
“A comparative study of CSA & GA by

Submitted under the partial fulfillment

MASTER OF

Registration no.: 11/MT/SE/FT

Deptt. of Computer Engineering
Delhi Technological University
Bawana Road,

DEPARTMENT OF COMPUTER ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

A
DISSERTATION

ON

“A comparative study of CSA & GA by multi
optimization ”

Submitted under the partial fulfillment of the requirement
 for the awardof the degree of

MASTER OF TECHNOLOGY

in
Software Engineering

Submitted by:

Vipin Kumar Sharma
Roll no.: 19/SE/09

Registration no.: 11/MT/SE/FT

Under the guidance of:
Mr. Shailender Kumar

Asst. Professor,
Deptt. of Computer Engineering
Delhi Technological University
Bawana Road, Delhi – 110042

DEPARTMENT OF COMPUTER ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

DELHI, 2011

multi -modal

the requirement

DEPARTMENT OF COMPUTER ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

This is to certify that the work contained in this dissertation entitled

CSA & GA by multi- modal

19/SE/09 in partial fulfillment of the requirement for the award of

Technology in software Engineering at Delhi Technological, Delhi is a record of the candidate’s

own work carried out by him under my guidance and supervision in the academic year 2010

2011.

Mr. Shailender Kumar
Asst. Professor
Project Guide
Delhi Technological University
Delhi

~ i ~

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY
BAWANA ROAD, DELHI

This is to certify that the work contained in this dissertation entitled “ A comparative study of

modal optimization” submitted by Vipin Kumar Sharma,

19/SE/09 in partial fulfillment of the requirement for the award of the degree of Master of

Technology in software Engineering at Delhi Technological, Delhi is a record of the candidate’s

own work carried out by him under my guidance and supervision in the academic year 2010

Delhi Technological University

DELHI TECHNOLOGICAL UNIVERSITY
BAWANA ROAD, DELHI – 110042

A comparative study of

Vipin Kumar Sharma, Roll no.

the degree of Master of

Technology in software Engineering at Delhi Technological, Delhi is a record of the candidate’s

own work carried out by him under my guidance and supervision in the academic year 2010-

~ ii ~

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody

who helped me throughout the course of this project.

I take this opportunity to express my deep sense of gratitude and indebtedness to my learned

supervisor Mr. Shailender Kumar, Asst. Professor, Dept. of COE, DTU, for his invaluable

guidance, encouragement and patient reviews. With his continuous inspiration only, it has

become possible to complete this dissertation. He helped in pointing out places in several drafts

of the thesis where clarity could be improved and claims made more precise.

I also extend my gratitude towards Dr. Daya Gupta, Head, Dept. of COE, DTU who has

always been cooperative throughout the whole coursework and gave us valuable inputs. I am

also thankful to all other faculty members and staff of the Department of Computer Engineering

at Delhi Technological University for sharing their knowledge and experiences with me as well

as for their kind support.

I also like to thank my batch mates at Delhi Technological University for sharing their ideas and

opinions on several topics that were important for my work. I also owe gratitude towards my

parents for their patience and support. They have been always around to cheer me up in the odd

times of this work.

Vipin Kumar Sharma

~ iii ~

 ABSTRACT

In the last few years we perceived a great increase in interest in studying biologically inspired

systems. Among these, we can emphasize artificial neural networks, evolutionary computation,

DNA computation, and now artificial immune systems. This work discusses immune algorithm

and genetic algorithm, the two classes of algorithms at the forefront of artificial systems inspired

by human body mechanism. We then move on to compare these two classes of algorithms on the

parameters of population, generation and clone sizes. This comparison will help in the analysis

of feasibility of these algorithms for specific purposes.

The immune system is a complex of cells, molecules and organs which has proven to be capable

of performing several tasks, like pattern recognition, learning, memory acquisition, generation of

diversity, noise tolerance, generalization, distributed detection and optimization. Based on

immunological principles, new computational techniques are being developed, aiming not only

at a better understanding of the system, but also at solving engineering problems. We discuss the

main strategy used by the immune system to problem solving, and introduce the concept of

immune engineering. The immune engineering makes use of immunological concepts in order to

create tools for solving demanding machine-learning problems using information extracted from

the problems themselves.

A genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. This

heuristic is routinely used to generate useful solutions to optimization and search problems.

Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which generate

solutions to optimization problems using techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover. A genetic algorithm (GA) is a search heuristic

that mimics the process of natural evolution. This heuristic is routinely used to generate useful

solutions to optimization and search problems. Genetic algorithms belong to the larger class of

evolutionary algorithms (EA), which generate solutions to optimization problems using

techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover.

~ iv ~

List of Figures

S. No. Name Page No.

1. 2.1 Primary, secondary and cross-reactive

 immune responses 9

2. 2.2 The clonal selection principle 11

3. 2.3 Example of a search space 13

4. 2.4 Roulette Wheel Selection 17

5. 2.5 Situation before ranking (graph of fitnesses) 18

6. 2.6 Situation after ranking (graph of order numbers) 19

7. 3.1 Objective function1 28

8. 3.2 Objective function2 30

9. 4.1 Block diagram for algorithm implemented 33

10. 4.2 Function f(x,y) = x.sen(4px)-y.sen(4py+p)+1 to

 Be optimized by the CSA and standard GA 34

11. 4.3 Function x.sen(4px)-y.sen(4py+p)+1 35

12. 4.4 Evolutionary behavior of the decoded average

 value of f(x,y) 35

13. 4.6 Block diagram for the standard GA 38

~ v ~

 List of tables

S.No. Title Page No.

1. Result of CSA & GA on same parameter 41

~ vi ~

 Table of contents

1. Introduction 1

1.1 Introduction ……………………………………… ……1

1.1.1 Immune algorithms………………………………………… ….1

1.1.2 Terminology in IA ……………………………………………..3

1.1.3 Genetic algorithm ………………………………………………3

1.1.4 Terminology in GA……………………………………………..4

1.2 Problem statement…………………………………………………..5

1.3 Motivation ………………………………………………………….6

1.4 Organization of thesis ………………………………………………6

2. Literature review 7

 2.1 Immune algorithms…………………………………………………..7

 2.1.1 Clonal selection principle ………………………………………10

 2.2 Genetic algorithms…………………………………………………...12

 2.2.1 Reproduction……………………………………………………12

 2.2.2 Search space…………………………………………………….12

 2.2.3 Genetic operator………………………………………………...13

2.2.5 Parameter of GA……………………………………………….16

 2.2.5 Other parameter………………………………………………...16

 2.2.6 Selection ……………………………………………………...17

 2.2.7 Encoding………………………………………………………..20

 2.2.8 Crossover and mutation…………………………………………23

 3. Multimodal optimization 27

 3.1 Introduction……………………………………………………………27

 3.2 Objective function …………………………………………………….27

 3.3 Algorithm for MMO…………………………………………………..29

~ vii ~

3.4 Objective function 2…………………………………………………...29

4. CSA and GA evaluation

 4.1 Introduction of CSA…………………………………………………..31

 4.2 Steps of CSA………………………………………………………… 31

 4.3 Code description………………………………………………………36

 4.4 Genetic algorithm……………………………………………………..37

5. Results and discussion ……………………………………….39

6. Conclusion ……………………………………………………..50

7. Future work……………………………………………………...51

8. References and bibliography…………………………………….53

 APPENDIX 55

~ 1 ~

CHAPTER 1: INTRODUCTION

1.1 Introduction
Brains inspired computational techniques are known as neural networks. Immune systems

have also (much more recently) inspired computational techniques. Before we can look at

artificial immune systems and genetic algorithms we need some knowledge of how our immune

systems and genetic algorithms work.

