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ABSTRACT

In the last few years we perceived a great incr@gaseterest in studying biologically inspired
systems. Among these, we can emphaaitiécial neural networks, evolutionary computation,
DNA computation, and nowartificial immune systems. This work discusses immune algorithm
and genetic algorithm, the two classes of algor#ttatthe forefront of artificial systems inspired
by human body mechanism. We then move on to conthase two classes of algorithms on the
parameters of population, generation and clonessikkis comparison will help in the analysis

of feasibility of these algorithms for specific poses.

The immune system is a complex of cells, molecates organs which has proven to be capable
of performing several tasks, like pattern recognitiearning, memory acquisition, generation of
diversity, noise tolerance, generalization, distidal detection and optimization. Based on
immunological principles, new computational teclugg are being developed, aiming not only
at a better understanding of the system, but dlsolaing engineering problems. We discuss the
main strategy used by the immune system to proldelving, and introduce the concept of

immune engineering. Theimmune engineering makes use of immunological concepts in order to
create tools for solving demanding machine-learmiraplems using information extracted from

the problems themselves.

A genetic algorithm (GA) is a search heuristic thmwtnics the process of natural evolution. This
heuristic is routinely used to generate useful temhs to optimization and search problems.
Genetic algorithms belong to the larger class afl@ionary algorithms (EA), which generate

solutions to optimization problems using techniquespired by natural evolution, such as
inheritance, mutation, selection, and crossovegeAetic algorithm (GA) is a search heuristic
that mimics the process of natural evolution. Thesiristic is routinely used to generate useful
solutions to optimization and search problems. @eradgorithms belong to the larger class of
evolutionary algorithms (EA), which generate sao8 to optimization problems using

techniques inspired by natural evolution, suchnasiitance, mutation, selection, and crossover.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Brains inspired computational techniques are knasmeural networks. Immune systems
have also (much more recently) inspired computatidechniques. Before we can look at
artificial immune systems and genetic algorithme need some knowledge of how our immune

systems and genetic algorithms work.

1.1.1 Immune algorithms

Immune algorithms and genetic algorithmsare two important technique for function
optimization which is based on as our human bodskwo

The Immune Systemis a complex of cells, molecules and organs thatesent an
identification mechanisms capable of perceiving @othbating dysfunction from our own
cells(infectious self) and the action of exogenoisctious microorganisms(infectious no self)
[1]. The interaction among the Immune System anersé other systems and organs allows the
regulation of the body, guaranteeing its stablectioning. The system is capable of
“remembering” each infection, so that a second exposure to the gmthogen is dealt with

more efficiently [2] [5].

Thelmmune Engineeringis a meta-synthesis process that uses the infammedntained in
the problem itself to define the solution tool tgigen problem, and then apply it to obtain the
problem solution. Nature provides many examplesystems with simple basic components, in
which a collective competition and cooperation sulwut to an extremely complex overall
behavior, e.g., insects colonies (like ants), tmenune system, etc. One of the most striking
characteristics of such systems is their robustinespressed as a high tolerance to small
perturbations to individual components. Ttobustnessunderlies the principles dlistribution ,
where small pieces are put together as an enseohbtelividuals (or agents), very complex

behaviors can emerge. Conventional engineering nigobs usually require detailed

~1~



specification of the precise behavior of each & tdomponents of the systems. On the other

hand, the engineering paradigm(immune engineeregiands only general, or approximate,

specifications of some aspects of the overall biginaf the system, like a performance measure

or a fitness function[18,19].

A new field of research calledrtificial Immune System has arisen; the properties of the

immune system are of great interest for computensist and engineers:

Imperfect Detection: An absolute recognition af flathogens is not required, hence the
system is flexible.

Reinforcement learning and memory: The system leamn’ the structures of pathogens,

so that future responses to the same pathogerfaséee and stronger.

Anomaly Detection: The immune system can detectraadt to pathogens that the body
has never encountered before.

Uniqueness: Each individual possesses its own inemsystem, with its particular

vulnerabilities and capabilities[18]

The topics involved in the definition and develominef the artificial immune system covers

mainly

Hybrid structures and algorithm that take into astammune-like mechanisms.

Computational algorithms based on immunological n@ples, like distributed
processing, clonal selection algorithm, and immuoetsvork theory.

Immunity-based optimization, learning, self orgatian, artificial life, cognitive models,
multi agent systems, design and scheduling, pateémwgnition and anomaly detection.

Immune engineering tools.



1.1.2 Terminology in immune algorithms

> Pathogen: a foreign invader such as a virus, bacterium, fspgu parasite.

> B cdl, helper T cell, killer T cell, macrophage, memory cell, plasma
cell: the main cells in our adaptive immune system (&isawn as white blood
cells).

> Stem cells: general purpose cells in our bone marrow that nadikée cells in
our blood.

> Self cdls: all the normal cells that make up ‘self’ (you).

> Lymphatic network: the collection of lymph vessels throughout our lesdi
that collect “leakage” of blood from the capillagie

> Lymph nodes. small organs under our arms, chins, chest and ¢fnairare used
as “security stations”.

> Thymus: an organ in which B cells that produce antibodisiul to self cells
are removed.

> Antibody: a protein made by B cells to mark pathogens as fuarm

> Antigen: a protein on the surface of pathogens that is bgeather cells for
identification.

> Genelibrary: evolved fragments of DNA within each B cell usedagding
blocks to produce its antibody[8] [9].

1.1.3 Genetic algorithms

Genetic algorithmsare a part oévolutionary computing, which is a rapidly growing area
of artificial intelligence. As you can guess, génetigorithms are inspired by Darwin's theory

about evolution. Simply said, solution to a problgoived by genetic algorithms is evolved.

Algorithm is started with @&et of solutions(represented bghromosome$ called population.

Solutions from one population are taken and usédrto a new population. This is motivated by

~3~



a hope, that the new population will be better ttt@old one. Solutions which are selected to
form new solutionsdffspring) are selected according to their fitness - theensoiitable they are

the more chances they have to reproduce.

Genetic Algorithms are good at taking larger, poédly huge, search spaces and navigating
them looking for optimal combinations of things asdlution which we might not find in

lifetime.

The most important aspects of using GA are:

1. definition of Objective function
2. definition and implementation of genetic represtoia

3. definition and implementation of genetic operators.

1.1.3 Terminology in genetic algorithm

» Individuals : An individual is anypoint to which you can apply the fitness
function. The value of the fitness function foriadividual is its score.

» Populations and Generations. A population is an array of individuals. For
example, if the size of the population is 100 amel number of variables in the
fitness function is 3, you represent the populabgma 100-by-3 matrix.

> Diversity : Diversity refers to the average distance between individinls
population. A population has high diversity if tla@erage distance is large;
otherwise it has low diversity

> Fitness Values and Best Fitness Values : The fitness value of an

individual is the value of the fithess function fthrat individual. Because the
toolbox finds the minimum of the fitness functidhge best fithess value for a

population is the smallest fitness value for ardniidual in the population.



» Parents and Children : To create the next generation, the genetic alyorit
selects certain individuals in the current popolaticalledparents, and uses

them to create individuals in the next generataatiedchildren.
» Fitness function : Thefitness function is thefunction you want to optimize.

