"3D VIDEO CODING"

A DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of

MASTER OF TECHNOLOGY IN VLSI DESIGN AND EMBEDDED SYSTEM

By

YUVRAJ GOEL (19/VLSI/09)

Under the Supervision of Dr. ASOK BHATTACHARYYA (Professor)

Department of Electronics and Communication Engineering DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) DELHI-110042 2009-2011 It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Prof. Asok Bhattacharyya**, former H.O.D. Department of Electronics & Communication, Delhi Technological University, Delhi and **Mr. Srijib Narayan Maiti**, Technical Lead, **STMicroelectronics**, **Greater Noida**, for their invaluable guidance, encouragement. I am very thankful to **Prof. P.B.Sharma**, Honorable Vice-Chancellor, **Prof. S.Maji**, Dean(IRD) and **Prof. B.D.Pathak**, Dean(Academics), Delhi Technological University, Delhi, who allows me to do project under the Guidance of **Prof. Asok Bhattacharyya** in collaboration with STMicroelectronics on "3D Video Coding". With their continuous inspiration, valuable guidance in carrying out this work under their effective supervision, encouragement, enlightenment and cooperation, it becomes possible to complete this dissertation and all of them kept on boosting me with time, to put an extra ounce of effort to realize this work.

I would also like to take this opportunity to present my sincere regards to all the faculty members of the Department for their support and encouragement.

I would also like to thanks the management of STMicroelectronics, Greater Noida, for allowing me to use the necessary tools which are required to complete this project work.

I am grateful to my parents for their moral support all the time, they have been always around to cheer me up, in the odd times of this work. I am also thankful to my friends for their unconditional support and motivation during this work.

YUVRAJ GOEL

M.Tech. (VLSI Design & Embedded System) University Roll No: 19/VLSI/09 Department of Electronics & Communication Engineering Delhi Technological University Formerly Delhi College of Engineering, Delhi-110042 Certified that the thesis work entitled "**3D Video Coding**" is bonafide work carried by **YUVRAJ GOEL** (University Roll No: 19/VLSI/09) in partial fulfillment for the award of degree of Master of Technology in VLSI Design and Embedded System of the Delhi Technological University, Delhi during the year 2009-2011. The project report has been approved as it satisfied the academic requirements in respect of thesis work prescribed for the Master of Technology Degree.

Prof. Asok Bhattacharyya Former H.O.D. Electronics & Communication Dept. Delhi Technological University, Delhi. Mr. Srijib Narayan Maiti Technical Lead (AST) STMicroelectronics, Greater Noida.

TABLE OF CONTENTS

List of Figures

List	of Tables	
Abs	tract	1
Chapter 1 : Introduction		2 - 4
1.1	Motivation	2
1.2	Thesis Organization	3
Cha	pter 2 : Background	5 - 19
2.1	Fundamentals of stereo visualization	5
2.2	Applications of multi-view imaging	6
	2.2.1 Stereoscopic Displays	6
	2.2.2 Free-viewpoint video	8
	2.2.3 Video editing and special effects	9
2.3	Video Coding Standards	10
	2.3.1 Coding Standard Comparison	10
	2.3.2 H.264/MPEG-4 Part 10 AVC	12
	2.3.2.1 Prediction	14
	2.3.2.1.1 Intra Prediction	15
	2.3.2.1.2 Inter Prediction	15
	2.3.2.2 Core Coding	18
	2.3.2.3 Entropy Coding	18
	2.3.2.4 In-Loop De-blocking Filter	19
Cha	pter 3 : Literature Review	20 - 26
3.1	Existing 3D Video Formats	20
	3.1.1 Simulcast	20
	3.1.2 Stereo Interleaving	21
	3.1.3 2D + Depth	23