1.1.1 Immune algorithms

Immune algorithms and genetic algorithms are two important technique for function
optimization which is based on as our human body work .

The Immune System is a complex of cells, molecules and organs that represent an

identification mechanisms capable of perceiving and combating dysfunction from our own

cells(infectious self) and the action of exogenous infectious microorganisms(infectious no self)

[1]. The interaction among the Immune System and several other systems and organs allows the

regulation of the body, guaranteeing its stable functioning. The system is capable of

“remembering” each infection, so that a second exposure to the same pathogen is dealt with

more efficiently [2] [5].

The Immune Engineering is a meta-synthesis process that uses the information contained in

the problem itself to define the solution tool to a given problem, and then apply it to obtain the

problem solution. Nature provides many examples of systems with simple basic components, in

which a collective competition and cooperation turns out to an extremely complex overall

behavior, e.g., insects colonies (like ants), the immune system, etc. One of the most striking

characteristics of such systems is their robustness, expressed as a high tolerance to small

perturbations to individual components. This robustness underlies the principles of distribution ,

where small pieces are put together as an ensemble of individuals (or agents), very complex

behaviors can emerge. Conventional engineering techniques usually require detailed

~ 2 ~

specification of the precise behavior of each of the components of the systems. On the other

hand, the engineering paradigm(immune engineering) demands only general, or approximate,

specifications of some aspects of the overall behavior of the system, like a performance measure

or a fitness function[18,19].

A new field of research called Artificial Immune System has arisen; the properties of the

immune system are of great interest for computer scientist and engineers:

• Imperfect Detection: An absolute recognition of the pathogens is not required, hence the

system is flexible.

• Reinforcement learning and memory: The system can ‘learn’ the structures of pathogens,

so that future responses to the same pathogens are faster and stronger.

• Anomaly Detection: The immune system can detect and react to pathogens that the body

has never encountered before.

• Uniqueness: Each individual possesses its own immune system, with its particular

vulnerabilities and capabilities[18]

The topics involved in the definition and development of the artificial immune system covers
mainly

• Hybrid structures and algorithm that take into account immune-like mechanisms.

• Computational algorithms based on immunological principles, like distributed

processing, clonal selection algorithm, and immune network theory.

• Immunity-based optimization, learning, self organization, artificial life, cognitive models,

multi agent systems, design and scheduling, pattern recognition and anomaly detection.

• Immune engineering tools.

~ 3 ~

1.1.2 Terminology in immune algorithms

� Pathogen: a foreign invader such as a virus, bacterium, fungus, or parasite.

� B cell, helper T cell, killer T cell, macrophage, memory cell, plasma

cell: the main cells in our adaptive immune system (also known as white blood

cells).

� Stem cells: general purpose cells in our bone marrow that make all the cells in

our blood.

� Self cells: all the normal cells that make up ‘self’ (you).

� Lymphatic network: the collection of lymph vessels throughout our bodies

that collect “leakage” of blood from the capillaries.

� Lymph nodes: small organs under our arms, chins, chest and groin that are used

as “security stations”.

� Thymus: an organ in which B cells that produce antibodies harmful to self cells

are removed.

� Antibody: a protein made by B cells to mark pathogens as harmful.

� Antigen: a protein on the surface of pathogens that is used by other cells for

identification.

� Gene library: evolved fragments of DNA within each B cell used as building

blocks to produce its antibody[8] [9].

1.1.3 Genetic algorithms

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing area

of artificial intelligence. As you can guess, genetic algorithms are inspired by Darwin's theory

about evolution. Simply said, solution to a problem solved by genetic algorithms is evolved.

Algorithm is started with a set of solutions (represented by chromosomes) called population.

Solutions from one population are taken and used to form a new population. This is motivated by

~ 4 ~

a hope, that the new population will be better than the old one. Solutions which are selected to

form new solutions (offspring) are selected according to their fitness - the more suitable they are

the more chances they have to reproduce.

Genetic Algorithms are good at taking larger, potentially huge, search spaces and navigating

them looking for optimal combinations of things and solution which we might not find in

lifetime.

The most important aspects of using GA are:

1. definition of Objective function

2. definition and implementation of genetic representation

3. definition and implementation of genetic operators.

1.1.3 Terminology in genetic algorithm

� Individuals : An individual is any point to which you can apply the fitness

function. The value of the fitness function for an individual is its score.

� Populations and Generations: A population is an array of individuals. For

example, if the size of the population is 100 and the number of variables in the

fitness function is 3, you represent the population by a 100-by-3 matrix.

� Diversity : Diversity refers to the average distance between individuals in a

population. A population has high diversity if the average distance is large;

otherwise it has low diversity

� Fitness Values and Best Fitness Values : The fitness value of an

individual is the value of the fitness function for that individual. Because the

toolbox finds the minimum of the fitness function, the best fitness value for a

population is the smallest fitness value for any individual in the population.

~ 5 ~

� Parents and Children : To create the next generation, the genetic algorithm

selects certain individuals in the current population, called parents, and uses

them to create individuals in the next generation, called children.

� Fitness function : The fitness function is the function you want to optimize.

For standard optimization algorithms, this is known as the objective

function.[10]

1.2 Problem statement

In this work, we aim to compare and analyze the results of immune algorithms and genetic

algorithms, according to population size and generation size. This will help us evaluate and

ascertain the better algorithm based on these parameters. This work aims to establish which

algorithm gives better optimization and batter stability with same parameters .

We have developed a tool in C#.Net on windows platform that implements these algorithms and

makes a comparison of these two using Zed-Graph. This tool will therefore help people compare

the results and they may use it in their work.

In immune algorithms we implement the Colonial Selection Algorithm that describes the basic

features of an immune response to an antigenic stimulus. It establishes the idea that only those

cells that recognize the antigens proliferate, thus being selected against those which do not. The

selected cells are subject to an affinity maturation process, which improves their affinity to the

selective antigens. This Clonal Selection Principle describes the adaptive immune system which

recognizes and responds to the stimuli[6] [7]. It takes into account the affinity maturation of the

immune response. The algorithm is shown to be capable of solving complex machine-learning

tasks, like pattern recognition and multi-modal optimization.

In genetic algorithm we implement simple algorithms approach. In this work we take data set do

genetic operation over those such as crossover, mutation, and than apply selection algorithms

according to their fitness the element which have fitness above a threshold is selected form the

next generation.

~ 6 ~

1.3 Motivation
From last two decade human nature based algorithms becoming very popular there are

many (thousands) of algorithms proposed from than but some algorithms have their own

advantage according to situation and parameter so the people who will use these

algorithms should knows pros and con of the algorithms. In this work we will compare

the two algorithms that will help the people to evaluate the performance of these

algorithms and give a batter choice to select the algorithms according to their need.

1.4 Organization of thesis
The thesis organized as follows: In first chapter we provide introduction and motivation

work. In chapter 2, we present literature survey and some basic background of the

algorithms . in chapter 3, we explore the optimization technique which is used in

algorithms. In chapter 4, we present the CSA &GA algorithms and their implementation.

In chapter 5 , we depicted results and their comparison. In chapter 6 and 7, we present

conclusion and future scope of algorithms.

~ 7 ~

CHAPTER 2: LITERATURE REVIEW

2.1 Immune algorithm

Physics, biology, economy or sociology often has to deal with the classical problem of

optimization. Economy particularly has become specialist of that field. Generally speaking a

large part of mathematical development dealt with this topic. Purely analytical methods widely

proved their efficiency. They nevertheless suffer from a insurmountable weakness.

At the beginning of a run of a genetic algorithm a large population of chromosomes is created.

Each one when decode will represent a different solution to the problem at hand. Let’s say there

are N chromosomes in the initial population. Then the following steps are repeated until a

solution is found[18].

