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CHAPTER I 

Introduction 

 

1.1 Introduction 

Image processors could be categorized into different levels by the human vision 

standard. Lower-level ones are to clean and enhance observations, interpolate missing 

image data, or identify regions occupied by objects without telling what they are. 

Higher-level processors are to recognize object features and identify the associated 

hidden real-world contexts, such as face recognition for video surveillance and terrain 

reading for automatic piloting.  

In this sense, the human vision system is a highly advanced and complex image 

processing senor. It automatically tells what people really want and discards the 

useless details. But for digital cameras, denoising becomes a hard task. No matter how 

good cameras are, an image improvement is desirable to extend their range of action. 

There are a number of sources of image noise contamination. 

Heat generated by cameras or external sources might free electrons from the image 

sensor itself, thus contaminating the true photoelectrons. These thermal electrons give 

rise to a form of noise called thermal noise or dark current. 

Another type of noise is more akin to the grain obtained by using a high ISO setting 

(or high ISO film in a film camera). When we use a higher ISO, we are amplifying the 

signal we receive from the light photons. Unfortunately, as we amplify the signal, we 

also amplify the background electrical noise that is present in any electrical system. 

In low light, there is not enough light for a proper exposure and the longer we allow 

the image sensor to collect the weak signal, the more background electrical noise it 
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also collects. In this case the background electrical noise may be higher than the 

signal.            

 

 

Figure 1.1: An original color image  

 

 

Figure 1.2 A color image with salt and pepper noise 

 

  Practically, these noises roughly have a Gaussian distribution. This is the so-called 

Amplifier noise or Gaussian noise. Amplifier noise is a major part of the read noise 

of an image sensor, that is, of the constant noise level in dark areas of the image [26]. 
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Figure 1.3: (a) Clean image (b) image with additive salt and pepper noise. 

 

 

 

Figure 1.4: (a) Clean image (b) image with additive gaussian noise, σ = 30. 

 

Another primary noise is Salt and Pepper noise (Figure 3). An image containing Salt-

and-pepper noise will have dark pixels in bright regions and bright pixels in dark 

regions. This type of noise can be caused by dead pixels, analog-to-digital converter 

errors, bit errors in transmission, etc [27, 28]. 

A digital image is composed of picture elements called pixels. Each pixel is assigned 

an intensity, meant to characterize the color of a small rectangular segment of the 

scene. A small image typically has around 256
2
= 65536 pixels while a high-resolution 

image often has 5 to 10 million pixels. Some blurring always arises in the recording of 

a digital image; because it is unavoidable that scene information ―spills over‖ to 

neighbouring pixels. For example, the optical system in a camera lens may be out of 

focus, so that the incoming light is smeared out. The same problem arises, for 

example, in astronomical imaging where the incoming light in the telescope has been 
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slightly bent by turbulence in the atmosphere. In these and similar situations, the 

inevitable result is that we record a blurred image. 

           

Figure 1.5 (a) Clean image (b)blurred image. 

 

In image deblurring, we seek to recover the original, sharp image by using a 

mathematical model of the blurring process. The key issue is that some information 

on the lost details is indeed present in the blurred image—but this information is 

―hidden‖ and can only be recovered if we know the details of the blurring process. 

Unfortunately there is no hope that we can recover the original image exactly. This is 

due to various unavoidable errors in the recorded image. The most important errors 

are fluctuations in the recording process and approximation errors when representing 

the image with a limited number of digits. The influence of this noise puts a limit on 

the size of the details that we can hope to recover in the reconstructed image, and the 

limit depends on both the noise and the blurring process. 

1.2 Signal to Noise Ratio 

A digital image is generally expressed as a matrix of grey level (1D) or color values 

(n-D). In a movie, this matrix becomes 3D since the third one is corresponding to 

time. We use the pair (i; x(i)), the position and the value at this position, to express a 
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digital image. For a grey value image, x(i) is a scalar; and for a color image, x(i) is a 

3D or 4D vector. 

Mathematically, we can write the observed image captured by devices as: 

y(i) = x(i) + n(i), 

Where y(i) is the observed value, x(i) is the true value, which needs to be recovered 

from y(i) and n(i) is the noise perturbation. 

