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                                                                              Abstract 
 
 
Photonic Crystal Fibers are single material optical fibers with an array of periodic 

array of air holes running down its entire length. By leaving a single lattice site with-

out an air hole, a localized region, which has a higher refractive index than the rest 

of the structure, will be formed. These fibers are being in active research because of 

its unusual & attractive optical properties like single mode operation in wide wave-

length range, large mode area, excitation of non-linear effects at small mode area, 

and manageable dispersion properties etc. which are not achieved in standard silica 

glass fiber. Non-silica glasses such as telluride, fluoride and chalcogenide glasses 

have been used for formation of PCF because of its excellent optical transparency in 

the longer wavelength infrared (IR) region. In this project, we present the raman 

gain characteristic  and Supercontinuum generation (SCG) in non-linear photonic 

crystal fibers (PCFs) by using the RSOFT(optisim) software. 

 

 To design the nonlinear PCF here we considered the new material i.e. telluride 

glass. The nonlinear refraction coefficients n2  of  telluride glass is 42 times higher 

than that of silica. The variation of effective index of guided mode and  dispersion 

with wavelength in hexagonal lattice telluride glass PCF is calculated by using finite 

element method (FEM).  

 

The raman gain characteristics of Telluride PCF is  calculated by using Rsoft-

optisim software. We also compare the gain characteristics of telluride glass PCF 

with conventional silica PCF and find out that the Raman gain in Telluride PCFs can 

be highly improved than silica PCF. For SCG I reproduce the result of Dudley et al. 

(2006) with the help of RSOFT Optisim software and also show the effect of vary-

ing the power and pulse width on the bandwidth of the spectra. 
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1.1 INTRODUCTION:-  

Communication may be broadly defined as the transfer of information from one 

point to another. When the information is to be conveyed over any distance a 

communication system is requires. Within a communication system the               

information transfer is frequently achieved by superimposing or modulating the 

information on to an electromagnetic wave which acts as a carrier for the          

information signal. An optical fiber communication system is similar basic     

concept to any type of communication system. 

An optical fiber is a cylindrical dielectric waveguide that transmits light along its 

axis, by the process of total internal reflection. The fiber consists of a core        

surrounded by a cladding layer, both of which are made of dielectric materials. 

To confine the optical signal in the core, the refractive index of the core must be 

greater than that of the cladding. Light pulses move easily down the fiber-optic 

line because of a principle known as total internal reflection.  

 

 

                                            Fig:1. Silica fiber [4] 
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Fibers are classified according to the number of modes that they can propagate. 

 

 

 

 

 
 

 

 

 

 

 

1.1.1Single mode fiber  :- 

                                   

                   Single mode fibers can propagate only the fundamental mode means 

only one mode, because the core size approaches the operational wavelength . 

 

(a) The core size (diameter) of single mode fiber is typically around 8 to 10 mi cro  

     meters. A fiber core of this size allows only the fundamental or lowest order   

     mode to propagate around a 1300 nanometer (nm) wavelength.  

 

(b) The value of the normalized frequency parameter (V) relates core size with mode  

      propagation. In single mode fibers, V is less than or equal to 2.405.  

 

(c) Single mode fibers have a lower signal loss and a higher information capacity  

      (bandwidth) than multimode fibers. Single mode fibers are capable of transfer  

      ring higher amounts of data due to low fiber dispersion 

           FIBER 

SINGLE       MULTIMODE 

Single mode step-
index fibers  

Single mode 
graded-index fibers  

Multimode step-
index fibers  

Multimode graded-
index fibers  
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1.1.2Multimode fiber:- 

  

                Multimode fibers can propagate hundreds of modes. As their name im-

plies, multimode fibers propagate more than one mode. Multimode fibers can 

propagate over 100 modes.  

   

(a) The core size (diameter) of multimode mode fiber is typically around  50 to 100  

      μm.  

  

(b) The value of the normalized frequency parameter (V) relates core size with  

      mode propagation. In single mode fibers, V is greater than 2.405.  

 

 

(c) The number of modes propagated depends on the numerical aperture (NA). As   

      the NA increase, the number of modes increases. Typical values of NA is  0.20  

      to 0.29, respectively.  

                Classical optical fibers perform very well in telecom and non-telecom 

applications, but there is a series of fundamental limits related to their structures. 

The fibers have rigid design rules to fulfill: limited core diameter in the                  

single-mode regime, modal cut-off wavelength, limited material choice (thermal 

properties of core glass and cladding glass must be the same). Now a days,           

research is focus on the use of single material for the formation of optical fiber 

known as Photonic crystal fiber (PCF). The design of PCFs is very flexible. In PCF 

we are easily able to manipulate several parameters like: lattice pitch          (hole-to

-hole spacing), air hole shape and diameter, refractive index of the glass, and type 

of lattice. Freedom of design allows one to obtain endlessly single mode fibers, 

which are single mode in all optical range and a cut-off wavelength does not exist. 

Combining properties of optical fibers and photonic crystals they possess a series 

of unique properties impossible to achieve in classical fibers. 
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1.1.3 PHOTONIC CRYSTAL FIBER:- 

                        With growing demand of high speed, large speed, large bandwidth, 

miniaturization of circuits, scientists throughout the world switching over to light 

because light has several advantages compared to electrons. Inspite of numerous 

advantages of photons, all optical circuits have yet to become commercially avail-

able on a large scale. A new class of optical materials, known as Photonic Crystals 

(PCs) or photonic bandgap materials, holds the key for the        development of 

novel all optical integrated circuits of small dimensions. PCs are artificial       

structures employing a periodic structure designed to influence the        behavior of 

photons in the same way as a semiconductor crystal affects the       properties of 

electrons.  

                               Photonic Crystal Fibers are single material optical fibers with 

an array of periodic array of air holes running down its entire length. The idea of a 

photonic crystal fiber was presented for the first time by Yeh et al. in 1978. They 

proposed to clad a fiber core with Bragg grating, which is similar to 1D photonic 

crystal. A photonic crystal fiber made of 2D photonic crystal with an air core was 

invented by P. Russell in 1992 and the first PCF was reported at the Optical Fiber 

Conference (OFC) in 1996 .  

 

                               By leaving a single lattice site without an air hole, a localized 

region, which has a higher refractive index than the rest of the structure, will be 

formed. This localized region acts as a waveguide core in which light can be 

trapped along the axis of the fiber. PCF uses the photonic crystal cladding as an  

effective index medium to form wave guiding cladding. The regularity of photonic 

crystal cladding allows one to treat it as an effective medium which facilitates the 

analysis of the properties of the medium and hence the wave guiding characteris-

tics. The unusual properties of PCFs arise from the strong wavelength dependence 

of the effective cladding index. There are two guiding mechanisms in PCF: index 
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guiding mechanism (similar to the one in classical optical fibers) and the photonic 

bandgap mechanism. By manipulating the structure it is possible to design desired 

dispersion properties of the fiber. PCFs having zero, low, or anomalous dispersion at 

visible wavelengths can be designed and fabricated. The dispersion can also be     

fattened over a very large range. Combining anomalous dispersion with small mode 

field areas results in outstanding nonlinear fibers. On the other hand large, solid or 

air core single mode fibers can be achieved.  

1.1.4 Overview of photonic crystal fibers development:- 

1978 Idea of the Bragg fiber 

1992 Idea of the photonic crystal fiber with air core 

1996 Fabrication of a single-mode fiber with photonic coating 

1997 Endlessly singe mode PCF 

1999 PCF with photonic bandgap and air core 

2000 Highly birefringent PCF 

2000 Supercontinuum generation with PCF 

2001 Fabrication of a Bragg fiber 

2001 PCF laser with double cladding 

2002 PCF with ultra-fattened dispersion 

2003 Bragg fiber with silica and air core 
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1.2. Theory:- 

In standard optical fibers, the parameter which is most often discussed is the propa-

gation constant β along the direction of the fiber axis. When there is no change in 

the structure along this direction, light launched with a given β will maintain this 

value throughout the entire length. In order to form a mode which is guided in the 

core of the structure, the light must have a β ≤ ncl ko where ncl is the index of the 

cladding and  ko is the propagation constant in free space, k = 2π λo . From this 

value of β , it is also common to define an effective index of the mode, where  neff 

= β /ko . Depending on the structure of the waveguide, there will be a certain range 

of effective indices, or propagation constants, which are allowed to propagate. In a 

normal fiber, where the core index is greater than the cladding, guided modes can 

propagate in a range of effective indices between the index of the core and the 

cladding. This is also the case for the structure on the left in (figure ), where the 

index of the cladding can be thought of as being reduced by the presence of the air-

holes . For the hollow core fiber, there are, depending on the makeup of the struc-

ture, bands of allowed and disallowed effective indices or propagation constants 

which can propagate. 

 

 

 

 

 

 

 

 

 

Figure2 . Diagram showing behavior of glass core/air hole fiber. [5]  
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In the glass core/ air hole structure, the primary difference between this, and the 

ordinary fiber is the distinction between a guided and an unguided mode . In       

traditional fibers guided modes have real propagation constants and are lossless, 

while non-guided modes have a complex β where the imaginary part is related to 

the loss. 

In the micro-structured fibers, all modes experience some tunneling effects due to 

the periodicity of the holes and thus have complex β and effective indices. From 

experimental data gathered by reference  the diagram below was developed. In the 

above figure there are four primary sections of interest with regards to the            

behaviour of light in the above structure. The blue line of course represents where 

the fiber becomes multi-mode. In the region CF1, it has been shown that the      

fundamental guided mode fills the entire cross section of the fiber and behaves    

according to traditional fiber optic theory. In the region CF2, the mode is more 

strongly confined to the core and also behaves according to classical theories . It is 

the portion of the above figure which falls between the two black lines which      

becomes very different from traditional fibers and starts to display a strong        

sensitivity to parameters such as d the hole width, Λ the pitch, and also the number 

of rings of the structure rN. The point at which the fiber becomes multimode is of 

great importance in designing a structure for the guidance of light. In standard     

optical fibers, such as the step-index fiber, a parameter known as the V-number is 

often used to characterize this point. This well known equation is 

 

 

where r is the core radius of the fiber. In photonic crystal fibers (PCF) the radius of 

the core is not well defined. However, an expression for the V-number for these 

micro-structured fibers has recently been derived by reference  as 

 

                                                                  

       where  nc  is the effective core index for the fundamental mode and  ncl is  

similarly the effective index of the fundamental “space-filling mode”.  

