
DELHI TECHNOLOGICAL UNIVERSITY Page 1

Chapter 1

Introduction

The fundamental principle underlying parallel (or concurrent) processing is that once

the limits on speed imposed by a certain computing technology have been reached, the most

obvious way of building a faster computer is to perform operations simultaneously. Two

fundamental ways of implementing parallelism have emerged:

� Pipelining

� Replication

Pipelining means overlapping parts of operations in time. Replication means

providing more than one functional unit. Some form of parallelism has long been a feature of

computer designs. By the 196Os, most scientific computers were processing the bits of a

word in parallel - an example of replication. These forms of parallelism are probably ideal

from the user’s viewpoint, since they are entirely transparent to the user, and all he sees is a

machine with faster through-put. The next stage of computer development involved

pipelining, that is, the overlapping of operations in time. These operations could be

instruction processing where the operation of instruction fetch, decode, address calculation,

and operand fetch, are overlapped on successive operations.

Parallel processing enhancements can be divided into two broad categories: on-chip

and off-chip. On-chip parallelism relies on architectural enhancements for improved

performance, while off-chip parallelism incorporates additional processors.

1.1 On-Chip Parallel Processing

Architectural enhancements on RISC processors can be grouped into three distinct

categories: superpipelining, superscaling, and multi-CPU integration.

DELHI TECHNOLOGICAL UNIVERSITY Page 2

1.1.1 Superpipelining

This technique breaks the instruction pipeline into smaller pipeline stages, allowing

the CPU to start executing the next instruction before completing the previous one. The

processor can run multiple instructions simultaneously, with each instruction being at a

different stage of completion.

The main drawbacks of this technique are the increased level of control logic on the

processor, difficulty in programming, and difficulty in task switching. Real-time multitasking

on a superpipelined processor can become impossible if the pipeline grows too deep.

1.1.2 Superscaling

Instead of breaking the pipeline into smaller stages, superscaling creates multiple

pipelines within a processor, allowing the CPU to execute multiple instructions

simultaneously. However, when multiple instructions are executed simultaneously, any data

dependency between the instructions (such as a conditional branch)increases the complexity

of the programming. Programmers must make certain that simultaneously executed

instructions don’t need the same-on-chip resource, or that one executing instruction doesn’t

need the result of another whose result is not yet available.

1.1.3 Multi-CPU Integration

This technique goes a step further than the preceding techniques and integrates

multiple CPUs into a single piece of silicon. The number of processors may vary, depending

on chip size, power dissipation, and pin count.

All three of these parallel processing techniques increase processor performance

without the need for dramatic cycle time improvement. None of the techniques, however, can

achieve the BIPS performance required by today’s applications. If an application demands

higher performance than on-chip processors can deliver, the solution must be multiple

processors.

DELHI TECHNOLOGICAL UNIVERSITY Page 3

1.2 Off-Chip Parallel Processing

Off-chip parallel processing is not necessarily better — it’s inevitable. No single

processor, no matter how it is pipelined, how it is scaled, or how many CPUs it has on board,

can handle all applications. Recognizing this, manufacturers developed techniques to

integrate multiple processors efficiently. Like building blocks, off-chip parallel processors

connect easily to form expandable systems of virtually infinite size and variety. Off-chip

expansion is achieved by connecting multiple processors together with zero glue logic for

direct processor-to-processor communication. While methods are different, the concept is the

same: connect multiple processors together to create a topology or array of virtually any size

to achieve the performance needed by high-end applications. The communication ports (or

links) on the devices are supplemented by parallel memory buses and other support

peripherals, allowing designers broad flexibility in designing their systems.

These are some benefits of off-chip parallelism:

� Expandability — you can easily add more processors to your system to meet

performance requirements.

� Flexibility — you can implement a wide array of processor topologies that best fit

your application needs. Unlike hardwired multi-CPU integration, off-chip processing

can implement everything from 1D pipelines to 4D hypercubes.

� Upgradability — with processors that connect like building blocks, systems can be

designed in a modular fashion, allowing extra processing power to be added at a later

date to meet expanding processing needs.

DELHI TECHNOLOGICAL UNIVERSITY Page 4

Chapter 2

Literature Survey

For development of parallel processing embedded system, we have to find the two

different processors which could support the parallel processing. Here I work on MSP430 &

FPGA Virtex-4 processors. I choose MSP430 because it is a low power processor which

supports parallel processing also. Likewise Virtex-4 is a high speed FPGA which can run on

50Mhz.

2.1 MSP430

The MSP430 is a 16-bit microcontroller that has a number of special features not

commonly available with other microcontrollers:

� Complete system on-a-chip — includes LCD control, ADC, I/O ports, ROM, RAM,

basic timer, watchdog timer, UART, etc.

� Extremely low power consumption — only 4.2 nW per instruction, typical

� High speed — 300 ns per instruction @ 3.3 MHz clock, in register and register

addressing mode

� RISC structure — 27 core instructions

� Orthogonal architecture (any instruction with any addressing mode)

� Seven addressing modes for the source operand

� Four addressing modes for the destination operand

� Constant generator for the most often used constants (–1, 0, 1, 2, 4, 8)

� Only one external crystal required — a frequency locked loop (FLL) oscillator derives

all internal clocks

� Full real-time capability — stable, nominal system clock frequency is available after

only six clocks when the MSP430 is restored from low-power mode (LPM) 3; — no

waiting for the main crystal to begin oscillation and stabilize.

DELHI TECHNOLOGICAL UNIVERSITY Page 5

Fig 2.1 Functional Block Diagram of MSP430

2.1.1 Central Processing Unit

The CPU incorporates a reduced and highly transparent instruction set and a highly

orthogonal design. It consists of a 16-bit arithmetic logic unit (ALU), 16 registers, and

instruction control logic. Four of these registers are used for special purposes. These are the

program counter (PC), stack pointer (SP), status register (SR), and constant generator (CGx).

All registers, except the constant-generator registers R3/CG2 and part of R2/CG1, can be

accessed using the complete instruction set. The constant generator supplies instruction

constants, and is not used for data storage. The addressing mode used on CG1 separates the

data from the constants.

The CPU control over the program counter, the status register, and the stack pointer

(with the reduced instruction set) allows the development of applications with sophisticated

addressing modes and software algorithms.

2.1.2 Program Memory

Instruction fetches from program memory are always 16-bit accesses, whereas data

memory can be accessed using word (16-bit) or byte (8-bit) instructions. Any access uses the

16-bit memory data bus (MDB) and as many of the least-significant address lines of the

DELHI TECHNOLOGICAL UNIVERSITY Page 6

memory address bus (MAB) as required to access the memory locations. Blocks of memory

are automatically selected through module-enable signals. This technique reduces overall

current consumption. Program memory is integrated as programmable or mask-programmed

memory.

In addition to program code, data may also be placed in the ROM section of the

memory map and may be accessed using word or byte instructions; this is useful for data

tables, for example. This unique feature gives the MSP430 an advantage over other

microcontrollers, because the data tables do not have to be copied to RAM for usage. Sixteen

words of memory are reserved for reset and interrupt vectors at the top of the 64- kilobytes

address space from 0FFFFh down to 0FFE0h.

2.1.3 Data Memory

The data memory is connected to the CPU through the same two buses as the program

memory (ROM): the memory address bus (MAB) and the memory data bus (MDB). The data

memory can be accessed with full (word) data width or with reduced (byte) data width.

Additionally, because the RAM and ROM are connected to the CPU via the same busses,

program code can be loaded into and executed from RAM. This is another unique feature of

the MSP430 devices, and provides valuable, easy-to-use debugging capability.