For standard optimization algorithms, this is knovas the objective
function.[10]

1.2 Problem statement

In this work, we aim to compare and analyze theltesof immune algorithms and genetic
algorithms, according to population size and gdr@rasize. This will help us evaluate and
ascertain the better algorithm based on these pdeasn This work aims to establish which
algorithm gives better optimization and batter #itgtwith same parameters .

We have developed a tool in C#.Net on windows gptatfthat implements these algorithms and
makes a comparison of these two using Zed-Grapis.tdbol will therefore help people compare
the results and they may use it in their work.

In immune algorithms we implement the Colonial $gt; Algorithm that describes the basic
features of an immune response to an antigeniakisnlt establishes the idea that only those
cells that recognize the antigens proliferate, theisg selected against those which do not. The
selected cells are subject to an affinity maturafpoocess, which improves their affinity to the
selective antigens. This Clonal Selection Princigscribes the adaptive immune system which
recognizes and responds to the stimuli[6] [7]akes into account the affinity maturation of the
immune response. The algorithm is shown to be dapatbsolving complex machine-learning
tasks, like pattern recognition and multi-modalimaation.

In genetic algorithm we implement simple algorithapgroach. In this work we take data set do
genetic operation over those such as crossovegtimot and than apply selection algorithms
according to their fitness the element which hatree§s above a threshold is selected form the

next generation.



1.3

1.4

Motivation

From last two decade human nature based algoritensming very popular there are
many (thousands) of algorithms proposed from thansbme algorithms have their own
advantage according to situation and parameterhsopeople who will use these
algorithms should knows pros and con of the algors. In this work we will compare

the two algorithms that will help the people toaksate the performance of these

algorithms and give a batter choice to select iperihms according to their need.

Organization of thesis

The thesis organized as follows: In first chapter provide introduction and motivation
work. In chapter 2, we present literature survey aome basic background of the
algorithms . in chapter 3, we explore the optim@attechnique which is used in
algorithms. In chapter 4, we present the CSA &Ggodthms and their implementation.
In chapter 5 , we depicted results and their commpar In chapter 6 and 7, we present

conclusion and future scope of algorithms.



CHAPTER 2: LITERATURE REVIEW

2.1 Immune algorithm

Physics, biology, economy or sociology often hagléal with the classical problem of
optimization. Economy patrticularly has become sgesti of that field. Generally speaking a
large part of mathematical development dealt whik topic. Purely analytical methods widely

proved their efficiency. They nevertheless suffenf a insurmountable weakness.

At the beginning of a run of genetic algorithm a large population of chromosomes is created.
Each one when decode will represent a differenitsoi to the problem at hand. Let's say there
are N chromosomes in the initial population. Thbe following steps are repeated until a

solution is found[18].

» Test each chromosome to see how good it is atrapthie problem at hand and assign a
fithessscore accordingly. The fithness score is a meadutew good that chromosome is
at solving the problem to hand.

» Select two members from the current population. dirence of being selected is
proportional to thehromosomes fitnessRoulette wheel selection is the commonly
used method

» Dependent on theross over rate cross over the bits from each chosen chromosome a
randomly chosen point.

» Step through the chosen chromosomes bits anddyertent on theautation rate.

* Repeat step 2, 3, 4 until a new population of N imenhas been created.

The above algorithm is user to compare the redulllonal Selection Algorithm, it help us to
find out which one gives better result over theggations. It help us to explore which algorithm
gets the population polarize the whole populatibmdividuals towards the best one. The clonal

selection is discussed below, the algorithm of al@election is



discussed below in general, it should be noted that algorithm related to multi model

optimization would be discussed in the followingtgen not in this section.

The clonal principle is used by the immune systgrthke immune system to describe the basic
features of an immune response to an antigeniaktsnit establishes the idea that only those

cells that recognize the antigen proliferate, theisig selected against those which do not.

The algorithm works as follows:

* Generate a set (P) of candidates solutions, cordpufgbe subset of memory cells (M)
added to the remaining (Pr) population (P = Pr+M).

» Determine the n best individuals Pn of the popafa®, based on an affinity measure.

» Clone(reproduce) these n best individuals of thgufadion, giving rise to a temporary
population of clones (C). The clone size is a iasieg function of the affinity measure
of the antigen.

» Submit the population of clones to a hyper mutaisoproportional to the affinity of the
antibody. A matured antibody population is genaet#&*).

* Re-select the improved individuals from C* to corspdhe memory set. Some members
of the P set can be replaced by other improved reesnbC*.

* Replace d low affinity antibodies of the populatiomintaining its diversity[1,7].

In Negative Selection Algorithm , the algorithm toyfind out the maximum number of
antigens with the help of antibodies.

The algorithm as follows:

» A robust system should detect any foreign actikatyrer than looking for specific
known patterns of intrusion.

* No prior knowledge of anomaly (non-self) is reqdire
* The size of the detectors set does not necessailyase with the number of strings
being protected



In the Immune System learning involves raising thapulation size and affinity of those
lymphocytes that have proven them to be valuabledwng recognized some antigen. Because
the total number of lymphocytes in the immune sysieregulated, increase in the sizes of some
clones may have to decrease in size. However,dta¢ number of lymphocytes is not kept
absolutely constant. If the immune systems leamlg by increasing the population sizes of
specific lymphocytes, it must either “forget” preusly learned antigens, increasing in size, or
constantly decrease the portion of its repertdiet ts generated at random and responsible for
responding to novel antigens. It is important tmaek that under an engineering perspective, the
cells with highest affinity must be preserved soaveltas high quality candidate solutions, and
shall only be replaced by improved candidates, dasgestatistical evidences.
Immune learning and memory are acquired through

* Repeated exposure to a pathogen.

» Affinity maturation of the receptor molecules.

* Low grade chronic infection.

» Cross-reactive to endogenous and exogenous pathogen

» Idiotypic networks.

Secondary

Primary Response Respoisa

Antibody concentration

ponse
to antigen B

 Antigens Days
A+B

Figure 2.1:Primary, secondary and cross-reactive immune regson
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2.1.1 CLONAL SELECTION PRINCIPLE

By considering the above theo§lonal Selection Algorithm has been implemented in to
computer science terms which would help in comgutite multi model optimization.
The Clonal Sectional Algorithm is as follows.
* The new cells are copies of their parents(clonb)estied to a mutation mechanism with
high rates(somatic hyper mutation)
» Elimination of newly differentiated lymphocytes pang self-reactive receptors
» Proliferation and differentiation on contact matae#is with antigens

» The persistence of forbidden clones, resistanatty @limination by self-antigens, as the
basis of autoimmune disease.

The Clonal Selection Algorithm is compared wikenetic Algorithm to find out which one
gives better results.

For each cellular component in the lymphoid systestan consider three classes of repertoire
» The potential repertoire, determined by the numistructure and mechanisms of
expression of germ-line collection of genes.
» The available repertoire defined as the set of rdvanolecules that are used as the
lymphocytes receptors.

» The actual repertoire, that set of antibodies aedeptors produced by effectors

lymphocytes activated in the internal environment.

