Chapter 1

| ntroduction

The fundamental principle underlying parallel (oncurrent) processing is that once
the limits on speed imposed by a certain computienology have been reached, the most
obvious way of building a faster computer is tofgpen operations simultaneously. Two

fundamental ways of implementing parallelism haverged:

> Pipelining
» Replication

Pipelining means overlapping parts of operationstime. Replication means
providing more than one functional urtome form of parallelism has long been a feature of
computer designs. By the 1960s, most scientific maers were processing the bits of a
word in parallel - an example of replicatiothese forms of parallelism are probably ideal
from the user’s viewpoint, since they are entiftegnsparent to the user, and all he sees is a
machine with faster through-pufhe next stage of computer development involved
pipelining, that is, the overlapping of operatioms time. These operations could be
instruction processing where the operation of uttton fetch, decode, address calculation,

and operand fetch, are overlapped on successivatapes.

Parallel processing enhancements can be dividedtwa broad categories: on-chip
and off-chip. On-chip parallelism relies on arcbiteal enhancements for improved

performance, while off-chip parallelism incorporatedditional processors.

1.1 On-Chip Parallel Processing

Architectural enhancements on RISC processors eagrduped into three distinct

categories: superpipelining, superscaling, andir@PU integration.

DELHI TECHNOLOGICAL UNIVERSITY Page 1

1.1.1 Super pip€lining

This technique breaks the instruction pipeline ismoaller pipeline stages, allowing
the CPU to start executing the next instructionobefcompleting the previous one. The
processor can run multiple instructions simultasiguwith each instruction being at a

different stage of completion.

The main drawbacks of this technique are the isa@devel of control logic on the
processor, difficulty in programming, and difficpiin task switching. Real-time multitasking

on a superpipelined processor can become imposkthke pipeline grows too deep.
1.1.2 Superscaling

Instead of breaking the pipeline into smaller ssagriperscaling creates multiple
pipelines within a processor, allowing the CPU taeate multiple instructions
simultaneouslyHowever, when multiple instructions are executedusianeously, any data
dependency between the instructions (such as atworad branch)increases the complexity
of the programming. Programmers must make certhiat tsimultaneously executed
instructions don’t need the same-on-chip resouwcehat one executing instruction doesn’t

need the result of another whose result is noayatiable.
1.1.3 Multi-CPU Integration

This technique goes a step further than the pregetkchniques and integrates
multiple CPUs into a single piece of silicon. Thenber of processors may vary, depending

on chip size, power dissipation, and pin count.

All three of these parallel processing techniquesrdase processor performance
without the need for dramatic cycle time improvem&one of the techniques, however, can
achieve the BIPS performance required by todaydiegtions. If an application demands
higher performance than on-chip processors carvedelithe solution must be multiple

processors.

DELHI TECHNOLOGICAL UNIVERSITY Page 2

1.2 Off-Chip Parallel Processing

Off-chip parallel processing is not necessarilytdret— it's inevitable. No single
processor, no matter how it is pipelined, how #aaled, or how many CPUs it has on board,
can handle all applications. Recognizing this, nfacturers developed techniques to
integrate multiple processors efficiently. Like loling blocks, off-chip parallel processors
connect easily to form expandable systems of istuafinite size and varietyOff-chip
expansion is achieved by connecting multiple precestogether with zero glue logic for
direct processor-to-processor communication. Winigthods are different, the concept is the
same: connect multiple processors together toe@édpology or array of virtually any size
to achieve the performance needed by high-end agtigihs. The communication ports (or
links) on the devices are supplemented by paratieinory buses and other support

peripherals, allowing designers broad flexibilitydesigning their systems.
These are some benefits of off-chip parallelism:

» Expandability — you can easily add more processors to your sydtemmeet
performance requirements.

> Flexibility — you can implement a wide array of processor togiek that best fit
your application needs. Unlike hardwired multi-CRitegration, off-chip processing
can implement everything from 1D pipelines to 4péncubes.

» Upgradability — with processors that connect like building blgckgstems can be
designed in a modular fashion, allowing extra psso®y power to be added at a later

date to meet expanding processing needs.

DELHI TECHNOLOGICAL UNIVERSITY Page 3

Chapter 2
Literature Survey

For development of parallel processing embeddetkisyswe have to find the two
different processors which could support the pargiocessing. Here | work on MSP430 &
FPGA Virtex-4 processors. | choose MSP430 because a low power processor which
supports parallel processing also. Likewise Virdeis-a high speed FPGA which can run on
50Mhz.

2.1 M SP430

The MSP430 is a 16-bit microcontroller that has wanber of special features not

commonly available with other microcontrollers:

» Complete system on-a-chip — includes LCD contrd)@ I/O ports, ROM, RAM,
basic timer, watchdog timer, UART, etc.

» Extremely low power consumption — only 4.2 nW pestruction, typical

» High speed — 300 ns per instruction @ 3.3 MHz clackregister and register
addressing mode

» RISC structure — 27 core instructions

» Orthogonal architecture (any instruction with angi@essing mode)

» Seven addressing modes for the source operand

» Four addressing modes for the destination operand

» Constant generator for the most often used corss{aftt O, 1, 2, 4, 8)

» Only one external crystal required — a frequenckéal loop (FLL) oscillator derives

all internal clocks
> Full real-time capability — stable, nominal systelock frequency is available after
only six clocks when the MSP430 is restored from-pfmwer mode (LPM) 3; — no

waiting for the main crystal to begin oscillatiomdastabilize.

DELHI TECHNOLOGICAL UNIVERSITY Page 4

XN XOUuT DVCC DVSS AVCC AVSS RET/NMI PA FB PC PD PE PF

A P1x|. P2.x). P3.x). P4dx . PSx|. PGx). PT.x. PB.x . PO.x P10.x) P11.x
é * é é $ r 3 r k r 3 r

Y 3 h 4 Y ¥ k. Y ¥ k4 ¥ r ¥
XT2N —» 110 Ports
Unified [AGLK Fower P1P2 0 Ports IO Ports /O Ports /O Ports V0 Ports
Clock 256KE 1EKE nagemen 248 10s P3/P4 P5/PE PT/PE P/P10 P11
XT20UT 44— system | p smCLK :g;_:g sYS interrupt || 2%810s || 2¢810s || 2xBuos || 2¢Bu0s || 1x3v0s
RAM Do Watchdog | | CaPabilty
MCLK Flash SVMISVS PA PB PC PD PE PF
Brownout 1=16 ¥Os 1=16 ¥Os 1=16 10s 1=16 ¥Os 123 0s
1=16 VOs
r
MAB
CPUXV2 DMA
and
Working MDB 3 Channel
Registers|
EEM
(L:8+2)
usco1,23|| ADCIZ_A
JTAG/ TAD TA1 TED USCI_Ax: 12Bit
sSBW UART, 200 KSPS
it MPY22 || qimer & || Timer a || Timer s RTC_A CRC1E || \pa spi REF
§CC acc TCC 16 Channels
Registers Registers Registars UCSI_Bx: (14 exti2 int)
SPI, 2C Autoscan

Fig 2.1 Functional Block Diagram of MSP430

2.1.1 Central Processing Unit

The CPU incorporates a reduced and highly transpamstruction set and a highly
orthogonal design. It consists of a 16-bit arithmébgic unit (ALU), 16 registers, and
instruction control logic. Four of these registare used for special purposes. These are the
program counter (PC), stack pointer (SP), statgster (SR), and constant generator (CGx).
All registers, except the constant-generator rel3sR3/CG2 and part of R2/CG1, can be
accessed using the complete instruction set. Thstaot generator supplies instruction
constants, and is not used for data storage. Ttieesging mode used on CG1 separates the

data from the constants.

The CPU control over the program counter, the stadgister, and the stack pointer
(with the reduced instruction set) allows the depgelent of applications with sophisticated

addressing modes and software algorithms.
2.1.2 Program Memory

Instruction fetches from program memory are alwa§sbit accesses, whereas data
memory can be accessed using word (16-bit) or (8/=t) instructions. Any access uses the
16-bit memory data bus (MDB) and as many of thetlsgnificant address lines of the

DELHI TECHNOLOGICAL UNIVERSITY Page 5

memory address bus (MAB) as required to accesmtraory locations. Blocks of memory
are automatically selected through module-enaleass. This technique reduces overall
current consumption. Program memory is integrategragrammable or mask-programmed

memory.

In addition to program code, data may also be planethe ROM section of the
memory map and may be accessed using word or bgteuctions; this is useful for data
tables, for example. This unique feature gives M®P430 an advantage over other
microcontrollers, because the data tables do na# teabe copied to RAM for usage. Sixteen
words of memory are reserved for reset and intéwaptors at the top of the 64- kilobytes
address space from OFFFFh down to OFFEOh.