2 22( )PCF c clV n nπλ
λ
Λ= −

2 22( ) core cladding
rV n nπλ

λ
= −
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1.3.Types of PCF:- 

1.3.1 Solid core PCF:-  These fibers, also known as index-guiding PCFs, guide 

light through a form of total internal reflection (TIR), called modified TIR. In     

index- guiding PCFs, light is trapped in a high index core by a mechanism similar 

to the total internal reflection in standard fibers. The cladding region consists of a 

hexagonal array of airholes, with a missing air hole defining the core. An attractive 

property of the silica PCFs is that effective index contrasts much higher than in 

standard fibers may be obtained by making the airholes large, and/or by making 

the fiber dimensions small so that the light is forced into the airholes . In this 

way ,strong mode confinement can be obtained, which in turns leads to enhanced 

nonlinear effects due to high field intensity in the core. 

 

 

 

 

 

                                                Fig3:- SOLID CORE FIBER [12] 

Guiding Mechanism OF Solid core PCF:- In order to form a guided mode in an 

optical fiber, it is necessary to introduce light into the core with a value of β, that is 

the component of the propagation constant along the fiber axis, which cannot 

propagate in the cladding. The highest value that can exist in an infinite                 

homogeneous medium with refractive index n is β = nk0, being k0 the free-space 

propagation constant. All the smaller values of β are allowed.  
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                                          If the defect of the structure is realized by removing the 

central capillary, then guiding of an electromagnetic wave in a photonic crystal fiber 

can be regarded as a modified total internal refection mechanism. The modification 

is due to the network of air capillaries that leak higher modes so that only one       

fundamental mode is carried. This is the mode with the smallest diameter, close to 

the size of the defect, i.e., to the lattice constant of the periodic structure.  A fiber is 

single-mode if d/Λ < 0.4, where d is the diameter of the air channel and Λ is the  

crystal lattice constant. The guiding of light in a photonic crystal fiber was first  

demonstrated in 1996 in a solid-core fiber (solid core guidance) .In a lattice of air 

capillaries, the central one was replaced by a rod. 

                                              

   As shown in Figure , another design is to use solid-core photonic crystal fiber. This 

structure refracts light at steep angles of incidence on the core-cladding boundary. 

When the angle is shallow enough, light is trapped in the core and guided along the 

fiber. 

 

 

 

 

 

 

 

 

 

 

                                    Fig4:- Guiding mechanism in solid core fiber [12] 
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1.3.2 Hollow core PCF:- Hollow-core optical fibers are able to guide light in an 

air core by using the photonic bandgap guidance mechanism. The air core is      

surrounded by a microstructure that typically consists of a pattern of air holes     

extending longitudinally along the fiber. The microstructure has photonic         

bandgaps, and light of wavelengths corresponding to these is strongly reflected by 

the microstructure and guided in the core of the fiber. 

 

 

 

 

 

 

 

 

                                         Fig5:- Hollow core fiber [12] 

Guiding Mechanism OF Hollow core PCF:-If the central defect is realized by 

inserting a central air capillary, which has a diameter different than other               

capillaries (usually bigger), then we can obtain a photonic bandgap (PBG). Light 

guidance is then an analogue of a mechanism known in solid state physics as the 

electron conduction mechanism in materials with an energy-band structure. In 

1997 the guiding of light in an air defect was demonstrated (hollow core PGB 

guidance). A few central capillaries were removed from a hexagonal lattice leaving 

a large hole filled with air. Periodically distributed air cores can form an artificial 

2D photonic crystal structure with lattice constant similar to the wavelength of 

light. In the 2D crystal structures photonic band gaps exist that prevent propagation 

of light with a certain range of frequencies. If periodicity of the structure is broken 

with a defect (lack of air cores or large air core) a special region with optical       

properties different from the photonic crystal is created. The defect region can  
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support modes with frequencies falling inside photonic bandgap, which prevent 

them from penetration of photonic crystal. The modes are strongly confined to the 

defects and guided along them through the fiber. Since photonic bandgap is           

responsible for confinement of the light in the core, it is not required that the defect 

region has a higher refractive index than the surrounding. 

Figure shows a hollow-core photonic crystal fiber with an appropriately formed 

cladding . This structure can guide light at angles of incidence where a photonic 

band gap operates, but otherwise refracts like a hollow-core capillary. 

 

 

 

 

 

 

                             Fig6:- Guiding mechanism in solid core fiber [12] 

1.4. Modeling methods 

Commonly used methods for modeling of optical fibers cannot be applied             

successfully in PCF modeling. These fibers have a high refractive index contrast and 

a subwavelength periodical structure. Therefore, the methods used in modeling 

photonic crystals and electromagnetic fields are adapted to this purpose.  

 

4.1 OPTI FDTD:- 

The finite difference time domain (FDTD) method is widely used for calculation of 

the evaluation of an electromagnetic field in depressive media . The wave           

propagation through the PCF structure is found by direct integration in the time    

domain of Maxwell's equations in a discrete form. Space and time is discrete in a 

regular grid. Evaluation of the electrical and magnetic field is calculated on a Yee 
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cell. In addition the boundary conditions are added (absorbing or periodic ones). 

Most often uniaxial perfect matching layer (UPML) boundary conditions are used 

for PCF modeling. The method allows obtaining transmission and refection          co-

efficients, energy flow of propagation fields (Pointing vector). It allows the       ob-

servation of a steady state field distribution as well as the temporary field                    

distribution.  

Fig7:-The Yee cell describes all components of electrical and magnetic field in a 

cube. Every component of the electromagnetic field is defined only in one place in 

the unit Yee cell. 

The FDTD method is universal, robust, and methodologically simple. The main 

drawback of this method is very high time and memory complexity of the algorithm. 

Since PCF are 3D structures with 2D refractive index distribution only short pieces 

of the fiber can be simulated with these methods. It can be successfully applied to 

model tapers, couplers, and double core coupling in the PCFs. Large volume       

simulations can be performed with computer clusters because the FDTD method can 

be relatively easily implemented as a parallel algorithm. 
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3D FDTD Equations 

In 3D simulations, the simulation domain is a cubic box, the space steps are, and in 

x, y, and z directions respectively. Each field components is presented by a 3D array 

---Ex(i,j,k), Ey(i,j,k), Ez(i,j,k), Hx(i,j,k), Hy(i,j,k), Hz(i,j,k). The field components 

position in Yee's Cell are shown in fig .  

 

 

 

 

 

 

                                                                                                                                  1.1 

 

 

       

Apart from the above-mentioned method there are several other ones used for PCF 

modeling: scattered matrix method, transferred matrix method and others. However 

mostly used are PWE, FD, and multipole methods for modeling properties of PCFs. 
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1.5. Properties of single mode photonic crystal fibers 

1.5.1. Endlessly single mode fibers:- 

PCF can be designed so that they are single mode for a large range of visual and 

near infrared spectrum. Classical step index fibers (SIFs) always have a cut-off  

frequency above which the fibers starts to be multimode. 

To determine the number of guided modes in SIF usually a normalized frequency V 

is used. V is defined as: 

 

                                                                 

 

where ρ is the core radius, ncore and ncladding are refractive indexes of the core 

and the cladding, respectively. 

                                         In the case of standard fibers, the cladding index is      al-

most wavelength in-dependent and V increases when wavelength decreases. It re-

sults in multimode operation regime for cut-off normalized frequency higher than 

2.405. 

1.5.2. Large mode area 

Conventional fibers have a strong limit on the core size and the numerical aperture 

(NA) in a single mode regime. For any wavelength and core diameter there is a 

maximum NA which makes a single mode regime of operation possible. The value 

of NA is controlled by the difference in refractive index of the core and the            

cladding. The fabrication of a standard SIF with a large mode area would require 

refractive index control in chemical vapor deposition CVD with a very high           

accuracy (10-6 and more), which limits the mode field diameter (MFD) in practice. 

Usually the MFD of conventional SIF, defined as 1/e width in intensity.  

In case of PCF MFD can vary in a single mode regime, depending on                  

requirements. Large mode areas can be engineered by increasing the lattice pitch of 

the photonic cladding, decreasing the air hole diameter or increasing the size of the 

defect in photonic cladding (removal of more than one of the central air holes). 

2 22
core claddingV n nπρ

λ
= − (1.2) 
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1.5.3 Dispersion properties:- 
Dispersion of the transmitted signal causes distortion for both digital and analog 

transmission along the optical fiber. The dispersion mechanisms within the fiber 

causes broadening of the transmitted light pulses as they travel along the channel. 

The phenomenon is illustrated in fig where it may be observed that each pulse 

broadens and overlaps with its neighbours, eventually become indistinguishable at 

the receiver input.  

 

 

 

 

 

 

                                                

 

                                                   Fig 8 :- Dispersion [4] 

In order to appreciate the reasons for the different amounts of pulse broadening 

within the various types of optical fiber, it is necessary to consider the dispersive 

mechanism involved. These include material dispersion , waveguide dispersion and 

intermodal dispersion. 

1.5.3.1 Material dispersion:- Pulse broadening due to material dispersion re-

sults from the different group velocities of the various spectral compo-

nents launched  into the fiber from the optical source. It occurs when the 

phase velocity of a plane wave  propagating in the dielectric medium var-

ies nonlinearity with wavelength and the material is said to be exhibit 

material dispersion when the second differential of the refractive index 

with respect to wavelength is not zero.  

. 
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1.5.3.2 Waveguide dispersion:- The waveguide of the fiber may also create in-

tramodal dispersion. This results, from the variation in group velocity with 

wavelength for a particular mode. Considering the ray theory approach it is 

equivalent to the angle between the ray and the fiber axis varying with 

wavelength which subsequently leads to a variation in the transmission 

times for the rays, and hence dispersion. 