• Test each chromosome to see how good it is at solving the problem at hand and assign a

fitness score accordingly. The fitness score is a measure of how good that chromosome is

at solving the problem to hand.

• Select two members from the current population. The chance of being selected is

proportional to the chromosomes fitness. Roulette wheel selection is the commonly

used method

• Dependent on the cross over rate, cross over the bits from each chosen chromosome at a

randomly chosen point.

• Step through the chosen chromosomes bits and flip dependent on the mutation rate.

• Repeat step 2, 3, 4 until a new population of N member has been created.

.

The above algorithm is user to compare the result of Clonal Selection Algorithm, it help us to

find out which one gives better result over the generations. It help us to explore which algorithm

gets the population polarize the whole population of individuals towards the best one. The clonal

selection is discussed below, the algorithm of clonal selection is

~ 8 ~

discussed below in general, it should be noted that the algorithm related to multi model

optimization would be discussed in the following section not in this section.

The clonal principle is used by the immune system by the immune system to describe the basic

features of an immune response to an antigenic stimulus. It establishes the idea that only those

cells that recognize the antigen proliferate, thus being selected against those which do not.

The algorithm works as follows:

• Generate a set (P) of candidates solutions, composed of the subset of memory cells (M)

added to the remaining (Pr) population (P = Pr+M).

• Determine the n best individuals Pn of the population P, based on an affinity measure.

• Clone(reproduce) these n best individuals of the population, giving rise to a temporary

population of clones (C). The clone size is a increasing function of the affinity measure

of the antigen.

• Submit the population of clones to a hyper mutation is proportional to the affinity of the

antibody. A matured antibody population is generated (C*).

• Re-select the improved individuals from C* to compose the memory set. Some members

of the P set can be replaced by other improved members if C*.

• Replace d low affinity antibodies of the population, maintaining its diversity[1,7].

In Negative Selection Algorithm , the algorithm try to find out the maximum number of

antigens with the help of antibodies.

The algorithm as follows:

• A robust system should detect any foreign activity rather than looking for specific

known patterns of intrusion.

• No prior knowledge of anomaly (non-self) is required.

• The size of the detectors set does not necessarily increase with the number of strings

being protected

~ 9 ~

In the Immune System learning involves raising the population size and affinity of those

lymphocytes that have proven them to be valuable by having recognized some antigen. Because

the total number of lymphocytes in the immune system is regulated, increase in the sizes of some

clones may have to decrease in size. However, the total number of lymphocytes is not kept

absolutely constant. If the immune systems learns only by increasing the population sizes of

specific lymphocytes, it must either “forget” previously learned antigens, increasing in size, or

constantly decrease the portion of its repertoire that is generated at random and responsible for

responding to novel antigens. It is important to remark that under an engineering perspective, the

cells with highest affinity must be preserved somehow as high quality candidate solutions, and

shall only be replaced by improved candidates, based on statistical evidences.

Immune learning and memory are acquired through

• Repeated exposure to a pathogen.

• Affinity maturation of the receptor molecules.

• Low grade chronic infection.

• Cross-reactive to endogenous and exogenous pathogens.

• Idiotypic networks.

 Figure 2.1: Primary, secondary and cross-reactive immune responses

~ 10 ~

2.1.1 CLONAL SELECTION PRINCIPLE

By considering the above theory, Clonal Selection Algorithm has been implemented in to

computer science terms which would help in computing the multi model optimization.

The Clonal Sectional Algorithm is as follows.

• The new cells are copies of their parents(clone) subjected to a mutation mechanism with

high rates(somatic hyper mutation)

• Elimination of newly differentiated lymphocytes carrying self-reactive receptors

• Proliferation and differentiation on contact mature cells with antigens

• The persistence of forbidden clones, resistant to early elimination by self-antigens, as the

basis of autoimmune disease.

The Clonal Selection Algorithm is compared with Genetic Algorithm to find out which one

gives better results.

For each cellular component in the lymphoid system we can consider three classes of repertoire

• The potential repertoire, determined by the number, structure and mechanisms of

expression of germ-line collection of genes.

• The available repertoire defined as the set of diverse molecules that are used as the

lymphocytes receptors.

• The actual repertoire, that set of antibodies and receptors produced by effectors

lymphocytes activated in the internal environment.

The main factors that result in the repertoire completeness are its diversity (obtained by

mutation, editing and gene rearrangement) it’s cross reactivity and its multi-specificity.

By considering the above affinity maturation Negative Selection Algorithm has been

implemented which would help in binary character recognition .

~ 11 ~

Figure 2.2: The clonal selection principle. Small resting B cells created in the
bone marrow each carry a different receptor type defined by their VH and VL
regions. Those cells carrying receptors specific for the antigen, proliferate and
differentiate into plasma and memory cells.

~ 12 ~

2.2 Genetic algorithm

All living organisms consist of cells. In each cell there is the same set of chromosomes.

Chromosomes are strings of DNA and serves as a model for the whole organism. A chromosome

consists of genes, blocks of DNA. Each gene encodes a particular protein. Basically it can be

said, that each gene encodes a trait , for example color of eyes. Possible settings for a trait (e.g.

blue, brown) are called alleles. Each gene has its own position in trestle chromosome. This

position is called locus.

Complete set of genetic material (all chromosomes) is called genome. Particular set of genes in

genome is called genotype. The genotype is with later development after birth base for the

organism's phenotype, its physical and mental characteristics, such as eye color, intelligence

etc[22].

2.2.1 Reproduction

During reproduction, first occurs recombination (or crossover). Genes from parents form in

some way the whole new chromosome. The new created offspring can then be mutated.

Mutation means, that the elements of DNA are a bit changed. This changes are mainly caused

by errors in copying genes from parents. The fitness of an organism is measured by success of

the organism in its life[22].

2.2.2 Search Space

If we are solving some problem, we are usually looking for some solution, which will be the best

among others. The space of all feasible solutions (it means objects among those the desired

solution is) is called search space (also state space). Each point in the search space represents

one feasible solution. Each feasible solution can be "marked" by its value or fitness for the

problem. We are looking for our solution, which is one point (or more) among feasible solutions

- that is one point in the search space.

The looking for a solution is then equal to a looking for some extreme (minimum or maximum)

in the search space. The search space can be whole k

usually we know only a few points from it and we are generating other points as the process of

finding solution continues.

20

0 x�

 Figure

The problem is that the search can be very complicated. One does not know where to look for the

solution and where to start. There are many methods, how to find some

not necessarily the best solution

and genetic algorithm. The solution found by this methods is often considered as a good

solution, because it is not often possible to prove what is the real optimum

2.2.3 Operators of GA

Overview

As you can see from the genetic algorithm outline, the crossover and mutation are the most

important part of the genetic algorithm. The performance is influenced mainly by these two

operators. Before we can explain more about crossover and mutation, some i

chromosomes will be given.

~ 13 ~

The looking for a solution is then equal to a looking for some extreme (minimum or maximum)

in the search space. The search space can be whole known by the time of solving a problem, but

usually we know only a few points from it and we are generating other points as the process of

Figure 2.3:Example of a search space

The problem is that the search can be very complicated. One does not know where to look for the

solution and where to start. There are many methods, how to find some

best solution), for example hill climbing , tabu search,

. The solution found by this methods is often considered as a good

solution, because it is not often possible to prove what is the real optimum[22]

Operators of GA

As you can see from the genetic algorithm outline, the crossover and mutation are the most

important part of the genetic algorithm. The performance is influenced mainly by these two

operators. Before we can explain more about crossover and mutation, some i

The looking for a solution is then equal to a looking for some extreme (minimum or maximum)

nown by the time of solving a problem, but

usually we know only a few points from it and we are generating other points as the process of

 200

The problem is that the search can be very complicated. One does not know where to look for the

solution and where to start. There are many methods, how to find some suitable solution (i.e.