2.1.3 Data Memory

The data memory is connected to the CPU througkdhee two buses as the program
memory (ROM): the memory address bus (MAB) andniieenory data bus (MDB). The data
memory can be accessed with full (word) data widthwith reduced (byte) data width.
Additionally, because the RAM and ROM are connedtethe CPU via the same busses,
program code can be loaded into and executed frAM.R his is another unique feature of

the MSP430 devices, and provides valuable, easxg¢adebugging capability.
2.1.4 Operation Control

The operation of the different MSP430 members istroled mainly by the
information stored in the special-function registé6FRs). The different bits in the SFRs
enable interrupts, provide information about thatust of interrupt flags, and define the
operating modes of the peripherals. By disablingpperals that are not needed during an
operation, total current consumption can be redutked individual peripherals are described

later in this manual.
2.1.5 Peripherals

Peripheral modules are connected to the CPU thrtheiMAB, MDB, and interrupt
service and request lines. The MAB is usually at3bs for most of the peripherals. The
MDB is an 8- bit or 16-bit bus. Most of the peripdls operate in byte format. Modules with
an 8-bit data bus are connected by bus-conversionitcy to the 16-bit CPU. The data

DELHI TECHNOLOGICAL UNIVERSITY Page 6

exchange with these modules must be handled witl imgtructions. The SFRs are also

handled with byte instructions.
2.1.6 Oscillator and Clock Generator

The oscillator is designed for the commonly used782 Hz, low-current
consumption clock crystal. All analog components iategrated into the MSP430x3xx; only

the crystal needs to be connected with no oth@reat components required.

In addition to the crystal oscillator, all MSP43@vites contain a digitally controlled
RC oscillator (DCO). The DCO is different from RCsailators found on other
microcontrollers because it is digitally controleband tuneable. MSP430x3xx devices
contain an additional logic block called the fregeyelocked loop (FLL).

The FLL continuously and automatically adjusts fileguency of the DCO relative to
the 32768-Hz crystal oscillator to stabilize the @®@ver voltage and temperature. This
provides an effective, stable, ultralow-power dator for the CPU and peripherals. Clock
source selection for peripherals is very flexibost peripherals are capable of using the
32768-Hz crystal oscillator clock or the DCO clodke CPU executes from the DCO clock.

2.1.7 Operating Modes

The MSP430 family was developed for ultra-low powagplications and uses
different levels of operating modes. The MSP430raijpeg modes, shown in Figure, give
advanced support to various requirements for Ubna-power and ultra-low energy
consumption. This support is combined with an ligeht management of operations during
the different module and CPU states. An interrygngé wakes the system from each of the
various operating modes and the RETI instructidarns operation to the mode that was

selected before the interrupt event.

The ultra-low power system design which uses comelgary metal-oxide

semiconductor (CMOS) technology, takes into accthmate different needs:

» The desire for speed and data throughput despitdlictong needs for ultralow-power
» Minimization of individual current consumption
» Limitation of the activity state to the minimum reced by the use of low-power

modes

DELHI TECHNOLOGICAL UNIVERSITY Page 7

There are four bits that control the CPU and tlstesy clock generator: CPUOff, OscOff,
SCGO, and SCGL1. These four bits support discontisaative mode (AM) requests, to limit
the time period of the full operating mode, and lagated in the status register. The major
advantage of including the operating mode bithedtatus register is that the present state of

the operating condition is saved onto the stacknduan interrupt service request.

As long as the stored status register informatgomnat altered, the processor continues
(after RETI) with the same operating mode as befoeeinterrupt event. Another program
flow may be selected by manipulating the data storethe stack or the stack pointer. Being
able to access the stack and stack pointer withirteguction set allows the program

structures to be individually optimized, as illaéd in the following program flow:
» Enter interrupt routine
The interrupt routine is entered and processed drabled interrupt awakens the MSP430:

* The SR and PC are stored on the stack, with theeobpresent at the interrupt event.
» Subsequently, the operation mode control bits Osc®ECG1, and CPUOff are

cleared automatically in the status register.

» Return from interrupt

Two different modes are available to return frora thterrupt service routine and continue

the flow of operation:

* Return with low-power mode bits set. When returrmagn the interrupt, the program
counter points to the next instruction. The indinrcpointed to is not executed, since
the restored lowpower mode stops CPU activity.

* Return with low-power mode bits reset. When retugnifrom the interrupt, the
program continues at the address following theruietibn that set the OscOff or
CPUOff-bit in the status register. To use this mdte interrupt service routine must
reset the OscOff, CPUOff, SCGO, and SCG1 bits enstiack. Then, when the SR
contents are popped from the stack upon RETI, fhexating mode will be active
mode (AM).

DELHI TECHNOLOGICAL UNIVERSITY Page 8

The software can configure one active mode anddperating modes:

. Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0:

* CPU clocks are active

. Low-power mode 0 (LPMO0); SCG1=0, SCG0=0, OscOflePUOff=1:
« CPU is disabled

* ACLK and MCLK remain active

* Loop control for MCLK remains active

. Low-power mode 1 (LPM1); SCG1=0, SCG0=1, OscOffeBUOff=1.:
 CPU is disabled

* Loop control for MCLK is disabled

* ACLK and MCLK remain active

. Low-power mode 2 (LPM2); SCG1=1, SCG0=0, OscOfleBUOff=1:
 CPU is disabled

* MCLK and loop control for MCLK are disabled

» DCO’s dc-generator remains enabled

* ACLK remains active

. Low-power mode 3 (LPM3); SCG1=1, SCG0=1, OscOflePUOff=1:
 CPU is disabled

* MCLK and loop control for MCLK are disabled

» DCO oscillator is disabled

* DCO'’s dc-generator is disabled

* ACLK remains active

. Low-power mode 4 (LPM4); SCG1=X, SCGO0=X, OscOffERUOff=1:
 CPU is disabled

* ACLK is disabled

* MCLK and loop control for MCLK are disabled

» DCO oscillator is disabled

* DCO'’s dc-generator is disabled

» Crystal oscillator is stopped

DELHI TECHNOLOGICAL UNIVERSITY Page 9

RST/NMI
Reset Active

WDTIFG =0

WDT Active,
Time Expired, Overflow

WDTIFGfr @ RST/NMI is Reset Pin
WDTIFG = 1 FLL is Slowed Down

WOT is Active RSTINMI
WDT Active, NMI Active
Security Key Violation

Active Mode
CPU is Active
CPUO = 1 various Modules are Active CPUOf =1
SCGO,1 =0 Oscorr = 1
' SG01=X
LP Mode LPMO
CPU Off, FLL On
MCLK on, ACLK On
CPLUOF =1
SCE0 = 1 DC Generator Off
SCG1=0 CPUOf = 1 CPUOf =1
_ SCG01=1
LP Mode LPM1 ggg? ~ [1] ' LP Mode LPM3
CPU Off, FLL Off - CPU Off, FLL Off

MCLK On, ACLK On

LP Mode LPM2
CPU Off, FLL Off
MCLK Off, ACLK On

Fig 2.2 Active and Low power Modes

2.1.8 Interrupt Processing

LP-Mode LPM4
CPU Off, FLL Off
MCLK Off, ACLK Off

MCLK Off, ACLK On

DC Generator Off

The MSP430 programmable interrupt structure all@fesible on-chip and external

interrupt configurations to meet real-time intetrdpiven system requirements. Interrupts

may be initiated by the processor’'s operating domw such as watchdog overflow; or by

peripheral modules or external events. Each inpérsaurce can be disabled individually by

an interrupt enable bit, or all maskable interrupas be disabled by the general interrupt

enable (GIE) bit in the status register.

Whenever an interrupt is requested and the apptepinterrupt enable bit and

general interrupt enable (GIE) bit are set, thermipt service routine becomes active as

follows:

DELHI TECHNOLOGICAL UNIVERSITY

CPU active: The currently executing instructiocasnpleted.

CPU stopped: The low-power modes are terminated.

The program counter pointing to the next instruci®pushed onto the stack.
The status register is pushed onto the stack.

YV V. V V V

The interrupt with the highest priority is selectédmultiple interrupts occurred

during the last instruction and are pending foviser

» The appropriate interrupt request flag resets aatimally on single source flags.
Multiple source flags remain set for servicing ljtware.

» The GIE bit is reset; the CPUOIf bit, the OscOff land the SCG1 bit are cleared; the
status bits V, N, Z, and C are reset. SCGO isuefthanged, and loop control remains
in the previous operating condition.

» The content of the appropriate interrupt vectdo&led into the program counter: the

program continues with the interrupt handling roatat that address.