                         

1.5.3.3 Intermodal Dispersion:- Pulse broadening due to intermodal dispersion 

results from the propagation delay differences between modes within the 

fiber. As the different modes which constitute a pulse in a multimode fiber 

travel along the channel at different group velocities, the pulse width at the 

output is dependent upon the transmission times of the slowest and fastest 

modes. Thus multimode step-index fibers exhibit a large amount of intra-

modal dispersion which gives greatest pulse broadening. 

 

 

1.5.3.4 Group velocity dispersion:-A key parameter that describes properties of 

fibers is a group velocity dispersion (GVD). It is defined as: 

 

                                                                                           

 

           where neff is the effective refraction index  

                          

 

                                                                                   

 

2

2
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c d
λ

λ
=

0
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eff

nn
k

β λ λ=

(1.3) 

(1.4) 
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Dispersion characteristics in PCFs can be easily shaped due to the flexibility of 

varying air-hole size and the position in the photonic cladding.  

 

Varying lattice pitch and air-hole sizes in PCFs a zero-dispersion wavelength can be 

shifted into the visible region.  

 

In case of conventional fibers the zero-dispersion wavelength is limited at a short 

wavelength side to about 1.3 μm and can be shifted only into longer wavelengths. 

The fibers with a shifted dispersion are obtained with lower refractive index ring 

around the core.  

 

If the zero-dispersion wavelength is in the visible region, it automatically gives a 

positive (anomalous) dispersion in the visible range. PCF with a positive dispersion 

can be used for dispersion compensation in the telecommunication lines.  

At longer wavelength the modal field extends into the holes, thus reducing cladding 

index as a result PCF can be single moded regardless of wavelength.  

                                 1.6 Loss mechanisms:- 

The most important factor for any optical fiber technology is loss. The minimum 

loss in fusedsilica, which is around 1550 nm, is slightly less than 0.2 dB/km. This 

limit is important, since it sets the amplifier spacing in long-haul communications 

systems, and thus is a major cost of a long-haul transmission system. 

1.6.1 Intrinsic loss:- 

The optical loss α(dB), measured in dB/km, of PCFs with a sufficiently reduced con-

finement loss, is expressed as: 

                                 α(dB) = A/λ4 + B + αOH + αIR ,                                            (1.5) 
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being A, B, αOH, and αIR the Rayleigh scattering coefficient, the imperfection loss, 

and OH and infrared absorption losses, respectively. At the present time the losses in 

PCFs are dominated by OH-absorption loss and imperfection loss. In a typical PCF 

the OH-absorption loss is more than 10 dB/km at 1380 nm and this causes an addi-

tional optical loss of 0.1 dB/km in the wavelength range around 1550 nm. Since this 

contribution is very similar to the intrinsic optical loss of 0.14 dB/km for pure silica 

glass at this wavelength, the OH-absorption loss reduction becomes an important 

and challenging problem. Most of the OH impurities seem to penetrate the PCF core 

region during the fabrication process.  

As a consequence, a dehydration process is useful in reducing the OH-absorption 

loss. Imperfection loss, caused mainly by air-hole surface roughness, is another seri-

ous problem. In fact, during the fabrication process, the air-hole surfaces can be af-

fected by small scratches and contamination. If this surface roughness is comparable 

with the considered wavelength, it can significantly increase the scattering loss. 

Thus, it is necessary to improve the polishing and etching process, in order to reduce 

the optical loss caused by this roughness. Moreover, fluctuation in the fiber diameter 

during the fiber drawing process can cause an additional imperfection loss, if the air-

hole size and pitch change along the fiber. It is important to underline that the 

Rayleigh scattering coefficient of PCFs is the same as that of a conventional SMF. 

However, this is higher than that of a pure silica-core fiber, although the PCF is 

made of pure silica glass. It is necessary to reduce the roughness further, in order to 

obtain a lower imperfection loss and a lower Rayleigh scattering coefficient. It is 

fundamental to fabricate long PCFs with low loss, if they are to be used as transmis-

sion media.   

1.6.2 Confinement loss:- 

There is also the confinement loss, which is related to the imaginary effective index 

and decreases very fast with each additional layer of air holes. 
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be used as transmission media.   

1.6.4 Attenuation:-  
Attenuation in an optical fiber is caused by absorption, scattering, and bending 

losses. Attenuation is the loss of optical power as light travels along the fiber. Sig-

nal attenuation is defined as the ratio of optical input power (Pi) to the optical output 

power (Po). Optical input power is the power injected into the fiber from an optical 

source. Optical output power is the power received at the fiber end or optical detec-

tor. The following equation defines signal attenuation as a unit of length:  

                              

                             

 

Signal attenuation is a log relationship. Length (L) is expressed in kilometers. There-

fore, the unit of attenuation is decibels/kilometer (dB/km). As previously stated, at-

tenuation is caused by absorption, scattering, and bending losses. 
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                      1.7.Advantages over conventional optical fiber: 

1.  One interesting feature of PCFs is that many physical properties can be engi-

neered from the microstructure. For example, the waveguide dispersion can be 

engineered to have the zero dispersion wavelength at any wanted wavelength. 

This can become extremely interesting for nonlinear applications, where nor-

mal dispersion is a limiting factor. By changing the core diameter of sus-

pended-core fibers, the Zero Dispersion Wavelength can be shifted to the visi-

ble range. And also, PCFs can be filled with gas or liquids to make optical gas 

sensors. 

2.   The nonlinearity of a fiber can be tailored. The effective nonlinearity of a fi-

ber is a function of the nonlinear refractive index as well as the effective area. 

Since the minimum achievable radius is a function of the numerical aperture, 

extremely small effective areas are achievable in solid-core fibers, which give 

huge nonlinearities. In complete contrast, low levels of nonlinearity in hollow-

core fibers make them very attractive for high power delivery applications. 
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2. NONLINEAR PROPAGATION IN OPTICAL FIBER 
 
The nonlinear Schrodinger equation is derived in the followings starting from the 

Maxwell’s equation. The used approximations are discussed in detail and higher 

order approximations and additional effects are described too. We note that c is 

used instead of c0 in further sections because the necessary physical constant we 

need is the speed of light in vacuum. 

  

2.1 MAXWELL’S EQUATIONS AND WAVE EQUATION: 
 
The complete equation system that can describe all electromagnetic phenomena 

are the Maxwell’s equations whose differential and integral forms are presented 

Here 

 
 
 
                                                                                                    
 
 
 
                                      
 
 
 
 
 
where H is the magnetic field vector, E is the electric field vector, B and D are 

the magnetic and electric flux densities, respectively. The current density vector 

is J and the charge density is ρ. The notation (c) under the sign of the integral 

means that the integral is carried out for a closed curve, S is for surface and V is 

for volume. 

The corresponding constitutive relations are given by 
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where ε0 = 8.885 × 10−12 As/Vm is the vacuum permittivity, μ0 = 1.2566 ×10−6 Vs/

Am is the vacuum permeability, σ is the conductibility, its unit of measure is A/Vm, 

and P and M are the induced electric and magnetic polarizations. In optical fibers the 

following quantities are zeros: J, ρ (no free charges) and M (nonmagnetic medium). 

Therefore if we take the curl of Eq. (2.1b) and using eq(2.1a,2.1c,2.1d), yields Eq. 

(2.3) where we also used the relation μ0ε0 = 1/c2 

 

 

                                                                 
 

 

 

There is a well-known vector-analytical relation for  that we can 

apply in Eq. (2.3): 
 
 
                         
 
because the fiber can be considered isotropic and ρ = 0, therefore∇E vanishes (∇D = 

ε0∇E= 0). With this substitution Eq. (2.3) becomes: 

 

                                                    

 
 
2.2 INDUCED POLARIZATION VECTOR AND SUSCEPTIBILITY 
TENSOR  
 

In order to solve Eq. (2.5) one has to determine the relation between the induced po-

larization vector P and electric field vector E. In general, a quantum mechanical ap-

proach is needed but if the applied optical frequency is far from the medium reso-

nances which means the wavelength of the field is between 0.5 and 2.2 μm (fc = 140 

− 600 THz) then the electric-dipole approximation is valid. Assuming that the me-

dium response is local, the induced polarization vector can be written as:- 

2 2

02 2 2
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c t t
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2 2
2

02 2 2
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c t t
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If the medium response is instantaneous compared to the pulse duration (τ/T0 << 

1 where T0 is the pulse width and τ is the nonlinear response time of the medium) 

then Eq.(2.6)  may be approximated by 
 
 
                       
 
 
 
 

where χ(j) is the jth order susceptibility, a tensor of rank j + 1. 

 
χ(1) – is the linear susceptibility. Its effects are included in the linear refractive index 

n0 and the attenuation coefficient α. 

 
χ(2) – is the second order susceptibility. The second order susceptibility is responsible 

for the second-harmonic generation and sum-frequency generation. It is nonzero 

only for media that has a lack of inversion symmetry at molecular level. SiO2 is a 

symmetric molecule, therefore  χ(2) vanishes for silica glasses. 

 

 χ(3) – is the third order susceptibility. It is responsible for the third-harmonic genera-

tion, four-wave mixing and nonlinear refraction. 

The following notation will be used: 

(1)
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(3)
0NLP EEEε χ=

 
                                                                                                                                (2.8) 
 
Where: 

                                                             

 
and PL denotes the linear part while PNL the nonlinear part of the induced polariza-

tion vector. 

L N LP P P= +   (2.9) 
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2.3DERIVING THE NON-LINEAR SCHRODINGER EQUATION- 
We can evaluate now a basic propagation equation from Eq. (2.5) using the (2.8) re-

lations between E and P. Here, we can make some simplifying assumptions:  

• PNL is treated as a small perturbation compared to PL (nonlinear effects are 

weak in silica fibers). 

• The optical field is assumed to maintain its polarization along the fiber 

length. 