For a grey value image, the range of the pixel value is (0; 255), where 0 represents 

black and 255 represents white. To measure the amount of noise of an image, one may 

use the signal noise ratio (SNR) 

    
    

    
                                               (1.4) 

Where σ (x) denotes the empirical standard deviation of x(i), 

      
            

   
 

      
              

   
 

Where    
       

   
 is the average of grey level values, computed from a clean image 

and l is the number of pixel in the image. As many signals have a very wide dynamic 

range, PSNRs are usually expressed in terms of the logarithmic decibel scale. In 

decibels, the PSNR is, by definition, 10 times the logarithm of the power ratio: 
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Figure 1.6 (a) clean image (b) image with Gaussian noise, with standard deviation σ = 25, 

SNR=5.64dB. 

 

Although PSNR is widely used in digital image processing, it can only be taken as 

one of the criteria to determine the quality of an image, otherwise, it might be 

misleading.  

1.3   Literature Survey 

One of the most important tasks in image processing applications is noise filtering. 

Noise may be added in the image during acquisition by camera sensors and   

transmission in the channel. Linear filtering techniques available for image de-noising 

tend to blur the edges [1]. In images edge contains essential information. Aim of any 

filtering techniques should preserve the edge information. Noise having Gaussian-like 

distribution is very often encountered in acquired data. Generally, the Gaussian noise 

is added to every part of the image and it affects each pixel in the image from its 

original value by a small amount based on noise standard deviation [2]. Several 

techniques were developed to remove Gaussian noise. Fuzzy filters are easy to realize 

by means of   simple fuzzy rules that   characterize a particular noise.  

Russo [4] introduced a multi-pass fuzzy filter consisting of three cascaded blocks. 

Each block is hooked to a fuzzy operator that attempts to cancel the noise while 

preserving the image structure. Khriji and Gabbouj [5] developed a multi channel 
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filter using adaptive approach. These adaptive techniques are formed by a two-layer 

filter based on rational functions using fuzzy transformations of either the Euclidean 

or angular     distances among the different vectors to adapt to local data in the color 

image. This filter preserves the edges and chromaticity of the image. D. Androutsos, 

et al. [6] described the strong potential of fuzzy adaptive filters for multichannel 

signal applications, such as color    image processing is illustrated with    several 

examples. K. Rank and R. Unbehauen [13], proposed an adaptive Recursive 2-D 

Filter for Removal of Gaussian Noise in Images. The adaptation is performed with 

respect to three local image features; edges, spots, and flat regions, for   which 

detectors are developed by extending some    existing methods. Tuan-Anh Nguyen et 

al. [12]        proposed      spatially    adaptive denoising algorithm for a single   image 

corrupted by the Gaussian noise.  The algorithm is consisting of two stages; first noise         

detection and then noise removal filtering. Local weighted mean, local weighted 

activity and local maximum were defined to corporate desirable properties into 

denoising process.  

Major problem in removing Gaussian noise is to differentiate between noise and 

edges. In [7], the effective fuzzy derivatives are used for differentiating the noise and 

edge pixels in images corrupted with Gaussian noise. Schulte et al. [8] consider the 

fuzzy distance between color pairs as a weight to perform the weighted average 

filtering for the removal of the Gaussian noise in color images. Russo [9] proposes a 

method for   Gaussian noise filtering that combines a nonlinear    algorithm for detail 

preserving and smoothing of noisy data, and a technique for automatic parameter 

tuning base on noise estimation. In [14], an robust approach is presented for image 

enhancement based on fuzzy logic that addresses the seemingly conflicting goals of 

image enhancement; (i) removing impulse noise, (ii) smoothing out nonimpulse noise, 
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and (iii) enhancing (or preserving) edges and certain other salient structures. A novel 

method of adaptive parameter selection is proposed in [15] which is an improved 

algorithm for adaptive fuzzy image enhancement. Using the concepts of both [14] and 

[16], three sigma and Pi filters are developed in [17]. An efficient fuzzy filter for edge 

preservation is proposed in [18] using fuzzy technique for color images. In [19] a new 

fuzzy-logic-control based filter is introduced with the ability to remove impulsive 

noise and smooth Gaussian noise, while preserving edges and image details. 