The interrupt latency is six cycles, starting wille acceptance of an interrupt request,
and lasting until the start of execution of the rayppiate interrupt-service routine first
instruction. The interrupt handling routine termeswith the instruction: RETI (return from

an interrupt service routine) which performs thiofwing actions:

» The status register with all previous settings gops the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardieisthe settings utilized during the
interrupt service routine.

» The program counter pops from the stack and besjesution at the point where it

was interrupted.
2.1.9 Memory Mapping

All of the physically separated memory areas (RGMM, SFRs, and peripheral
modules) are mapped into the common address spachown in Figure for the MSP430
family. The addressable memory space is 64KB. Eugxpansion is possible. The memory
data bus (MDB) is 16- or 8-bits wide. For those niled that can be accessed with word data
the width is always 16 bits. For the other modutes, width is 8 bits, and they must be
accessed using byte instructions only. The programory (ROM) and the data memory

(RAM) can be accessed with byte or word instrudion

DELHI TECHNOLOGICAL UNIVERSITY Page 11

Address Function Access
(Hex.)
OFFFFh
Interrupt Vector Table ROM Word/Byte
OFFEOh
OFFDFh Program Memory
Branch Control Tables ROM Word/Byte
4 Data Tables...
v
}
0200h Data Memory RAM Word/Byte
01 EFh | . Timer, Word
: 16-Bit Peripheral Modules ADC, ...
0100h
%:E: 8-Bit Peripheral Modules gbonfl(':CD | Byte
OFh . . .
oh Special Function Registers SFR Byte

Fig 2.3 Memory Mapping

Bytes are located at even or odd addresses as shokigure. However, words are
only located at even addresses. Therefore, wheig wgord instructions, only even addresses
may be used. The low byte of a word is always aaan address. The high byte of a word is
at the next odd address after the address of the. \Wor example, if a data word is located at
address xxx2h, then the low byte of that data werddcated at address xxx2h, and the high
byte of that word is located at address xxx3h.

eee xxxAh

15 14 |..Bits..| 9 8 *xx9h
7 6 |..Bits..| 1 0 xxx8h
Byte xxxTh

Byte xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xooxdh

eee xxx3h

Fig 2.4 Memory Address

DELHI TECHNOLOGICAL UNIVERSITY Page 12

2.1.10 16-Bit CPU

The MSP430 von-Neumann architecture has RAM, ROMI peripherals in one
address space, both using a single address andbdataThis allows using the same
instruction to access either RAM, ROM or peripherahd also allows code execution from
RAM.

2.1.10.1 CPU Registers

Sixteen 16-bit registers (RO, R1, and R4 to R1B6)umed for data and addresses and
are implemented in the CPU. They can address 2 tibytes (ROM, RAM, peripherals,
etc.) without any segmentation. The complete CRiister set is described in Table.
Registers RO, R1, R2, and R3 have dedicated furgtio

Program counter (PC) RO

Stack pointer (SP) R1

Status register (SR)

Constant generator (CG1) R2
Constant generator (CG2) R3
Working register R4 R4

Working register RS R5
Working register R13 R13
Working register R14 R14
Working register R15 R15

Fig 2.5 CPU Registers

DELHI TECHNOLOGICAL UNIVERSITY Page 13

2.1.10.2 The Status Register (SR)

15 9 8 7 0

QOSC|CPU
Reserved For Future Enhancements V] SCG1T | SCGO off | o GE|N]Z]C

rw-0

Fig 2.6 Status Register
The status register SR contains the following CRitus bits:

* V Overflow bit

 SCG1 System clock generator control bit 1
* SCGO System clock generator control bit 0
* OscOff Crystal oscillator off bit

* CPUOff CPU off bit

* GIE General Interrupt enable bit

* N Negative bit

» Z Zero bit

 C Carry hit

2.1.11 FLL Clock Module

The frequency-locked loop (FLL) clock module (shownFigure 7-1) follows the
major design targets of low system cost and lowgrowonsumption. The FLL operates
completely using a 32768-Hz watch crystal. A secasghchronous high-speed clock signal
is generated on-chip using a digitally-controllestibator (DCO). The DCO frequency is
stabilized to a multiple of the watch crystal fregay by dividing the DCO frequency and
digitally locking the two frequencies. This techugis known as frequency-locked loop.

DELHI TECHNOLOGICAL UNIVERSITY Page 14

N

L~ > ACLK
OscOff SCG0 PUC
fc Enable Reset
rystal
[]
T -
1 10-hit Frequency Integrator
/(N+1) Divider =
h Sl
SCG1 FN4 FN3 FN2 I‘*I
Enable
DC Generator — DCO and Modulator » MCLK

fSyslem

Fig 2.7 FLL Clock Module

2.1.12 Digital 1/0 Configuration

The general-purpose /0O ports of the MSP430 ardagded to give maximum
flexibility. Each I/O line is individually configable, and most have interrupt capability.
There are several different I/O port modules thatcfion in slightly different ways. For this
reason, names have been given to each port mderl@xample, port PO, P1, P2, etc. These
names refer to specific port modules, and appBlltMSP430 devices. For example, port PO
and P1 may be available on a particular MSP430cdewvhile ports P1 and P3 may be
available on another device. It is important foe thser to understand the operating
differences and which port(s) are available ondbeice in use. Additionally, the 1/O port
pins are often multiplexed with other pin functioos the devices to provide maximum

flexibility while optimizing pin count on the dews.
» Port PO

The general-purpose port PO contains 8 generalegarg/O lines and the required
registers to control and configure them. Each lite lis capable of being controlled
independently. In addition, each I/O line has intpt capability. Six registers are used to
control the port 1/O pins.

DELHI TECHNOLOGICAL UNIVERSITY Page 15

Port PO is connected to the processor core thrtdwgB-bit memory data bus (MDB) and
the memory address bus (MAB). Port PO should besssxd using byte instructions in the

absolute address mode.
> PortsP1, P2

Each of the general-purpose ports P1 and P2 co@tgeneral-purpose 1/O lines and all
of the registers required to control and configthem. Each 1/O line is capable of being

controlled independently. In addition, each I/CGelis capable of producing an interrupt.

Separate vectors are allocated to ports P1 anddéles. The pins for port P1 (P1.0-7)
source one interrupt, and the pins for port P2 QF2. source another interrupt. Seven
registers are used to control the port I/O pinstdPB1 and P2 are connected to the processor
core through the 8-bit MDB and the MAB. They shobkd accessed using byte instructions

in the absolute address mode.
> PortsP3

P3 functions as general-purpose ports. Each pinbeaselected to operate with the 1/0
port function, or to be used with a different pagpal module. This multiplexing of pins

allows for a reduced pin count on MSP430 devices.

Four registers control each of the ports. PortsidP8onnected to the processor core
through the 8-bit MDB and the MAB. They should lmeessed with byte instructions using

the absolute address mode.

2.1.13Timers

2.1.13.1 Basic Timerl

The Basic Timerl supplies other peripheral modwesthe software with low
frequency control signals. The Basic Timerl operatsupports two independent 8-bit
timing/counting functions, or one 16-bit timing/cding function. Some uses for the Basic

Timerl include:

* Real-time clock (RTC)
* Debouncing keys (keyboard)

* Software time increments

DELHI TECHNOLOGICAL UNIVERSITY Page 16

2.1.13.2 8-Bit Interval Timer/Counter
The 8-Bit Timer/Counter supports three major aggian functions:

» Serial communication or data exchange
* Pulse counting or pulse accumulation

e Timing
2.1.13.3 Watchdog Timer

The primary function of the watchdog timer (WDT) dute is to perform a controlled
system restart after a software problem occurthdfselected time interval expires, a system
reset is generated. If the watchdog function isne&ded in an application, the module can be

configured as an interval timer and can generaggrupts at selected time intervals.
2.1.14 USART Peripheral Interface

The universal synchronous/asynchronous receivefitan (USART) serial
communication peripheral supports two serial modigls one hardware configuration. These
modes shift a serial bit stream in and out of theA¥M30 at a programmed rate or at a rate
defined by an external clock. The first mode is timéversal asynchronous receive/transmit

(UART) communication protocol; the second is thead@eripheral interface (SPI) protocol.