• The optical field assumed to be quasi-monochromatic (∆ω/ω0<< 1 where ω0 

is the center frequency and ∆ω is the spectral width). 

 

According to the slowly-varying-envelope approximation it is useful to separate 

the rapidly varying part of the electric field by writing it in the form of 

 

 

                              

 

where  ˆx is the polarization unit vector of the light assumed to be linearly polarized 

along the x axis, E(r, t) is a slowly-varying function of time (relative to the optical 

period) and E* means the complex conjugate of E. 

 

Eq. (2.10) is substituted into Eq. (2.8)  and a similar form is used in the polarization 

vector as in Eq. (2.10): 

 

                            

 

0 0
1 ˆ( , ) [ ( , ) exp( ) * ( , ) exp( )]
2

E r t x E r t i t E r t i tω ω= − +

0 0
1 ˆ( , ) [ ( , )exp( ) *( , )exp( )]
2L L LP r t x P r t i t P r t i tω ω= − +

0 0
1 ˆ( , ) [ ( , ) exp( ) *( , )exp( )]
2NL NL NLP r t x P r t i t P r t i tω ω= − +

(2.10) 

(2.11) 
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A Fourier-transformation is applied on Eq. (2.5) and Eq. (2.11) are substituted and 

(2.11) in that where we express PL(r, t) and PNL(r, t) with their relation to E(r, t). The 

obtained wave equation will have a form of :- 

 

                                                   

 

where ˜E denotes the Fourier-transform of E(r, t), k0 = ω0/c and 

 

                                          

 

 

Eq. (2.12) is known as Helmholtz equation and can be solved by using the method 

of separation of variables 

 

                                         

 

where ˜E(z, ω − ω0) is a slowly varying function of z and F(x, y) is a function which 

corresponds to the transverse electric modes in the (x, y) plane if the z-axis is identi-

cal to the propagation direction. We note here, that both side of Eq. (2.14) contain 

the E function but at the left hand side it depends on all spatial coordinates while at 

the right hand side E is only z dependent. In the following, only E(z, t) will be used 

in the derivation process therefore the argument of the function will not be noted in 

all cases. 

 

                       Writing back Eq. (2.14) into Eq. (2.12) we obtain 
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The two sides of the equation depend on different variables. Therefore the right hand 

side and the left hand side must be equal with the same constant. Thus we obtain the 

following differential equations: 

 

 

 

                             

 

where β is the wavenumber and it is determined by solving the eigenvalue 

equation (2.16 a). In Eq. (2.16 b), the second derivative can be neglected be-

cause Ẽ(z, ω) is a  slowly varying function of z. 

    The eigenvalue β can be written in the form of 

                                            

where Δβ is a perturbation term and β(ω) is the frequency dependent 

mode- propagation constant. Thus, from Eq. (2.16b) we obtain 

 

                                         

 

It is useful to expand β(ω) in a Taylor-series around the carrier fre-

quency ω0. Writing back the Taylor expanded form of β(ω) to Eq. (2.18) 

and neglecting the terms that are higher than second order such as β1Δβ 

and β2Δβ . Thus we may obtain the following equation in the Fourier space 

from (2.18):  

 

                               

 

Now, performing the inverse Fourier-transformation on Eq. (2.19) and 

taking into consideration the following equations: 
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and 

 

                                    

 

F -1 means the operation of inverse Fourier-transformation. We obtain the 

next equation  

 

 

                                    

The term with Δβ includes the effect of fiber loss and nonlinearity. It can be 

evaluated from Eq. (2.16 a) using a first-order perturbation theory: 

 

                                                   

 

where γ is the nonlinear coefficient defined by 

 

                                                               

 

Aeff is the effective core area in (2.24) which is inversely proportional to the 

non-linearity. n2 is the so-called nonlinear refractive index which perturbs 

the linear index at higher intensities n = n0 + n2I. 
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The effective core area is given in the form of:- 

 

                                     

 

where F (x, y) is the transverse mode field distribution that can be obtained 

from the eigenvalue equation (2.16 a). Substituting Eq. (2.23) into Eq. (2.22) 

and making a variable transformation with 

 

                                             

 

one can obtain the NLS equation (2.17). The variable transformation 

yields the frame moving with the group velocity of the pulse envelope. This 

is the reduced time useful for describing pulse propagation in a coordinate 

system fixed to the pulse. 

The obtained differential equation describes the light propagation in a 

lossy, dispersive and nonlinear fiber can be written as  

 

                             

 
 

Which is often referred as NLS equation in the case of a = 0. Attenuation 

is described by the first term at the right-hand side in Eq. (2.27), GVD cor-

responds to the second term and nonlinearity, or SPM is the third term 

with the intensity dependence. 

In the followings, we describe more general forms of the NLS equa-

tion using higher order approximations and including an inelastic stimulated 

scattering effect. 
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Higher order dispersion and nonlinearity 

 

Equation (2.27) does not include inelastic scattering such as Raman or 

Brillouin scattering which becomes important above a threshold of pulse 

peak intensities and below a certain time duration of the pulses. Raman ef-

fect is usually important below the 1 ps time scale if the Raman threshold 

is reached which can be approximated as follows:- 

 

 

                                          

 

 

                                                                      where Leff = (1 - exp(-αL))/α is 

the effective fiber length with the pulse attenuation α and fiber length L. 

Aeff is the effective core area in Eq. (2.28) and gR is the Raman gain curve as 

a function of frequency shift. The maximal value of gR is about 10-13 m/W 

for fused silica which is approximately 13.5 THz shift from the reference fre-

quency. 

 

                                    Below 1 ps the spectral width can be broad enough 

that Raman gain transfers energy from the low-frequency components to the 

higher frequency components. 

 

This results in the self-frequency shift of the pulse whose physical ori-

gin comes from the delayed nature of Raman response. 
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In this approximation the nonlinear response of the medium is compa-

rable with the pulse width. Thus Eq. (2.14) should be used in the derivation 

of generalized nonlinear Schrödinger equation (GNLSE). Assuming the fol-

lowing functional form of the nonlinear susceptibility 

 

           (2.29) 

 
where R(t) is the nonlinear response function normalized the same way 

as the delta function .                              

Higher order dispersion terms can be easily added including higher or-

der Taylor coefficients from the expansion of β(ω) during the derivation 

process of (2.27) at the step Eq. (2.18). 

Substituting Eq. (2.29) into Eq. (2.6) and performing a similar deri-

vation process to the case of Eq. (2.27) this yields . 

     (2.30) 

 

The response function R(t) includes the electronic (instantaneous) and vibra-

tional (delayed) Raman response 

                  R(t)= (1-fR)δ(t) + fRhR(t)  

where fR is the fractional contribution of the delayed Raman response to 

the nonlinear polarization and hR(t) is the Raman response function. 

Eq. (2.30) can be simplified with the assumption Δτ>>10 fs to the fol-

lowing expression:- 
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where 

 

                                  

 

where hR is the Raman response function can be given by an approximate 

formula which has a Lorentz shape in the Fourier space 

 

 

                                            

 
 
where τ1 and τ2 are adjusting parameters with typical values in silica 

12.2 fs and 32 fs, respectively. 

Using this form of the Raman response function, the integration of 

Eq. (2.31) can be performed analytically: 

 

 

                                       

This can be used to approximate Raman scattering effect in the last term 

of (2.30). 
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2.4 NUMERICAL METHOD     
 
Split-step Fourier method 

 

The Split-Step Fourier (SSF) Method applies the linear propagation (diffraction) 

operator and index nonhomogeneity in separate steps. The linear propagation opera-

tor (ˆL) is applied in the Fourier space and simply represents the k–sphere appropri-

ate to the polarization, direction of propagation and material symmetry. The index 

nonhomogeneity is a result of a wave guiding structure or third-order nonlinearity. 

 

The SSF method is commonly used to integrate several types of nonlinear partial 

differential equations. In simulating NLS systems, SSF is predominantly used, rather 

than finite difference method (FDM), as SSF is often more efficient. 

 

Considering one of the simplest NLS type system, the equation contains the terms of 

attenuation, dispersion and nonlinearity (See Eq. (2.27)). In order to solve Eq. (2.27) 

by the SSF method, we write the differential equation in the following functional 

form 

                                            
 
 
where ˆL and ˆN are the linear and nonlinear parts of (2.27), respectively, where 
 
                                                            
 
 
 
                                                                       
 
 
Integrating (2.34) along z using a small space interval ∆z, the solution can be written 

in the form of 
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where the effects of the linear operator (2.35) can be easily implemented because the 

time derivatives become multiplications in the Fourier space by: (iω)n where n is the 

order of the derivative:- 

 

                                  

 

where F denotes the Fourier transformation, F−1 the inverse Fourier transformation 

and ˆL(iω) is the Fourier transform of ˆL which is obtained from Eq. (2.35). 

 

First Order SSF 

 

The essence of the first order SSF method is that the exponential operator acting 

on E(z, T) in (2.37) is divided into two parts:- 

 

                             

 

 

The computation of the propagation of the slowly varying envelope is realized 

in four steps within a space interval ∆z: 

 

• Step 1. Nonlinear step: compute E1 = e∆z ˆN E(z, T) (by finite differences) 

 

• Step 2. Forward FT: Perform the forward FFT on E1: E2 = FE1 

 

• Step 3. Linear step: compute E3 = e(∆zˆL) E2. 

 

• Step 4. Backward FT: Perform the backward FFT on E3: E(z + ∆z, t) =F−1E3. 

1exp[ ] ( , ) { exp( ( )] } ( , )zL E z t F zL i F E z tω−Δ = Δ

ˆ ˆ( , ) exp exp ( , )mE z z t zL zN E z T⎡ ⎤ ⎡ ⎤+ Δ ≈ Δ Δ⎣ ⎦ ⎣ ⎦

(2.38) 

(2.39) 



37 

The Symmetrized (Second Order) SSF 

 

The main difference between the first order Split-Step and the Symmetrized SSF 

method is that the effect of nonlinearity is included in the middle of the segment. 