The main factors that result in the repertoire cletemess are its diversity (obtained by
mutation, editing and gene rearrangement) it’'sscreactivity and its multi-specificity.

By considering the above affinity maturation Negati Selection Algorithm has been
implemented which would help in binary characteognition .

~10 ~
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regions. Those cells carrying receptors specifictfee antigen, proliferate and
differentiate into plasma and memory cells.
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2.2 Genetic algorithm

All living organisms consist of cells. In each céfiere is the same set ohromosomes
Chromosomes are strings of DNA and serves as alrfardbe whole organism. A chromosome
consists ofgenes blocks of DNA. Each gene encodes a particulatepmo Basically it can be
said, that each gene encodesait , for example color of eyes. Possible settingsafbrait (e.g.
blue, brown) are calledlleles Each gene has its own position in trestle chramas This

position is calledocus

Complete set of genetic material (all chromosoneeshplledgenome Particular set of genes in
genome is calledjenotype The genotype is with later development afterhbishse for the
organism'sphenotype its physical and mental characteristics, sucleyas color, intelligence
etc[22].

2.2.1 Reproduction

During reproduction, first occuneecombination (or crossove). Genes from parents form in
some way the whole new chromosome. The new creafispring can then be mutated.
Mutation means, that the elements of DNA are a bit changk. changes are mainly caused
by errors in copying genes from parents. Tiheess of an organism is measured by success of

the organism in its life[22].
2.2.2 Search Space

If we are solving some problem, we are usually ingKor some solution, which will be the best
among others. The space of all feasible solutignsnéans objects among those the desired
solution is) is calledearch spacgalso state space). Each point in the search segacesents
one feasible solution. Each feasible solution can"itbnarked" by its value or fitness for the
problem. We are looking for our solution, whicloise point (or more) among feasible solutions

- that is one point in the search space.

~12 ~



The looking for a solution is then equal to a lowkior some extreme (minimum or maximu
in the search space. The search space can be known by the time of solving a problem, |
usually we know only a few points from it and we @enerating other points as the proces
finding solution continues.

Y.
Moan NI
LAYV AT
v kﬂﬁdmmr\lﬂ.ﬁahn ﬂ.,u'l'luhﬂ}rl.ﬁvllﬁfvuh v
SRAAULITTAL M
x> 200

Figure 2.3:Example of a search space

The problem is that the search can be very contplic®ne does not know where to look for
solution and where to start. There are many methoals to find somesuitable solution (i.e.
not necessarily thieest solutior), for examplehill climbing , tabu search simulated annealing
and genetic algorithm The solution found by this methods is often cdestd as a goc
solution, because it is not often possible to pnohat is the real optimu[22].

2.2.30perators of G/

Overview

As you can see from the genetic algorithm outlithe, crossover and mutation are the n
important part of the genetic algorithm. The parfance is influenced mainly by these t

operators. Before we can explain more about cr@&ssamd mutation, somnformation about

chromosomes will be given.

~ 13 ~



Encoding of a Chromosome

The chromosome should in some way contain infoilmnaéibout solution which it represents.

The most used way of encoding is a binary strifige dhromosome then could look like this:

Chromosome 1110110010011011.0

Chromosome 21101111000011110
Each chromosome has one binary string. Each bitisnstring can represent some characteristic
of the solution. Or the whole string can representumber.

Of course, there are many other ways of encodihg @epends mainly on the solved problem.
For example, one can encode directly integer drmembers, sometimes it is useful to encode

some permutations and so on.
Crossover

After we have decided what encoding we will use,cag make a step to crossover. Crossover
selects genes from parent chromosomes and crea&s affspring. The simplest way how to do
this is to choose randomly some crossover pointevmitything before this point copy from a

first parent and then everything after a crosspeent copy from the second parent.
Crossover can then look like this ( | is the cowss point):

Chromosome 111011 | 001001101710

Chromosome 211011 | 11000011110

Offspring 1 11011| 11000011110

~ 14 ~



Offspring2  |11011|00100110110

There are other ways how to make crossover, fompl@we can choose more crossover points.
Crossover can be rather complicated and very depemd encoding of the encoding of

chromosome. Specific crossover made for a speprbblem can improve performance of the

genetic algorithm[22].

Mutation

After a crossover is performed, mutation takes ealddis is to prevent falling all solutions in
population into a local optimum of solved probleMutation changes randomly the new
offspring. For binary encoding we can switch a fewdomly chosen bits from 1 to O or from O

to 1. Mutation can then be following:

Original offspring 1/1101111000011110

Original offspring 211011®10011010

Mutated offspring 11100111000011110

Mutated offspring 211011010011010

The mutation depends on the encoding as well asith&sover. For example when we are

encoding permutations, mutation could be exchantyuoggenes[22].

~15 ~



2.2.4 Parameters of GA

Crossover and Mutation Probability

There are two basic parameters of GA - crossowaygtnility and mutation probability.

Crossover probability says how often will be crossover performed. Ifr¢hes no crossover,
offspring is exact copy of parents. If there ig@ssover, offspring is made from parts of parents'
chromosome. If crossover probabilityi®0%, then all offspring is made by crossover. If it is
0%, whole new generation is made from exact copieshadmosomes from old population (but
this does not mean that the new generation is theame}.
Crossover is made in hope that new chromosomesaik good parts of old chromosomes and
maybe the new chromosomes will be better. Howenergood to leave some part of population

survive to next generation[22].

Mutation probability says how often will be parts of chromosome mutatedhere is no
mutation, offspring is taken after crossover (opyowithout any change. If mutation is
performed, part of chromosome is changed. If mogtirobability is100%, whole chromosome
is changed, if it i9%, nothing is changed. Mutation is made to prevafiinfy GA into local
extreme, but it should not occur very often, beeatlen GA will in fact change ttandom

search
2.2.5 Other Parameters

There are also some other parameters of GA. Opnéamafsortant parameter is population size.

Population sizesays how many chromosomes are in population (@gemeration). If there are

too few chromosomes, GA has a few possibilitiepadorm crossover and only a small part of
search space is explored. On the other hand, iethee too many chromosomes, GA slows
down. Research shows that after some limit (whiepethds mainly on encoding and the
problem) it is not useful to increase populatioresibecause it does not make solving the

problem faster.

~16 ~



2.2.6 Selection

Introduction

As you already know from the GA outline, chromossmee selected from the population tc
parents to crossover. The problem is how to selede chromosomes. According to Darw
evolution theory the best onshould survive and create new offspring. Therenaaay method:
how to select the best chromosomes, for examplietteuvheel selection, Boltzman selecti

tournament selection, rank selection, steady selextion and some othe

Some of them will b described in this chaptt
Roulette Wheel Selectior

Parents are selected according to their fithess.bEtter the chromosomes are, the more chz
to be selected they have. Imaginroulette wheelwhere are placed all chromosomes in
population, everyone has its place big accorditglys fithess function, like on the followir
picture.

O Chromosome 1
B Chromosome 2
O Chramasame 3
O Chromosome 4

Figure 2.4 Roulette Wheel Selection

Then amarble is thrown there and selects the chromos@memosome with bigger fithess w
be selected more times[22].