Bit SYNC in control register UCTL selects the regdi mode:
SYNC = 0: UART - asynchronous mode selected

SYNC = 1: SPI - synchronous mode selected

2.1.15 ADC12+2 A-To-D Converters

The ADC12+2 features include:

» Eight analog or digital input channels
» A programmable current source on four analog pins

» Ratiometric or absolute measurement

DELHI TECHNOLOGICAL UNIVERSITY Page 17

Built-in sample-and-hold

End-of-conversion interrupt flag

ADAT register that holds conversion results urit#é next start of conversion
Low-power consumption

Stand-alone conversion without CPU processing @agth

Programmable 12-bit or 14-bit resolution

Four programmable ranges that give 14-bit dynaamge

Fast-conversion time

Large supply-voltage range

YV V.V V V V V V V VY

Monotonic conversion

2.1.16 Advantages of the M SP430 Concept

The MSP430 concept differs considerably from otirecrocontrollers and offers

some significant advantages over more traditioealghs.
2.1.16.1 RISC Architecturewithout RI SC Disadvantages-

Typical RISC architectures show their highest penfance in calculation- intensive
applications in which several registers are loagét input data, all calculations are made
within the registers, and the results are storetk bato RAM. Memory accesses (using
addressing modes) are necessary only for the LO#dructions at the beginning and the
STORE instructions at the end of the calculatidie MSP430 can be programmed for such
operation, for example, performing a pure calcalatiask in the floating point without any

I/O accesses.

Pure RISC architectures have some disadvantagesn whaning real-time
applications that require frequent I/O accessesghier. Time is lost whenever an operand is
fetched and loaded from RAM, modified, and therresloback into RAM. The MSP430
architecture was designed to include the best ¢ morlds, taking advantage of RISC

features for fast and efficient calculations, addrassing modes for real-time requirements:

» The RISC architecture provides a limited numbepaiverful instructions, numerous

registers, and single-cycle execution times.

DELHI TECHNOLOGICAL UNIVERSITY Page 18

» The more traditional microcomputer features provatdressing modes for all
instructions. This functionality is further enhadogith 100% orthogonality, allowing

any instruction to be used with any addressing mode
2.1.16.2 Real-Time Capability with Ultra-Low Power Consumption

The design of the MSP430 was driven by the negudwide full real-time capability
while still exhibiting extremely low power consurt. Average power consumption is
reduced to the minimum by running the CPU and cedther functions of the MSP430 only
when it is necessary. The rest of the time (theonitgjof the time), power is conserved by
keeping only selected low-power peripheral functiactive.

But to have a true real-time capability, the dewivest be able to shift from a low-
power mode with the CPU off to a fully active modéh the CPU and all other device
functions operating nominally in a very short timidis was accomplished primarily with the

design of the system clock:

» No second high frequency crystal is used — inhedeldys can range from 20 ms to
200 ms until oscillator stability is reached

» Instead, a sophisticated FLL system clock genermtansed — generator output
frequency (MCLK) reaches the nominal frequency witB cycles after activation

from low power mode 3 (LPM3) or sleep mode
2.1.16.3 Digitally Controlled Oscillator Stability

The digitally controlled oscillator (DCO) is voltagand temperature dependent, which
does not mean that its frequency is not stableinQuhe active mode, the integral error is
corrected to approximately zero every 30.5 ps. Thiaccomplished by switching between
two different DCO frequencies. One frequency ishkigthan the programmed MCLK
frequency and the other is lower, causing the srnoressentially cancel-out. The two DCO
frequencies are interlaced as much as possibleotode the smallest possible error at any

given time.

DELHI TECHNOLOGICAL UNIVERSITY Page 19

2.2Virtex-4

The Virtex-4 greatly enhances programmable logisigie capabilities, making it a
powerful alternative to ASIC technology. Virtex-4PGAs comprise three platform
families—LX, FX, and SX—offering multiple featurén@ices and combinations to address
all complex applications. The wide array of VirtéX~PGA hard-IP core blocks includes the
PowerPC® processors (with a new APU interface)ntvde Ethernet MACs, 622 Mb/s to
6.5 Gb/s serial transceivers, dedicated DSP slitgb-speed clock management circuitry,
and source-synchronous interface blocks. The badiex-4

FPGA building blocks are enhancements of thosedonrthe popular Virtex, Virtex-
E, Virtex-1l, Virtex-1l Pro, and Virtex-ll Pro X prduct families, so previous-generation
designs are upward compatible. Virtex-4 devicespaogluced on a state-of-the-art 90 nm

copper process using 300 mm (12-inch) wafer tedyyol

2.2.1 Features
Virtex-4 has following features-
» Three Families — LX/SX/FX
* Virtex-4 LX: High-performance logic applicationslstion
* Virtex-4 SX: High-performance solution for digitsignal processing (DSP)
applications
* Virtex-4 FX: High-performance, full-featured solomi for embedded platform
applications
» Digital clock manager (DCM) blocks
e Additional phase-matched clock dividers (PMCD)
» Differential global clocks
» XtremeDS Slice
* 18 x 18, two’s complement, signed Multiplier
* Optional pipeline stages
e Built-in Accumulator (48-bit) and Adder/Subtracter
» Smart RAM Memory Hierarchy
» Distributed RAM
e Dual-port 18-Kbit RAM blocks

DELHI TECHNOLOGICAL UNIVERSITY Page 20

* Optional pipeline stages
* Optional programmable FIFO logic automatically res&AM signals as
FIFO signals
* High-speed memory interface supports DDR and DDHBRAM, QDR-II,
and RLDRAM-II.
» SelectlO Technology
e« 1.5V to 3.3V I/O operation
e Built-in ChipSyn source-synchronous technology
» Digitally controlled impedance (DCI) active termiiaen
* Fine grained I/0O banking (configuration in one bank
Flexible Logic Resources
Secure Chip AES Bitstream Encryption
90 nm Copper CMOS Process
1.2V Core Voltage
» Flip-Chip Packaging including Pb-Free Package

YV V V V

Choices
> IBM PowerPC RISC Processor Cofeqonly]
* PowerPC 405 (PPC405) Core
» Auxiliary Processor Unit Interface (User Coprocesso
» Multiple Tri-Mode Ethernet MACsHX only]

Example: XC4VLX25-10FFG668CS2

Device Type |— Step Identification Version
Speed Grade L Temperature Range:
(-10,-11, -12) C = Commercial (T; = 0°C to +85°C)
| = Industrial (T; = —40°C to +100°C)

Number of Pins
Pb-Free
Package Type

Fig 2.8 Virtex-4 FPGA Ordering Information

DELHI TECHNOLOGICAL UNIVERSITY Page 21

Chapter 3

Hardware Design

3.1 Hardware Design of M SP430

Here | use MSP430F5438A microcontroller in the edasel system design. It's a 100
pin IC which has following features.
» Low Supply Voltage Range: 1.8 V10 3.6 V

Unified Clock System
Three 16-Bit Timer

vV V V V V V V V

PB.4/A4]
PB.5/A5]

P6.6/A6]

PB.7/AT [

P7.4/A12 [

P7.5/A13]

P7.6/A14 [

P7.7/A15 [

P5.0/AB/VREF +/VeREF+ [
P5.1/A9/VREF-/VeREF- [
Avce O

Avss O

P7.0/XIN

P7.1/X0OUT O

pvssi O}

pvcel O
P1.0/TAOCLK/ACLK]
P1.1/TAD.0 [}
P1.2/TAD.1 [
P1.3/TAD.2 [}
P1.4/TA0.3 [
P1.5TA0.4 O}
P1.6/SMCLK [

P1.7 O}

P2.0/TA1CLK/MCLK [

Ultralow Power Consumption
Wake-Up From Standby Mode in Less Thaysb
16-Bit RISC Architecture

Four Universal Serial Communication Interfaces
12+2-Bit Analog-to-Digital (A/D) Converter
Three Channel Internal DMA

= <
gguomf
Q0BR20
g2988%
<
o 3603350
5 222552
e e Sgxzsyg
x xo=¢
= X Ok x PEdan®
@ 5] = Jx Do R oo
@ E =3z (S <<mmm
Sﬁmagmgg ELEJU O00000
293¢ @ s wBE2 222232
22382ReERE25k33%33. o233
A= OESd-8padNo -2Scccoooo
mmmmhﬁﬁﬁﬁmmn>> ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
dodaodifgcococaor~aQdodoacaccococoocoan
e o o o
S2R58RIRYcRBRE8RIBIEBRRER
10 75
2 74
3 73
4 72z
5 71
6 70
7 69
8 68
9 67
10 66
1 65
12 MSP430F5438A 64
13 63
14 62
15 61
16 60
17 59
18 58
19 57
20 56
21 55
22 54
23 53
24 52
25 51
ErROoo-rNmTDON OO CNDTDON DO
EREIB583388583859332852323
I
OrTNYBLYOXIALUORNOSX IO N T0OY
ﬁ—ﬁAwdmngFWUggdémooddcmd
AL L0000 RRAO =C0pananaad?d
EREL S222323232 88 EEEEEEES
“9aE @05283°02253s59a3wed
< <
[SégQgg SSEEKuEEEEEé
& SE2E3 g9+ 2 =
—w=00 XX 0= @
[SR=37, " N=1 ExX <&@ =
28288 2284 <
5883 8358 5
asS=299 220 =2
am=Nes T o5~
8 & &
g ege*g