, simulated annealing

. The solution found by this methods is often considered as a good

[22].

As you can see from the genetic algorithm outline, the crossover and mutation are the most

important part of the genetic algorithm. The performance is influenced mainly by these two

operators. Before we can explain more about crossover and mutation, some information about

~ 14 ~

Encoding of a Chromosome

The chromosome should in some way contain information about solution which it represents.

The most used way of encoding is a binary string. The chromosome then could look like this:

Chromosome 1 1101100100110110

Chromosome 2 1101111000011110

Each chromosome has one binary string. Each bit in this string can represent some characteristic

of the solution. Or the whole string can represent a number.

Of course, there are many other ways of encoding. This depends mainly on the solved problem.

For example, one can encode directly integer or real numbers, sometimes it is useful to encode

some permutations and so on.

Crossover

After we have decided what encoding we will use, we can make a step to crossover. Crossover

selects genes from parent chromosomes and creates a new offspring. The simplest way how to do

this is to choose randomly some crossover point and everything before this point copy from a

first parent and then everything after a crossover point copy from the second parent.

Crossover can then look like this (| is the crossover point):

Chromosome 1 11011 | 00100110110

Chromosome 2 11011 | 11000011110

Offspring 1 11011 | 11000011110

~ 15 ~

Offspring 2 11011 | 00100110110

There are other ways how to make crossover, for example we can choose more crossover points.

Crossover can be rather complicated and very depends on encoding of the encoding of

chromosome. Specific crossover made for a specific problem can improve performance of the

genetic algorithm[22].

 Mutation

After a crossover is performed, mutation takes place. This is to prevent falling all solutions in

population into a local optimum of solved problem. Mutation changes randomly the new

offspring. For binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0

to 1. Mutation can then be following:

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

The mutation depends on the encoding as well as the crossover. For example when we are

encoding permutations, mutation could be exchanging two genes[22].

~ 16 ~

2.2.4 Parameters of GA

Crossover and Mutation Probability

There are two basic parameters of GA - crossover probability and mutation probability.

Crossover probability says how often will be crossover performed. If there is no crossover,

offspring is exact copy of parents. If there is a crossover, offspring is made from parts of parents'

chromosome. If crossover probability is 100%, then all offspring is made by crossover. If it is

0%, whole new generation is made from exact copies of chromosomes from old population (but

this does not mean that the new generation is the same!).

Crossover is made in hope that new chromosomes will have good parts of old chromosomes and

maybe the new chromosomes will be better. However it is good to leave some part of population

survive to next generation[22].

Mutation probability says how often will be parts of chromosome mutated. If there is no

mutation, offspring is taken after crossover (or copy) without any change. If mutation is

performed, part of chromosome is changed. If mutation probability is 100%, whole chromosome

is changed, if it is 0%, nothing is changed. Mutation is made to prevent falling GA into local

extreme, but it should not occur very often, because then GA will in fact change to random

search.

2.2.5 Other Parameters

There are also some other parameters of GA. One also important parameter is population size.

Population size says how many chromosomes are in population (in one generation). If there are

too few chromosomes, GA has a few possibilities to perform crossover and only a small part of

search space is explored. On the other hand, if there are too many chromosomes, GA slows

down. Research shows that after some limit (which depends mainly on encoding and the

problem) it is not useful to increase population size, because it does not make solving the

problem faster.

2.2.6 Selection

Introduction

As you already know from the GA outline, chromosomes are selected from the population to be

parents to crossover. The problem is how to select these chromosomes. According to Darwin's

evolution theory the best ones

how to select the best chromosomes, for example roulette wheel selection, Boltzman selection,

tournament selection, rank selection, steady state selection and some others.

Some of them will be described in this chapter.

Roulette Wheel Selection

Parents are selected according to their fitness. The better the chromosomes are, the more chances

to be selected they have. Imagine a

population, everyone has its place big accordingly to its fitness function, like on the following

picture.

 Figure

Then a marble is thrown there and selects the chromosome. Chromosome with bigger fitness will

be selected more times[22].

~ 17 ~

As you already know from the GA outline, chromosomes are selected from the population to be

parents to crossover. The problem is how to select these chromosomes. According to Darwin's

evolution theory the best ones should survive and create new offspring. There are many methods

how to select the best chromosomes, for example roulette wheel selection, Boltzman selection,

tournament selection, rank selection, steady state selection and some others.

e described in this chapter.

Roulette Wheel Selection

Parents are selected according to their fitness. The better the chromosomes are, the more chances

to be selected they have. Imagine a roulette wheel where are placed all chromosomes in the

population, everyone has its place big accordingly to its fitness function, like on the following

Figure 2.4: Roulette Wheel Selection

marble is thrown there and selects the chromosome. Chromosome with bigger fitness will

As you already know from the GA outline, chromosomes are selected from the population to be

parents to crossover. The problem is how to select these chromosomes. According to Darwin's

should survive and create new offspring. There are many methods

how to select the best chromosomes, for example roulette wheel selection, Boltzman selection,

tournament selection, rank selection, steady state selection and some others.

Parents are selected according to their fitness. The better the chromosomes are, the more chances

where are placed all chromosomes in the

population, everyone has its place big accordingly to its fitness function, like on the following

marble is thrown there and selects the chromosome. Chromosome with bigger fitness will

This can be simulated by following algorithm.

1. [Sum] Calculate sum of all chromosome fitnesses in population

2. [Select] Generate random number from interval

3. [Loop] Go through the population and sum fitnesses from

greater then r, stop and return the chromosome where you are.

Of course, step 1 is performed only once for each population.

Rank Selection

The previous selection will have problems when the fitnesses differ very much. For example, if

the best chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will

have very few chances to be selected.

Rank selection first ranks the population and then every chromosome receives fitness from this

ranking. The worst will have fitness

(number of chromosomes in population).

You can see in following picture, how

number.

 Figure

~ 18 ~

This can be simulated by following algorithm.

Calculate sum of all chromosome fitnesses in population - sum

dom number from interval (0,S) - r.

Go through the population and sum fitnesses from 0 - sum s

, stop and return the chromosome where you are.

is performed only once for each population.

The previous selection will have problems when the fitnesses differ very much. For example, if

the best chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will

have very few chances to be selected.

tion first ranks the population and then every chromosome receives fitness from this

ranking. The worst will have fitness 1, second worst 2 etc. and the best will have fitness

(number of chromosomes in population).

You can see in following picture, how the situation changes after changing fitness to order

Figure 2.5: Situation before ranking (graph of fitnesses)

sum S.

s. When the sum s is

The previous selection will have problems when the fitnesses differ very much. For example, if

the best chromosome fitness is 90% of the entire roulette wheel then the other chromosomes will

tion first ranks the population and then every chromosome receives fitness from this

etc. and the best will have fitness N

the situation changes after changing fitness to order

Situation before ranking (graph of fitnesses)

 Figure

After this all the chromosomes have a chance to be selected. But this method can lead to slower

convergence, because the best chromosomes do not differ so much from other ones.

Steady-State Selection

This is not particular method of selecting parents. Main idea of this selection is that big part of

chromosomes should survive to next generation.

GA then works in a following way. Every generation is selected a few (good

chromosomes for creating a new offspring. Then some (bad

removed and the new offspring is placed in their place. The rest of population survives to new

generation[22].

Elitism

Idea of elitism has been already introduced. When creating new popula

mutation, we have a big chance, that we will loose the best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best chromosomes)

to new population. The rest is done in classical way. Elitism can very rapidly increase

performance of GA, because it prevents losing the best found solution.