2.1.4 Operation Control

The operation of the different MSP430 members is controlled mainly by the

information stored in the special–function registers (SFRs). The different bits in the SFRs

enable interrupts, provide information about the status of interrupt flags, and define the

operating modes of the peripherals. By disabling peripherals that are not needed during an

operation, total current consumption can be reduced. The individual peripherals are described

later in this manual.

2.1.5 Peripherals

Peripheral modules are connected to the CPU through the MAB, MDB, and interrupt

service and request lines. The MAB is usually a 5-bit bus for most of the peripherals. The

MDB is an 8- bit or 16-bit bus. Most of the peripherals operate in byte format. Modules with

an 8-bit data bus are connected by bus-conversion circuitry to the 16-bit CPU. The data

DELHI TECHNOLOGICAL UNIVERSITY Page 7

exchange with these modules must be handled with byte instructions. The SFRs are also

handled with byte instructions.

2.1.6 Oscillator and Clock Generator

The oscillator is designed for the commonly used 32,768 Hz, low-current

consumption clock crystal. All analog components are integrated into the MSP430x3xx; only

the crystal needs to be connected with no other external components required.

In addition to the crystal oscillator, all MSP430 devices contain a digitally controlled

RC oscillator (DCO). The DCO is different from RC oscillators found on other

microcontrollers because it is digitally controllable and tuneable. MSP430x3xx devices

contain an additional logic block called the frequency locked loop (FLL).

The FLL continuously and automatically adjusts the frequency of the DCO relative to

the 32768-Hz crystal oscillator to stabilize the DCO over voltage and temperature. This

provides an effective, stable, ultralow-power oscillator for the CPU and peripherals. Clock

source selection for peripherals is very flexible. Most peripherals are capable of using the

32768-Hz crystal oscillator clock or the DCO clock. The CPU executes from the DCO clock.

2.1.7 Operating Modes

The MSP430 family was developed for ultra-low power applications and uses

different levels of operating modes. The MSP430 operating modes, shown in Figure, give

advanced support to various requirements for ultra-low power and ultra-low energy

consumption. This support is combined with an intelligent management of operations during

the different module and CPU states. An interrupt event wakes the system from each of the

various operating modes and the RETI instruction returns operation to the mode that was

selected before the interrupt event.

The ultra-low power system design which uses complementary metal-oxide

semiconductor (CMOS) technology, takes into account three different needs:

� The desire for speed and data throughput despite conflicting needs for ultralow-power

� Minimization of individual current consumption

� Limitation of the activity state to the minimum required by the use of low-power

modes

DELHI TECHNOLOGICAL UNIVERSITY Page 8

There are four bits that control the CPU and the system clock generator: CPUOff, OscOff,

SCG0, and SCG1. These four bits support discontinuous active mode (AM) requests, to limit

the time period of the full operating mode, and are located in the status register. The major

advantage of including the operating mode bits in the status register is that the present state of

the operating condition is saved onto the stack during an interrupt service request.

As long as the stored status register information is not altered, the processor continues

(after RETI) with the same operating mode as before the interrupt event. Another program

flow may be selected by manipulating the data stored on the stack or the stack pointer. Being

able to access the stack and stack pointer with the instruction set allows the program

structures to be individually optimized, as illustrated in the following program flow:

� Enter interrupt routine

The interrupt routine is entered and processed if an enabled interrupt awakens the MSP430:

• The SR and PC are stored on the stack, with the content present at the interrupt event.

• Subsequently, the operation mode control bits OscOff, SCG1, and CPUOff are

cleared automatically in the status register.

� Return from interrupt

Two different modes are available to return from the interrupt service routine and continue

the flow of operation:

• Return with low-power mode bits set. When returning from the interrupt, the program

counter points to the next instruction. The instruction pointed to is not executed, since

the restored lowpower mode stops CPU activity.

• Return with low-power mode bits reset. When returning from the interrupt, the

program continues at the address following the instruction that set the OscOff or

CPUOff-bit in the status register. To use this mode, the interrupt service routine must

reset the OscOff, CPUOff, SCGO, and SCG1 bits on the stack. Then, when the SR

contents are popped from the stack upon RETI, the operating mode will be active

mode (AM).

DELHI TECHNOLOGICAL UNIVERSITY Page 9

The software can configure one active mode and five operating modes:

1. Active mode AM; SCG1=0, SCG0=0, OscOff=0, CPUOff=0:

• CPU clocks are active

2. Low-power mode 0 (LPM0); SCG1=0, SCG0=0, OscOff=0, CPUOff=1:

• CPU is disabled

• ACLK and MCLK remain active

• Loop control for MCLK remains active

3. Low-power mode 1 (LPM1); SCG1=0, SCG0=1, OscOff=0, CPUOff=1:

• CPU is disabled

• Loop control for MCLK is disabled

• ACLK and MCLK remain active

4. Low-power mode 2 (LPM2); SCG1=1, SCG0=0, OscOff=0, CPUOff=1:

• CPU is disabled

• MCLK and loop control for MCLK are disabled

• DCO’s dc-generator remains enabled

• ACLK remains active

5. Low-power mode 3 (LPM3); SCG1=1, SCG0=1, OscOff=0, CPUOff=1:

• CPU is disabled

• MCLK and loop control for MCLK are disabled

• DCO oscillator is disabled

• DCO’s dc-generator is disabled

• ACLK remains active

6. Low-power mode 4 (LPM4); SCG1=X, SCG0=X, OscOff=1, CPUOff=1:

• CPU is disabled

• ACLK is disabled

• MCLK and loop control for MCLK are disabled

• DCO oscillator is disabled

• DCO’s dc-generator is disabled

• Crystal oscillator is stopped

DELHI TECHNOLOGICAL UNIVERSITY Page 10

Fig 2.2 Active and Low power Modes

2.1.8 Interrupt Processing

The MSP430 programmable interrupt structure allows flexible on-chip and external

interrupt configurations to meet real-time interrupt-driven system requirements. Interrupts

may be initiated by the processor’s operating conditions such as watchdog overflow; or by

peripheral modules or external events. Each interrupt source can be disabled individually by

an interrupt enable bit, or all maskable interrupts can be disabled by the general interrupt

enable (GIE) bit in the status register.

Whenever an interrupt is requested and the appropriate interrupt enable bit and

general interrupt enable (GIE) bit are set, the interrupt service routine becomes active as

follows:

DELHI TECHNOLOGICAL UNIVERSITY Page 11

� CPU active: The currently executing instruction is completed.

� CPU stopped: The low-power modes are terminated.

� The program counter pointing to the next instruction is pushed onto the stack.

� The status register is pushed onto the stack.

� The interrupt with the highest priority is selected if multiple interrupts occurred

during the last instruction and are pending for service.

� The appropriate interrupt request flag resets automatically on single source flags.

Multiple source flags remain set for servicing by software.

� The GIE bit is reset; the CPUOff bit, the OscOff bit, and the SCG1 bit are cleared; the

status bits V, N, Z, and C are reset. SCG0 is left unchanged, and loop control remains

in the previous operating condition.

� The content of the appropriate interrupt vector is loaded into the program counter: the

program continues with the interrupt handling routine at that address.

The interrupt latency is six cycles, starting with the acceptance of an interrupt request,

and lasting until the start of execution of the appropriate interrupt-service routine first

instruction. The interrupt handling routine terminates with the instruction: RETI (return from

an interrupt service routine) which performs the following actions:

� The status register with all previous settings pops from the stack. All previous settings

of GIE, CPUOFF, etc. are now in effect, regardless of the settings utilized during the

interrupt service routine.

