is very low in vertical
fragments as compared to horizontal fragments. In horizontal fragment we need to
read the complete tuple.

4 5 6 7 8 9 10 11 12 13 14 15

Time (in sec)

Comparision of Fragmentation Techniques

number of requests keeps on
increasing, length of the request queues before the databases keep on increasing.
This results in slowing down of the overall request resolution. Hence each graph

fragmented and fragmented techniques is significant.
fragmented technique and all other are fragmented.

Vertical fragmentation gives the better results than horizontal fragmentation.
of tuple is very low in vertical

fragments as compared to horizontal fragments. In horizontal fragment we need to

Comparision of Fragmentation Techniques

Non-Fragmented

I

II

III

IV

V

VI

89 | P a g e

4. Grid fragmentation using graphical method (V- orange line) gives similar results
to graphical vertical fragmentation (II – green line). There is no standard
procedure for selecting predicate for horizontal fragmentation. As we have many
transactions and many attributes are involved in these transactions. So we don’t
have well defined predicate affinity. Whereas in vertical fragmentation we have
well defined attribute affinity. Hence vertical fragmentation dominates over
horizontal fragmentation in Grid fragmentation using graphical method.

5. Technique III and IV are better techniques than graphical approach since these
techniques address the problem of allocation of fragments simultaneously. Both
these techniques are cost models hence give better results.

6. Advanced Grid fragmentation technique (VI – sky blue) which is the combination
of III and IV gives the best results. As it is a cost model and considers the actual
frequency of the queries for fragmentation. Both techniques involved solve the
problem of allocation as well. Hence the database is not centralized that gives a
major advantage to this technique. Also size of each fragment and tuple both is
decreased.

Coming to the end, we have successfully implemented our grid fragmentation as part of
Cisco GSS. Result shows that our technique solves the fragmentation and allocation in
distributed databases problem properly.

90 | P a g e

CHAPTER 8CHAPTER 8CHAPTER 8CHAPTER 8

Conclusion &

Future Work

As part of this chapter we conclude our research work with a short summary and also
discuss the future scope of this research work.

8.1 Conclusion

In this research work we have proposed a grid fragmentation technique using advance
horizontal and vertical fragmentation technique. We also discussed various other
fragmentation techniques. The major feature of the proposed approach is that it
incorporates fragmentation of relation on the basis of actual cost of fragmentation. It
takes frequency of transaction as input. Secondly attribute locality precedence is
calculated according to actual frequency of queries.

We also implemented the proposed methodology in distributed database inside Global
Site Selector. We compared the results obtained with other techniques we discussed.

Many techniques have been proposed by the researchers using empirical knowledge of
data access and allocation. Most of those techniques are either HF or VF. But proper

91 | P a g e

fragmentation at the initial stage has not been addressed yet using mixed fragmentation.
We can also use our fragmentation technique at the initial stage of database. To the best
of my knowledge no such grid fragmentation technique exists.

We suggested some allocation schemes that can solve the problem of allocation
efficiently. Using our technique no additional complexity is added for allocating the
fragments to the site of a distributed database as fragmentation is synchronized with
allocation. Our technique improves the DDBMS performance significantly by avoiding
frequent remote access and high data transfer.

8.2 Future Scope

Further extension of our research is in the direction of grid optimization. We can perform
grid optimization using binary operations over grid fragments.

Monitoring the effect of change in transaction and change in data over the fragments and
processing of queries. Timing of re-fragmentation is next major decision that depends
upon the change in transaction frequency.

Implementing the allocation schemes suggested is another area where this research can be
extended. We implemented our fragmentation technique that resolves the allocation
problem but the timing of allocation can be varied.

This research can be extended to support fragmentation in distributed object oriented
databases as well.

92 | P a g e

References

[1] S. B. Navathe and M. Ra, “Vertical partitioning for database design: A graphical
algorithm” in Proceedings of ACM SIGMOD International Conference on Management
of Data, Vol. 14, No. 4, pp. 440-450, 1989.

[2] W. McCormick, P. Schweitzer and T. White, “Problem Decomposition and Data
Reorganization by a Clustering technique Operations Research,” 20, Sep. 1972.

[3] S. Lu, and K. Fu. “A sentence-to-sentence clustering procedure for pattern analysis”
IEEE Transactions on Systems, Man and Cybernetics SMC 8, 381-389.

[4] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. “Vertical Partitioning Algorithms for
Database Design” ACM Transactions on Database Systems, Vol. 9, No. 4, Dec. 1984.

[5] Shamkant B. Navathe, K Karlapalem,and M. Ra. “A mixed Fragmentation Methodology
for Initial Distributed Database Design” Journal of Computer and Software Engineering
Vol. 3, No. 4, pp 395-426, 1995.

[6] Katja Hose, Ralf Schenkel “Distributed Database Systems, Fragmentation and
Allocation,” Max-Planck-Institute for Informatik, Cluster of Excellence MMCI. October
28, 2010.

[7] Hui Ma, Klaus-Dieter Schewe and Markus Kirchberg, “A Heuristic Approach to Vertical
Fragmentation Incorporating Query Information” in Proc. 7th International Baltic
Conference on Databases and Information Systems (DB & IS), pp 69-76, 2006.

[8] Vertical Splitting Bond Energy Algorithm, Exercise by Ali Salehi (BC 143), 2006.

[9] Shahidul Islam Khan & Dr. A.S.M. Latiful Hoque, “A New Technique for Database
Fragmentation in Distributed Systems,” International Journal of Computer Application.
Volume 5-No. 9, pp 20-24, August 2010.

[10] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in database design,” in
Proc. ACM SIGMOD, pp. 128–136, 1982.

[11] M. Ra, “Horizontal partitioning for distributed database design,” In Advances in
Database Research, World Scientific Publishing, pp. 101–120, 1993.

[12] J. Muthuraj, S.Chakravarthy, R. Varadarajan, and S.B.Navathe, “A formal approach to
the vertical partitioning problem in distributed databases design,” in Proc. of Second
International Conference on Parallel and Distributed Information Systems, San Diego,
California, 1993.

93 | P a g e

[13] F. F. Marwa, I. E. Ali, A. A. Hesham, “A heuristic approach for horizontal
fragmentation and alllocation in DOODB,” in Proc. INFOS2008, 2008, pp. 9-16.

[14] E. S. Abuelyaman, “An optimized scheme for vertical partitioning of a distributed
database,” Int. Journal of Computer Science & Network Security, Vol. 8, No. 1, 2008.

[15] H. Mahboubi and J. Darmont, “Enhancing XML Data Warehouse Query Performance
by Fragmentation,” in Proc. ACM SAC09, pp.1555-1562, 2009.

[16] P. Surmsuk, “The integrated strategic information system planning Methodology,”
IEEE Computer Society Press, pp. 467-475, 2007.