~ 19 ~

Figure 2.6: Situation after ranking (graph of order numbers)

After this all the chromosomes have a chance to be selected. But this method can lead to slower

convergence, because the best chromosomes do not differ so much from other ones.

State Selection

ticular method of selecting parents. Main idea of this selection is that big part of

chromosomes should survive to next generation.

GA then works in a following way. Every generation is selected a few (good

new offspring. Then some (bad - with low fitness) chromosomes are

removed and the new offspring is placed in their place. The rest of population survives to new

Idea of elitism has been already introduced. When creating new popula

mutation, we have a big chance, that we will loose the best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best chromosomes)

to new population. The rest is done in classical way. Elitism can very rapidly increase

performance of GA, because it prevents losing the best found solution.

after ranking (graph of order numbers)

After this all the chromosomes have a chance to be selected. But this method can lead to slower

convergence, because the best chromosomes do not differ so much from other ones.

ticular method of selecting parents. Main idea of this selection is that big part of

GA then works in a following way. Every generation is selected a few (good - with high fitness)

with low fitness) chromosomes are

removed and the new offspring is placed in their place. The rest of population survives to new

Idea of elitism has been already introduced. When creating new population by crossover and

Elitism is name of method, which first copies the best chromosome (or a few best chromosomes)

to new population. The rest is done in classical way. Elitism can very rapidly increase

~ 20 ~

2.2.7 Encoding

Introduction

Encoding of chromosomes is one of the problems, when you are starting to solve problem with

GA. Encoding very depends on the problem.

In this chapter will be introduced some encodings, which have been already used with some

success

Binary Encoding

Binary encoding is the most common, mainly because first works about GA used this type of

encoding.

In binary encoding every chromosome is a string of bits, 0 or 1.

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

Example of chromosomes with binary encoding

Binary encoding gives many possible chromosomes even with a small number of alleles. On the

other hand, this encoding is often not natural for many problems and sometimes corrections must

be made after crossover and/or mutation[22,23].

Example of Problem: Knapsack problem

The problem: There are things with given value and size. The knapsack has given capacity.

Select things to maximize the value of things in knapsack, but do not extend knapsack capacity.

Encoding: Each bit says, if the corresponding thing is in knapsack.

~ 21 ~

Permutation Encoding

Permutation encoding can be used in ordering problems, such as traveling salesman problem or

task ordering problem.

In permutation encoding, every chromosome is a string of numbers, which represents number

in a sequence.

Chromosome A 1 5 3 2 6 4 7 9 8

Chromosome B 8 5 6 7 2 3 1 4 9

Example of chromosomes with permutation encoding

Permutation encoding is only useful for ordering problems. Even for this problems for some

types of crossover and mutation corrections must be made to leave the chromosome consistent .

Example of Problem: Traveling salesman problem (TSP)

The problem: There are cities and given distances between them. Traveling salesman has to

visit all of them, but he does not to travel very much. Find a sequence of cities to minimize

traveled distance.

Encoding: Chromosome says order of cities, in which salesman will visit them.

Value Encoding

Direct value encoding can be used in problems, where some complicated value, such as real

numbers, is used. Use of binary encoding for this type of problems would be very difficult.

In value encoding, every chromosome is a string of some values. Values can be anything

connected to problem, form numbers, real numbers or chars to some complicated objects.

Chromosome A

Chromosome B

Chromosome C

Example of chromosomes with value encoding

Value encoding is very good for some special problems. On the other hand, for this encoding is

often necessary to develop some new crossover and mutation specific for the problem

Example of Problem: Finding weights for neural network

The problem: There is some neural network with given architecture. Find weights for inputs of

neurons to train the network for wanted output.

Encoding: Real values in chromosomes represent correspondi

Tree Encoding

Tree encoding is used mainly for evolving programs or expressions, for

In tree encoding every chromosome is a tree of some objects, such as functions or commands in

programming language.

Chromosome A

~ 22 ~

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545

Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT

Chromosome C (back), (back), (right), (forward), (left)

Example of chromosomes with value encoding

Value encoding is very good for some special problems. On the other hand, for this encoding is

often necessary to develop some new crossover and mutation specific for the problem

Finding weights for neural network

There is some neural network with given architecture. Find weights for inputs of

neurons to train the network for wanted output.

Real values in chromosomes represent corresponding weights for inputs.

Tree encoding is used mainly for evolving programs or expressions, for genetic programming

every chromosome is a tree of some objects, such as functions or commands in

Chromosome A Chromosome B

2.4545

ABDJEIFJDHDIERJFDLDFLFEGT

(right), (forward), (left)

Value encoding is very good for some special problems. On the other hand, for this encoding is

often necessary to develop some new crossover and mutation specific for the problem[22].

There is some neural network with given architecture. Find weights for inputs of

ng weights for inputs.

genetic programming.

every chromosome is a tree of some objects, such as functions or commands in

(+ x (/

Example of chromosomes with tree encoding

Tree encoding is good for evolving programs. Programming language LISP is often used to this,

because programs in it are represented

crossover and mutation can be done relatively easily.

Example of Problem: Finding a function from given values

The problem: Some input and output values are given. Task is to find a function, which will

give the best (closest to wanted) output to all inputs.

Encoding: Chromosome is functions represented in a tree.

2.2.8 Crossover and Mutation

Introduction

Crossover and mutation are two basic operators of GA. Performance of GA very depends on

them. Type and implementation of operators depends on encoding and also on a problem.

There are many ways how to do crossover and mutation.

Crossover

Single point crossover

chromosome to the crossover point is copied from one parent, the rest is copied from the second

parent

~ 23 ~

 5 y)) (do_until step wall)

Example of chromosomes with tree encoding

Tree encoding is good for evolving programs. Programming language LISP is often used to this,

because programs in it are represented in this form and can be easily parsed as a tree, so the

crossover and mutation can be done relatively easily.

Finding a function from given values

Some input and output values are given. Task is to find a function, which will

give the best (closest to wanted) output to all inputs.

Chromosome is functions represented in a tree.

Crossover and Mutation

Crossover and mutation are two basic operators of GA. Performance of GA very depends on

them. Type and implementation of operators depends on encoding and also on a problem.

There are many ways how to do crossover and mutation.

 - one crossover point is selected, binary string from beginning of

chromosome to the crossover point is copied from one parent, the rest is copied from the second

Tree encoding is good for evolving programs. Programming language LISP is often used to this,

in this form and can be easily parsed as a tree, so the

Some input and output values are given. Task is to find a function, which will

Crossover and mutation are two basic operators of GA. Performance of GA very depends on

them. Type and implementation of operators depends on encoding and also on a problem.

one crossover point is selected, binary string from beginning of

chromosome to the crossover point is copied from one parent, the rest is copied from the second

11001011+11011111 = 11001111

Two point crossover - two crossover point are s

chromosome to the first crossover point is copied from one parent, the part from the first to the

second crossover point is copied from the second parent and the rest is copied from the first

parent

11001011 + 11011111 = 11011111

Uniform crossover - bits are randomly copied from the first or from the second parent

11001011 + 11011101 = 11011111

Arithmetic crossover -

11001011 + 11011111 = 1100100

Mutation

Bit inversion - selected bits are inverted

~ 24 ~

11001111

two crossover point are selected, binary string from beginning of

chromosome to the first crossover point is copied from one parent, the part from the first to the

second crossover point is copied from the second parent and the rest is copied from the first