� The program counter pops from the stack and begins execution at the point where it

was interrupted.

2.1.9 Memory Mapping

All of the physically separated memory areas (ROM, RAM, SFRs, and peripheral

modules) are mapped into the common address space, as shown in Figure for the MSP430

family. The addressable memory space is 64KB. Future expansion is possible. The memory

data bus (MDB) is 16- or 8-bits wide. For those modules that can be accessed with word data

the width is always 16 bits. For the other modules, the width is 8 bits, and they must be

accessed using byte instructions only. The program memory (ROM) and the data memory

(RAM) can be accessed with byte or word instructions.

DELHI TECHNOLOGICAL UNIVERSITY Page 12

Fig 2.3 Memory Mapping

Bytes are located at even or odd addresses as shown in Figure. However, words are

only located at even addresses. Therefore, when using word instructions, only even addresses

may be used. The low byte of a word is always at an even address. The high byte of a word is

at the next odd address after the address of the word. For example, if a data word is located at

address xxx2h, then the low byte of that data word is located at address xxx2h, and the high

byte of that word is located at address xxx3h.

Fig 2.4 Memory Address

DELHI TECHNOLOGICAL UNIVERSITY Page 13

2.1.10 16-Bit CPU

The MSP430 von-Neumann architecture has RAM, ROM, and peripherals in one

address space, both using a single address and data bus. This allows using the same

instruction to access either RAM, ROM or peripherals and also allows code execution from

RAM.

2.1.10.1 CPU Registers

Sixteen 16-bit registers (R0, R1, and R4 to R15) are used for data and addresses and

are implemented in the CPU. They can address up to 64 Kbytes (ROM, RAM, peripherals,

etc.) without any segmentation. The complete CPU-register set is described in Table.

Registers R0, R1, R2, and R3 have dedicated functions.

Fig 2.5 CPU Registers

DELHI TECHNOLOGICAL UNIVERSITY Page 14

2.1.10.2 The Status Register (SR)

Fig 2.6 Status Register

The status register SR contains the following CPU status bits:

• V Overflow bit

• SCG1 System clock generator control bit 1

• SCG0 System clock generator control bit 0

• OscOff Crystal oscillator off bit

• CPUOff CPU off bit

• GIE General Interrupt enable bit

• N Negative bit

• Z Zero bit

• C Carry bit

2.1.11 FLL Clock Module

The frequency-locked loop (FLL) clock module (shown in Figure 7–1) follows the

major design targets of low system cost and low-power consumption. The FLL operates

completely using a 32768-Hz watch crystal. A second asynchronous high-speed clock signal

is generated on-chip using a digitally-controlled oscillator (DCO). The DCO frequency is

stabilized to a multiple of the watch crystal frequency by dividing the DCO frequency and

digitally locking the two frequencies. This technique is known as frequency-locked loop.

DELHI TECHNOLOGICAL UNIVERSITY Page 15

Fig 2.7 FLL Clock Module

2.1.12 Digital I/O Configuration

The general-purpose I/O ports of the MSP430 are designed to give maximum

flexibility. Each I/O line is individually configurable, and most have interrupt capability.

There are several different I/O port modules that function in slightly different ways. For this

reason, names have been given to each port module. For example, port P0, P1, P2, etc. These

names refer to specific port modules, and apply to all MSP430 devices. For example, port P0

and P1 may be available on a particular MSP430 device, while ports P1 and P3 may be

available on another device. It is important for the user to understand the operating

differences and which port(s) are available on the device in use. Additionally, the I/O port

pins are often multiplexed with other pin functions on the devices to provide maximum

flexibility while optimizing pin count on the devices.

� Port P0

The general-purpose port P0 contains 8 general-purpose I/O lines and the required

registers to control and configure them. Each I/O line is capable of being controlled

independently. In addition, each I/O line has interrupt capability. Six registers are used to

control the port I/O pins.

DELHI TECHNOLOGICAL UNIVERSITY Page 16

Port P0 is connected to the processor core through the 8-bit memory data bus (MDB) and

the memory address bus (MAB). Port P0 should be accessed using byte instructions in the

absolute address mode.

� Ports P1, P2

Each of the general-purpose ports P1 and P2 contain 8 general-purpose I/O lines and all

of the registers required to control and configure them. Each I/O line is capable of being

controlled independently. In addition, each I/O line is capable of producing an interrupt.

Separate vectors are allocated to ports P1 and P2 modules. The pins for port P1 (P1.0–7)

source one interrupt, and the pins for port P2 (P2.0–7) source another interrupt. Seven

registers are used to control the port I/O pins. Ports P1 and P2 are connected to the processor

core through the 8-bit MDB and the MAB. They should be accessed using byte instructions

in the absolute address mode.

� Ports P3

P3 functions as general-purpose ports. Each pin can be selected to operate with the I/O

port function, or to be used with a different peripheral module. This multiplexing of pins

allows for a reduced pin count on MSP430 devices.

Four registers control each of the ports. Ports P3 is connected to the processor core

through the 8-bit MDB and the MAB. They should be accessed with byte instructions using

the absolute address mode.

2.1.13 Timers

2.1.13.1 Basic Timer1

The Basic Timer1 supplies other peripheral modules or the software with low

frequency control signals. The Basic Timer1 operation supports two independent 8-bit

timing/counting functions, or one 16-bit timing/counting function. Some uses for the Basic

Timer1 include:

• Real-time clock (RTC)

• Debouncing keys (keyboard)

• Software time increments

DELHI TECHNOLOGICAL UNIVERSITY Page 17

2.1.13.2 8-Bit Interval Timer/Counter

The 8-Bit Timer/Counter supports three major application functions:

• Serial communication or data exchange

• Pulse counting or pulse accumulation

• Timing

2.1.13.3 Watchdog Timer

The primary function of the watchdog timer (WDT) module is to perform a controlled

system restart after a software problem occurs. If the selected time interval expires, a system

reset is generated. If the watchdog function is not needed in an application, the module can be

configured as an interval timer and can generate interrupts at selected time intervals.

2.1.14 USART Peripheral Interface

The universal synchronous/asynchronous receive/transmit (USART) serial

communication peripheral supports two serial modes with one hardware configuration. These

modes shift a serial bit stream in and out of the MSP430 at a programmed rate or at a rate

defined by an external clock. The first mode is the universal asynchronous receive/transmit

(UART) communication protocol; the second is the serial peripheral interface (SPI) protocol.

Bit SYNC in control register UCTL selects the required mode:

SYNC = 0: UART – asynchronous mode selected

SYNC = 1: SPI – synchronous mode selected

2.1.15 ADC12+2 A-To-D Converters

The ADC12+2 features include:

� Eight analog or digital input channels

� A programmable current source on four analog pins

� Ratiometric or absolute measurement

DELHI TECHNOLOGICAL UNIVERSITY Page 18

� Built-in sample-and-hold

� End-of-conversion interrupt flag

� ADAT register that holds conversion results until the next start of conversion

� Low-power consumption

� Stand-alone conversion without CPU processing overhead

� Programmable 12-bit or 14-bit resolution

� Four programmable ranges that give 14-bit dynamic range

� Fast-conversion time

� Large supply-voltage range

� Monotonic conversion

2.1.16 Advantages of the MSP430 Concept

The MSP430 concept differs considerably from other microcontrollers and offers

some significant advantages over more traditional designs.