In this procedure the Eq. (2.37) is replaced by  

 

               

where ˆL and ˆN are the linear and nonlinear operators. The integral in (F) can be ap-

proximated by the trapezoidal rule. 

 

                               

 

This method can be realized in seven steps within a spatial step ∆z: 

 

• Step 1. FFT: E1 = F E(z, t) 

 

• Step 2. Half linear step: E2 = e(∆z/2ˆL)E1. 

 

• Step 3. IFFT : E3 = F−1E2. 
 

• Step 4. Nonlinear step: E4 = e∆z ˆN E3 

 

• Step 5. FFT: E5 = FE4 

 

• Step 6. Other half linear step: E6 = e∆z/2ˆLE5 

 

• Step 7. IFFT : E7 = F−1E6 

ˆ ˆ ˆ( , ) e x p e x p ( ') ' e x p ( , )
2 2

z z

m
z

z zE z z t L N z d z L E z T
+ Δ⎡ ⎤Δ Δ⎡ ⎤ ⎡ ⎤+ Δ ≈ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
∫

ˆ ˆ ˆ( ') ' [ ( ) ( )]
2

z z

z

zN z dz N z N z z
+ Δ Δ≈ + + Δ∫

(2.40) 

(2.41) 
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 3.1 INTRODUCTION :- 
In optical networks, there are many loss mechanisms, including insertion loss, 

branching loss, and propagation attenuation in silica fibers. Linear optical amplifiers 

are useful in restoring the power levels of optical signals in the optical domain. Opti-

cal amplification in fiber links has been recognized as having major system implica-

tions for very long distance transmission of information(>1000Km) using optical fi-

bers and for local distribution systems involving a large number of subscribers. The 

conventional way of compensating for optical loss in light –wave communication 

system has been the rather costly and cumbersome procedure of electronic regenera-

tion at the repeater stations. The regeneration process includes photon –electron con-

version, electrical amplification, retiming ,pulse shaping and finally electron-photon 

conversion. In dense  wavelength division multiplexed (DWDM) optical networks, 

there are many frequency channels in a single optical fiber. The conventional way 

requires the separation  of the signals of all the channels for the regeneration, and 

then recombining all the channels. This is a very expensive approach, particularly 

for DWDM networks. Optical amplifiers are capable of amplifying the power levels 

of all the channels simultaneously in optical domain in a manner that is transparent 

to the modulation format, provided the gain bandwidth is wide enough. This elimi-

nates the need of costly optical-to-electrical and  electrical –to– optical conversion at 

the repeater stations and provides a simple and economical means of bandwidth up-

grade in optical networks. 

                The Raman effect, discovered in 1928 by Sir Chandrasekhar Venkata Ra-

man, is an inelastic scattering of light that is accompanied by elementary excitations 

in the medium. The principle of Raman amplification is based on the phenomenon 

of stimulated Raman scattering (SRS). Raman amplification in optical fibers was 

first observed and measured by Stolen and Ippen. Their measurement showed a fre-

quency shift of approx.13.2THz in a silica fiber. Although Raman amplifiers were 

demonstrated using solid state lasers, they have not yet been deployed in real field 

systems.  
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                                                           With the availability of high power diode-pump lasers, the 

feasibility of Raman amplifier has increased accordingly. Raman amplifiers provide 

low noise amplification and offer arbitrary gain band. 
 
3.2 RAMAN AMPLIFICATION:- 
 
Raman scattering is a nonlinear effect [12]. Intuition into nonlinear effects  can be 

gained by considering a simple spring. If a small load is attached to a spring, the ex-

tension of the spring is linearly related to the load. However, as the load is increased, 

the dependence of the extension of the spring on the load becomes nonlinearly re-

lated to the applied load. Likewise the response of a dielectric medium, such as an 

optical fiber, to an intense amount of light is nonlinear, and Raman scattering is the 

result of such a nonlinear process. 

                                           During Raman scattering, light incident on a medium is 

converted to a  lower frequency [13]. This is shown schematically in Figure 10. A 

pump photon, νp, excites a molecule up to a virtual level (non-resonant state). The 

molecule quickly decays to a lower energy level emitting a signal photon νs in the 

process. The difference in energy between the pump and signal photons is dissipated 

by the molecular vibrations of the host material. These vibrational levels determine 

the frequency shift  and shape of the Raman gain curve. Due to  the amorphous na-

ture of silica the Raman  gain curve is fairly broad in optical fibers.                

Figure 9: Schematic of the quantum mechanical process taking place during Raman scattering.
[4] 
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                                          For high enough pump powers, the scattered light can 

grow rapidly with most of the pump energy converted into scattered light. This proc-

ess is called SRS, and it is the gain mechanism in Raman amplification. Three im-

portant points are (i) SRS can occur in any fiber; (ii) because the pump photon is ex-

cited to a virtual level, Raman gain can occur at any signal wavelength by proper 

choice of the pump wavelength; and (iii) the Raman gain process is very fast. 

 

 A schematic of an optical telecommunication system employing Raman amplifica-

tion is shown in Figure 1.2. The signal propagates from the transmitter (Tx) to the 

receiver (Rx). 

 

 

 

 

 

 

 

 

 

 

The pump traveling in the same direction as the signal is called the co- or forward 

pump, and the pump traveling in the opposite direction of the signal is called the 

counter- or backward pump. When the fiber being pumped is the actual transmission 

span that links two points, this setup is referred to as a distributed Raman amplifier. 

I f  the  ampl i f ier  i s  conta ined  in  a  box  a t  the  t rans                    

mitter or receiver end of the system it is called a discrete Raman amplifier. Another 

distinctive feature between distributed and discrete Raman amplifiers tends to be the 

length of the fiber used. 
  

Figure 10: Schematic of an optical communication system employing Raman amplifica-
tion.[4] 
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  A. Signal-pump Amplification:- 

The evolution of the pump, Pp, and signal, Ps , powers along the longitudinal 

axis of the fiber z in a Raman amplified system can be expressed by the following 

equations [12]: 

                                                     
 
                                                            
 
  
and 
 
                                            
 
 
    
 
 

where gR(W−1m−1) is the Raman gain coefficient of the fiber normalized with re-

spect to the effective area of the fiber Aeff , αs/p are the attenuation coefficient at the 

pump and signal wavelength, and ωs/p are the angular frequencies of the pump and 

signal. The ± signs represent a co- and counter propagating pump wave, respec-

tively. The first term on the right-hand side of Eq. (3.1) (Eq. (3.2)) represents the 

signal gain (pump depletion) due to SRS; the second term represents the intrinsic 

signal (pump) loss. If the depletion of the pump by the signal is ignored, Eq. (3.2) 

can be solved for the counter propagating case to give ,Pp (z) = P0e −αp(L−z), where 

P0 is the input pump power and L is the fiber length. This result is substituted into 

Eq. (3.2),  

 
 
 
 
 
 

Ps (L) = Ps(0) exp (gRP0Leff − αs L) ≡ GN(L)Ps(0)                                  

s
R p s s s

d P g P P P
d z

α= −

p p
R s p p p

s

dP
g P P P

dz
ω

α
ω

± = − −

  (3.1) 

  (3.2) 

  (3.3) 
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where  
 
 
                                                                                             
and the resulting differential equation can be solved analytically to yield and GN is 

the net gain. Equation (3.3) is a first-order approximation of the signal evolution in 

the fiber. 

 
The relation between the on–off Raman gain and the Raman gain efficiency is given 

as :-                                                                                                                                                                                                                                                                     =   exp(gRP0Leff) 
 
Where Ps (L) with pump on is assumed to be the amplified signal power without the 

amplified spontaneous emission (ASE) and thermal noise with pump on is assumed 

to be the amplified signal power without the amplified spontaneous emission (ASE) 

and thermal noise.  
B. ASE Noise Figure (NF) 

Equation (1) with the pertinent noise term    
                                                                   
 

The pump power Pp has a simple exponential form in the co Pumping  scheme as 

 
 

Leff �= [1 − exp(−αpL)]/αp,         

s

s

P (L)with pump on
P (L)with pump offAG =

0( ) p( )pP z P ex zα= −

2s
R p s s s R p

dP g P P P h g P
dz

α ν= − − + Δ

(3.4) 

  (3.5) 

  (3.6) 

  (3.7) 
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While in the counter pumping scheme 
 
                                            
 
 
The noise figure can be calculated based on Eqs. (7,8,9) through the following defi-
nition: 
 

                                       

 

 

here S and N denote the signal and noise parts in optical power at the given fre-

quency, respectively.  The optical signal-to-noise ratio (SNR) of the amplified 

signal is given by: 
 
                                                                                                                              (3.10) 
 
 
 
 
 
 
 
 
 
                                                                                                                              (3.11) 
 
 
 
 
 

Where Bopt is the bandwidth of the optical filter. The factor of 2 in this equation ac-

counts for the two polarization modes of the fiber, and ASE spectral density is de-

fined as: 

 
 
 
 
 
 
 
 
 

/
( ) 10 log( )

/
in in

out out

S N
NF dB

S N
=

0( ) p{ ( )}pP z P ex L zα= − −   (3.8) 

  (3.9) 
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4.1. INTRODUCTION 

 

The history of photonic crystal fibers (PCFs) started as early as in the seventies . 

However, its impact remained rather marginal until the nineties when the maturity of 

the technology enabled the fabrication of almost perfect structures. The great flexi-

bility in the design of PCFs led to tremendous progress in various areas of the field 

of optics, ranging from frequency metrology to medial science and the future pros-

pects have aroused the interest of many research groups .  

 

Photonic crystal fibers can be classified in two categories: Solid core fiber which 

guide light as standard optical fibers and Hollow core fibers  where the light is con-

fined through the bandgap effect. Solid core fibers could play an important role in 

optical telecommunications . Indeed, various optical functions  ranging from optical 

switching to wavelength conversion  and tunable filters can be performed using 

Solid core fibers. In particular, the large nonlinearities of these fibers permit these 

functions to be achieved with a shorter length than when using conventional fibers. 