In this work, we have extended previous work on noise reduction in color images [3] 

where Euclidian distance is used to measure the distance between the noisy pixels. 

The distance calculates dissimilarity between the central pixel and the neighbouring 

pixels. The proposed approach uses the concept of similarity between the central pixel 

and the neighbouring pixels. Some of the latest development s in this area is discussed 

as follows: 

Tuan-Anh Nguyen et al.[24] propose a spatially adaptive denoising algorithm using 

local  statistics for a single image corrupted by Gaussian noise. The proposed 

algorithm consists of two stages: noise detection and noise removal filtering. To 

corporate desirable properties into denoising process, local weighted mean, local 

weighted activity, and local maximum are defined. Using the local statistics, 

constraint for noise detection is defined. In addition, a modified Gaussian noise 

removal filter based on the local statistics is used to control the degree of noise 

suppression.  

Tzu-Chao Lin [21] uses Decision-based fuzzy averaging (DFA) filter consisting of a 

D–S (Dempster–Shafer) noise detector and a two-pass noise filtering mechanism. 

Bodies of evidence are extracted, and the basic belief assignment is developed using 

the simple support function, which avoids the counter-intuitive problem of 
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Dempster‘s combination rule. The combination belief value is the decision rule for the 

D–S noise detector. A fuzzy averaging method, where the weights are constructed 

using a predefined fuzzy set, is developed to achieve noise cancellation. A simple 

second-pass filter is employed to improve the final filtering performance.  

Yu Xiao et al. [23] proposed an l1–l0 minimization approach where the l1 term is used 

for impulse denoising and the l0 term is used for a sparse representation over certain 

unknown dictionary of images patches. The main algorithm contains three phases. 

The first phase is to identify the outlier candidates which are likely to be corrupted by 

impulse noise. The second phase is to reconvert the image via dictionary learning on 

the free-outlier pixels. Finally, an alternating minimization algorithm is employed to 

solve the proposed minimization energy function, leading to an enhanced restoration 

based on the recovered image in the second phase. 

The peer group of an image pixel is a pixel similarity based concept which has been 

successfully used to devise image denoising methods. The fuzzy peer group concept, 

which extends the peer group concept in the fuzzy setting, is described [22]. A fuzzy 

peer group will be defined as a fuzzy set that takes a peer group as support set and 

where the membership degree of each peer group member will be given by its fuzzy 

similarity with respect to the pixel under processing. The fuzzy peer group of each 

image pixel are determined by means of a fuzzy logic-based procedure. The fuzzy 

peer group concept is used to design a two-step color image filter cascading a fuzzy 

rule-based switching impulse noise filter by a fuzzy average filtering over the fuzzy 

peer group. Both steps use the same fuzzy peer group, which leads to computational 

savings according to [22]. 
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 CHAPTER II 

 

Introduction to Fuzzy Image Processing 

 

2.1 Fuzzy Logic 

E.H. Mamdani is credited with building the world's first fuzzy logic controller. Dr. 

Mamdani, London University, U.K., stated firmly and unequivocally that utilizing a 

fuzzy logic controller for speed control of a steam engine was much superior to 

controlling the engine by conventional mathematically based control systems and 

logic control hardware. Dr. Mamdani found that, using the conventional approach, 

extensive trial and error work was necessary to arrive at successful control for a 

specific speed set-point.  

Fuzzy image processing is the collection of different fuzzy approaches to image 

processing that understand, represent and process the images, their segments and 

features as fuzzy sets. The representation and processing depend on the selected fuzzy 

technique and on the problem to be solved. 

Fuzzy image processing has three main stages: image fuzzification, modification of  

membership values, and, if necessary, image defuzzification. The fuzzification and 

defuzzification steps are due to the fact that we do not possess fuzzy hardware. 