~17 ~



This can be simulated by following algorith

1. [Sum] Calculate sum of all chromosome fitnesses in pdjauli- sumS.
2. [Select] Generate radom number from interve(0,S) - r.
3. [Loop] Go through the population and sum fitnesses 10 - sums. When the sursis

greater them, stop and return the chromosome where you

Of course, steft is performed only once for each populati

Rank Selection

The previous selection will have problems whenfttmesses differ very much. For example
the best chromosome fitness is 90% of the entuketie wheel then the other chromosomes

have very few chances to be selec

Rank seletion first ranks the population and then every alweome receives fitness from t
ranking. The worst will have fitne<l, second wors® etc. and the best will have fitheN
(number of chromosomes in populatic

You can see in following picture, hcthe situation changes after changing fitness ter
number.

O Chromosorme 1
B Chromosome 2

O Chramosaome 3

O Chromosome 4

Figure 2.5: Situation before ranking (graph of fitnesses)
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B Chromosame 1
B Chromosome 2
O Chromosome 3

O Chromosome 4

Figure 2.6: Stuation after ranki ng (graph of order numbers)

After this all the chromosomes have a chance teelexted. But this method can lead to slo

convergence, because the best chromosomes ddfeotsdi much from other one
Steady-State Selectior

This is not parcular method of selecting parents. Main idealo$ selection is that big part

chromosomes should survive to next genera

GA then works in a following way. Every generatisrselected a few (goc- with high fitness)
chromosomes for creatingn@w offspring. Then some (b with low fithess) chromosomes &
removed and the new offspring is placed in thesicpl The rest of population survives to r
generation[22].

Elitism

Idea of elitism has been already introduced. Whesating new popution by crossover and
mutation, we have a big chance, that we will lotbgebest chromosom

Elitism is name of method, which first copies tlestochromosome (or a few best chromosor
to new population. The rest is done in classicaly.wglitism can very rapidly increa:
performance of GA, because it prevents losing &t found solutior
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2.2.7 Encoding

Introduction

Encoding of chromosomes is one of the problemspwiloel are starting to solve problem with

GA. Encoding very depends on the problem.

In this chapter will be introduced some encodingsich have been already used with some

success

Binary Encoding

Binary encoding is the most common, mainly becdiuseworks about GA used this type of

encoding.

In binary encoding every chromosome is a stringhofs, O or 1.

Chromosome A101100101100101011100101

Chromosome 31111111000001100000111111

Example of chromosomes with binary encoding

Binary encoding gives many possible chromosomens exthh a small number of alleles. On the
other hand, this encoding is often not naturahfi@ny problems and sometimes corrections must

be made after crossover and/or mutation[22,23].

Example of Problem: Knapsack problem
The problem: There are things with given value and size. Trepkack has given capacity.
Select things to maximize the value of things iapgsack, but do not extend knapsack capacity.

Encoding: Each bit says, if the corresponding thing is iagsack.
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Permutation Encoding

Permutation encoding can be used in ordering pnakylsuch as traveling salesman problem or

task ordering problem.

In permutation encoding every chromosome is a string of numbers, whiphegents number

in asequence

Chromosome A1 5326 47 98

Chromosome 38 5 6 72 31 49

Example of chromosomes with permutation encoding

Permutation encoding is only useful for orderinglpems. Even for this problems for some

types of crossover and mutation corrections mushaee to leave the chromosome consistent .

Example of Problem: Traveling salesman problem (TSP)

The problem: There are cities and given distances between thesmeling salesman has to
visit all of them, but he does not to travel veryah. Find a sequence of cities to minimize
traveled distance.

Encoding: Chromosome says order of cities, in which saleswilivisit them.

Value Encoding

Direct value encoding can be used in problems, sviseme complicated value, such as real

numbers, is used. Use of binary encoding for tpg of problems would be very difficult.

In value encoding every chromosome is a string of some values. &&alcan be anything

connected to problem, form numbers, real numbechars to some complicated objects.
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Chromosome . |1.2324 5.3243 0.4556 2.3223454¢
Chromosome |ABDJEIFJDHDIERJFDLDFLFEG

Chromosome | (back), (back)(right), (forward), (left

Example of chromosomes with value encoding

Value encoding is very good for some special pmobkleOn the other hand, for this encodin

often necessary to develop some new crossover atation specific for the proble[22].

Example of Problem: Finding weights for neural netwc
The problem: There is some neural network with given architextéind weights for inputs ¢
neurons to train the network for wanted oult

Encoding: Real values in chromosomes represent corresng weights for input

Tree Encoding

Tree encoding is used mainly for evolving programexpressions, fcgenetic programming.

In tree encodingevery chromosome is a tree of some objects, sufiimatons or commands

programming language.

Chromosome . Chromosome B
_+
' do until |
 step wall
o y . .
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(+ x(/5y)) (do_until step wall)

Example of chromosomes with tree encoding

Tree encoding is good for evolving programs. Progneng language LISP is often used to tl
because programs in it are represerin this form and can be easily parsed as a tre¢hes

crossover and mutation can be done relativelye:

Example of Problem:Finding a function from given valu
The problem: Some input and output values are given. Taskfigtoa function, which will
give the best (closest to wanted) output to allita

Encoding: Chromosome is functions represented in a

2.2.8 Crossover and Mutation

Introduction

Crossover and mutation are two basic operatorsfofRerformance of GA very depends

them. Type and implementation of operators dependmncoding and also on a proble

There are many ways how to do crossover and mat

Crossover

Single point crossovebne crossover point is selected, binary string f@ginning o

chromosome to the crossover point is copied frompmarent, the rest is copied from the sec
parent
Parent A Parent B Offspring

N+ = [
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1100011+1101111=1100111.

Two point crossover- two crossover point areelected, binary string from beginning
chromosome to the first crossover point is copiechfone parent, the part from the first to
second crossover point is copied from the seconehpand the rest is copied from the f

parent

Parent A Parent B Offspring

i L+ = i

11001011+ 11011111 =1101111.

Uniform crossoverbits are randomly copied from the first or from gezond parer

Parent A Parent B Offspring

11001011 +11011101 = 1101111

Arithmetic crossoversome arithmetic operation is performed to makeve oféspring

Parent A Parent B Offspring
+ - G
11001011 + 11011111 = 11001 (AND)
Mutation

Bit inversion - selected bits are invertt
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After crossover After mutation

El B BE=>0] E B

11001001 => 0001001

Permutation Encoding
Crossover

Single point crossover one crossover point is selected, till this poiret germutation i
copied from the first parent, then the second gasescanned and if the number is not yet in
offspring it is added

Note: there are more ways how to produce the rest after crossover point

(123456789)+4536(9721)={23456897)

Mutation

Order changing - two numbers are selected and exchar

(123456897)=>(183456297)

Value Encoding

Crossover
All crossovers fronbinary encoding can be used

Mutation
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Adding a small number (for real value encodi- to selected values is added (or subtracte
small number

(1.29 5.682.86 4.11 5.55) => (1.29 5.68.73 4.22 5.55

Tree Encoding
Crossover

Tree crossover-in both parent one crossover point is selectedmarare divided in thi

point and exchange part below crossover pointadyce new offsprins

Parent A Parent B Offspring

0 (= 0
x) T r )X = X) (a

¥y 3@ ® @ ¥ @

Figure 2.7: Tree Encoding

Mutation

Changing operator, rumber - selected nodes are changed
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CHAPTER 3: MULTI-MODAL
OPTIMIZATION

3.1 Introduction

Immune system can provide new ways of solving lgroB. The function optimizing
problem involves finding the best solution (eittie® peak or trough) to a function bounded by

constraints.