Solid core fibers also find applications in laser and amplifier technology . Large 

core, high numerical aperture and endlessly single-mode Solid core fibers can pro-

vide high-power delivery  and erbium/ytterbium-doped solid core fibers were re-

cently demonstrated to be efficient for constructing high-power fiber lasers or ampli-

fiers. Poling of Solid core fibers has also been achieved and led to an enhanced sec-

ond-order susceptibility.  

Due to their intrinsic very low nonlinearities and in combination with anomalous 

dispersion in their transmission band, PBFs allow for high power soliton transmis-

sion . Furthermore, the possibility of filling gases into the core of PBFs  opens up 

new prospects for sensor technology , harmonic generation, particle guidance and 

cold atom guiding. 
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One of the very first applications of Solid core fibers has been supercontinuum (SC) 

generation. Supercontinuum is a broadband coherent light source that finds numer-

ous applications in the fields of telecommunication , optical metrology, spectroscopy  

and medical imaging. In particular, the ultra-broad spectrum of a supercontinuum 

has allowed for submicron resolution in optical coherence tomography . In metrol-

ogy, a direct link between the repetition rate of a mode-locked laser and optical fre-

quencies has been established and potential accuracy of 10-18 may be achieved in the 

definition of the second, thus replacing the currently used cesium atom clocks . 

 
 

In dense-wavelength-division-multiplexing telecommunication systems, a SC can be 

sliced into hundreds of channels yielding transmission bandwidths of the order of a 

few terahertz . A supercontinuum can also be utilized for characterization of fiber-

optic components or can be used in any application where broadband sources are re-

quired.  

 

 

The first generation of supercontinuum dates back to 1970, when high power pico-

seconds pulses were focused into a glass sample. Continua were subsequently gener-

ated in various gases and liquids. The development of ultra-fast lasers producing 

trains of short pulses with a wavelength near the minimum dispersion wavelength of 

optical fibers allowed to generate SC in conventional and specialty fibers. The use of 

optical fibers for SC generation presents advantages over that of bulk media. In par-

ticular, the mode can be confined into a small area, thus enhancing the strength of 

the nonlinear processes that are responsible for SC formation. Solid core fibers have 

allowed to go one step further in SC generation. 
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4.2 SUPERCONTINUUM GENERATION:- 
 

The optical spectrum of a laser pulse train consists of many spectral peaks separated 

by the repetition rate of the laser. The frequency of the peaks are related to the repe-

tition rate of the pulse train by 

 

                                                                  

 

where ωr is the repetition rate of the laser, ωoff is an offset frequency and m an inte-

ger number. In a simple picture, when intense pulses interact with a cubic nonlinear 

medium, new frequency peaks appear in the optical spectrum of the pulses. The fre-

quencies of these new peaks correspond to the various mixing products of the input 

frequency peaks 

 

 

                                                 

 

 

where ωijk is the frequency of the new peak and ωi , ωj and ωk correspond to the fre-

quency of the ith, jth and kth peak already present in the spectrum, respectively. There-

fore, the cascaded nonlinear processes broaden the optical spectrum of the pump 

pulses while preserving its comb-like structure. Broad coherent spectra, extending 

over tens of nanometers and resulting from the broadening of the spectrum of optical 

pulses in a nonlinear medium, are commonly referred to as supercontinua (SC).  

ω = ω + ω.off rm

ω ω + ω − ωjk j ki i=

  (4.1) 

  (4.2) 
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Continua were first generated by focusing high power ps pulses into glass samples . 

The use of various gases (H2O, D2O, ethylene glycol…) and liquids (water,...) as a 

nonlinear medium was subsequently demonstrated. The development of tunable 

mode-locked lasers emitting short pulses led naturally to the use of optical fibers as 

the nonlinear medium. Indeed, in optical fibers, light can be confined into a very 

small area, which increases the strength of the nonlinear processes and results in 

much lower powers needed for SC generation. 

 

4.3 NON LINEAR PARAMETERS INVOLVED IN SUPERCON-

TINUUM GENERATION:- 
 

SELF  PHASE  MODULATION :- 
 
Self-phase modulation originates from the intensity-dependence of the refractive 

index of silica  

                      

                                                

 

where nL is the linear part of the refractive index, |A|2 is the optical intensity and 

n2 is the nonlinear- index coefficient related to χ(3) as  

 

                                                  

 

with Re standing for the real part and the optical field being assumed to be line-

arly polarized. A typical value of n2 for silica material is 3.2×10-20 m2/W. Self-

phase modulation refers to the self-induced nonlinear phase shift that an optical 

pulse experiences as it propagates along the fiber 

2
2Ln n n A= +

( 3 )
2

3 R e( )
8 L

n
n

χ=

  (4.3) 

  (4.4) 
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=
 
                                                                                                                            (4.5) 
 
 
where L is the length of the fiber. Due to its time-dependence, this nonlinear 

phase-shift translates into broadening of the optical spectrum as the pulse travels 

inside the fiber. The temporal shape of the pulse remains unaffected. A useful 

quantity is the so-called nonlinear length LNL that corresponds to the effective 

propagation distance at which the maximum phase-shift is equal to 1. It is defined 

as      

 

                                                                

 

where Pp is the peak power of the optical pulse and  γ the nonlinear coefficient re-

lated to n2 as   

                                                                  

 

 

with Aeff being the effective area of the propagating mode inside the fiber and ω the 

carrier frequency of the optical field. The nonlinear coefficient γ represents the 

strength of nonlinear effects. Small core solid core fibers exhibit nonlinear effects 

an order of magnitude higher than conventional fibers. 

CROSS-PHASE MODULATION:- 

When two optical fields with different wavelengths co-propagate in a nonlinear 

medium, the refractive index seen by one of the fields not only depends on its 

own intensity but also on the intensity of the other field. Consequently, the opti-

cal field with a center wavelength λ i experiences a nonlinear phase-shift in-

duced by the co-propagating optical field at wavelength λ j such that 

1
N L

p

L
Pγ

=

2 0

e ff

n
c A

ωγ =

  (4.6) 

  (4.7) 
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j

L n Aπφ
λ

=

 
 
                                                                                                                       (4.8) 
 
 
where |Aj|2 represents the intensity of the co-propagating field and L is the in-

teraction length between the two fields. This nonlinear phase-shift is commonly 

referred to as cross-phase modulation and requires the optical fields to overlap 

temporally. Equation (43) shows that XPM is twice as effective as SPM. 

 

FOUR WAVE MIXING:- 
 

Four-wave mixing is a nonlinear recombination process of photons of different ener-

gies through the third-order susceptibility χ (3): two pump photons at frequencies ω1 

and ω2 are annihilated with the simultaneous creation of two new photons at fre-

quencies ω3 and ω4.   

                                                      ω1+ω2=ω3+ω4                                                 (4.9) 

The conservation of momentum results in a phase-matching condition to be fulfilled 

for the process to be efficient 

 

                       

 

where nj, γj, and Ppj are the linear refractive index, nonlinear coefficient of sil-

ica, and peak power of the optical field at the frequency wj. Here, L is the fiber 

length. 

A special case referred to as degenerate FWM occurs for w1 = w2 = wp. The 

new generated photons are called Stokes and anti-Stokes photons. This case is of 

practical interest because when only an intense pump wave propagates along the 

fiber, Stokes and anti-Stokes waves build up from noise and are subsequently 

amplified through FWM.  

1 1 2 2 3 3 4 4
1 1 1 2 2 2(1 ) ( ) (1 ) ( ) 0R p R p

n n n n f P f P L
c

ω ω ω ωφ γ ω γ ω+ − −⎛ ⎞Δ = + − + − =⎜ ⎟
⎝ ⎠

(4.10) 
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The frequency of the generated Stokes and anti-Stokes waves are such that 

the energy conservation described by Eq. (4.9) is fulfilled. In terms of propa-

gation constant, the phase-matching condition for degenerate FWM can be ex-

pressed as  

 

          

 

 

where wp and ws represent the frequency of the pump and Stokes waves, respec-

tively. Here, Pp is the peak power of the pump wave . 

STIMULATED RAMAN SCATTERING:- 
 

Stimulated Raman scattering is a photon-phonon interaction. The energy from an 

intense pump beam is shifted to lower frequencies (Stokes waves) through scat-

tering from vibrational modes of the material molecules. Shifting of energy to 

higher frequencies (anti-Stokes waves) can also occur but is less efficient 

2w → was + wst ,                                           (4.12) 

with wp, was and wst being the frequency of the pump, anti-Stokes, and Stokes 

photons, respectively. 

 

Stimulated Raman scattering yields gain for a probe wave co-propagating with a 

pump wave and whose wavelength is located within the Raman gain bandwidth. 

The normalized Raman gain spectrum of silica is shown in Fig.  as a function of 

frequency difference between the pump and probe waves. The Raman gain of 

MFs is comparable to that of silica fibers. The gain bandwidth is 40 THz with a 

peak located at 13.2 THz from the pump frequency. 
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                                                                                                                              (4.13) 
 
where τ1 and τ2 are the relaxation parameters taken to be 12.2 fs and 32 fs, respec-

tively. 

 

 

 

 

 

 

 
      Fig 11:-Normalized Raman gain of silica.[6] 

 

SOLITON PROPAGATION ,SOLITON DECAY AND 

SOLITON SELF FREQUENCY SHIFT 

Neglecting the higher-order terms and attenuation, and using convenient transforma-

tions, Eq. (32) reduces to 

 

                                                  

 

where sgn refers to the sign function and N is defined as 
 
 
          
                                                        
 
with LNL being the nonlinear length and LD the dispersion length defined as:- 
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where T0 is the temporal width of the pulse related to the full-width at half maxi-

mum TFWHM by T0=TFWHM /1.76. A special case corresponds to negative values of 

β2, i.e., when the dispersion is anomalous. In general, Eq. (4.14) can be solved by 

the inverse scattering method. The solutions define a particular class of waves 

known as solitons. Among the various types of solitons, a special role is played by 

solitary waves whose initial symmetric amplitude can be mathematically represented 

by:- 

 

                                                         

                                                     

 

The integer value closest to N is referred to as the soliton order. The case N=1 corre-

sponds to a fundamental soliton, i.e., a state in which the effects of SPM and disper-

sion are in balance and allows for the wave to maintain its shape as it propagates. 