11011111

bits are randomly copied from the first or from the second parent

01 = 11011111

 some arithmetic operation is performed to make a new offspring

11001011 + 11011111 = 11001001 (AND)

selected bits are inverted

elected, binary string from beginning of

chromosome to the first crossover point is copied from one parent, the part from the first to the

second crossover point is copied from the second parent and the rest is copied from the first

bits are randomly copied from the first or from the second parent

some arithmetic operation is performed to make a new offspring

11001001 => 10001001

Permutation Encoding

Crossover

Single point crossover - one crossover point is selected, till this point the permutation is

copied from the first parent, then the second parent is scanned and if the number is not yet in the

offspring it is added

Note: there are more ways how to produce the rest after crossov

(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8

Mutation

Order changing - two numbers are selected and exchanged

(1

Value Encoding

Crossover

All crossovers from binary encoding

Mutation

~ 25 ~

Permutation Encoding

one crossover point is selected, till this point the permutation is

copied from the first parent, then the second parent is scanned and if the number is not yet in the

Note: there are more ways how to produce the rest after crossover point

4 5 3 6 8 9 7 2 1) = (1 2 3 4 5 6 8 9 7)

two numbers are selected and exchanged

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

binary encoding can be used

one crossover point is selected, till this point the permutation is

copied from the first parent, then the second parent is scanned and if the number is not yet in the

Adding a small number (for real value encoding)

small number

(1.29 5.68

Tree Encoding

Crossover

Tree crossover - in both parent one crossover point is selected, parents are divided in that

point and exchange part below crossover point to produce new offspring

 Figure

Mutation

Changing operator, number

~ 26 ~

a small number (for real value encoding) - to selected values is added (or subtracted) a

 2.86 4.11 5.55) => (1.29 5.68 2.73 4.22 5.55)

in both parent one crossover point is selected, parents are divided in that

point and exchange part below crossover point to produce new offspring

Figure 2.7: Tree Encoding

umber - selected nodes are changed

to selected values is added (or subtracted) a

5.55)

in both parent one crossover point is selected, parents are divided in that

~ 27 ~

CHAPTER 3: MULTI-MODAL

OPTIMIZATION

3.1 Introduction

 Immune system can provide new ways of solving problems. The function optimizing

problem involves finding the best solution (either the peak or trough) to a function bounded by

constraints.

In the code, a test function has been used and is plotted. This test function uses the sine function

to produce the hilly plot, and so finding the highest peak is a challenged. The equation is given

by:

fitness = x*Math.Sin(4*Math.PI*x)-y*Math.Sin(4*Math .PI*y+Math.PI)+1;

The optimum is at f (1.63, 1.63) =4.25 which is the highest peak at the center of the plot.

By considering an antibody as a potential solution (i.e. a cell object which has x-y value) and the

fitness function as the antigen, then the degree of fit or binding represents the quality of the

solution. If we start with an initial population of antibody solutions and test them against the

fitness function (antigen), then those with the highest affinity (i.e. best fit) are allowed to clone

and mutate in the hope of finding a better solution[18,19].

3.2 Objective function1

• f(x,y) = x * sin(4.PI.x) –y * sin(4.PI.y + PI) + 1

This function has several local maxima and minima and the optimal solution for them is at f

(1.63, 1.63) = 4.25 for maximization problem. The graph below shows the function between [-1,

2].

~ 28 ~

 Figure 3.1: Objective function1

Consequently, an immune algorithm can be devised as follows:

1. Generate an initial population of antibodies

2. Perform clonal selection to generate high affinity clones and mutate

3. Remove antibodies whose affinity with the antigen is less than a predefined threshold

4. Calculate affinity interactions between all antibodies in the system

5. Remove antibodies whose affinity with other antibodies is below a predefined

threshold

Introduce randomly generated antibodies into population (diversity)

Repeat steps 2 to 6 until the stopping criterion is met.

The best fit clones would be plotted with the help of Zed graph.

~ 29 ~

3.3 Algorithm of Multi Model Optimization:

The code contains five essential classes. These are:

• the main form class which provides a simple GUI

• the immune algorithm controller class

• the antibody class

• the fitness function class

• the Zed graph class

The code has been commented and so should be straightforward to follow:

The fitness function class has a static method called evaluateFunction(), which returns the fitness

value given x and y input values. The antibody class attempts to model a biological antibody cell.

It has methods for cloning itself, finding the affinity with another antibody and an affinity based

mutation. Each antibody represents a candidate solution, which in this example is simply an x-y

value. The immune algorithm controller class allows parameters to be defined, and has a method

called GoOptimise() which creates an initial population of antibodies and iterates a solution until

the stopping criteria (a maximum number of generations) is reached.

3.4 Objective function2

• f(x,y) = –2[2.sin(x) + 2.sin(y)] – 4cos(x/2) – 4cos(y/2) – 4cos(x)

This function is of potential energy of a two bar pendulum with data

 weight W1=2, W2=2, Lengths L1= 2, L2=2, and

 p(weight of lowest pendulum) =2

~ 30 ~

 Figure 3.2: Objective function2

 total potential energy is given by

 P.E= - P [(l1.sin(x) + l2.sin(y))] - W1.L1.cos(x)/2 - W2 [l2.cos(y)/2 + l1.cos(x)]

 Where x = first angle, and

 Y= second angle

Lower bound = 0 (in degrees)

Upper bound = 90 (in degrees)

~ 31 ~

CHAPTER 4: CSA & GA EVALUTION

4.1 Introduction of CSA

we discussed the clonal selection principle and the affinity maturation process, which will be

used as the fundamental basis for the development of the clonal selection algorithm (CSA).

The main immune aspects taken into account were:

• maintenance of the memory cells functionally disconnected from the repertoire;

• selection and cloning of the most stimulated individuals;

• death of non-stimulated cells;

• affinity maturation and re-selection of the higher affinity clones;

• generation and maintenance of diversity; and

• hypermutation proportional to the cell affinity.

4.2 Steps of CSA

The algorithm works as follows (see Figure):

(1) Generate a set (P) of candidate solutions, composed of the subset of memory cells (M) added

to the remaining (Pr) population (P = Pr + M);

(2) Determine the n best individuals Pn of the population P, based on an affinity measure;

(3) Clone (reproduce) these n best individuals of the population, giving rise to a temporary

population of clones (C). The clone size is an increasing function of the affinity measure of the

antigen;

(4) Submit the population of clones to a hypermutation scheme, where the hypermutation is

proportional to the affinity of the antibody. A maturated antibody population is generated (C*);

~ 32 ~

(5) Re-select the improved individuals from C* to compose the memory set. Some members of

the P set can be replaced by other improved members of C*;

(6) Replace d low affinity antibodies of the population, maintaining its diversity.

For each problem to be presented, the coding and affinity measure adopted will be discussed

separately[18,19].

Steps 2 and 3 are crucial in this algorithm. If we choose n = N in Step 2, i.e. the number of

highest affinity individuals equals the number of candidates, each member of the population will

constitute a potential candidate solution locally, implying a local exploitation of the shape-space,

characterizing a greedy search. In addition, if all the individuals are accounted locally, their

clones (Step 3) will have the same size. In all the example applications, steps 2 and 3 were taken

as discussed in this paragraph.

The clonal selection algorithm reproduces those individuals with higher affinities and selects

their improved maturated progenies. This strategy suggests that the algorithm performs a greedy

search, where single members will be locally optimized (exploitation of the surrounding space),

and the newcomers yield a broader exploration of the search-space. This characteristic makes the

CSA very suitable for solving multi-modal optimization tasks and, as an illustration, consider the

case of maximizing the function f(x,y) = x.sen(4px)-y.sen(4py+p)+1, depicted in Figure 37, in the

compact region [-1,2] ´ [-1,2] Notice that this function is composed of many local optima and a

single global optimum at f(1.63,1.63) = 4.25.