3.1.4	Multiview Video Coding	24

Chapter 4 : Methodology Adopted		27 - 36
4.1	Introduction	27
4.2	Steganography	27
4.3	Encoding Phase	28
	4.3.1 For Depth Sequence	28
	4.3.2 For Colour Sequence	29
	4.3.3 Merging	30
4.4	Decoding Phase	33
	4.4.1 For Depth Sequence	33
	4.4.2 For Colour Sequence	33
4.5	Software Used	33
4.6	Implementation of Previous concepts in JMVC	34
4.7	Implementation done for Steganography	34
Chap	oter 5 : Results and Analysis	37 - 50
5.1	Using Same Quantization Parameter	37
5.2	Using different Quantization Parameter	41
	5.2.1 Sequence : MSR_BreakDancer	42
	5.2.2 Sequence : Nokia_Dancer	44
	5.2.3 Sequence : MSR_Ballet	46
	5.2.4 Sequence : Kendo	48
5.3	Analysis	50
Chap	oter 6 : Thesis Conclusion	51 - 52
6.1	Conclusion	51
6.2	Future Directions	51
Bibli	ography	53 - 55

LIST OF FIGURES

Figure 2.1: Initial implementation of the stereoscope	5
Figure 2.2: Stereoscopic displays	7
Figure 2.3: Compression efficiency between MPEG-2, MPEG-4, H.264/AVC	11
Figure 2.4: Block diagram of H.264/AVC encoder	13
Figure 2.5: Block diagram of H.264/AVC decoder	13
Figure 2.6: Luminance and chrominance components of an image	14
Figure 2.7: Intra Prediction	15
Figure 2.8: Inter prediction	16
Figure 2.9: Frames during Inter prediction	17
Figure 3.1: (a) H.264 Simulcast (b) Stereo encoder in H.264 multicast mode	21
Figure 3.2: Various stereo interleaving formats	22
Figure 3.3: (a) MVC (b) Stereo Encoder in MVC mode	25
Figure 3.4: Simulcast coding structure with hierarchical B pictures	26
Figure 3.5: Multi-view coding structure with hierarchical B pictures	26
Figure 4.1: Encoding Depth frame whose bits are to be merged at the later stage	28
Figure 4.2: Encoding of Colour frame till RLC before merging	29
Figure 4.3: DCT-block representation domain.	30
Figure 4.4: Procedure showing the merging concept	31
Figure 4.5: Modified last level, ready for Entropy coding	31
Figure 4.6: Steganography approach in Multi-View	32
Figure 4.7: Extraction at decoder side	33

Figure 5.1: Bitrate vs. PSNR graph for MSR_BreakDancer sequence	43
Figure 5.2: Bitrate vs. PSNR graph for Nokia_Dancer sequence	45
Figure 5.3: Bitrate vs. PSNR graph for MSR_Ballet sequence	47
Figure 5.4: Bitrate vs. PSNR graph for Kendo sequence	49

LIST OF TABLES

_

Table 1: Merge Statistics for MSR_BreakDancer sequence with same QP.	38
Table 2: Statistics of Skipping of Macroblocks for MSR_BreakDancer Sequence.	39
Table 3 : Statistics of Skipping of Blocks due to invalid Cbp_luma	39
Table 4 : Statistics of skipping of blocks due to uiNumSig = 0 .	40
Table 5 : Statistics of skipping of blocks due to changing of last level from 1 to 0	41
Table 6: "Steganography" Results for MSR_BreakDancer sequence.	42
Table 7: "Depth as Views" Results for MSR_BreakDancer sequence	42
Table 8: Merge Statistics for MSR_BreakDancer sequence with same QP.	43
Table 9: "Steganography" Results for Nokia_Dancer sequence	44
Table 10: "Depth as Views" Results for Nokia_Dancer sequence	44
Table 11: Merge Statistics for Nokia_Dancer sequence with same QP	45
Table 12: "Steganography" Results for MSR_Ballet sequence	46
Table 13: "Depth as Views" Results for MSR_Ballet sequence	46
Table 14: Merge Statistics for MSR_Ballet sequence with same QP	47
Table 15: Steganography Results for Kendo sequence	48
Table 16: "Depth as Views" Results for Kendo sequence	48
Table 17: Merge Statistics for Kendo sequence with same QP	49