The cases N ≥2 corresponds to higher-order solitons. Such waves follow a periodic 

evolution during propagation with shape recovering at multiples of the 

soliton period defined as π /2⋅LD . 

Higher-order solitons actually consist of N fundamental solitons, whose relative 

peak power and temporal width are given by  

 

                                                           

 

where k refers to the kth index of the constituent. The fundamental constituents travel 

together due to the degeneracy of their group-velocities. Higher-order solitons peri-

odically change their shape and spectrum while propagating along the fiber due to 

interference between the different constituents. Only the degeneracy of the group-

velocities binds the constituents of a higher-order soliton together. A small perturba-

tion affecting their relative group-velocities will lead to their subsequent separation. 

Such process is often referred to as soliton decay or soliton breakup.  
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These perturbations include higher-order dispersion, the self-steepening effect and 

stimulated Raman scattering. For a soliton whose temporal width is smaller than 100 

fs, the bandwidth of its optical spectrum is 10 THz and, consequently, the spectrum 

overlaps with the Raman gain. In that case, SRS transfers continuously energy from 

the blue part of the pulse spectrum to the red part of the pulse spectrum. This energy 

transfer results in a shift of the center frequency of the soliton towards the infrared 

as the soliton propagates along the fiber. This process is commonly referred to as the 

soliton self-frequency shift (SSFS). The magnitude of the Raman-induced SSFS can 

be approximated by  

 

 

                                        

 

where T0 is the temporal width of the soliton and D is the value of the dispersion at 

the wavelength λ0. Here, L is the fiber length and h(T0) represents the overlap inte-

gral of the soliton and Raman gain spectra 

 

 

                                            

 

where R(Ω) denotes the Raman gain spectrum and Ω the frequency shift from the 

soliton center frequency. As the soliton propagates along the fiber, its amplitude de-

creases due to the various loss mechanisms. To counteract this effect, the soliton 

broadens, which results in slowing-down the frequency-shift rate. Also, variations of 

dispersion with wavelength and self-steepening contribute to this slowing-down. 

The soliton eventually reaches a state where its optical spectrum does not overlap 

with the Raman gain and its center frequency does not shift any further. 
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SELF –STEEPENING 
 
Self-steepening (SS) results from the dispersion of the third-order susceptibility, i.e., 

the red frequency components experience a lower nonlinearity than blue frequency 

components. In the time domain, SS can be thought as the intensity dependence of 

the group velocity: the peak of the pulse moves at a slower velocity than the wings 

which induces the trailing edge of the pulse to become steeper as the pulse propa-

gates. In combination with SPM, self-steepening results in a more pronounced 

broadening of the blue frequency components compared to the red ones. The process 

of SSFS is substantially reduced by SS since the nonlinearity decreases as the center 

wavelength of the soliton shifts towards the red. 

 
NONLINEAR PHASE –MATCHED RADIATION:- 

 
The bandwidth of femtosecond solitons exceeds several THz and the variation of 

dispersion across the soliton bandwidth must be taken into account in the propaga-

tion equation:- 

 

                                  

 

The terms k>2 can be treated as a perturbation for the soliton-like solution of Eq. 

(4.14). This perturbation makes the solution of Eq. (4.21) very unstable. In particu-

lar, linear waves having the same wave-vector as the soliton can co-exist with the 

soliton. Provided the soliton spectrum overlaps with the frequency of this resonant 

wave, energy transfer between the linear and solitary waves is possible. 

The amplification of the linear wave manifests itself in the optical spectrum as the 

appearance of a sharp spectral peak in the normal dispersion region of the fiber. The 

amplitude of the linear wave is proportional to the overlap between the soliton and 

the linear wave spectra . The frequency of the linear wave ωR is determined by the 

phase-matching condition 
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                                                                                                                              (4.22) 
 
 
where fs and fr represent the phase of the soliton and resonant wave expressed in a 

frame moving at the group velocity of the soliton β1(ωs). Here, PPS is the peak 

power of the soliton. Expanding β in Taylor series around ωs, this phase-matching 

condition can be rewritten as:- 
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4.4 SUPER CONTINUUM GENERATION IN SOLID CORE 

FIBERS USING  fs PULSES 

 
Supercontinuum is the result of the interplay between the nonlinear effects described 

in the previous section. Efficient SC generation requires the wavelength of the pump 

pulses to be in the vicinity of the zero-dispersion wavelength (λZD) of the fiber since 

a high dispersion value tends to limit the magnitude of the nonlinear processes. 

Small core MFs typically exhibit λZD in the range 600-1000 nm. This makes a mode-

locked Ti:Sapphire laser a natural candidate for SC generation. Indeed, this type of 

laser produces intense femtosecond pulse trains at repetition rates varying from tens 

of MHz to one GHz with a wavelength tunable from 700 to 900 nm. It is also possi-

ble to manufacture MFs with λZD in the near infrared region and, consequently, SC 

can be generated using other suitable laser sources such as ytterbium or erbium-

doped fiber lasers. 

 

 The physics of SC generation in MFs using femtosecond pump pulses strongly de-

pends on the relative detuning between the pump wavelength and the zero-

dispersion of the fiber. In particular, different mechanisms are observed depending 

on whether the pump wavelength is located in the anomalous or normal dispersion 

region of the fiber.  
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4.4.1ANOMALOUS PUMPING  
 
 
To clarify the role played by each nonlinear effect, Eq. (2.30) is solved in the Fourier 

domain using a standard split-step algorithm with the exact value of the propagation 

constant. This ensures the validity of the simulation for bandwidth exceeding several 

hundreds of nanometers.  

 

When only the dispersion is included in the NSE, the pulse corresponds to a higher-

order soliton and evolves periodically into a multi-peak structure along the MF. In 

the presence of higher-order dispersion , the central part of the spectrum initially 

broadens in the first centimeters of the MF and does not spread any more with fur-

ther propagation. The most noteworthy feature is the appearance of blue anti-Stokes 

frequency components in the spectrum. Once they have been generated, these com-

ponents are not affected by further propagation inside the MF. Adding the Raman 

term in the equation gives results qualitatively in better agreement with experimental 

observations, i.e., a strong spreading of the pulse spectrum towards the infrared. The 

inclusion of the self-steepening term results in an increased magnitude of the anti-

Stokes components and reduces the spreading of the spectrum towards the infrared. 

New anti-Stokes components also appear in the spectrum for longer propagation 

lengths.  

The onset of the supercontinuum formation can be explained as follows: the input 

pulse corresponding to a Nth order soliton is compressed in the first few centimeters 

of the fiber due to SPM. The perturbation of this Nth order soliton by SRS and 

higher-order dispersion leads to the breaking up of the Nth order soliton into multi-

ple fundamental solitons whose amplitudes and widths are given by Eq. (4.18).The 

red part of the spectra of the multiple solitons overlap with the Raman gain spectrum 

while their blue part overlaps with the resonant linear waves. As a consequence, the 

resonant waves are amplified and emerge as anti-Stokes components while the red 

components get amplified by SRS, which shifts the center frequency of the solitons 

further to the red. The multiple solitons having different widths, they experience dif-
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ferent frequency shifts and appear in the spectrum as distinct Stokes peaks .Since the 

solitons experience different frequency shifts, they correspondingly experience dif-

ferent group delays and thus appear in the time trace as distinct pulses, the soliton 

experiencing the largest frequency shift being the originally narrowest soliton and 

corresponding to the most delayed pulse. The magnitude of the frequency shifts is 

proportional to the fiber length . 

 

Consequently, the longer the fiber, the more the spectrum spreads towards the infra-

red . As they propagate along the MF, the various solitons experience losses and dis-

persion, which results in their temporal broadening. Therefore, their spectrum even-

tually does not overlap any more with the Raman gain spectrum and the frequency 

shift ceases. Furthermore, the SS reduces the strength of the nonlinearities as the 

solitons shifts their center frequency, which results in the decrease of the magnitude 

of the SSFS with propagation. 

 

4.4.2FACTOR AFFECTING THE BROADENING OF THE SPEC-

TRA:- 

EFFECT OF INCREASING THE PUMP POWER:- 
 

An increase of the input pump power results in an enhanced N-value. The number of 

split fundamental solitons therefore increases and more Stokes peaks are observed in 

the spectrum. Furthermore, the temporal width of the fundamental solitons is re-

duced (see Eq. (4.18)) and the magnitude of the SSFS is consequently enhanced. 

The overlap between the solitons and the resonant waves is also larger which results 

in the increase of the magnitude of the anti-Stokes components. The XPM induced 

anti-Stokes components shifts also further to the blue since the solitons shifts further 

to the red. Further increase in the input power eventually leads to a flat spectrum due 

to the high number of fundamental solitons, with a gap located around λZD .  
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EFFECT OF VARYING PULSE WIDTH:- 
 
 
Keeping the energy constant while increasing the pulse width results in increasing 

the number of Stokes peaks and a reduced bandwidth for the generated SC. Indeed, 

the N-value increases proportionally to √T0 leading to the splitting of the input pulse 

into an increased number of fundamental solitons. These solitons have, nevertheless, 

broader temporal widths, which results in a decrease of the magnitude of the SSFS. 

This also means that the overlap between the spectra of the solitons and the resonant 

wave is reduced and, consequently, the magnitude of the anti-Stokes components is 

decreased. At high input power values, the SC generated using broader pulses is flat-

ter and exhibit the same bandwidth as the SC generated using narrower pulses due to 

a higher number of fundamental solitons.  