2.1.16.1 RISC Architecture without RISC Disadvantages-

Typical RISC architectures show their highest performance in calculation- intensive

applications in which several registers are loaded with input data, all calculations are made

within the registers, and the results are stored back into RAM. Memory accesses (using

addressing modes) are necessary only for the LOAD instructions at the beginning and the

STORE instructions at the end of the calculations. The MSP430 can be programmed for such

operation, for example, performing a pure calculation task in the floating point without any

I/O accesses.

Pure RISC architectures have some disadvantages when running real-time

applications that require frequent I/O accesses, however. Time is lost whenever an operand is

fetched and loaded from RAM, modified, and then stored back into RAM. The MSP430

architecture was designed to include the best of both worlds, taking advantage of RISC

features for fast and efficient calculations, and addressing modes for real-time requirements:

� The RISC architecture provides a limited number of powerful instructions, numerous

registers, and single-cycle execution times.

DELHI TECHNOLOGICAL UNIVERSITY Page 19

� The more traditional microcomputer features provide addressing modes for all

instructions. This functionality is further enhanced with 100% orthogonality, allowing

any instruction to be used with any addressing mode.

2.1.16.2 Real-Time Capability with Ultra-Low Power Consumption

The design of the MSP430 was driven by the need to provide full real-time capability

while still exhibiting extremely low power consumption. Average power consumption is

reduced to the minimum by running the CPU and certain other functions of the MSP430 only

when it is necessary. The rest of the time (the majority of the time), power is conserved by

keeping only selected low-power peripheral functions active.

But to have a true real-time capability, the device must be able to shift from a low-

power mode with the CPU off to a fully active mode with the CPU and all other device

functions operating nominally in a very short time. This was accomplished primarily with the

design of the system clock:

� No second high frequency crystal is used — inherent delays can range from 20 ms to

200 ms until oscillator stability is reached

� Instead, a sophisticated FLL system clock generator is used — generator output

frequency (MCLK) reaches the nominal frequency within 8 cycles after activation

from low power mode 3 (LPM3) or sleep mode

2.1.16.3 Digitally Controlled Oscillator Stability

The digitally controlled oscillator (DCO) is voltage and temperature dependent, which

does not mean that its frequency is not stable. During the active mode, the integral error is

corrected to approximately zero every 30.5 µs. This is accomplished by switching between

two different DCO frequencies. One frequency is higher than the programmed MCLK

frequency and the other is lower, causing the errors to essentially cancel-out. The two DCO

frequencies are interlaced as much as possible to provide the smallest possible error at any

given time.

DELHI TECHNOLOGICAL UNIVERSITY Page 20

2.2 Virtex-4

The Virtex-4 greatly enhances programmable logic design capabilities, making it a

powerful alternative to ASIC technology. Virtex-4 FPGAs comprise three platform

families—LX, FX, and SX—offering multiple feature choices and combinations to address

all complex applications. The wide array of Virtex-4 FPGA hard-IP core blocks includes the

PowerPC® processors (with a new APU interface), tri-mode Ethernet MACs, 622 Mb/s to

6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed clock management circuitry,

and source-synchronous interface blocks. The basic Virtex-4

FPGA building blocks are enhancements of those found in the popular Virtex, Virtex-

E, Virtex-II, Virtex-II Pro, and Virtex-II Pro X product families, so previous-generation

designs are upward compatible. Virtex-4 devices are produced on a state-of-the-art 90 nm

copper process using 300 mm (12-inch) wafer technology.

2.2.1 Features

Virtex-4 has following features-

� Three Families — LX/SX/FX

• Virtex-4 LX: High-performance logic applications solution

• Virtex-4 SX: High-performance solution for digital signal processing (DSP)

applications

• Virtex-4 FX: High-performance, full-featured solution for embedded platform

applications

� Digital clock manager (DCM) blocks

• Additional phase-matched clock dividers (PMCD)

• Differential global clocks

� XtremeDS Slice

• 18 x 18, two’s complement, signed Multiplier

• Optional pipeline stages

• Built-in Accumulator (48-bit) and Adder/Subtracter

� Smart RAM Memory Hierarchy

• Distributed RAM

• Dual-port 18-Kbit RAM blocks

DELHI TECHNOLOGICAL UNIVERSITY Page 21

• Optional pipeline stages

• Optional programmable FIFO logic automatically remaps RAM signals as

FIFO signals

• High-speed memory interface supports DDR and DDR-2 SDRAM, QDR-II,

and RLDRAM-II.

� SelectIO Technology

• 1.5V to 3.3V I/O operation

• Built-in ChipSyn source-synchronous technology

• Digitally controlled impedance (DCI) active termination

• Fine grained I/O banking (configuration in one bank)

� Flexible Logic Resources

� Secure Chip AES Bitstream Encryption

� 90 nm Copper CMOS Process

� 1.2V Core Voltage

� Flip-Chip Packaging including Pb-Free Package

Choices

� IBM PowerPC RISC Processor Core [FX only]

• PowerPC 405 (PPC405) Core

• Auxiliary Processor Unit Interface (User Coprocessor)

� Multiple Tri-Mode Ethernet MACs [FX only]

Fig 2.8 Virtex-4 FPGA Ordering Information

DELHI TECHNOLOGICAL UNIVERSITY Page 22

Chapter 3

Hardware Design

3.1 Hardware Design of MSP430

Here I use MSP430F5438A microcontroller in the embedded system design. It’s a 100

pin IC which has following features.

� Low Supply Voltage Range: 1.8 V to 3.6 V

� Ultralow Power Consumption

� Wake-Up From Standby Mode in Less Than 5 µs

� 16-Bit RISC Architecture

� Unified Clock System

� Three 16-Bit Timer

� Four Universal Serial Communication Interfaces

� 12+2-Bit Analog-to-Digital (A/D) Converter

� Three Channel Internal DMA

Fig 3.1 MSP430F5438A microcontroller

DELHI TECHNOLOGICAL UNIVERSITY Page 23

3.1.1 MSP-EXP430F5438 Experimenter Board

Fig 3.2 MSP-EXP430F5438 Experimenter Board

3.1.1 User Interfaces

Dot-Matrix LCD

The HD66753 is a Hitachi dot-matrix LCD with a resolution of 138 x 110, 4-level

grayscale pixels. The LCD also has a built-in backlight driver that can be controlled by a

PWM signal from the MSP430F5438A, pin P8.3. The MSP430F5438A communicates with

the HD66753 via an SPI-like communication protocol. To supplement the limited set of

instructions and functionalities provided by the on-chip LCD driver, an LCD driver has been

developed for the MSP430F5438A to support additional functionalities such as font set and

graphical utilities.

DELHI TECHNOLOGICAL UNIVERSITY Page 24

Five-Directional Joystick, Push Buttons, and LEDs

The following table describes the pin connections for the 5-directional joystick

switch, the push button switches, and the on-board LEDs. The USB circuit on the board also

sources an LED3, which indicates the presence of USB power from the mini-USB cable.

5-directional joystick (LEFT) P2.1

5-directional joystick (RIGHT) P2.2

5-directional joystick (CENTER) P2.3

5-directional joystick (UP) P2.4

Switch 1 (S1) P2.6

Switch 2 (S2) P2.7

RESET Switch (S3) RST / NMI

LED1 P1.0

LED2 P1.1 / TA0 CCR0

3.1.2 Communication Peripherals

USB-UART

The USB interface on the MSP-EXP430F5438 Experimenter Board allows for UART

communication with a PC host and also converts the USB power to 3.3-V power source for

the entire board. The USCI module in the MSP430F5438A (UCA1) supports the UART

protocol that is used to communicate with the TI TUSB chip for data transfer to the PC.