In the code, a test function has been used andtieg. This test function uses the sine function

to produce the hilly plot, and so finding the highpeak is a challenged. The equation is given

by:
fitness = x*Math.Sin(4*Math.PI1*x)-y*Math.Sin(4*Math .PIl*y+Math.PI)+1,;
The optimum is at f (1.63, 1.63) =4.25 which is thghest peak at the center of the plot.

By considering an antibody as a potential soluian a cell object which has x-y value) and the
fitness function as the antigen, then the degrdi of binding represents the quality of the
solution. If we start with an initial population ahtibody solutions and test them against the
fitness function (antigen), then those with thehleigt affinity (i.e. best fit) are allowed to clone

and mutate in the hope of finding a better solyfi819].

3.2 Objective functionl

o f(x,y) =x*sin(4.Pl.x) =y *sin(4.PLy + PI) + 1

This function has several local maxima and minime tae optimal solution for them is at f
(1.63, 1.63) = 4.25 for maximization problem. Thagh below shows the function between [-1,
2].
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Figure 3.1:objective function1

Consequently, an immune algorithm can be devisédllasvs:

Generate an initial population of antibodies
Perform clonal selection to generate high afficitgnes and mutate
Remove antibodies whose affinity with the antigetess than a predefined threshold

Calculate affinity interactions between all antilesdin the system

o > 0 DhPRF

Remove antibodies whose affinity with other antiesdis below a predefined
threshold

Introduce randomly generated antibodies into pdprgdiversity)

Repeat steps 2 to 6 until the stopping criteriomés.

The best fit clones would be plotted with the hafiZed graph.
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3.3 Algorithm of Multi Model Optimization:

The code contains five essential classes. These are

* the main form class which provides a simple GUI
» the immune algorithm controller class

» the antibody class

» the fitness function class

» the Zed graph class

The code has been commented and so should béehsioargard to follow:

The fitness function class has a static methoeédal/aluateFunction(), which returns the fitness
value given x and y input values. The antibodysktsempts to model a biological antibody cell.
It has methods for cloning itself, finding the affy with another antibody and an affinity based
mutation. Each antibody represents a candidatéiso]wvhich in this example is simply an x-y
value. The immune algorithm controller class allg@sameters to be defined, and has a method
called GoOptimise() which creates an initial popiola of antibodies and iterates a solution until
the stopping criteria (a maximum number of generd) is reached.

3.4 Objective function2

o f(x,y) ==2[ 2.sin(x) + 2.sin(y)] — 4cos(x/2) — &(g/2) — 4cos(X)

This function is of potential energy of a two bangulum with data

weight W1=2, W2=2, Lengths L1= 2, L2=ahd

p(weight of lowest pendulum) =2
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Figu re 3.2:0bjective function2

total potential energy is given by

P.E=- P [ (I1.sin(x) + 12.sin(y) ) ] - W1.L1.co9(2 - W2 [ 12.cos(y)/2 + |11.cos(x)]

Where x = first angle, and
Y= second angle
Lower bound = 0 (in degrees)

Upper bound = 90 (in degrees)
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CHAPTER 4: CSA & GA EVALUTION

4.1 Introduction of CSA

we discussed the clonal selection principle andattfi@ity maturation process, which will be

used as the fundamental basis for the developni¢hé@lonal selection algorithm (CSA).
The main immune aspects taken into account were:

* maintenance of the memory cells functionally diswxted from the repertoire;
» selection and cloning of the most stimulated indiinls;

» death of non-stimulated cells;

» affinity maturation and re-selection of the highéinity clones;

* generation and maintenance of diversity; and

* hypermutation proportional to the cell affinity.
4.2 Steps of CSA

The algorithm works as follows (see Figure ):

(1) Generate a set (P) of candidate solutions, oseg of the subset of memory cells (M) added
to the remaining (B population (P = P+ M);

(2) Determine tha best individuals R of the population P, based on an affinity measure;

(3) Clone (reproduce) thesebest individuals of the population, giving rise dotemporary
population of clones). The clone size is an increasing function of dfffenity measure of the

antigen;

(4) Submit the population of clones to a hypermatascheme, where the hypermutation is

proportional to the affinity of the antibody. A migated antibody population is generat€d)(
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(5) Re-select the improved individuals fra@ to compose the memory set. Some members of

the P set can be replaced by other improved menolh €,
(6) Replaced low affinity antibodies of the population, maintaig its diversity.

For each problem to be presented, the coding aimdtafmeasure adopted will be discussed

separately[18,19].

Steps 2 and 3 are crucial in this algorithm. If gf@osen = N in Step 2, i.e. the number of
highest affinity individuals equals the number ahdidates, each member of the population will
constitute a potential candidate solution localyplying a local exploitation of the shape-space,
characterizing a greedy search. In addition, ifth# individuals are accounted locally, their
clones (Step 3) will have the same size. In allek@mple applications, steps 2 and 3 were taken

as discussed in this paragraph.

The clonal selection algorithm reproduces thoseviddals with higher affinities and selects
their improved maturated progenies. This stratemgests that the algorithm performs a greedy
search, where single members will be locally optadi (exploitation of the surrounding space),
and the newcomers yield a broader exploration ®fktarch-space. This characteristic makes the
CSA very suitable for solving multi-modal optimiiat tasks and, as an illustration, consider the
case of maximizing the functidix,y) = x.sen(4px)-y.sen(4py+p)+1, depicted in Figure 37, in the
compact region [-1,2] * [-1,2] Notice that this @tion is composed of many local optima and a
single global optimum &(1.63,1.63) = 4.25.

We employed the Hamming shape-space, with binamygst representing real values for the
variablesx andy. The chosen bitstring length whs= 22, corresponding to a precision of six 80
decimal places. The variablesndy are defined over the range [-1, 2], and the mappimm a

binary stringm= <mL,...,m2, m1> into a real numbetoryis completed in two steps:
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S P,
Na - (1)

‘\
> (2)

(5)

Re-select

\ 4 > (3)
C
v
)
v > (4)
C*
A

Figure 4.1 Block diagram for algorithm implemented

» convert the binary stringh = <mL,...,m2, m1> from base 2 to base 10:

21
(<Kmy,.my,my >); = ( , Omi.2‘)10 = x'
1=
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* find the corresponding value for x = —1 4+ x’ where -1 is left boundary of

2221

domain ,and 3 is it'’s length

The affinity measure corresponds to the evaluaticthe functionf(x,y) after decoding andy,

as described above.