Therefore, the coding of image data (fuzzification) and decoding of the results 

(defuzzification) are steps that make possible to process images with fuzzy 

techniques. The main power of fuzzy image processing is in the middle step 

modification of membership values. 

After the image data are transformed from gray level plane to the membership plane 

(fuzzification), appropriate fuzzy techniques modify the membership values. This can 



11 

 

 

                      Figure 2.1: The structure of fuzzy image processing 

 be a fuzzy clustering, a fuzzy rule-based approach, and a fuzzy integration approach 

and so on. 

2.2 Reasons to use fuzzy logic in image processing 

Fuzzy techniques are powerful tools for knowledge representation and processing. 

 Fuzzy techniques can manage the vagueness and ambiguity efficiently. In many 

image processing applications, we have to use expert knowledge to   overcome the 

difficulties (e.g. object recognition, scene analysis). Fuzzy set theory and fuzzy logic 

offer us powerful tools to represent and process human knowledge in form of fuzzy if 

then rules. On the other side, many difficulties in image processing arise because the 

data tasks results are uncertain. This uncertainty, however, is not always due to the 

randomness but to the ambiguity and vagueness. Beside randomness which can be 

managed by probability theory we can distinguish between three other kinds of 

imperfection in the image processing: 

 Greyness ambiguity 

 Geometrical fuzziness 

 Vague (complex/ill-defined) knowledge 

Input  

Image 

Output  

 Image 
Image 

Fuzzification 

Expert Knowledge 

Membership 

Modification 

Image 

Defuzzification 

 

Fuzzy set and 
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2.3 Salient features of fuzzy logic 

(a) Fuzzy logic is conceptually easy to understand. The mathematical concepts behind 

fuzzy reasoning are very simple. 

(b) Fuzzy logic is flexible. With any given system, it's easy to manage it or layer more 

functionality on top of it without starting again from scratch. 

(c) Fuzzy logic is tolerant of imprecise data. Everything is imprecise if we look 

closely enough, but more than that, most things are imprecise even on careful 

inspection. Fuzzy reasoning builds this understanding into the process rather than 

tacking it onto the end. 

(d) Fuzzy logic can model nonlinear functions of arbitrary complexity. We can create 

a fuzzy system to match any set of input-output data. 

(e) Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis for 

human communication. This observation underpins many of the other statements 

about fuzzy logic. 

(f) Fuzzy logic can be blended with conventional control techniques. Fuzzy systems 

don't necessarily replace conventional control methods. In many cases fuzzy 

systems augment them and simplify their implementation. 
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CHAPTER III 

 

Introduction to Cosine Similarity 

 

 

Cosine similarity is a measure of similarity between two vectors by measuring the 

cosine of the angle between them. The result of the Cosine function is equal to 1 when 

the angle is 0, and it is less than 1 when the angle is of any other value. Calculating 

the cosine of the angle between two vectors thus determines whether two vectors are 

pointing in roughly the same direction. 

 

Figure 3.1:  Graph depicting cosine similarity between two vectors 

 

Let us consider two documents A and B represented by the vectors in the above figure 

3.1. The cosine treats both vectors as unit vectors by normalizing them, giving us a 

measure of the angle ϴ between the two vectors. It does provide an accurate measure 

of similarity but with no regard to magnitude. But magnitude is an important factor 

while considering similarity. 

For example, the cosine between a document which has ‗machine‘ occurring 3 times 

and ‗learning‘ 4 times and another document which has ‗machine‘ occurring 300 

times and ‗learning‘ 400 times will hint that the two documents are pointing in almost 

the same direction. If magnitude (euclidean distance) was taken into account, the 

results would be quite different. 
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Cosine of two vectors can be easily derived by using the Euclidean Dot Product  

formula: 

                                                      A.B= ||A|| ||B|| cosθ                                               (2) 

Given two vectors of attributes, A and B, the cosine similarity θ is given as 

                       
   

      
 

      
 
   

       
 
           

 
   

 

                       (3) 

where i is an integer value from 1 to n. The attribute vectors A and B are usually 

the term frequency vectors of the documents. The cosine similarity can be seen as a 

method of normalizing document length during comparison. 