Two-Axis Accelerometer

The MSP-EXP430F5438 Experimenter Board supports a two-axis accelerometer,

ADXL322. Two analog signals, one for each axis X and Y, are connected to input channels

one and two of the MSP430F5438 ADC12 module, respectively. The layout also supports the

DELHI TECHNOLOGICAL UNIVERSITY Page 25

three-axis accelerometer, the ADXL330, by tracing the connection of a Z-axis to input

channel three of the ADC12. To use the ADXL330, the user would need to remove the

ADXL322 and correctly replace the part with the ADXL330. No further modifications to the

board are required. The accelerometer is powered through pin P6.0. This interface, especially

in conjunction with other on-board interfaces such as the LCD, enables several potential

applications such as g-force measurement or tilt sensing.

Audio Input Signal Chain

The MSP-EXP430F5438 audio input chain is based on a noninverting op-amp gain

stage positioned between the microphone and the MSP430F5438A ADC12. The circuit

utilizes a Texas Instruments TLV2760, optimized for low-power operation. The power for the

TLV2760 is supplied directly from MSP430F5438A port pin P6.4, which can be turned off to

remove power consumption when the TLV2760 is not in use. The op-amp has a cutoff

frequency of approximately 4 kHz, which targets typical speech frequency range.

The microphone is connected to the MSP430F5438A ADC12 input channel five via

an analog filter circuit. The microphone is enabled or disabled via the same MSP430F5438A

port pin as the TLV2760, P6.4.

Audio Output Signal Chain

The MSP430F5438A generates a high-frequency PWM signal to emulate the

functionality of a DAC. The duty cycle of the PWM is derived from the ratio between the

emulated voltage and the rail of 3.3 V. This PWM output signal is filtered heavily to emulate

a constant voltage value. This output is then connected to a Texas Instruments TPA301 audio

amplifier.

The audio output circuit utilizes the audio amplifier to amplify the filtered output

signal from the PWM and feed the amplified signal into the audio output jack. The

amplification is sufficient to support non-amplified headphones as well as amplified speakers.

DELHI TECHNOLOGICAL UNIVERSITY Page 26

3.2 Hardware Design of Virtex-4

In this system I use Virtex-4 ML401 evaluation board. The ML401evaluation

platform enables designers to investigate and experiment with features of the Virtex-4 family

of FPGAs.

Fig 3.3 Virtex-4 ML401evaluation platform

DELHI TECHNOLOGICAL UNIVERSITY Page 27

Fig 3.4 Block Diagram of ML401

3.2.1 Features

� Virtex-4 FPGA ML401: XC4VLX25-FF668-10

� 64-MB DDR SDRAM, 32-bit interface running up to 266-MHz data rate

� One differential clock input pair and differential clock output pair with SMA

connectors

� One 100-MHz clock oscillator (socketed) plus one extra open 3.3V clock oscillator

socket

� General purpose DIP switches (ML401/ML402 platform), LEDs, and push buttons

� Expansion header with 32 single-ended I/O, 16 LVDS capable differential pairs, 14

spare I/Os shared with buttons and LEDs, power, JTAG chain expansion capability,

and IIC bus expansion

� Stereo AC97 audio codec with line-in, line-out, 50-mW headphone, and microphone-

in (mono) jacks

� RS-232 serial port

� 16-character x 2-line LCD display

DELHI TECHNOLOGICAL UNIVERSITY Page 28

� One 4-Kb IIC EEPROM

� VGA output: ML401: 50 MHz / 24-bit video DAC

� PS/2 mouse and keyboard connectors

� System ACE CompactFlash configuration controller with Type I/II CompactFlash

connector

� ZBT synchronous SRAM 9 Mb on 32-bit data bus with four parity bits

� Intel StrataFlash (or compatible) linear flash chips (8 MB)

� 10/100/1000 tri-speed Ethernet PHY transceiver

� USB interface chip (Cypress CY7C67300) with host and peripheral ports

� Xilinx XC95144XL CPLD to allow linear flash chips to be used for FPGA

configuration

� Xilinx XCF32P Platform Flash configuration storage device

� JTAG configuration port for use with Parallel Cable III or Parallel Cable IV cable

� Onboard power supplies for all necessary voltages

� 5V @ 3A AC adapter

� Power indicator LED

DELHI TECHNOLOGICAL UNIVERSITY Page 29

Chapter 4

Parallel Architecture Design

I proposed a parallel design using MSP430 and Virtex-4 which are interfaced through

USB UART with each other. In USB-UART connection the data is transferred with57600

baud rate.

Fig 4.1 Parallel architecture

DELHI TECHNOLOGICAL UNIVERSITY Page 30

4.1 Design Goal

In this parallel architecture my goal is that MSP430 works as a front hand device

while Virtex-4 works as a backhand device. So the analog input data is given to the MSP430

which converts the analog data into digital form. When the conversion is completed then data

is transferred to Virtex-4 platform for further processing. In Virtex-4, the data is received in

digital form. After processing the data in Virtex-4, it is send to MSP430 back. Now in

MSP430 the data is converted to analog from digital form and produces an output.

4.2 Design Considerations

First, we thoroughly examined MSP-EXP430F5438 Experimenter Board and Virtex-4

ML401 evaluation board. An asynchronous transfer protocol is implemented via USB UART

data transfer so we have to make sure that both the platform is set for similar baud rate. If the

baud rate is not similar then there is a big problem of mismatching the data synchronization.

In the design we should consider the process delay which causes the unwanted

mismatch between incoming and outgoing data. As during the data communication, both the

board send and receive the data simultaneously. But due to any reason, if there is a delay in

any process so all the synchronization between the data is disturbed and board finds it hard to

get the data correctly.

For asynchronous data transfer we have to consider SMCLK, ACLK and UCAxCLK

signal responsible for generating the required baud rate. Through programming we can

generate these clock signals as per the requirement.

4.3 Asynchronous Communication

The USART (Universal Synchronous/Asynchronous Receiver/Transmitter) module is

a base unit for serial communications, supporting both asynchronous communications

(RS232) and synchronous communications (SPI).

DELHI TECHNOLOGICAL UNIVERSITY Page 31

The USART module is available in the 5xx series devices, particularly in the sub-

series MSP430F5438A.

The USART module supports:

� Low power operating modes (with auto-start);

� UART or SPI mode (I2C on ‘F15x/’F16x only);

� Double buffered TX/RX;

� Baud rate generator;

� DMA enabled;

� Error detection.

Fig 4.2 USART

DELHI TECHNOLOGICAL UNIVERSITY Page 32

Chapter 5

Data Flow Design

One of the main focuses of this architecture is the design of hardware organizations

that support the parallel execution of instructions. Data flow parallel architectures continue to

receive a great deal of attention. In a data flow architecture an instruction may execute as

soon as its operands become available, permitting a degree of parallelism bounded only by

the flow of data between instructions.

The objective is to develop inexpensive parallel architectures that can exploit

parallelism without sacrificing compatibility with existing software. Compatibility with

existing software is important because it represents an enormous investment for the computer

user, and it is necessary to preserve this investment.

The architecture is a MIMD machine that allows the degree of parallelism to vary

with time. Two types of parallelism are supported, static parallelism where the degree of

parallelism is determined at compile time and dynamic parallelism where the degree of

parallelism depends in part on the data being processed. There is no upper limit on the degree

of parallelism. On a sequential machine each instruction has exactly one predecessor and

exactly on successor, while on a data-flow machine, each instruction has several predecessors

and successors. In order to support parallelism whose degree varies with time, it is necessary

to have instructions that have more than one predecessor and successor.