Figure (a) and (b) presents the evolved populatiafier 100 generations, by the standard
genetic algorithm (see Section 10.3.3 for a briedadiption of the standard genetic algorithm
GA) and the clonal selection algorithm (CSA), retpely. Notice that the genetic algorithm
guided the whole population towards the global raptn of the function, while the CSA

generated a diverse set of local optima, includiegglobal optimum.

-, __— Global optimum

T { y

L | : . t : l; i
F .klli:. tl'1 |I:'I'I.‘Ill"|i ﬁl |I|I',.- I*I & il:

& |||I|[ "3 i II!I.\.H\‘I.. .:r*‘ ;

e A

Figure 4. 2 Eunction f(x,y) = x.sen(4px)-y.sen(4py+p)+1 to be optimized by the CSA

and standard GA.
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(a) (b)
Figure 4.3Functionx.sen(4px)-y.sen(4py+p)+1 optimized (100 generations) by

thé& @) and CSA (b).

flxy) evolution - Average Ax,v) evolution - Best

. I 1 L L L . . I . . . L L L I I
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Generation Generation
(a) (b)

Figure 4.4Evolutionary behavior of the decoded average vafiiéxy) (a) and

the maximum value (b), for the genetic and cloe&ion algorithms.
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Figure (a) compares the decoded average valuesditittionf(x,y), for the whole population,
evolved by the GA and the CSA algorithms. Figuréb3@epicts the best individuals (candidates
with higher values fof(x,y)) of the populations for each algorithm. The GAvagach presented
a greater average value, indicating a less divees®f individuals. Both strategies successfully

determined the global optimum.

4.3 Code description

The antibodies (candidate solutions to the funatiptimization problem) that are generated by

the immune algorithm are displayed in a text bd»e Tinal value i.e. the
best fit would be displayed with the help of Zedagr. The best antibody is displayed

first, and should be a good match to the requicdation for this problem which, as stated
above, is 4.25 at x=1.63 and y=1.63. An immune

Algorithm is a non-deterministic algorithm, meanitht it gives different results on different

runs.

It is necessary to set threshold values for rengpyguppressing) antibodies from the population
pool (clonalSelectionThresholdemoveThreshold The settings used for these threshold values
were derived by a process of trial and error. Tammeter calleédintibodyNumberdetermines

the initial number of antibodies used to

solve the problem or, in biological terms, neusalthe antigen.. TheloneNumberparameter
sets the number of clones generated during clatetson. Affinity based mutation is set using
themutationFactoparameter. Constraints for the x and y values

are imposed using thewerBoundaryandupperBoundarparameters.
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4.4 GA(genetic algorithm)

There is potential for further investigation. It wd be interesting to look into the discrimination

between antibodies destined to be deleted and thatseand new types of operators for cloning

and mutation. Many other sine functions are av&lédr calculating the best fit value.

The Genetic Algorithms (GAs) constitute stochastmlutionary techniques whose search

methods model some natural phenomena: geneticitahez and Darwinian strife for survival.

GAs perform a search through a space of potentiaitisns, which are distinguished by the

definition of an evaluation (fitness) function, whiplays the role of an environment feedback.

A genetic algorithm (or any evolutionary programi) & particular problem, must have the

following five components (Michalewicz, 1996):

o

a genetic representation for potential candidaligtisns;

a way to create an initial population of potensialutions;

an evaluation (fitness) function;

genetic operators that alter the composition obféspring;

values for the various parameters used by the ithgarpopulation sizes, genetic

operators probabilitiex. et
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Recombination

Figure 4 .5Block diagram for the standard genetic algorithnAGvhere PI
Is the intermediate population

There are number of ways to implement genetic dlgor(GA) as it is more of domain specific
and mutation and crossover functions vary greattpeding to the problem.

We will implement GA in thesebjective functions
Objective function
o f(x,y) =x*sin(4.Pl.x) =y *sin(4.PL.y + PI) + 1

This function has several local maxima and minimd #e optimal solution for them is
at f (1.63, 1.63) = 4.25 for maximization problefime graph below shows the function

between [-1, 2].
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CHAPTER 5: RESULTS AND DISCUSSION

We have implemented immune and genetic algorithots bnow we will check the
result. and check and compare which algorithm igeeb¢han other based on generation size. We
will use graph to compare the result in which omedlion shows the affinity of antibody or
clone or gene. Both of the algorithms not guarangfyhe optimum result. And the result may be
different in every time program is run becausesig vtandom variable for mutation so it will be

different maximum time . this randomness providedignamic approach every time

We will use the same objective function to compie result . and we also make the
table of performance. Both algorithms gave theedéht result every time because we are using
random variables in mutation . it provides a dyramgpproach that have low probability that

algorithms stuck in local maxima or minima.

Objective function

f(x,y) = X * sin(4.PLx) =y * sin(4.PLy + PI) + 1

Optimal solution found using following parameteos §enetic algorithm:

* Number of variables in the objective function = 2
* Genome size = 2 * chromosome size = 24

* Lower bound for x = -1

* Lower bound fory = -1

* Upper bound for x = 2

* Upper bound fory =2

* Crossover rate = 80 %

* Mutation rate = 3 %

» Population size = 5,10,20

» Generation size =10,100.500,1000(It will act asrentnator for program)
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Real values

x=1.63,y=1.63

Value for objective function = 0.95,2.18,3.25,4.25
Objective function

f(x,y) = x * sin(4.P1.x) =y * sin(4.PLy + PI) + 1
Optimal solution found using following parameteos ¢lonal selection algorithms:
No. of antibody =2

No of clones  =5,10,20,30

Generation size =10,100,500,1000

Lower bound =-1

Upper bound =2

Out put = 3.25,4.25,4.25,4.25

The table below show that performance of immunerélgn gave batter result when population
size is low and generation size also low and geratorithm gave very poor performance as
compare to CSA. as we increasing in the paramdtat affect the results we find GA

performance increase gradually and finally bothegdne same result as we expecting. And it is

also very close to real values of function.
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S.No. No. of No. of CSA GA
population/clones | generation
X Y | affinity X Y fitness
1. 5 10 1.134| 1.688 3.32 0.28 -0.503 0.957
2. 5 2000 1.624 1.627 4.25 1618 1.625 424
3. 10 100 1.628 1.627 4.25 1.725 1.0p3 2.18
4. 20 200 1.627) 1.628 4.25 1.623 -0.623 3.25
5. 20 500 1.628 1.627 4.25 1.628 1.6P8 4.25
6. 30 1000 1.628 1.628 4.25 1.628 1.627 4.5
7. 40 2000 1.629 1.628 4.25 1.628 1.624 4.5

Table 1: Result of CSA & GA on same parameter
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Generations