The resulting similarity ranges from −1 meaning exactly opposite, to 1 meaning 

exactly the same, with 0 usually indicating independence, and in-between values 

indicating intermediate similarity or dissimilarity. 

There could be a number of ways we could combine the Euclidean distance and 

cosine similarity to determine the similarity measure. Another way to think of cosine 

similarity is as measuring the relative proportions of the various features or 

dimensions - when all the dimensions between two vectors are in proportion 

(correlated), than maximum similarity is obtained. Cosine similarity and Euclidean 

distance capture a lot of the same    information. However whereas Euclidean 

Distance measures an actual distance between the two points of interest, Cosine can 

be thought of as measuring their apparent distance as viewed from the origin. 

We have at our disposal two factors: one the cosine which gives us a measure of how 

similar two documents are, and the second the (Euclidean) distance which gives us the 

http://en.wikipedia.org/wiki/Euclidean_vector#Dot_product
http://en.wikipedia.org/wiki/Vector_%28geometric%29
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magnitude of difference between the two documents. There could be a number of 

ways you could combine the two to determine the similarity measure. 

The magnitude and cosine both provide us with a different aspect of similarity 

between two entities. It is up to us to either use them individually or in unison 

depending upon our application needs. 
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CHAPTER IV 

 

Proposed Approach 

 

4.1  Fuzzy Filter for Image Restoration  

In proposed approach, a simple technique is introduced which deals with fuzzy filters 

that takes similarity between the color components as input. The output is the 

weighted average of the weights of all the neighbouring pixels that helps to compute 

the correction term for the Gaussian filters. 

As Gaussian noise is additive, a color pixel in RGB color space with co-ordinates     

(x, y, z) degraded by random noise is expressed [3] as:              

                                      f (x, y, z) = I (x, y, z) +η (x, y, z)                                          (1) 

Where f (x, y, z) is the noisy color image, I (x, y, z) is original color image            

both defined in RGB color space and η (x, y, z) represents the signal independent 

additive random noise in the same color space. The x and y represents the coordinates 

of the image pixel and      z=1, 2, 3 represents the   red, green and blue (RGB) color 

components (at x, y) respectively.  

The methods for the reduction of Gaussian noise adopt the weighted average of 

neighborhood pixel values of the central pixel value [2]. The key point here is to   

select the weights to the neighborhood pixels in such a way as to obtain the corrected 

value. The use of color pairs to assign weights to the neighborhood pixels leads to a 

reduction in the ensuing artifacts. Adaptive fuzzy cosine similarity between the color 

pairs gives similarity between the central pixel and the neighborhood. This distance 

helps preserve edges by way of giving less weight to the noisy pixels and more weight 

to the     similar pixels during the computation of the weighted average. Therefore, if 
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the adaptive fuzzy similarity value is more then more weight is assigned and vice-

versa. 

Adaptive fuzzy similarity is found between each color pair of the central pixel and 

that of the neighbourhood pixels. Color pairs are denoted in terms of the   image 

function ‗f‘ as follows [3]: 

Red-Green  (f (x, y, 1), f (x, y, 2)) 

Red-Blue     (f (x, y, 1), f (x, y, 3)) 

                Green-Blue      (f (x, y, 2), f (x, y, 3))            (4)   

Adaptive Similarity between a colour pair of central pixel and that of neighbourhood 

pixel, say between    red-green pairs is found from: 

   (x i, y j   
                                   

                                                 
 

           (5) 

Where i, j are the neighbouring pixels and x, y is the   central pixel for the window of 

size w x w. Similarly, we can find Srb(x+i,y+j) and Sgb(x+i,y+j) for adaptive  

similarity between the red blue and green blue components. The adaptive fuzzy 

similarity between the color pairs is obtained by fuzzifying the adaptive similarity 

using the membership function Large to be introduced next. 

4.2 The Filter Structure 

In the proposed method the weighted average of the neighboring pixels                       

in the window of interest is calculated. The weights to the neighboring pixels           

are determined according to the following fuzzy rules [3]. 