1 P9.7

[0 PO6

1 P9.5/UCA2RXDUCA2SOMI
] P9.4/UCA2TXD/UCAZSIMO
|1 P9.3/UCB2CLKMUCA2STE
[1 P9.2/UCB2SOMIUCB2SCL
[1 P9.1/UCB2SIMO/UCB2SDA
[1 P9.0/UCB2STE/UCA2CLK
] Pa.7

[0 P8.6/TA1.1

[P8.5/TA1.0

[1 DvCC2

|1 Dvss2

|1 VCORE

|1 P8.4/TA0.4

1 P8.3/TAD.3

|1 P8.2/TAD.2

] P8.1/TAD.

|1 P8.0/TAD.0

1 P7.3/TA1.2

|7 P7.2/TBOOUTH/SVMOUT
[0 P5.7/UCA1IRXD/UCA1SOMI
|1 P5.6/UCA1TXD/UCA1SIMO
[1 P5.5/UCB1CLK/UCA1STE
1 P5.4/UCB1SOMIUCB1SCL

Fig 3.1 MSP430F5438A microcontroller

DELHI TECHNOLOGICAL UNIVERSITY

Page 22

3.1.1 M SP-EXP430F5438 Experimenter Board

1B

[A e ——

”rl"l" ‘ ml. |_i &b & e &
i y = el e
o = s s 1 1*.“,1 .

Texas
INSTRUMENTS

Fig 3.2 MSP-EXP430F5438 Experimenter Board

3.1.1 User Interfaces

Dot-Matrix LCD

The HD66753 is a Hitachi dot-matrix LCD with a regmn of 138 x 110, 4-level
grayscale pixels. The LCD also has a built-in bigtitl driver that can be controlled by a
PWM signal from the MSP430F5438A, pin P8.3. The M3IF5438A communicates with
the HD66753 via an SPI-like communication protocbh. supplement the limited set of
instructions and functionalities provided by thedamp LCD driver, an LCD driver has been
developed for the MSP430F5438A to support additifumactionalities such as font set and

graphical utilities.

DELHI TECHNOLOGICAL UNIVERSITY Page 23

Five-Directional Joystick, Push Buttons, and LEDs

The following table describes the pin connections the 5-directional joystick
switch, the push button switches, and the on-bb&fds. The USB circuit on the board also

sources an LED3, which indicates the presence & p&ver from the mini-USB cable.

5-directional joystick (LEFT) P2.1
5-directional joystick (RIGHT) pP2.2

5-directional joystick (CENTER) P2.3

5-directional joystick (UP) P2.4

Switch 1 (S1) P2.6

Switch 2 (S2) P2.7

RESET Switch (S3) RST / NMI

LED1 P1.0

LED2 P1.1/TAO CCRO

3.1.2 Communication Peripherals

USB-UART

The USB interface on the MSP-EXP430F5438 ExperisreBbard allows for UART
communication with a PC host and also convertdi88 power to 3.3-V power source for
the entire board. The USCI module in the MSP430BB4BUCA1L) supports the UART

protocol that is used to communicate with the TISBJhip for data transfer to the PC.
Two-Axis Accelerometer

The MSP-EXP430F5438 Experimenter Board supportsv@aixis accelerometer,
ADXL322. Two analog signals, one for each axis X &) are connected to input channels
one and two of the MSP430F5438 ADC12 module, ragpy. The layout also supports the

DELHI TECHNOLOGICAL UNIVERSITY Page 24

three-axis accelerometer, the ADXL330, by tracihg tonnection of a Z-axis to input
channel three of the ADC12. To use the ADXL330, tiser would need to remove the
ADXL322 and correctly replace the part with the ADB80. No further modifications to the

board are required. The accelerometer is poweradigh pin P6.0. This interface, especially
in conjunction with other on-board interfaces sashthe LCD, enables several potential

applications such as g-force measurement or tikisg.
Audio Input Signal Chain

The MSP-EXP430F5438 audio input chain is based apranverting op-amp gain
stage positioned between the microphone and the48@%438A ADC12. The circuit
utilizes a Texas Instruments TLV2760, optimizedl&v-power operation. The power for the
TLV2760 is supplied directly from MSP430F5438A ppm P6.4, which can be turned off to
remove power consumption when the TLV2760 is nouse. The op-amp has a cutoff

frequency of approximately 4 kHz, which targetsi¢gpspeech frequency range.

The microphone is connected to the MSP430F5438A BDidput channel five via
an analog filter circuit. The microphone is enabdedlisabled via the same MSP430F5438A
port pin as the TLV2760, P6.4.

Audio Output Signal Chain

The MSP430F5438A generates a high-frequency PWNMabkigo emulate the
functionality of a DAC. The duty cycle of the PWM derived from the ratio between the
emulated voltage and the rail of 3.3 V. This PWMpaot signal is filtered heavily to emulate
a constant voltage value. This output is then cot@aeto a Texas Instruments TPA301 audio

amplifier.

The audio output circuit utilizes the audio amplifto amplify the filtered output
signal from the PWM and feed the amplified signaloi the audio output jack. The

amplification is sufficient to support non-ampldi@eadphones as well as amplified speakers.

DELHI TECHNOLOGICAL UNIVERSITY Page 25

3.2Hardware Design of Virtex-4

In this system | use Virtex-4 ML401 evaluation lihdrihe ML40levaluation
platform enables designers to investigate and @xpet with features of the Virtex-4 family
of FPGAs.

[AEEAEEYEE AN N

TERREALL ¢

L Pt I'. '
| -3 Fiaadet Flaggn | T8

Fig 3.3 Virtex-4 ML401evaluation platform

DELHI TECHNOLOGICAL UNIVERSITY Page 26

—= Host

CF PC UsB

Syne: Controler [~ Periphera
RAM g . i
2 Periphera
B
v System ACE
Controller | 10/100/1000
32 EnetPHY [« RJ-45
@
FLASH P
g
DDR SDRAM
Platform Flash
@ DDR SDRAM
=
GPIO =
Button/LED/DIP Switch -
¢) 32 CPLD
Ncte: The DIP switch is
not available on the - l:_:'
ML403 board S B i |, Line Out/
é. wi ;’ ACYT Headphone
! I S Audio COUEC Mic In /
100 MHz XTAL + User 5 o K] = 16 12 e
Line In
SA vea
(Differiential In/Out Clocks) Virtex-4 seral
FPGA RS-232 XCVR
16 X 32
Dual P32 Character LCD
@
£| useriic Dusl
5
[vo Expansion Header | | ic EEPROM |
Fig 3.4 Block Diagram of ML401
3.2.1 Features

» Virtex-4 FPGA ML401: XC4VLX25-FF668-10
64-MB DDR SDRAM, 32-bit interface running up to 268z data rate

Y

» One differential clock input pair and different@bck output pair with SMA

connectors

» One 100-MHz clock oscillator (socketed) plus ong@rpen 3.3V clock oscillator
socket

» General purpose DIP switches (ML401/ML402 platfarbDs, and push buttons

» Expansion header with 32 single-ended 1/O, 16 L\4agable differential paird,4
spare 1/Os shared with buttons and LEDs, power,G€Aain expansion capability,
and IIC bus expansion

» Stereo AC97 audio codec with line-in, line-out, 58V headphone, and microphone-
in (mono) jacks

» RS-232 serial port

» 16-character x 2-line LCD display

DELHI TECHNOLOGICAL UNIVERSITY Page 27

One 4-Kb IIC EEPROM
VGA output: ML401: 50 MHz / 24-bit video DAC

PS/2 mouse and keyboard connectors

YV V V V

System ACE CompactFlash configuration controllehwiype I/l CompactFlash
connector

ZBT synchronous SRAM 9 Mb on 32-bit data bus wahbrfparity bits

Intel StrataFlash (or compatible) linear flash sh{® MB)

10/100/1000 tri-speed Ethernet PHY transceiver

USB interface chip (Cypress CY7C67300) with host paripheral ports

Xilinx XC95144XL CPLD to allow linear flash chips be used for FPGA
configuration

Xilinx XCF32P Platform Flash configuration storagdgvice
JTAG configuration port for use with Parallel Cahbleor Parallel Cable IV cable

YV V V V VY

Onboard power supplies for all necessary voltages
5V @ 3A AC adapter

Power indicator LED

YV V V V Y

DELHI TECHNOLOGICAL UNIVERSITY Page 28

Chapter 4

Parallel Architecture Design

| proposed a parallel design using MSP430 and Xtevhich are interfaced through
USB UART with each other. In USB-UART connectiore thata is transferred with57600

baud rate.