Mo. of Clones

Generstions

Test Immune Algorthm

~42 ~



~ 43 ~



| GENOME DATA

No of Variables Fill Values

ALGO ARGUMENTS OuTRUT

Crossover rate x1

Mutation Rate X2

Population Size. #3
Generation Size

fre

~ 44 ~




Best individual per Generation

—— fitness graph

No. of Aribody Resuts LR — . PR

2 x=716595y = 0.1608 fitness = 2.1516 &
x=1134y = 16874 ftness = 33213 T
x=06382 y = 11257 fitness = 2 645
x=01797y = 04786 fitness = 1.0118 4 [
%= 20000y = 01907 ftness = 1.1293 b 32
w=-0.1626y =1.1415fitness = 2 2618 8
No. of Clones x=0.2638 = 16293 finess = 25013 :
- = 06337y = 0.13% fitness = 1.7671 1t
5 %=-0.1600y =-0 6350 finess = 1.7748
x=13308y = 0. 6340 fitress = 04272
=1.3670y = 0.4578 finess = 0 5928
x=16319y = 06338 fitness = 3.2557
x=-0.5564 y = -0 6377 fitness = 1.1310 [
x=-0.6327y = 0.7077 fitness = 1.9388 20
x=16465y = 03300 fitness = 2 2074
10 = 20000y = 05404 fitness = 1.6284
x= 06453y = 0.6350 fitness = 22544 28 1
x=-06157y =1 8592 fitness =0 2111 [
w=1.1957y = 0.6338 fitness = 2.3386 E

33+

30+

Best fithess

Generations

26 it ———— ]

Test im Algorith : : ; 6 ;
mune Algorthm Number of Generations

o=l Genetic Algorithm |= B % el Graph

GENOME DATA Best individual per Generation

Mo of Variables 2 Fill Values 1M T T T T

1.00 T

ALGO ARGUMENTS QUTPUT 0so I

Crossoverrate  0.80 X 0,289097803181279 i
Muation Rate 003 X2 0 514861581192071 o7 £

Population Size 5 X3 096 +

Generation Size 10;

Best filness
nj
ui
O
g
ui
O
i
O

Fitness 0.957894309733168 |

‘ 084 1
083 L

082 +

081 +
GO BT
080 +——+— +———————————

I m Number of Generations.
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Mo. of Antibody Resulis

5 w=-0.9757y = 11298 fitness = 18242
% = 20000y =-0.1609 fitness = 1.1448
x =0.6350 y = 2 0000 fitness = 1.6300
x=0.1626y = 16291 fitness = 27717
w=11313y = 06627 ftness = 2.7173
« =06352y =-0 6327 finess = 2 2557
No. of Clones % =16298y = 16208 finess = 42538
x=16284y = 0.6363 fitness = 3.2568
5 x=20000y =0.1618fitness = 1.1448
w=20000y=1.1308 fitness = 2.1278
x =-0.9844 y = 06344 fitness = 14377
« = 06580 y = -0 9556 fitness = 1.5477
Genertions x=1.1323y = 05590 fitness = 2 6343
x=16368y =0.1615fitness = 2. 7637
w=-0.1626y = 1 6358 fitness = 2 7656
100 «=06429y = 06348 fitness = 2.2567
x=-0.1550y = -0.6351 fitness = 1.7741
x=08352y = 01632 fitness = 1.7747
«=0.1982 y = -0.9577 fitness = 1.0907

Test Immune Algorthm

. o=/ Optimisation by Immune Algorithm ue! graph

44

[..m

Best fitness

Best individual per Generation

—&— fitness graph
T

Number of Generations

120

r = = ===
o= Genetic Algorithm ‘ I‘:' 1= ﬂ ! Graph

GENOME DATA
No of Variables 2 Fill Values
ALGD ARGUMENTS QUTPUT
Crossover rate 0.80 X1 . 1726133210246
Muaton Rate  0.03 X2 1.05480128853329
Population Size 5 X3 i §
Generation Size 100 E
-
@

Fitness 2.18025760772451

Best individual per Generation

—5— fitness graph
23 T T T T

21

20 ¢

15—+

e
Y
t

13 t t t t
] 20 a0 &0 80
Mumber of Generations

120

Result shows that if No. of population s&z clone size and generation size is same(5,5,1@n

CSA perform batter than genetic algorithms.
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.

sl Optimisation by Immune Algorithm |E_|I_-Ii| |_é§_| as! graph ’:|D @

Best individual per Generation

No. of Antibady Resuits 45 T T T T T

10 x=18401y = 0.2585 fitness = 0.6337 -
«=-04093 y = 0.8860 fitness = -0.2455

%=0.5478y = 1.1910fitness = 21718

w=15450y = 0.0128 fitness = 1.8563

x = 11097 y = 1.8581 finess = 0.2731

x=15123y = 17280 ftness = 1.7041

No. of Clones = 0.0024 y = 0.0744 iness = 1.0600

- x=16734y = 0.6314 ftness = 29437

10 = 16950y = 1.4637 finess = 14353

x=02146y = 1.3227 fitness = 0.0452
% =11776y = 05921 fitness = 24720
% =0.8122y = 1.2853 fitness = -0.1240
w = 15020y = -0.0665 fitness = 1.0863
x=-0.1687y = 1.0444 fitness = 16573
x=-0.3903 y = -0 2582 fitness = 0.5502
200 «=1.2932y = 1.4355 fitness = -0.7086
x=-0.3885 y = -0 9648 fitness = 0.2044

w = 16046y = 1.1735finess = 35143
x=1.3806 v = 0.3001 fitness = -0.5540

Best fitness

Generations

=

1

25 1 —

? il 50 100 150 200 250
Test Immune Algorithm
Number of Generations

o' Genetic Algorithm == e IR Graph [E R ——

GENOME DATA Best individual per Generation

—3— fitness graph
Mo of Vanables 2 Fill Values T T T T T T

33 1 1
ALGO ARGUMENTS QUTPUT PE——
32 + E
Crossoverrate 080 X1 1.62791500257939
Muation Fate 003 %2 0.624933180306362 CAIRE :
Population Size 10 X3 g
Generation Size 200 E T )
#
Fitness 2.25176193020108 - . ]
28 + b} ]

GO ‘ EXIT i 5 y

o 50 100 150 200 250

I ll Number of Generations

Result shows that if No. of population size, clonsize and generation size is same(10,10,200) than
CSA perform batter than genetic algorithms.
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MNo. of Antibody
2

No. of Clones

2

Generations

500

Results

x= 20000 y = 2.0000 fitness = 1.0000
«=-0.6349y = 2 0000 fitness = 1.6300
«=-0 6345y =-03510ftness = 1.5187
x=01615y=16291finess =2.7717
% =16292y = 1.6290 fitness = 4.2539
%=1.1306y = 2.0000 fitness = 2.1278
w=11470y = -0.3985 fitness = 2. 08928
x=-0.1605y = -0.1614 finess = 1.2856
x=16292y = 0.1614 fitness = 2.7717
x=0.1620y = 0.1614 fitness = 1.2856
x=11312y = 0.1615 fitness = 2 2726
x=06518y =-0.9934 filness = 1.5329
x=01614y = 2 0000 fitness = 1.1448
x=06343y = 2 0000 fitness = 1.6300
« = 06350y = 0.6357 fitness = 2.2600
x=-0.1612y = 1.1306 fitness = 2.2726
w="1.1313y = 0.6351 fitness = 2.7577
w=0.1620y = 1.1315fitness = 22725
x=1.1307y =-0.1615 fitness = 2.2726
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No of Variables 2 Fill Values 45 T T r r :
ALGD ARGUMENTS OUTPUT 40 1+ ]
Crossover rate 1}.85 X1 1.62752966532288
- S - 35 + .
Mutation Rate 0,03 x2 162453597 764826
Population Size 2 x3 §
Generation Size 500 E 30 1 1
=
7}
Fitness 4 25182654543544
25 4 ]
i ,
20 ;
GO EXIT
_ 1.5 t t t t t
0 100 200 300 400 B0D 600
Number of Generations
(L -