For the Red component 

IF    (x i, y j  is large AND    (x i, y j  is large THEN weight  (x i, y j     is a 

large.                             (6) 
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For the Green component 

IF    (x i, y j  is large AND    (x i, y j  is large THEN weight  (x i, y j     is a 

large                              (7) 

For the Blue component 

IF    (x i, y j  is large AND    (x i, y j  is large THEN weight  (x i, y j     is a 

large.                           (8)   

To express the degree to which an adaptive similarity is Large, the adaptive distances 

are fuzzified using the membership function Large, defined as:    

          
  

       

       
     

                (9) 

This membership function for the set ―Large‖ is shown in Figure 4.1.The parameter t 

is the minimum similarity between a color pair of a central pixel and that of the 

neighborhood in a window. The values for a, b and c are given in section 3.1. 

Parameter t for different color pairs is given as: 

                            

                            

                                                                      (10)                

  

Figure 4.1:  The membership Function for ―Large‖ 
The above fuzzy rules are implemented by calculating the adaptive fuzzy similarity 

using the membership function ―Large‖. For example, fuzzy adaptive similarity 

between the red-green color pairs of a pixel at (x, y) and a neighboring pixel at             

λ 
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(x +i, y +j) is represented as: μrg(x,y)( Srg (x + i , y + j ) where, μrg is the membership 

function of the red-green colour pair. The weights for a neighbouring pixel at the 

location (x + i, y + j) corresponding to red, green and blue   components are derived 

from the three fuzzy rules [3] as: 

                                                                    

                                                      

                                                                  (11)   

 

The weights for red, green and blue components follow similarly and the final 

corrected value of a pixel at   location (x, y) for the red component is given by [3]: 

                                  
                            

    
 
    

               
    

 
    

                                (12)             

Where k is the size of the window, similarly, we can find          and               

for green and blue components respectively. 

4.3 Algorithm for the Gaussian Filter 

(a) Take a window of size w*w centred on the pixel of interest in the noisy image. 

(b) Pick a neighbourhood pixel within the window and compute adaptive similarity   

for the three colour pairs (red-green, red-blue and green-blue) with the central 

pixel to this pixel via equation (5). 

(c) Fuzzify each adaptive similarity using   the membership function Large defined in 

equation (9), and parameter‗t‘ using equation (10). 

(d) Calculate weight for each colour component of the neighbourhood pixel          

using equation (11). 

(e) Repeat Steps 2 to 4 for all neighbourhood   pixels in the window. 

(f) Obtain the final corrected value for the central pixel using equation (12). 
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The Figure 2 shows the flow chart for the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2:  Flowchart for the proposed filter 

Final Result J is obtained by merging the output results from the proposed filter I and 

the K-SVD algorithm K formulated as: 

                                                                                                              (5.13)   

Where the values of  ,   and    are discussed in next chapter. The proposed algorithm 

in [35] is an iterative block-coordinate relaxation method .Software for the K-SVD 

algorithm can be found on internet [36]. The source code is freely available for 

academic and personal use. Description of K-SVD algorithm is given below, which is 

a generalization of the K-means clustering algorithm. 

Yes 

No 

For pixel at (x, y), compute    (x i, y j , 

   (x i, y j  and    (x i, y j    with neighbourhood 

window pixels at (x +i, y +j) using (5). 

Calculate trg(x, y), trb(x, y) and tgb(x, y) using (10) and fuzzify 

above similarity using   membership function Large with these 

parameters. 

Calculate  (x i, y j       (x i, y j       (x i, y j          
for each color component of the neighbourhood pixel 

using (11) 

Final corrected value for pixel is obtained using (12). 

Start 

Last window 

Exit 

Window of size w of noisy 
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K-SVD algorithm [35] 

Input: Noisy image f with additive Gaussian noise. 

Parameters:   (Lagrange multiplier); C (noise gain); J (number of iterations); K 

(number of the dictionary); n (size of image patch ; σ (standard deviation of Gaussian 

noise). 

Initialisation: set u=f, Let                     be some initial dictionary. 