Fig 4.1 Parallel architecture

DELHI TECHNOLOGICAL UNIVERSITY Page 29

4.1 Design Goal

In this parallel architecture my goal is that MSP48orks as a front hand device
while Virtex-4 works as a backhand device. So th&@y input data is given to the MSP430
which converts the analog data into digital formhé&h the conversion is completed then data
is transferred to Virtex-4 platform for further pessing. In Virtex-4, the data is received in
digital form. After processing the data in Virtex-# is send to MSP430 back. Now in
MSP430 the data is converted to analog from didgatiath and produces an output.

4.2 Design Consider ations

First, we thoroughly examined MSP-EXP430F5438 Expenter Board and Virtex-4
ML401 evaluation board. An asynchronous transfetqmol is implemented via USB UART
data transfer so we have to make sure that botpl#iti®rm is set for similar baud rate. If the

baud rate is not similar then there is a big pnobté mismatching the data synchronization.

In the design we should consider the process defaigh causes the unwanted
mismatch between incoming and outgoing data. Agwduhe data communication, both the
board send and receive the data simultaneouslyd&eaito any reason, if there is a delay in
any process so all the synchronization betweenlalte is disturbed and board finds it hard to
get the data correctly.

For asynchronous data transfer we have to conSi LK, ACLK and UCAXCLK
signal responsible for generating the required beatd. Through programming we can

generate these clock signals as per the requirement

4.3 Asynchronous Communication

The USART (Universal Synchronous/Asynchronous Rexélransmitter) module is
a base unit for serial communications, supportirggh basynchronous communications

(RS232) and synchronous communications (SPI).

DELHI TECHNOLOGICAL UNIVERSITY Page 30

The USART module is available in the 5xx seriesickesy; particularly in the sub-
series MSP430F5438A.

The USART module supports:

Low power operating modes (with auto-start);
UART or SPI mode (12C on ‘F15x/’F16x only);
Double buffered TX/RX;

Baud rate generator;

DMA enabled;

Error detection.

VvV V V V VYV V

UsSCl_A
SMCLK =
ACLK=— —» Baud Rate Ganarator
UCAXCLK — I

UART— 7
SPI o Bedal Interdace: ;,f'” UCx
DA —

Fig 4.2 USART

DELHI TECHNOLOGICAL UNIVERSITY Page 31

Chapter 5

Data Flow Design

One of the main focuses of this architecture isdbsign of hardware organizations
that support the parallel execution of instructiddata flow parallel architectures continue to
receive a great deal of attention. In a data fleehiéecture an instruction may execute as
soon as its operands become available, permittidggaee of parallelism bounded only by

the flow of data between instructions.

The objective is to develop inexpensive parallethaectures that can exploit
parallelism without sacrificing compatibility witlexisting software. Compatibility with
existing software is important because it represantenormous investment for the computer

user, and it is necessary to preserve this invedgtme

The architecture is a MIMD machine that allows tegree of parallelism to vary
with time. Two types of parallelism are supportstitic parallelism where the degree of
parallelism is determined at compile time and dyicaparallelism where the degree of
parallelism depends in part on the data being gs®Eze There is no upper limit on the degree
of parallelism. On a sequential machine each ingbm has exactly one predecessor and
exactly on successor, while on a data-flow macheaeh instruction has several predecessors
and successors. In order to support parallelismseluegree varies with time, it is necessary
to have instructions that have more than one pesd®ec and successor.

DELHI TECHNOLOGICAL UNIVERSITY Page 32

5.1 Algorithm

(Star)

\ 4
Turn on the power supply of MSP-
EXP430F5438 Experimenter Board

\ 4
Initialize the microphone

A 4
Initialize the LCD display

A 4

Initialize the ADC

A 4

Initialize the DMA

\ 4
Unlock and erase the flash memory

A\ 4
Store the data in flash

DELHI TECHNOLOGICAL UNIVERSITY Page 33

Is all the data
stored?

Turn on the power of Virtex-4
ML401 evaluation board

Lock the flash

A 4

A 4

Initialize the USB Initialize the UART
UART module through programming

»
»

A 4

Transferring
the data

A 4
Receiving the
data

Is all the data
transferred?

\ 4
Process the
data

Y
Send back the data to
MSP430

\ 4
Receiving the datg
on MSP430

DELHI TECHNOLOGICAL UNIVERSITY Page 34

Erase the flash

\ 4
Store the data in
flash

A 4

Lock the flash

A 4

Display on LCD

\ 4
Initialize
the DMA

\ 4
Initialize
the DAC

\ 4
Initialize
the speaker

A 4

(End applicatioD

DELHI TECHNOLOGICAL UNIVERSITY

Page 35

First we initialize the both evaluation board. Wient on the power supply of MSP-
EXP430F5438 Experimenter Board. After that for iagrthe voice application, we initialize
the microphone so that we record the voice sanglénfs application. To convert this voice
sample into digital form we initiate the 12+2 biD& which is already embedded on the
board. After converting the data from analog toitdlgform, the data is stored in the flash
memory by using DMA which is initializing to traresfthe data from ADC channel to flash
memory without interrupting the processor. Befoterieg the data in flash, we have to
unlock and erase the flash. After this the datatesed in flash and flash is then locked.

Simultaneously we initialize the LCD module to dagpthe status of the process.

Now the data is stored in flash as a digital fofithis data is transferred to other
Virtex-4 ML401 board for further processing. Thetad#s transferred through USB-UART
which has to be initialized for transferring thetadérom one board to another evaluation
board. Simultaneously we initialize the USB UART\irtex-4 ML401 board for receiving
the data from MSP430 board. We should keep theifiactind that the baud rate should be
same otherwise there is a mismatching in the diatartex-4 ML401 board, the data is then
processed. It can be passed through FIR low pHss tih get better frequency response in
lower frequency range. After this processing wedsie data back to MSP430 experimental
board through USB UART module.

After getting the data through USB UART, we stothd data in the flash memory.
Now the data is transferred to DAC for converting tlata from digital to analog format. We
have to initialize DMA module for transferring tloata from flash to DAC channel. After
converting the data, it is given to the speaker utods output. Thus we give the input to
micro phone and get back the output from spealies. data is travelled from one processor

to another FPGA processor where the data is predesgarallel by both the processors.

DELHI TECHNOLOGICAL UNIVERSITY Page 36

Chapter 6

| mplementation and Result

The application is implemented on the MSP-EXP43@B5Experimenter Board and
Virtex-4 ML401 evaluation board. So we have to pamgme both the boards separately to
work together. There are several modules that havbe programmed for initialization
likewise LCD, microphone, USB-UART etc.

First we set a watchdog timer to watch the MSP48frgssor. If the MSP430 is
struck in any infinite loop or hang then the watotpdimer reset the processor. For initialize

the watchdog timer, the programme is as follows-
WDTCTL = WDTPW + WDTHOLD;

In the voice recording, we have to initialize theermphone So that we can store the
sample voice data. After that we convert the datanfanalog to digital form with the help of
ADC. After conversion the data is stored in flasemory so we have to initialize the DMA.
For initialization the microphone, ADC and DMA tkeftware module is as follows-

AUDIO_PORT_OUT |= MIC_POWER_PIN;
AUDIO_PORT_OUT &= ~MIC_INPUT_PIN;

AUDIO_PORT_SEL |= MIC_INPUT_PIN;

TBCTL = TBSSEL_2; Il USBICLK as Timer_B source
TBR =0;
TBCCRO = 2047; Infitialize TBCCRO

TBCCR1= 2047- 100;
TBCCTL1 = OUTMOD_7;

UCSCTLS8 |=- MODOSCREQEN;

DELHI TECHNOLOGICAL UNIVERSITY Page 37

ADC12CTLO &= ~ADC12ENC; I EmeuENC is clear

ADC12CTLO = ADC120N + ADC12SHTO02;

ADC12CTL1 = ADC12SHP + ADC12CONSEQ_2 + ADC12SSEH- ADC12SHS_3;
ADC12CTL2 = ADC12RES_0; /[Sx18-bit resolution

/ISequence of channels, once

ADC12MCTLO = MIC_INPUT_CHAN | ADC12EOS ; //VeREFand VeREF-

ADC12CTLO |= ADC12ENC,; /[Enabl
ADC12CTLO |= ADC12SC; //Stadnversion
DMACTLO = DMAOTSEL_24, Il AD2IFGx triggers DMAO

__datal6_write_addr((unsigned long)&DMAOSA & Oxffttinsigned
long)&ADC12MEMO); /I Src address = ADC1ddule

For writing the flash the software module is asofob-
FCTL3 = FWKEY; // Urdlo the flash for write
FCTL1 = FWKEY + BLKWRT;

DMAOCTL = DMADSTINCR_3 + DMAEN + DMADSTBYTE + DMASRCBYTE +
DMAIE;