EFFECT OF DETUNING THE PUMP WAVELENGTH:- 
 
When the pump wavelength is tuned closer to λZD the N-value increases and so does 

the number of Stokes peaks observed in the spectrum at the output of the MF. The 

wavelengths of the phase-matched resonant waves lie closer to λZD leading to a re-

duction of the gap observed in the spectrum. The overlap between the solitons and 

the resonant waves is also increased and, therefore, the magnitude of the anti-Stokes 

components is enhanced. Initially the solitons lose a lot of energy due to the large 

overlap with the linear waves, thus resulting in a decrease of the magnitude of the 

SSFS.  
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4.5 SUPER CONTINUUM GENERATION IN SOLID CORE 

FIBERS USING  ps AND ns PULSES   
 

Supercontinuum can also be generated in MFs using ps and ns pulses. In this case, 

the peak power of the pulses is much lower and SPM spectral broadening is negligi-

ble. The mechanism leading to SC generation relies on SRS and FWM . Due to the 

relatively low peak power of the pulses, SC generation requires several meters of 

MF. 

SRS generates a pair of Stokes and anti-Stokes bands in the spectrum which are cou-

pled through parametric FWM. This coupling is much stronger than in conventional 

fibers due to the high nonlinearity of the MF. This pair can serve as an efficient seed 

for further parametric amplification, which results in the appearance of multiple side 

bands in the spectrum. This process is particularly efficient when the pump wave-

length is located around λZD because the phase-matching condition for 

degenerate FWM to occur is then easily fulfilled. The fact that the pulse is ps-broad 

allows for the pump and side bands to overlap over few meters. Consequently, en-

ergy transfers continuously from the pump to the side bands which grow as the pulse 

propagates along the MF. The different frequency components eventually walk off 

after few meters of propagation and the spectral broadening ceases. Cross-phase 

modulation broadens the side bands which subsequently merge, resulting in a 

smooth spectrum. 

Supercontinuum generation using ns pulses has also been demonstrated using fre-

quency-doubled Nd:YAG laser operating at 532 nm or seeded Ytterbium amplifier at 

1064 nm. In the case of ns pulses, cascaded Raman scattering is mostly responsible 

for the generation of the continuum, i.e., multiple lines separated by 13.2 THz are 

amplified through SRS. For this reason, the spectrum mainly extends towards the 

infrared. If the pump wavelength is located in the vicinity of λZD FWM can contrib-

ute to the extension of the SC to the blue wavelengths.  
 
 



63 

At high enough power all the different Raman lines broaden due to XPM and subse-

quently merge leading to a smooth spectrum. Since the peak power of ns pulses is 

typically below the kW level, several meters of MFs are necessary to form the con-

tinuum. 
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Many efforts have been devoted to materials development and design for optical fi-

bers, waveguide devices, fiber lasers and amplifiers to meet the demands of present 

and future telecommunication systems and other data transmitting services. There is 

still a strong need and interest to explore fiber materials in order to develop various 

fiber devices including fiber lasers, amplifiers, optical signal processing devices, etc. 

Silica fibers are currently used as major waveguide materials in telecom technology. 

However, they have limited performance if they are applied to active fiber devices. 

This leads to research focused on new fiber devices using non-silica glasses. Among 

non-silica glasses, such as heavy metal oxide and non-oxide glasses, tellurite glasses 

are promising materials for photonics applications, as they combine (i) a wide trans-

mission window, (ii) good glass stability and durability, (iii) high refractive index, 

(iv) increased nonlinear optical properties, and (v) relatively low phonon energies. 

 

So in this project, i have only focused on research of tellurite fibers. In this project i 

had done characterization of PCF, Raman amplification and also Supercontinuum 

generation in Tellurite PCF. 

 

5.1 Characterization Of PCF:- 
 

The refractive index of the tellurite fiber is 2.08. I have design the structure with the 

help of OPTIFDTD software for the 2µm pitch and D/pitch ratio 0.4 and non linear 

refractive index for the tellurite fiber is 5.9x10-19 m2W. 
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With the help of OPTIFDTD software , I have design  the structure of PCF for both 

tellurite and  Silica PCF. 

Structure parameters:- 

Pitch=2µm,  

d/Λ=0.4,  

n=2.08 for tellurite PCF  

 n=1.45 for silica PCF 

 no. of rings=5.  

Variation of Effective index, Dispersion and Group index versus wavelength in Tel-

luride glass Photonic crystal Fiber having five rings of air holes. 

 Variation of Effective index, Dispersion and Group index versus wavelength in sil-

ica glass Photonic crystal Fiber using same structural parameter as mention above. 

 

 

 

 

 

 

 

 

Fig 12:- Variation of Effective index , dispersion and group index with wavelength 

for tellurite and Silica  
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Structure use for simulation purpose :- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   
                                    Fig,13:-Structure of PCF used for Stimulation  
 
5.2. Raman amplification :- 
In this part I present the Raman amplification characteristics for the tellurite 

Photonic crystal fiber (PCF) with the RSoft (optisim) Software . In this project I use  

a small length of the fiber to attain  gain characteristics. Numerical simulations re-

veal that a peak gain of 1.2 dB can be achieved in a 1.1 m long PCF when it is 

pumped at 1.5 µm in wavelength with an input power of 500 mW. The Raman gain 

coefficient of tellurite at a 1.5 µm pump wavelength is 6.2x10−12 m/W. 

Parameters used  :-  

Signal wavelength :- 1.55µm 

Pump wavelength :-  1.50µm  

Signal power :- 0.002W 

Pump power :- 0.5W 

Length of the fiber :- 1.1m 

Pitch=2µm,  

d/Λ=0.4,  

n=2.08 for tellurite PCF  
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The following model is used for the stimulation for Raman amplification  :- 

                             Fig14:- Stimulation diagram for Raman amplification 
The gain characteristics for the tellurite fiber and silica fiber are given below :- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                               Fig15 :- Gain characteristics for the tellurite fiber  
                             



69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                            Fig 16 :-  Gain characteristics for silica fiber  
 
From the above graph it is clear that the Raman gain in tellurite fiber  is higher than 

the silica fiber which is approximately 10 times . 

Now as we increase the length of the fiber the gain increase upto a limit after that 

the gain become saturated. As  shown in the graph the gain become saturated after 

the 30m length and also we increase the length of the fiber the SNR also decreases. 

 

 

 

 

 

 

 

 

 

 

 

                                                  Fig17 :- Gain v/s Length 
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                                                    Fig18 :- SNR v/s Length 
 
So I also observe that the as we increase the pitch of the fiber the gain decrease as 
shown in the graph below:- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        Fig19 :- Gain diagram for  Pitch = 2µm 
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                                                   Fig 20 :- Gain diagram for pitch =4µm 
 
5.3. Supercontinuum generation :- 
  
In this part , I present the Supercontinuum generation in the anomalous region. 

To simulate Supercontinuum generation RSOFT OPTISIM (software) was used. Op-

tisim software is based on the split step fourier method. And I have also shown the 

effect of  power and FWHM on the broadening . Firstly I compare the result of Dud-

ley et al. (2006), paper with the software . And after getting the match result I have 

shown the effect of power and FWHM on the broadening. 
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3.1 Testing the Numerical stimulation program :- 
 

The aim of this project is to generate Supercontinuum generation. Before doing this 

the program had to be tested against existing experimental and theoretical results in 

the literature to ensure that the software was producing reliable results. 
 

Comparison of Numerical Simulation with Paper Cases 

 

In this example from Dudley et al. (2006), the Supercontinuum is modeled using the 

full NLSE , to be compared with the paper results. 

 

Initial Pulse Wavelength=835nm 

γ=0.11W−1m−1 

FWHM =50 fs 

P0=10000W 

β2=−11.83 ps2m−1 

β3=8.1038e-2 ps3m−1 

β4=−9.5205e-5 ps4m−1 

β5=2.0737e-7 ps5m−1 

β6=−5.3943e-10 ps6m−1 

β7=1.3486e-12 ps7m−1 

β8=−2.5495e-15 ps8m−1 

β9=3.0524e-18 ps9m−1 

β10=−1.7140e-21 ps10m−1 
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                       Fig 21:- Spectral plot of an example from Dudley et al. (2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  Fig 22:- Simulated spectral plot with the help of optisim software. 
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Effect of varying the power :- As the pump power increases the broadening of the 
spectrum increases. 
 
 
 
 
 
 
 
 
 
 
                                                   Fig23 (a) 
 
 
 
 
 
 
 
 
                                                     Fig 23 (b) 
      Fig23 :- effect of power on broadening (a)-  1000W (b) 10000W 
 
Effect of varying pulse width :- By increasing the pulse width the bandwidth of the 
spectrum decreases. 
 
 
 
 
 
 
                                                  Fig 24(a) 
 
 
 
       
 
 
 
 
                                                       Fig 24 (b)        
                  Fig 24 :- effect of varying pulse width (a)- 100fs (b) - 50fs  
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                                  6. Conclusion and Future work :- 

Conclusion :- 
In this thesis, I have used the tellurite fiber whose refractive index and nonlinearity 

is very high as compared to the silica. In raman amplification the raman gain coeffi-

cient is very high as compared to the silica as a result,  the gain will be more in tel-

lurite fiber as compared to the silica. Also , the gain attained for a very small length 

of the fiber. Also shows that how the gain behave with the length and SNR with the 

length. So as we increases the pitch of the fiber the gain decreases. 

   

For Supercontinuum Generation, in this thesis Supercontinuum is generate in the 

anomalous region in which the pump wavelength is greater than the Zero dispersion 

wavelength. I have also shown the effect of varying the power and pulse width on 

the broadening. As the power increases bandwidth of the spectrum increases and 

when the pulse width increases the bandwidth of the spectrum decreases. 

 

Future work :- 
 

The next step in this line of research would be mainly experimental. The results 

from the simulations need to be verified. For the raman gain , verify the result with 

the matlab programming and also experimentally and also change the material of the 

fiber like Chalcogenide fiber whose non linearity is very high . For Supercontinuum 

generation , it can also be verify with the different PCF fiber and also generate the 

Supercontinuum in normal region  and verify the behavior of the Supercontinuum 

generation with the change of the parameter like power , FWHM and non linear cof-

ficeint with the help of matlab programming. 
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