Figure 5.1: Repeat J times 

 Sparse Coding Stage: Use any pursuit algorithm to compute the 

representation vectors    for each example    to minimize the function: 

           
                       

 
       

 Dictionary Update Stage: For each column l= 1, 2,….,K in D. 

o Select the patches    that use this atom                         

o For each patch         , compute its residual without the 

contribution of the atom    

   
                  

o Set        
          .Update    and the        using SVD  

     decomposition of   . 

 

 Reconstruction: 

           
     

  
           

     
  

  

Output:  The reconstructed image u. 
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CHAPTER V 

Experimental Results 

 

 

A colour image consisting of an M × N × 3 array of   pixel at locations (x, y) may be 

viewed as a ―stack‖ of three scale images corresponding to RGB components. The 

colour images ―Lena‖, ―Parrot‖ and ―Cafe‖ of size 256 × 256 impregnated with the 

Gaussian noise is considered as test images. The original images are shown in    

Figure 5.1. 

 

  

   

Figure 5.1: Original colored Images used of size 256×256 Lena, Parrot, Café, Flower. 

Experiments are performed using different sizes of   windows and the results for these 

experiments are shown in the form of a plot between PSNR and Gaussian noise level 

(σ ).The window sizes considered for the Lena image are: 3×3, 5×5 and 7×7. It can be 
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seen that the window size of 3×3 is the most suitable one for the noise level up to σ = 

30 for which this Gaussian filter is best suited. 

 

Figure 5.2: PSNR vs. Window sizes for Gaussian noise 

The performance of Gaussian noise filter is evaluated over the three test colour 

images with σ = 10, 20 and 30. The parameters b = -0.2, c= 0.9 are found to be 

effective in the elimination of noise. The results of the proposed approach are 

compared in terms of MSE with methods developed by Om Prakash Verma et al. 

(FFNRCI) [3], Tzu-Chao Lin, Decision-based fuzzy image restoration for noise 

reduction based on evidence theory (DBFIR) [21], Restoration of images corrupted by 

mixed Gaussian-impulse noise via l1–l0 minimization (RICMG) [22], Fuzzy Peer 

Groups for Reducing Mixed Gaussian-Impulse Noise From Color Images [23] 

(FPGA), Spatially Adaptive Denoising Algorithm for a Single Image Corrupted by 

Gaussian Noise(SADA)[24]. 
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TABLE 5.1 Comparison of PSNR of the proposed filter with FFNRIC[3], FPGA[23], DBFIR[21], 

RICMG[22] and  SADA[24] 

 

Comparison of PSNR and MSE values resulting from the application of the proposed 

filter and the other methods in Table 5.1 and 5. 2 respectively show the superiority of 

the proposed filter over the other in the reduction of Gaussian noise. The results of 

denoising of the test images are illustrated in Figure 5.2. 

TABLE 5.2 Comparison of MSE of  the proposed filter with FFNRIC[3], FPGA[23], DBFIR[21], 

RICMG[22] and  SADA[24] 

   

variance Noisy FFNRIC FPGA DBFIR RICMG SADA Proposed 

Lena 

σ  10 38.69 16.58 15.34 16.21 15.44 15.67 14.23 

σ  20 73.99 39.22 38.37 40.14 39.37 40.66 36.52 

σ 30 89.54 68.52 67.45 66.66 59.92 67.54 54.31 

Parrot 

σ  10 39.60 22.12 23.23 21.13 25.69 21.82 20.20 

σ  20 72.52 40.12 39.45 42.49 41.54 42.71 41.02 

σ 30 91.41 68.02 70.59 69.01 68.60 69.52 67.76 

Café 

σ  10 40.18 17.27 18.01 18.74 16.61 17.78 15.42 

σ  20 74.44 38.01 38.92 38.91 37.96 38.45 37.55 

σ 30 92.81 54.21 57.21 57.29 56.31 57.78 56.63 

Flower 

σ  10 37.28 18.12 18.43 17.89 16.88 18.17 16.42 

σ  20 73.01 39.67 39.79 35.32 33.37 38.78 32.32 

σ 30 95.18 63.29 64.26 55.18 63.78 58.63 48.63 

 