// Enable Long-Word write, all 32 bits will be itten once
/Il 4 bytes are loaded
TBCCTL1 &= ~CCIFG;
TBCTL |= MCQO;
__bis_SR_register(LPMO_bits + GIE); /lalBle interrupts, enter LPMO

__no_operation();

DELHI TECHNOLOGICAL UNIVERSITY Page 38

TBCTL &= ~MCO;
DMAOCTL &= ~(DMAEN + DMAIE);

FCTL3 = FWKEY + LOCK; /I & the flash from write

For playing back the audio data stored in flashhase to initialize the speaker,
DMA and DAC modules on that board. The programnesifollows-

AUDIO_PORT_DIR |= AUDIO_OUT_PWR_PIN;
AUDIO_PORT_OUT &= ~AUDIO_OUT_PWR_PIN;
AUDIO_OUT_SEL |= AUDIO_OUT _PIN;
/[Use SMCLK as TimerO_A source, enable overfloteiirupt
TBCTL = TBSSEL_2 + TBIE;
/I Set output resolution (8 bit. Add 10 countiedroom for loading TBCCR1
TBCCRO = 255;
TBCCR4 = 255 >> 1; /I Deltaoutput ~Vcc/2
/I Reset OUT1 on EQU1, set on EQUO. Load TBCCR&wTBR counts to 0.
TBCCTL4 = OUTMOD_7 + CLLD_1,;
/[Start Timer_B in UP mode (counts up to TBCCRO0)
TBCTL |= MCQO;
__bis_SR_register(LPMO_bits + GIE); /I Enabkerrupts, enter LPMO

__no_operation();

DELHI TECHNOLOGICAL UNIVERSITY Page 39

For displaying the status of the process, we haweitialize the LCD module which

is programmed as follows-
volatile unsigned int i=0;

LCD_CS_RST_OUT |=LCD_CS_PIN | LCD_RESET_PIN;
LCD_CS_RST DIR |=LCD_CS_PIN | LCD_RESET _PIN;
LCD_BACKLT_SEL |= LCD_BACKLIGHT_PIN;

LCD_CS RST_OUT &= ~LCD_RESET _PIN; // BeEECD
__delay_cycles(0x47FF); /IRd%glse
LCD_CS_RST_OUT |= LCD_RESET_PIN;

/I UCLK,MOSI setup, SOMI cleared

LCD_SPI_SEL |= LCD_MOSI_PIN + LCD_CLK_PIN;

LCD_SPI_SEL &= ~LCD_MISO_PIN;

LCD_SPI_DIR &= ~(LCD_MISO_PIN + LCD_MOSI_PIN);
/I Pin direction controlled by module

/I Set both pins to input as default
/I Initialize the USCI_B2 module for SPI opeaoati
UCB2CTL1 = UCSWRST, /l Hold USCI$W reset mode while configuring it

UCB2CTLO = UCMST+UCSYNC+UCCKPL+UCMSB; // 3mi8-bit SPI master

UCB2CTL1 |= UCSSEL_2; Il SMICL

UCB2BRO = 4; I/l Note: Do not exceed D/S spec for UCLK!
UCB2BR1 = 0;

UCB2CTL1 &= ~UCSWRST; /I Releas8@l state machine

UCB2IFG &= ~UCRXIFG;

DELHI TECHNOLOGICAL UNIVERSITY Page 40

/l Wake-up the LCD as per datasheet specification
halLcdActive();

/[LCD Initialization Routine Using Predefined btas
halLcdSendCommand(&LcdInitMacro[1 * 6]);
halLcdSendCommand(&LcdInitMacro[2 * 6]);
halLcdSendCommand(&LcdInitMacro[4 * 6]);
halLcdSendCommand(&LcdInitMacro[5 * 6]);
halLcdSendCommand(&LcdInitMacro[6 * 6]);

halLcdSendCommand(&LcdInitMacro[7 * 6]);

For Shutting down the LCD display, the programmasigollows-
halLcdStandby();
LCD_CS_RST DIR |=LCD_CS_PIN | LCD_RESET _PIN;
LCD_CS_RST_OUT &= ~(LCD_CS_PIN | LCD_RESET _PIN);
LCD_CS_RST_OUT &= ~LCD_RESET_PIN;
LCD_SPI_SEL &= ~(LCD_MOSI_PIN + LCD_CLK_PIN + LCIMISO_PIN);
LCD_CS_RST_DIR |= LCD_MOSI_PIN + LCD_CLK_PIN + BCMISO_PIN;
LCD_CS RST_OUT &= ~(LCD_MOSI_PIN + LCD_CLK_PINECD_MISO_PIN);

UCB2CTLO = UCSWRST;

DELHI TECHNOLOGICAL UNIVERSITY Page 41

For initializing the serial communications peripilethe programme module is as

follows-

unsigned char i;

for (i=0; i < 255; i++)

halUsbReceiveBuffer[i]="\0";

bufferSize = 0;

USB_PORT_SEL |= USB_PIN_RXD + USB_PIN_TXD;
USB_PORT_DIR |= USB_PIN_TXD;
USB_PORT_DIR &= ~USB_PIN_RXD;

UCAL1CTL1 |= UCSWRST; dset State
UCA1CTLO = UCMODE_Q;

UCA1CTLO &= ~UCT7BIT, I/ 8bahar
UCA1CTL1 |= UCSSEL_2;

UCA1BRO = 16; // 8MBZ600=138
UCA1BR1 =1;

UCA1IMCTL = OXE;

UCA1CTL1 &= ~UCSWRST,

UCALIE |= UCRXIE;

__bis_SR_regqister(GIE); /| Bledterrupts

The above all programming modules are for MSP43@emental board. All the

modules are used as a function and can be calletirm@ whenever it required.

DELHI TECHNOLOGICAL UNIVERSITY Page 42

In the Virtex-4 ML401 evaluation board, we havgtogramme for initialization the
USB UART. In this board the receiver and transmmtt@dule both are differently

programmed. For receiver module, the programme felbbws-

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity uart_rx is
generic(
DBIT: integer:=8; -- # data bits
SB_TICK: integer:=16 -- # ticks for stopdit
);
port(
clk, reset: in std_logic;
rx: in std_logic;
s_tick: in std_logic;
rx_done_tick: out std_logic;
dout: out std_logic_vector(7 downto 0)
)i
end uart_rx ;
architecture arch of uart_rx is
type state_type is (idle, start, data, stop);

signal state_reg, state_next: state_type;

DELHI TECHNOLOGICAL UNIVERSITY Page 43

signal s_reg, s_next: unsigned(3 downto 0);
signal n_reg, n_next: unsigned(2 downto 0);
signal b_reg, b_next: std_logic_vector(7 dowd)o
begin
-- FSMD state & data registers
process(clk,reset)
begin
if reset="1" then
state_reg <=idle;
s_reg <= (others=>'0";
n_reg <= (others=>'0");
b_reg <= (others=>'0");
elsif (clk’'event and clk="1") then
state_reg <= state_next;
S_reg <=s_next;
n_reg <= n_next;
b reg <=b_next;
end if;
end process;
-- next-state logic & data path functional umigsiting
process(state_reg,s_reg,n_reg,b_reg,s_tick,rx)
begin

State_next <= state_reg;

DELHI TECHNOLOGICAL UNIVERSITY Page 44

S_next <=s_req;
n_next <= n_reg;
b_next <=b_reg;
rx_done_tick <="0;
case state_reg is
when idle =>
if rx="0" then
state_next <= start;
S_next <= (others=>'0");
end if;
when start =>
if (s_tick ='1") then
if s_reg=7 then
state_next <= data;
S_next <= (others=>'0");
n_next <= (others=>'0");
else
S _next<=s reg + 1;
end if;
end if;
when data =>
if (s_tick ='1") then

if s_reg=15 then

DELHI TECHNOLOGICAL UNIVERSITY Page 45

S_next <= (others=>'0");

b _next <=rx & b_reg(7 downto;1)

if n_reg=(DBIT-1) then
state_next <= stop ;
else
n_next <=n_reg + 1,
end if;
else
S _next<=s reg + 1;
end if;
end if;
when stop =>
if (s_tick ='1") then
if s_reg=(SB_TICK-1) then
state_next <= idle;
rx_done_tick <='1";
else
S _next<=s reg + 1;
end if;
end if;
end case;
end process;

dout <= Db _reg;

DELHI TECHNOLOGICAL UNIVERSITY

Page 46

end arch;

For transmitter module, the programme is as follows
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity vart_tx is
generic(
DBIT: integer:=8; -- # data bits
SB_TICK: integer:=16 -- # ticks for stopdit
)i
port(
clk, reset: in std_logic;
tx_start: in std_logic;
s_tick: in std_logic;
din: in std_logic_vector(7 downto 0);
tx_done_tick: out std_logic;
tx: out std_logic
);

end uart_tx ;

architecture arch of uart_tx is

type state_type is (idle, start, data, stop);