DELHI TECHNOLOGICAL UNIVERSITY Page 33

5.1 Algorithm

Start

Turn on the power supply of MSP-
EXP430F5438 Experimenter Board

Initialize the microphone

Initialize the LCD display

Unlock and erase the flash memory

Initialize the ADC

Initialize the DMA

Store the data in flash

A

DELHI TECHNOLOGICAL UNIVERSITY Page 34

Is all the data
stored?

Lock the flash

Transferring
the data

Initialize the USB
UART module

Receiving the
data

Is all the data
transferred?

Turn on the power of Virtex-4
ML401 evaluation board

Initialize the UART
through programming

Process the
data

Send back the data to
MSP430

Receiving the data
on MSP430

A

B

DELHI TECHNOLOGICAL UNIVERSITY Page 35

Erase the flash

Initialize
the DMA

Display on LCD

Lock the flash

Store the data in
flash

Initialize
the DAC

Initialize
the speaker

End application

B

DELHI TECHNOLOGICAL UNIVERSITY Page 36

First we initialize the both evaluation board. We turn on the power supply of MSP-

EXP430F5438 Experimenter Board. After that for running the voice application, we initialize

the microphone so that we record the voice sample for this application. To convert this voice

sample into digital form we initiate the 12+2 bit ADC which is already embedded on the

board. After converting the data from analog to digital form, the data is stored in the flash

memory by using DMA which is initializing to transfer the data from ADC channel to flash

memory without interrupting the processor. Before storing the data in flash, we have to

unlock and erase the flash. After this the data is stored in flash and flash is then locked.

Simultaneously we initialize the LCD module to display the status of the process.

Now the data is stored in flash as a digital form. This data is transferred to other

Virtex-4 ML401 board for further processing. The data is transferred through USB-UART

which has to be initialized for transferring the data from one board to another evaluation

board. Simultaneously we initialize the USB UART in Virtex-4 ML401 board for receiving

the data from MSP430 board. We should keep the fact in mind that the baud rate should be

same otherwise there is a mismatching in the data. In virtex-4 ML401 board, the data is then

processed. It can be passed through FIR low pass filter to get better frequency response in

lower frequency range. After this processing we send the data back to MSP430 experimental

board through USB UART module.

After getting the data through USB UART, we stored the data in the flash memory.

Now the data is transferred to DAC for converting the data from digital to analog format. We

have to initialize DMA module for transferring the data from flash to DAC channel. After

converting the data, it is given to the speaker module as output. Thus we give the input to

micro phone and get back the output from speaker. The data is travelled from one processor

to another FPGA processor where the data is processed in parallel by both the processors.

DELHI TECHNOLOGICAL UNIVERSITY Page 37

Chapter 6

Implementation and Result

The application is implemented on the MSP-EXP430F5438 Experimenter Board and

Virtex-4 ML401 evaluation board. So we have to programme both the boards separately to

work together. There are several modules that have to be programmed for initialization

likewise LCD, microphone, USB-UART etc.

First we set a watchdog timer to watch the MSP430 processor. If the MSP430 is

struck in any infinite loop or hang then the watchdog timer reset the processor. For initialize

the watchdog timer, the programme is as follows-

WDTCTL = WDTPW + WDTHOLD;

In the voice recording, we have to initialize the microphone So that we can store the

sample voice data. After that we convert the data from analog to digital form with the help of

ADC. After conversion the data is stored in flash memory so we have to initialize the DMA.

For initialization the microphone, ADC and DMA the software module is as follows-

 AUDIO_PORT_OUT |= MIC_POWER_PIN;

 AUDIO_PORT_OUT &= ~MIC_INPUT_PIN;

 AUDIO_PORT_SEL |= MIC_INPUT_PIN;

 TBCTL = TBSSEL_2; // Use SMCLK as Timer_B source

 TBR = 0;

 TBCCR0 = 2047; // Initialize TBCCR0

 TBCCR1= 2047- 100;

 TBCCTL1 = OUTMOD_7;

 UCSCTL8 |= MODOSCREQEN;

DELHI TECHNOLOGICAL UNIVERSITY Page 38

 ADC12CTL0 &= ~ADC12ENC; // Ensure ENC is clear

 ADC12CTL0 = ADC12ON + ADC12SHT02;

 ADC12CTL1 = ADC12SHP + ADC12CONSEQ_2 + ADC12SSEL_2 + ADC12SHS_3;

 ADC12CTL2 = ADC12RES_0; // Select 8-bit resolution

 //Sequence of channels, once

 ADC12MCTL0 = MIC_INPUT_CHAN | ADC12EOS ; //VeREF+ and VeREF-

 ADC12CTL0 |= ADC12ENC; //Enable

 ADC12CTL0 |= ADC12SC; //Start conversion

 DMACTL0 = DMA0TSEL_24; // ADC12IFGx triggers DMA0

__data16_write_addr((unsigned long)&DMA0SA & 0xffff, (unsigned

long)&ADC12MEM0); // Src address = ADC12 module

For writing the flash the software module is as follows-

 FCTL3 = FWKEY; // Unlock the flash for write

 FCTL1 = FWKEY + BLKWRT;

 DMA0CTL = DMADSTINCR_3 + DMAEN + DMADSTBYTE + DMASRCBYTE +

DMAIE;

 // Enable Long-Word write, all 32 bits will be written once

 // 4 bytes are loaded

 TBCCTL1 &= ~CCIFG;

 TBCTL |= MC0;

 __bis_SR_register(LPM0_bits + GIE); // Enable interrupts, enter LPM0

 __no_operation();

DELHI TECHNOLOGICAL UNIVERSITY Page 39

 TBCTL &= ~MC0;

 DMA0CTL &= ~(DMAEN + DMAIE);

 FCTL3 = FWKEY + LOCK; // Lock the flash from write

For playing back the audio data stored in flash, we have to initialize the speaker,

DMA and DAC modules on that board. The programme is as follows-

 AUDIO_PORT_DIR |= AUDIO_OUT_PWR_PIN;

 AUDIO_PORT_OUT &= ~AUDIO_OUT_PWR_PIN;

 AUDIO_OUT_SEL |= AUDIO_OUT_PIN;

// Use SMCLK as Timer0_A source, enable overflow interrupt

 TBCTL = TBSSEL_2 + TBIE;

 // Set output resolution (8 bit. Add 10 counts of headroom for loading TBCCR1

 TBCCR0 = 255;

 TBCCR4 = 255 >> 1; // Default output ~Vcc/2

 // Reset OUT1 on EQU1, set on EQU0. Load TBCCR1 when TBR counts to 0.

 TBCCTL4 = OUTMOD_7 + CLLD_1;

 // Start Timer_B in UP mode (counts up to TBCCR0)

 TBCTL |= MC0;

__bis_SR_register(LPM0_bits + GIE); // Enable interrupts, enter LPM0

 __no_operation();

DELHI TECHNOLOGICAL UNIVERSITY Page 40

For displaying the status of the process, we have to initialize the LCD module which

is programmed as follows-

volatile unsigned int i=0;

 LCD_CS_RST_OUT |= LCD_CS_PIN | LCD_RESET_PIN ;

 LCD_CS_RST_DIR |= LCD_CS_PIN | LCD_RESET_PIN ;

 LCD_BACKLT_SEL |= LCD_BACKLIGHT_PIN;

 LCD_CS_RST_OUT &= ~LCD_RESET_PIN; // Reset LCD

 __delay_cycles(0x47FF); //Reset Pulse

 LCD_CS_RST_OUT |= LCD_RESET_PIN;

 // UCLK,MOSI setup, SOMI cleared

 LCD_SPI_SEL |= LCD_MOSI_PIN + LCD_CLK_PIN;

 LCD_SPI_SEL &= ~LCD_MISO_PIN;

 LCD_SPI_DIR &= ~(LCD_MISO_PIN + LCD_MOSI_PIN);

// Pin direction controlled by module

 // Set both pins to input as default

 // Initialize the USCI_B2 module for SPI operation

 UCB2CTL1 = UCSWRST; // Hold USCI in SW reset mode while configuring it

 UCB2CTL0 = UCMST+UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI master

 UCB2CTL1 |= UCSSEL_2; // SMCLK

 UCB2BR0 = 4; // Note: Do not exceed D/S spec for UCLK!