Variance Noisy FFNRIC FPGA DBFIR RICMG SADA Proposed 

Lena 

σ  10 31.94 36.22 35.78 35.20 35.73 35.72 36.15 

σ  20 29.20 32.82 32.18 31.88 33.96 32.98 33.59 

σ 30 28.38 30.31 31.33 30.19 31.60 31.12 31.84 

Parrot 

σ  10 31.66 36.68 35.32 35.43 35.62 35.31 36.26 

σ  20 29.05 32.50 32.11 31.02 31.01 32.54 33.60 

σ 30 28.60 30.58 31.06 29.47 29.32 30.75 31.95 

Café 

σ  10 32.19 36.76 35.12 34.21 34.99 34.97 36.21 

σ  20 29.44 32.33 32.61 30.98 30.87 31.64 33.72 

σ 30 28.54 30.74 29.36 29.89 29.01 29.77 31.77 

Flower 

σ  10 32.15 36.39 35.01 33.21 35.93 34.11 36.10 

σ  20 29.41 32.72 32.72 30.53 31.85 30.13 33.61 

σ 30 28.59 30.37 29.47 29.47 28.65 28.43 31.88 
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Figure 5.3: Comparison of PSNR (db) for Lena image at different noise levels σ with proposed and 

recent denoising techniques. 

 

Figure 5.4: Comparison of MSE for Lena image at different noise levels σ with proposed and recent 

denoising techniques. 

 

Blurring becomes pronounced as compared to the removal of noise. The undesirable 

effect of a Gaussian filter is that it blurs the edges. This process results in an image 
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with reduced ―sharp‖ transitions in the gray levels. Hence the reduction of Gaussian 

noise is accompanied by the loss of finer details. 

 

 

                                   

Figure 5.5: Denoised Lena images obtained with different filters while the input to each filter has the 

same Level of noise (A) with Gaussian noise σ =10, (B) FPGA,  (C) SADA, (D) RICMG, (E) FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Figure 5.6: Denoised Lena images obtained with different filters while the input to each filter has the 

same Level of noise (A) with Gaussian noise σ =20, (B) FPGA, (C) SADA, (D) RICMG, (E) FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Figure 5.7: Denoised Lena images obtained with different filters while the input to each filter has the 

Same Level of noise (A) with Gaussian noise σ=30, (B) FPGA, (C) SADA, (D) RICMG, (E) FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Figure 5.8: Denoised Flower images obtained with different filters while the input to each filter has the 

same Level of noise (A) with Gaussian noise σ =20, (B) FPGA, (C) SADA, (D)RICMG, (E) FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Figure 5.9: Denoised Parrot images obtained with different filters while the input to each filter has the 

same Level of noise (A)with Gaussian noise σ  30, (B  FPGA, (C  SADA, (D  RICMG, (E) FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Figure 5.10: Denoised Cafe images obtained with different filters while the input to each filter has the 

same Level of noise (A) with Gaussian noise σ  30, (B  FPGA, (C  SADA, (D RICMG, (E  FFNRIC, 

(F) DBFIR, (G) the proposed method 
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Conclusion and Future Work 

 

 
The removal of Gaussian noise is accomplished via fuzzy adaptive similarity between 

the colour components of a pixel of interest and the neighbourhood pixel. The 

Adaptive fuzzy similarity between colour pairs approach produces a de-noised image 

with all the significant details preserved. It was shown that this filter is capable of 

reducing Gaussian noise up to σ = 40. This is observed that the proposed filter 

produces the better results than the recent previous works. Future work will seek to 

reduce the blurring exceeding this level by way of designing a deblurring stage to the 

cascaded filter. The existing deblurring methods are not applicable as they are only 

designed for globally degraded images whereas we are concerned with locally 

degraded images caused by smoothening of the Gaussian noise. 

The significance and relevance of the work is discussed for the noise removal. Firstly 

the design of the Gaussian filter differs from the existing methodology in terms of the 

usage of the fuzzy rule and membership function. Secondly, the use of the adaptive 

fuzzy similarity between colour components in the RGB space is new. 
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