Result shows that if No. of population size, clonsize and generation size is same(20,20,500) than
CSA perform batter than genetic algorithms.
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Best individual per Generation

No. of Antibody Results T T T T T T T

: 44+ 1
2 w=2.0000y = -0.6345 fitness = 1.6300 a
o =-0.6345y = 0 6347 fitness = 2 2600
x=-0.1609y = 0.9978 fitness = 1.1173 42 + 1
x=0.1614y = 2 D000 fitness = 1.1448
x=0.6349y = 06345 fitness = 2 2600
x=06350y = 1.1306 fitness = 27578
No. of Clones x = -0.9965 y = 0,161 fitness = 1.1004
- w=-01614y =11307fitness = 22726
30 = 1.1307y = 16289 fitness = 3.7547
w=16289y = 16250 finess = 4 2539
x=-0.1614y =0 6345 fitness = 1.7748
x=0.6349y = 0.1615finess = 1.7748
Ebrerations x=-06348 y = 016345 fitness = 2 2600
x=-0.9822y = 0.9830fitness = 0.5734
x=-0.1614 y = 0.1615 fitness = 1.2836 34
1000 x =633y = -0.1609ftness = 1.7748 -
1 =20000y = 1 6289 ftness = 2 6269
«={0.1614y = .16 14 itness = 1.2856
x= 20000y = -0.9849 itness - 0.3357 i 32+ 7
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a3l 1
ALGOD ARGUMENTS OUTPUT
42 —J 1
Crossover rate 030 X1 162825542580082
Mutation Rate 0.03 x2 162823400892818
Population Size 30 X3 § 40 q
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] 5 39 + 1
Fitness 4 253BBR43176716
38 1 B
3T 4 1
36 1
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Number of Generations

Result shows that if No. of population size, clongsize and generation size is same(30,30,1000) than
CSA perform batter than genetic algorithms.
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CHAPTER 6: CONCLUSION

The Clonal Selection Algorithm performs its seaitinpugh the mechanisms of somatic
mutation and receptor editing, balancing of thet sekitions with the exploration of the

search-space. We have seen that the result impvatreghe number of generations.

The research was done to compare the result ofaCtelection Algorithm with Genetic
Algorithm. During the research it was found thabi@l Selection Algorithm maintains a
diverse set of local optimum solutions, while then@tic Algorithm tends to polarize the
whole population towards the best one. The respedds upon the error generated. The

system is developed to find the non-self of theybod

The tool was developed on C#.Net on Windows platf@and has compared the two
algorithms using Zed-Graph. It was found that when size of the generation is small,
both the algorithms give nearly equivalent resuiat as we increase the size of the
generation, immune algorithm tends to perform mamd more better. This makes a

decision in the favor of immune algorithm.
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CHAPTER 7: FUTURE WORK

During the last three decades there been a growing interest in algorithms
which rely on analogies to natural phenomena sgodvalution, heredity, immunity and
so on. The emergence of massively parallel computade these algorithms of practical
interest. All of these research above provide plssibility for the emergence of
evolutionary algorithms, DNA computation techniquestificial intelligence methods,
etc.

Immune algorithms becoming very popular from lsstatle . So here is lot of work has
to be done. It produces very efficient tool for garting large problems. There are many

modification may be possible in clonal selectiogogithms.

Genetic algorithm is a powerful tool to solve véyief NP-hard problems. But, it is also
very domain dependent that is we cannot apply salgarithm for all known type of
problems. We have to change Genome structure oa&Arding to the problem within
hand. This is not an easy task because it needsiaty of encoding and decoding
technigues and also mutation and crossover funcig@d to be changed. Therefore, a lot
can be done in this area.

To get an idea about problems solve@®By here is a short list of some applications:

+ Nonlinear dynamical systems - predicting, data ysisl
« Designing neural networks, both architecture anjte
+ Robot trajectory

« Evolving LISP programs (genetic programming)

+ Strategy planning

+ Finding shape of protein molecules

« TSP and sequence scheduling

+ Functions for creating images
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As far as this project is concerned, all the tHueetions have not tested the capability of
this project. This algo is designed for taking auynber of parameters x1, x2, x3 and so
on. We have tested it only on two variables obyectunction. Therefore, it is not limited
to only three objective functions given. As longhasstring encoding is good for any
optimization problem like in case of real numbers @an implement this GA for that
problem.

Genetic algorithm is a probabilistic solving optaation problem which is modeled on a
genetic evaluations process in biology and is feduss an effective algorithm to find a
global optimum solution for many types of probleinhas been shown that the genetic
algorithm perform better in finding areas of inreven in a complex, real-world scene.
Genetic Algorithms are adaptive to their environteeand as such this type of method is
appealing to the vision community who must oftenrkvim a changing environment.
However, several improvements must be made in dhd¢iGAs could be more generally
applicable. Grey coding the field would greatly noye the mutation operation while
combing segmentation with recognition so that titerested object could be evaluated at
once. Finally, timing improvement could be doneutyizing the implicit parallelization

of multiple independent generations evolving atdame time.

There are many limitations of GA which needs tovbarked upon. It includes the

following.

» The Genetic Algorithm requires that population ¢desed for the evolution
should be moderate or suitable one for the proljfesrmally 20-30 or 50-100)
» ltis also necessary that crossover rate shouDb& 95% for better results.

* Mutation rate should be low i.e. 0.5%-1% for gematgorithm to work properly.

We also require developing new crossover methodsnfre convergence in single step. Also
there should be new mutation methods for reducingrdence due to excess mutation and a
function to decide the initial number of population
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APPENDIX

ZED GRAPH

Zed Graph is a class library, Windows Forms Usamtfdb, and ASP web-accessible control for
creating 2D line bar and pie graphs of arbitrartadets. The classes provide a high degree of
flexibility- almost every aspect of the graph canuser modified. At the same time, usage of the
classes provides high degree of flexibility- almesery aspect of the graph can be user
modified. Zed Graph is compatible with .Net 2.0 &&iNet 2005.

Using Zed Graph as a User Control:

Zed Graph is accessible as a control from the obtdolbox in Visual Studio .Net.

To access Zed Graph first launch Visual Studio,.Betl create a new Windows Application
(Forms) project. Open the form design so that jieps in the current window. View the toolbox
and right click inside the “General” or “Componé€rgsb panel of the tool box and select
“Choose item” option. Click browse and navigatéhte zed graph.dll file. Once this file is

added, you should see a Zed Graph Control optidimeitiool box.

1. Select add reference from project menu and usbrtivese button to find Zed Graph.dll
and click ok.

2. Add a using Zed Graph entry to your main form code.

3. Drag the Zed Graph Control from the tool box owethte form.

4. All the Zed Graph functionality is accessible thgbuhe ZedGraphControl. MasterPane

property.
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