 UCB2BR1 = 0;

 UCB2CTL1 &= ~UCSWRST; // Release USCI state machine

 UCB2IFG &= ~UCRXIFG;

DELHI TECHNOLOGICAL UNIVERSITY Page 41

 // Wake-up the LCD as per datasheet specifications

 halLcdActive();

 // LCD Initialization Routine Using Predefined Macros

 halLcdSendCommand(&LcdInitMacro[1 * 6]);

 halLcdSendCommand(&LcdInitMacro[2 * 6]);

 halLcdSendCommand(&LcdInitMacro[4 * 6]);

 halLcdSendCommand(&LcdInitMacro[5 * 6]);

 halLcdSendCommand(&LcdInitMacro[6 * 6]);

 halLcdSendCommand(&LcdInitMacro[7 * 6]);

For Shutting down the LCD display, the programme is as follows-

 halLcdStandby();

 LCD_CS_RST_DIR |= LCD_CS_PIN | LCD_RESET_PIN ;

 LCD_CS_RST_OUT &= ~(LCD_CS_PIN | LCD_RESET_PIN);

 LCD_CS_RST_OUT &= ~LCD_RESET_PIN;

 LCD_SPI_SEL &= ~(LCD_MOSI_PIN + LCD_CLK_PIN + LCD_MISO_PIN);

 LCD_CS_RST_DIR |= LCD_MOSI_PIN + LCD_CLK_PIN + LCD_MISO_PIN;

 LCD_CS_RST_OUT &= ~(LCD_MOSI_PIN + LCD_CLK_PIN + LCD_MISO_PIN);

 UCB2CTL0 = UCSWRST;

DELHI TECHNOLOGICAL UNIVERSITY Page 42

For initializing the serial communications peripheral, the programme module is as

follows-

 unsigned char i;

 for (i = 0; i < 255; i++)

 halUsbReceiveBuffer[i]='\0';

 bufferSize = 0;

 USB_PORT_SEL |= USB_PIN_RXD + USB_PIN_TXD;

 USB_PORT_DIR |= USB_PIN_TXD;

 USB_PORT_DIR &= ~USB_PIN_RXD;

 UCA1CTL1 |= UCSWRST; //Reset State

 UCA1CTL0 = UCMODE_0;

 UCA1CTL0 &= ~UC7BIT; // 8bit char

 UCA1CTL1 |= UCSSEL_2;

 UCA1BR0 = 16; // 8Mhz/57600=138

 UCA1BR1 = 1;

 UCA1MCTL = 0xE;

 UCA1CTL1 &= ~UCSWRST;

 UCA1IE |= UCRXIE;

 __bis_SR_register(GIE); // Enable Interrupts

The above all programming modules are for MSP430 experimental board. All the

modules are used as a function and can be called any time whenever it required.

DELHI TECHNOLOGICAL UNIVERSITY Page 43

In the Virtex-4 ML401 evaluation board, we have to programme for initialization the

USB UART. In this board the receiver and transmitter module both are differently

programmed. For receiver module, the programme is as follows-

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity uart_rx is

 generic(

 DBIT: integer:=8; -- # data bits

 SB_TICK: integer:=16 -- # ticks for stop bits

);

 port(

 clk, reset: in std_logic;

 rx: in std_logic;

 s_tick: in std_logic;

 rx_done_tick: out std_logic;

 dout: out std_logic_vector(7 downto 0)

);

end uart_rx ;

architecture arch of uart_rx is

 type state_type is (idle, start, data, stop);

 signal state_reg, state_next: state_type;

DELHI TECHNOLOGICAL UNIVERSITY Page 44

 signal s_reg, s_next: unsigned(3 downto 0);

 signal n_reg, n_next: unsigned(2 downto 0);

 signal b_reg, b_next: std_logic_vector(7 downto 0);

begin

 -- FSMD state & data registers

 process(clk,reset)

 begin

 if reset='1' then

 state_reg <= idle;

 s_reg <= (others=>'0');

 n_reg <= (others=>'0');

 b_reg <= (others=>'0');

 elsif (clk'event and clk='1') then

 state_reg <= state_next;

 s_reg <= s_next;

 n_reg <= n_next;

 b_reg <= b_next;

 end if;

 end process;

 -- next-state logic & data path functional units/routing

 process(state_reg,s_reg,n_reg,b_reg,s_tick,rx)

 begin

 state_next <= state_reg;

DELHI TECHNOLOGICAL UNIVERSITY Page 45

 s_next <= s_reg;

 n_next <= n_reg;

 b_next <= b_reg;

 rx_done_tick <='0';

 case state_reg is

 when idle =>

 if rx='0' then

 state_next <= start;

 s_next <= (others=>'0');

 end if;

 when start =>

 if (s_tick = '1') then

 if s_reg=7 then

 state_next <= data;

 s_next <= (others=>'0');

 n_next <= (others=>'0');

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 when data =>

 if (s_tick = '1') then

 if s_reg=15 then

DELHI TECHNOLOGICAL UNIVERSITY Page 46

 s_next <= (others=>'0');

 b_next <= rx & b_reg(7 downto 1) ;

 if n_reg=(DBIT-1) then

 state_next <= stop ;

 else

 n_next <= n_reg + 1;

 end if;

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 when stop =>

 if (s_tick = '1') then

 if s_reg=(SB_TICK-1) then

 state_next <= idle;

 rx_done_tick <='1';

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 end case;

 end process;

 dout <= b_reg;

DELHI TECHNOLOGICAL UNIVERSITY Page 47

end arch;

For transmitter module, the programme is as follows-

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity uart_tx is

 generic(

 DBIT: integer:=8; -- # data bits

 SB_TICK: integer:=16 -- # ticks for stop bits

);

 port(

 clk, reset: in std_logic;

 tx_start: in std_logic;

 s_tick: in std_logic;

 din: in std_logic_vector(7 downto 0);

 tx_done_tick: out std_logic;

 tx: out std_logic

);

end uart_tx ;

architecture arch of uart_tx is

 type state_type is (idle, start, data, stop);

DELHI TECHNOLOGICAL UNIVERSITY Page 48

 signal state_reg, state_next: state_type;

 signal s_reg, s_next: unsigned(3 downto 0);

 signal n_reg, n_next: unsigned(2 downto 0);

 signal b_reg, b_next: std_logic_vector(7 downto 0);

 signal tx_reg, tx_next: std_logic;

begin

 -- FSMD state & data registers

 process(clk,reset)

 begin

 if reset='1' then

 state_reg <= idle;

 s_reg <= (others=>'0');

 n_reg <= (others=>'0');

 b_reg <= (others=>'0');

 tx_reg <= '1';

 elsif (clk'event and clk='1') then

 state_reg <= state_next;

 s_reg <= s_next;

 n_reg <= n_next;

 b_reg <= b_next;

 tx_reg <= tx_next;

 end if;

 end process;