We employed the Hamming shape-space, with binary strings representing real values for the

variables x and y. The chosen bitstring length was L = 22, corresponding to a precision of six 80

decimal places. The variables x and y are defined over the range [-1, 2], and the mapping from a

binary string m = <mL,..., m2, m1> into a real number x or y is completed in two steps:

~ 33 ~

 Figure 4.1: Block diagram for algorithm implemented

• convert the binary string m = <mL,..., m2, m1> from base 2 to base 10:

(< �� , …��, �� >)� = (� �
 . 2

��

��
)�� = ��

~ 34 ~

• find the corresponding value for x ,� = −1 + � , �
����� where -1 is left boundary of

domain ,and 3 is it’s length

The affinity measure corresponds to the evaluation of the function f(x,y) after decoding x and y,

as described above.

Figure (a) and (b) presents the evolved populations, after 100 generations, by the standard

genetic algorithm (see Section 10.3.3 for a brief description of the standard genetic algorithm

GA) and the clonal selection algorithm (CSA), respectively. Notice that the genetic algorithm

guided the whole population towards the global optimum of the function, while the CSA

generated a diverse set of local optima, including the global optimum.

 Figure 4.2: Function f(x,y) = x.sen(4px)-y.sen(4py+p)+1 to be optimized by the CSA

 and standard GA.

~ 35 ~

Figure 4.3: Function x.sen(4px)-y.sen(4py+p)+1 optimized (100 generations) by

 the GA (a) and CSA (b).

Figure 4.4: Evolutionary behavior of the decoded average value of f(x,y) (a) and

the maximum value (b), for the genetic and clonal selection algorithms.

~ 36 ~

Figure (a) compares the decoded average value of the function f(x,y), for the whole population,

evolved by the GA and the CSA algorithms. Figure 39(b) depicts the best individuals (candidates

with higher values for f(x,y)) of the populations for each algorithm. The GA approach presented

a greater average value, indicating a less diverse set of individuals. Both strategies successfully

determined the global optimum.

4.3 Code description

The antibodies (candidate solutions to the function optimization problem) that are generated by

the immune algorithm are displayed in a text box. The final value i.e. the

best fit would be displayed with the help of Zed Graph. The best antibody is displayed

first, and should be a good match to the required solution for this problem which, as stated

above, is 4.25 at x=1.63 and y=1.63. An immune

Algorithm is a non-deterministic algorithm, meaning that it gives different results on different

runs.

 It is necessary to set threshold values for removing (suppressing) antibodies from the population

pool (clonalSelectionThreshold, removeThreshold). The settings used for these threshold values

were derived by a process of trial and error. The parameter called antibodyNumber determines

the initial number of antibodies used to

solve the problem or, in biological terms, neutralise the antigen.. The cloneNumber parameter

sets the number of clones generated during clonal selection. Affinity based mutation is set using

the mutationFactor parameter. Constraints for the x and y values

are imposed using the lowerBoundary and upperBoundary parameters.

~ 37 ~

4.4 GA(genetic algorithm)

There is potential for further investigation. It would be interesting to look into the discrimination

between antibodies destined to be deleted and those not, and new types of operators for cloning

and mutation. Many other sine functions are available for calculating the best fit value.

The Genetic Algorithms (GAs) constitute stochastic evolutionary techniques whose search

methods model some natural phenomena: genetic inheritance and Darwinian strife for survival.

GAs perform a search through a space of potential solutions, which are distinguished by the

definition of an evaluation (fitness) function, which plays the role of an environment feedback.

A genetic algorithm (or any evolutionary program) for a particular problem, must have the

following five components (Michalewicz, 1996):

o a genetic representation for potential candidate solutions;

o a way to create an initial population of potential solutions;

o an evaluation (fitness) function;

o genetic operators that alter the composition of an offspring;

o values for the various parameters used by the algorithm: population sizes, genetic

 operators probabilities, etc.

~ 38 ~

Figure 4.5: Block diagram for the standard genetic algorithm (GA), where PI

is the intermediate population

There are number of ways to implement genetic algorithm (GA) as it is more of domain specific
and mutation and crossover functions vary greatly according to the problem.

We will implement GA in these objective functions

Objective function

• f(x,y) = x * sin(4.PI.x) –y * sin(4.PI.y + PI) + 1

This function has several local maxima and minima and the optimal solution for them is
at f (1.63, 1.63) = 4.25 for maximization problem. The graph below shows the function
between [-1, 2].

~ 39 ~

CHAPTER 5: RESULTS AND DISCUSSION

We have implemented immune and genetic algorithms both now we will check the

result. and check and compare which algorithm is better than other based on generation size. We

will use graph to compare the result in which one direction shows the affinity of antibody or

clone or gene. Both of the algorithms not guarantying the optimum result. And the result may be

different in every time program is run because it use random variable for mutation so it will be

different maximum time . this randomness provide the dynamic approach every time

We will use the same objective function to compare the result . and we also make the

table of performance. Both algorithms gave the different result every time because we are using

random variables in mutation . it provides a dynamic approach that have low probability that

algorithms stuck in local maxima or minima.

Objective function

f(x,y) = x * sin(4.PI.x) –y * sin(4.PI.y + PI) + 1

Optimal solution found using following parameters for genetic algorithm:

• Number of variables in the objective function = 2

• Genome size = 2 * chromosome size = 24

• Lower bound for x = -1

• Lower bound for y = -1

• Upper bound for x = 2

• Upper bound for y = 2

• Crossover rate = 80 %

• Mutation rate = 3 %

• Population size = 5,10,20

• Generation size =10,100.500,1000(It will act as a terminator for program)

~ 40 ~

Real values

 x = 1.63, y = 1.63

Value for objective function = 0.95,2.18,3.25,4.25

Objective function

f(x,y) = x * sin(4.PI.x) –y * sin(4.PI.y + PI) + 1

Optimal solution found using following parameters for clonal selection algorithms:

No. of antibody =2

No of clones =5,10,20,30

Generation size =10,100,500,1000

Lower bound = -1

Upper bound = 2

Out put = 3.25,4.25,4.25,4.25

The table below show that performance of immune algorithm gave batter result when population

size is low and generation size also low and genetic algorithm gave very poor performance as

compare to CSA. as we increasing in the parameter that affect the results we find GA

performance increase gradually and finally both gave the same result as we expecting. And it is

also very close to real values of function.

~ 41 ~

S.No. No. of
population/clones

No. of
generation

CSA GA

 X Y affinity X Y fitness

1. 5 10 1.134 1.688 3.32 0.28 -0.513 0.957

2. 5 2000 1.624 1.627 4.25 1.618 1.625 4.24

3. 10 100 1.628 1.627 4.25 1.725 1.053 2.18

4. 20 200 1.627 1.628 4.25 1.623 -0.623 3.25

5. 20 500 1.628 1.627 4.25 1.628 1.628 4.25

6. 30 1000 1.628 1.628 4.25 1.628 1.627 4.25

7. 40 2000 1.629 1.628 4.25 1.628 1.624 4.25

 Table 1 : Result of CSA & GA on same parameter

~ 42 ~

~ 43 ~

~ 44 ~

~ 45 ~

~ 46 ~

 Result shows that if No. of population size, clone size and generation size is same(5,5,100) than

CSA perform batter than genetic algorithms.

~ 47 ~

Result shows that if No. of population size, clone size and generation size is same(10,10,200) than
CSA perform batter than genetic algorithms.

~ 48 ~

Result shows that if No. of population size, clone size and generation size is same(20,20,500) than
CSA perform batter than genetic algorithms.

~ 49 ~

Result shows that if No. of population size, clone size and generation size is same(30,30,1000) than
CSA perform batter than genetic algorithms.