DELHI TECHNOLOGICAL UNIVERSITY Page 47

signal state_reg, state_next: state_type;
signal s_reg, s_next: unsigned(3 downto 0);
signal n_reg, n_next: unsigned(2 downto 0);
signal b_reg, b_next: std_logic_vector(7 dowdto
signal tx_reg, tx_next: std_logic;
begin
-- FSMD state & data registers
process(clk,reset)
begin
if reset="1" then
state_reg <= idle;
s_reg <= (others=>'0";
n_reg <= (others=>'0");
b_reg <= (others=>'0");
tx_reg <="1}
elsif (clk'event and clk="1") then
state_reg <= state_next;
S_reg <=s_next;
n_reg <= n_next;
b reg <=b_next;
tx_reg <= tx_next;
end if;

end process;

DELHI TECHNOLOGICAL UNIVERSITY Page 48

-- next-state logic & data path functional ufigsiting
process(state_reg,s_reg,n_reg,b_reg,s_tick,
tx_reg,tx_start,din)
begin
state_next <= state_reg;
S_next <=s_reqg;
n_next <=n_regq;
b _next<=b reg;
tx_next <= tx_reg :
tx_done_tick <="0";
case state_reg is
when idle =>
tx_next <="1"
if tx_start="1"' then
state_next <= start;
S_next <= (others=>'0");
b_next <= din;
end if;
when start =>
tx_next <="0"
if (s_tick ='1") then
if s_reg=15 then

state_next <= data;

DELHI TECHNOLOGICAL UNIVERSITY Page 49

s_next <= (others=>'0");
n_next <= (others=>'0");
else
S _next<=s reg + 1;
end if;
end if;
when data =>
tx_next <= b_reg(0);
if (s_tick ='1") then
if s_reg=15 then
s_next <= (others=>'0");
b _next <='0"'& b_reg(7 downto; 1)
if n_reg=(DBIT-1) then
state_next <= stop ;
else
n_next <=n_reg + 1,
end if;
else
S _next<=s reg + 1;
end if;
end if;
when stop =>

tx_next <="1"

DELHI TECHNOLOGICAL UNIVERSITY Page 50

if (s_tick ='1") then
if s_reg=(SB_TICK-1) then
state_next <=idle;
tx_done_tick <="1"
else
S _next<=s reg + 1;
end if;
end if;
end case;

end process;

tx <= tx_reg;
end arch;
rx P X dout (e——y_data _data pe—- 1 data
clk —» o< ik rx_done_tick > Wr rd [4——— rd_uart
i «—{full empty ——» m_empty
tick
receiver FIFO
baud rate S ~>
generator
>

tx - x (i | — data W_(ata |ef—_data
tx_done_tick » rd wr [4—— Wr uart
———» D_full

Y

5 _tick tx_start l¢——o<—Jempty full

transmitter FIFO
< <

Fig 6.1 Transmitter and Receiver module

DELHI TECHNOLOGICAL UNIVERSITY Page 51

For complete UART can be constructed by combiniregreceiver and transmitter

module. The programme code is as follows—
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity uart is
generic(
-- 19,200 baud, 8 data bit, 1 stop bit, 2" 2@ |
DBIT: integer:=8; -- # data bits
SB_TICK: integer:=16; -- # ticks for stopditl6/24/32
-- for 1/1.5/2 stoitsb
DVSR: integer:= 163; -- baud rate divisor
-- DVSR = 50M/(16*batate)
DVSR_BIT: integer:=8; -- # bits of DVSR
FIFO_W: integer.=2 -- # addr bits of FIFO
-- # words in FIFO=2F_ W
)i
port(
clk, reset: in std_logic;
rd_uart, wr_uart: in std_logic;
rx: in std_logic;

w_data: in std_logic_vector(7 downto 0);

DELHI TECHNOLOGICAL UNIVERSITY Page 52

tx_full, rx_empty: out std_logic;
r_data: out std_logic_vector(7 downto 0);
tx: out std_logic

);

end uart;

architecture str_arch of uart is
signal tick: std_logic;
signal rx_done_tick: std_logic;
signal tx_fifo_out: std_logic_vector(7 downtg 0)
signal rx_data_out: std_logic_vector(7 downtp 0)
signal tx_empty, tx_fifo_not_empty: std_logic;
signal tx_done_tick: std_logic;
begin
baud_gen_unit: entity work.mod_m_counter(arch)
generic map(M=>DVSR, N=>DVSR_BIT)
port map(clk=>clk, reset=>reset,
g=>open, max_tick=>tick);
uart_rx_unit: entity work.uart_rx(arch)
generic map(DBIT=>DBIT, SB_TICK=>SB_TICK)
port map(clk=>clk, reset=>reset, rx=>rx,
s_tick=>tick, rx_done_tick=>rx_doniek,

dout=>rx_data_out);

DELHI TECHNOLOGICAL UNIVERSITY Page 53

fifo_rx_unit: entity work.fifo(arch)
generic map(B=>DBIT, W=>FIFO_W)
port map(clk=>clk, reset=>reset, rd=>rd_uart,
wr=>rx_done_tick, w_data=>rx_datat, ou
empty=>rx_empty, full=>open, r_data=data);
fifo_tx_unit: entity work.fifo(arch)
generic map(B=>DBIT, W=>FIFO_W)
port map(clk=>clk, reset=>reset, rd=>tx_ddrek,
wr=>wr_uart, w_data=>w_data, emptiy=empty,
full=>tx_full, r_data=>tx_fifo_out);
uart_tx_unit: entity work.uart_tx(arch)
generic map(DBIT=>DBIT, SB_TICK=>SB_TICK)
port map(clk=>clk, reset=>reset,
tx_start=>tx_fifo_not_empty,
s_tick=>tick, din=>tx_fifo_out,
tx_done_tick=> tx_done_tick, tx=>tx)
tx_fifo_not_empty <= not tx_empty;

end str_arch;

DELHI TECHNOLOGICAL UNIVERSITY Page 54

Chapter 7

Conclusion

This example shows an application with parallelcpssors. These processors are
interfaced with each other through USB UART. It gldoalso be commented that parallel
systems are likely to open up new fields of redeans modelling methodologies that are
inherently highly parallel. Another big drawbacktigt the standardized platforms for code
development disappear with parallelization, sinberd¢ is such a diversity of parallel
hardware on the market, with attendant languagensiins virtually for each machine. Since

we are using the experimental board so thereas @f limitations in our design.

In this embedded system design, we have to progearboth the processors
separately. After programming they can be intedaggh each other to work in parallel. We

have to initialize the different modules embeddedoards through software programming.

In the parallel architecture design, there is achyonizing problem in system. We
should consider that the process is going to be kiestep. If there is any delay in any

process then all the synchronization is disturbetisystem may not work accurately.

DELHI TECHNOLOGICAL UNIVERSITY Page 55

Chapter 8
Future Scope of Work

We have developed a prototype interface betweenvi88430 and Virtex-4. The
design is a reconfigurable, programmable interfacether processor also. While the initial
transfer speed is not very fast but you can imprioviey increasing the clock rate and
eliminating unnecessary states in the prototype codtimately, the knowledge gained from
this effort could be used to develop an FPGA iaiegfthat improves both speed and size.

Another thing is that this system is developedimédvaluation board so there is a lot
of limitation for designing the system. We can deged this system by using separate chips
of processors, ADC, DAC, LCD and USB UART modules @onnecting them accordingly.
We can develop such type of application on thisesysso that processors can have more and

more work on it.

DELHI TECHNOLOGICAL UNIVERSITY Page 56

References

> www.ti.com

> www.Xilinx.com

» MSP430 User’'s Guide, Texas Instruments 2009
> Virtex-4 User’s Guide, Xilinx

» AK.Rath and P.K. Meher “Design of a Merged DSP idoontroller for
Embedded Systems using Discrete Orthogonal Tram&forternational Journal
of Computer Science, pp 388-394, 2006,USA.

» Arvind, D. E. Culler, "Dataflow Architectures,” Aoal Reviews in Computer
Science, 1986,.Vol 1, Annual Reviews Inc., 1986,3%b-253.

» R. H. Kuhn, D. A. Padua (eds.) "Tutorial on Patdfecessing," IEEE Computer
Society Press, Silver Spring Md, 1981.

» D. B. Davidson, “A parallel processing tutorial,” EEE Antennas
PropagationMagazin&2, pp. 6-19, April, 1990.

» Texas Instruments “Parallel Processing with TMS32¢C

DELHI TECHNOLOGICAL UNIVERSITY Page 57