DELHI TECHNOLOGICAL UNIVERSITY Page 49

 -- next-state logic & data path functional units/routing

 process(state_reg,s_reg,n_reg,b_reg,s_tick,

 tx_reg,tx_start,din)

 begin

 state_next <= state_reg;

 s_next <= s_reg;

 n_next <= n_reg;

 b_next <= b_reg;

 tx_next <= tx_reg ;

 tx_done_tick <= '0';

 case state_reg is

 when idle =>

 tx_next <= '1';

 if tx_start='1' then

 state_next <= start;

 s_next <= (others=>'0');

 b_next <= din;

 end if;

 when start =>

 tx_next <= '0';

 if (s_tick = '1') then

 if s_reg=15 then

 state_next <= data;

DELHI TECHNOLOGICAL UNIVERSITY Page 50

 s_next <= (others=>'0');

 n_next <= (others=>'0');

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 when data =>

 tx_next <= b_reg(0);

 if (s_tick = '1') then

 if s_reg=15 then

 s_next <= (others=>'0');

 b_next <= '0' & b_reg(7 downto 1) ;

 if n_reg=(DBIT-1) then

 state_next <= stop ;

 else

 n_next <= n_reg + 1;

 end if;

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 when stop =>

 tx_next <= '1';

DELHI TECHNOLOGICAL UNIVERSITY Page 51

 if (s_tick = '1') then

 if s_reg=(SB_TICK-1) then

 state_next <= idle;

 tx_done_tick <= '1';

 else

 s_next <= s_reg + 1;

 end if;

 end if;

 end case;

 end process;

 tx <= tx_reg;

end arch;

Fig 6.1 Transmitter and Receiver module

DELHI TECHNOLOGICAL UNIVERSITY Page 52

For complete UART can be constructed by combining the receiver and transmitter

module. The programme code is as follows—

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity uart is

 generic(

 -- 19,200 baud, 8 data bit, 1 stop bit, 2^2 FIFO

 DBIT: integer:=8; -- # data bits

 SB_TICK: integer:=16; -- # ticks for stop bits, 16/24/32

 -- for 1/1.5/2 stop bits

 DVSR: integer:= 163; -- baud rate divisor

 -- DVSR = 50M/(16*baud rate)

 DVSR_BIT: integer:=8; -- # bits of DVSR

 FIFO_W: integer:=2 -- # addr bits of FIFO

 -- # words in FIFO=2^FIFO_W

);

 port(

 clk, reset: in std_logic;

 rd_uart, wr_uart: in std_logic;

 rx: in std_logic;

 w_data: in std_logic_vector(7 downto 0);

DELHI TECHNOLOGICAL UNIVERSITY Page 53

 tx_full, rx_empty: out std_logic;

 r_data: out std_logic_vector(7 downto 0);

 tx: out std_logic

);

end uart;

architecture str_arch of uart is

 signal tick: std_logic;

 signal rx_done_tick: std_logic;

 signal tx_fifo_out: std_logic_vector(7 downto 0);

 signal rx_data_out: std_logic_vector(7 downto 0);

 signal tx_empty, tx_fifo_not_empty: std_logic;

 signal tx_done_tick: std_logic;

begin

 baud_gen_unit: entity work.mod_m_counter(arch)

 generic map(M=>DVSR, N=>DVSR_BIT)

 port map(clk=>clk, reset=>reset,

 q=>open, max_tick=>tick);

 uart_rx_unit: entity work.uart_rx(arch)

 generic map(DBIT=>DBIT, SB_TICK=>SB_TICK)

 port map(clk=>clk, reset=>reset, rx=>rx,

 s_tick=>tick, rx_done_tick=>rx_done_tick,

 dout=>rx_data_out);

DELHI TECHNOLOGICAL UNIVERSITY Page 54

 fifo_rx_unit: entity work.fifo(arch)

 generic map(B=>DBIT, W=>FIFO_W)

 port map(clk=>clk, reset=>reset, rd=>rd_uart,

 wr=>rx_done_tick, w_data=>rx_data_out,

 empty=>rx_empty, full=>open, r_data=>r_data);

 fifo_tx_unit: entity work.fifo(arch)

 generic map(B=>DBIT, W=>FIFO_W)

 port map(clk=>clk, reset=>reset, rd=>tx_done_tick,

 wr=>wr_uart, w_data=>w_data, empty=>tx_empty,

 full=>tx_full, r_data=>tx_fifo_out);

 uart_tx_unit: entity work.uart_tx(arch)

 generic map(DBIT=>DBIT, SB_TICK=>SB_TICK)

 port map(clk=>clk, reset=>reset,

 tx_start=>tx_fifo_not_empty,

 s_tick=>tick, din=>tx_fifo_out,

 tx_done_tick=> tx_done_tick, tx=>tx);

 tx_fifo_not_empty <= not tx_empty;

end str_arch;

DELHI TECHNOLOGICAL UNIVERSITY Page 55

Chapter 7

Conclusion

This example shows an application with parallel processors. These processors are

interfaced with each other through USB UART. It should also be commented that parallel

systems are likely to open up new fields of research on modelling methodologies that are

inherently highly parallel. Another big drawback is that the standardized platforms for code

development disappear with parallelization, since there is such a diversity of parallel

hardware on the market, with attendant language extensions virtually for each machine. Since

we are using the experimental board so there is a lot of limitations in our design.

In this embedded system design, we have to programme both the processors

separately. After programming they can be interfaced with each other to work in parallel. We

have to initialize the different modules embedded on boards through software programming.

In the parallel architecture design, there is a synchronizing problem in system. We

should consider that the process is going to be step by step. If there is any delay in any

process then all the synchronization is disturbed and system may not work accurately.

DELHI TECHNOLOGICAL UNIVERSITY Page 56

Chapter 8

Future Scope of Work

We have developed a prototype interface between the MSP430 and Virtex-4. The

design is a reconfigurable, programmable interface for other processor also. While the initial

transfer speed is not very fast but you can improve it by increasing the clock rate and

eliminating unnecessary states in the prototype code. Ultimately, the knowledge gained from

this effort could be used to develop an FPGA interface that improves both speed and size.

Another thing is that this system is developed on the evaluation board so there is a lot

of limitation for designing the system. We can developed this system by using separate chips

of processors, ADC, DAC, LCD and USB UART modules and connecting them accordingly.

We can develop such type of application on this system so that processors can have more and

more work on it.

DELHI TECHNOLOGICAL UNIVERSITY Page 57

References

� www.ti.com

� www.xilinx.com

� MSP430 User’s Guide, Texas Instruments 2009

� Virtex-4 User’s Guide, Xilinx

� A.K.Rath and P.K. Meher “Design of a Merged DSP Microcontroller for
Embedded Systems using Discrete Orthogonal Transform” International Journal
of Computer Science, pp 388-394, 2006,USA.

� Arvind, D. E. Culler, "Dataflow Architectures," Annual Reviews in Computer

Science, 1986,.Vol 1, Annual Reviews Inc., 1986, pp. 225-253.

� R. H. Kuhn, D. A. Padua (eds.) "Tutorial on Parallel Processing," IEEE Computer
Society Press, Silver Spring Md, 1981.

� D. B. Davidson, “A parallel processing tutorial,” IEEE Antennas

PropagationMagazine, 32, pp. 6-19, April, 1990.

� Texas Instruments “Parallel Processing with TMS320C4X”.