~ 50 ~

CHAPTER 6: CONCLUSION

The Clonal Selection Algorithm performs its search, through the mechanisms of somatic

mutation and receptor editing, balancing of the best solutions with the exploration of the

search-space. We have seen that the result improves with the number of generations.

The research was done to compare the result of Clonal Selection Algorithm with Genetic

Algorithm. During the research it was found that Clonal Selection Algorithm maintains a

diverse set of local optimum solutions, while the Genetic Algorithm tends to polarize the

whole population towards the best one. The result depends upon the error generated. The

system is developed to find the non-self of the body.

The tool was developed on C#.Net on Windows platform and has compared the two

algorithms using Zed-Graph. It was found that when the size of the generation is small,

both the algorithms give nearly equivalent results. But as we increase the size of the

generation, immune algorithm tends to perform more and more better. This makes a

decision in the favor of immune algorithm.

~ 51 ~

CHAPTER 7: FUTURE WORK

 During the last three decades there has been a growing interest in algorithms

which rely on analogies to natural phenomena such as evolution, heredity, immunity and

so on. The emergence of massively parallel computers made these algorithms of practical

interest. All of these research above provide the possibility for the emergence of

evolutionary algorithms, DNA computation techniques, artificial intelligence methods,

etc.

Immune algorithms becoming very popular from last decade . So here is lot of work has

to be done. It produces very efficient tool for computing large problems. There are many

modification may be possible in clonal selection algorithms.

Genetic algorithm is a powerful tool to solve variety of NP-hard problems. But, it is also

very domain dependent that is we cannot apply same algorithm for all known type of

problems. We have to change Genome structure of GA according to the problem within

hand. This is not an easy task because it needs a variety of encoding and decoding

techniques and also mutation and crossover function need to be changed. Therefore, a lot

can be done in this area.

 To get an idea about problems solved by GA, here is a short list of some applications:

• Nonlinear dynamical systems - predicting, data analysis

• Designing neural networks, both architecture and weights

• Robot trajectory

• Evolving LISP programs (genetic programming)

• Strategy planning

• Finding shape of protein molecules

• TSP and sequence scheduling

• Functions for creating images

~ 52 ~

As far as this project is concerned, all the three functions have not tested the capability of

this project. This algo is designed for taking any number of parameters x1, x2, x3 and so

on. We have tested it only on two variables objective function. Therefore, it is not limited

to only three objective functions given. As long as bit string encoding is good for any

optimization problem like in case of real numbers we can implement this GA for that

problem.

Genetic algorithm is a probabilistic solving optimization problem which is modeled on a

genetic evaluations process in biology and is focused as an effective algorithm to find a

global optimum solution for many types of problem. It has been shown that the genetic

algorithm perform better in finding areas of interest even in a complex, real-world scene.

Genetic Algorithms are adaptive to their environments, and as such this type of method is

appealing to the vision community who must often work in a changing environment.

However, several improvements must be made in order that GAs could be more generally

applicable. Grey coding the field would greatly improve the mutation operation while

combing segmentation with recognition so that the interested object could be evaluated at

once. Finally, timing improvement could be done by utilizing the implicit parallelization

of multiple independent generations evolving at the same time.

There are many limitations of GA which needs to be worked upon. It includes the

following.

• The Genetic Algorithm requires that population considered for the evolution

should be moderate or suitable one for the problem (normally 20-30 or 50-100)

• It is also necessary that crossover rate should be 80%-95% for better results.

• Mutation rate should be low i.e. 0.5%-1% for genetic algorithm to work properly.

We also require developing new crossover methods for more convergence in single step. Also

there should be new mutation methods for reducing divergence due to excess mutation and a

function to decide the initial number of population.

~ 53 ~

CHAPTER 8: REFERENCES AND

BIBLIOGRAPHY

[1] Jerne, N. K. (1973), “The Immune System”, Scientific American, 229(1), pp. 52-60.

[2] Jerne, N. K. (1974), “Towards a Network Theory of the Immune System”, Ann. Immunol.

(Inst. Pasteur) 125C, pp. 373-389.

[3] Janeway Jr., C. A. (1992), “The Immune System Evolved to Discriminate Infectious

Nonself from Noninfectious Self”, Imm. Today, 13(1), pp. 11-16.

[4] Janeway Jr, C. A. & P. Travers (1997), “Immunobiology The Immune System in Health

and Disease”, Artes Médicas (in Portuguese), 2nd Ed.

[5] Mannie, M. D. (1999), “Immunological Self/Nonself Discrimination”, Immunologic

Research, 19(1), pp. 65-87.

[6] Learning and Optimization Using the Clonal Selection Principle 2002

[7] L. N. de Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence

Approach. London, U.K.: Springer-Verlag, 1996

[8] An interdisciplinary perspective on artificial immune systems J. Timmis, P. Andrews, N.

Owens, E. Clark (2008)

[9] www.cs.ucl.ac.uk/staff/p.bentley/teaching/L9_AIS.pdf

[10] http://www.kxcad.net/cae_MATLAB/toolbox/gads/f10173.html

[11] http://www.msci.memphis.edu/~dasgupta

[12] http://www.cs.princeton.edu/~stevenk/

[13] http://www.zpr.Uni-Koeln.DE/~filippo/

[14] http://www.cs.ucl.ac.uk/staff/J.Kim/

[15] Mr. Kashif Waqas1 Dr. Rauf Baig1and Dr. Shahid Ali2,Feature Subset Selection Using

 Multi-Objective Genetic Algorithms

[16] Deb, K. “Multi-Objective Optimization Using Evolutionary Algorithms”. Reading, John

 Wiley & Sons, Ltd, Reprinted April 2002.

~ 54 ~

[17] Srinivas, N., Deb, K. “Multi-Objective Optimization Using Non-Dominated Sorting In

 Genetic Algorithms”. Evolutionary Computation, Vol. 2. No. 3, pp 221–248, 1994.

[18] Artificial Immune System: Part-1, By Leandro Nunes de Castro

[19] Artificial Immune System: Part-2, By Leandro Nunes de Castro

[20] Dasgupta, D., (1997), “Artificial Neural Networks and Artificial Immune Systems:

 Similarities and Differences”, Proc. of the IEEE SMC, 1, pp. 873-878.

[21] Leandro Nunes de Castro(2002), comparing immune and neural network .

[22] S. Rajasekaran, G A Vijaylakshmi pai “neural network, fuzzy logic ana genetic

 Algorithms” prentice hall india 2006

[23] Yang, y, and C.K Soh (2000) fuzzy logic integrated genetic programming for optimization

 and design ASCE

~ 55 ~

 APPENDIX

 ZED GRAPH

Zed Graph is a class library, Windows Forms User Control, and ASP web-accessible control for

creating 2D line bar and pie graphs of arbitrary datasets. The classes provide a high degree of

flexibility- almost every aspect of the graph can be user modified. At the same time, usage of the

classes provides high degree of flexibility- almost every aspect of the graph can be user

modified. Zed Graph is compatible with .Net 2.0 and VS.Net 2005.

Using Zed Graph as a User Control:

Zed Graph is accessible as a control from the control toolbox in Visual Studio .Net.

To access Zed Graph first launch Visual Studio .Net, and create a new Windows Application

(Forms) project. Open the form design so that it appears in the current window. View the toolbox

and right click inside the “General” or “Components” sub panel of the tool box and select

“Choose item” option. Click browse and navigate to the zed graph.dll file. Once this file is

added, you should see a Zed Graph Control option in the tool box.

1. Select add reference from project menu and use the browse button to find Zed Graph.dll

and click ok.

2. Add a using Zed Graph entry to your main form code.

3. Drag the Zed Graph Control from the tool box over to the form.

4. All the Zed Graph functionality is accessible through the ZedGraphControl. MasterPane

property.

