
1

Contents
Chapter 1 .. 4

Introduction .. 4

1.1 Motivation and Problem Description.. 4

1.1.1 Research Objectives ... 5

1.2 Contributions to Thesis ... 5

1.3 Thesis Organization ... 6

1.4 Terminology .. 6

Chapter 2 .. 9

Background ... 9

2.1 Introduction .. 10

2.2 Intrusion Detection and Intrusion Detection System ... 11

2.2.1 Principles and Assumptions in Intrusion Detection ... 13

2.2.2 Components of Intrusion Detection Systems .. 14

2.2.3 Challenges and Requirements for Intrusion Detection Systems ... 15

2.3 Classification of Intrusion Detection Systems ... 16

2.3.1 Classification based upon the Security Policy definition ... 17

2.3.2 Classification based upon the Audit Patterns .. 20

2.4 Audit Patterns ... 24

2.4.1 Properties of Audit Patterns useful for Intrusion Detection .. 24

2.5 Evaluation Metrics .. 26

2.6 Literature Review .. 27

2.6.1 Frameworks for building Intrusion Detection Systems .. 27

2.6.2 Network Intrusion Detection ... 28

2.9 FCANN ... 38

Chapter 3 .. 40

Layered Framework for Building Intrusion Detection Systems .. 40

3.1 Introduction .. 40

3.2 Motivating Examples ... 42

3.3 Description of our Framework .. 43

2

3.4 Advantages of Layered Framework .. 45

3.5 Comparison with other Frameworks .. 46

Chapter 4 .. 50

Layered Approach Using Conditional Random Fields ... 50

4.1 Conditional Random Fields ... 50

4.2. Motivating Examples .. 53

4.3 Feature Selection .. 54

4.3.1 Probe Layer .. 54

4.3.2 DoS Layer ... 54

4.3.3 R2L Layer .. 55

4.3.4 U2R Layer ... 55

4.4 Implementing the System in Real Life .. 56

Chapter 5 .. 60

Intrusion detection using Artificial Neural Networks and fuzzy clustering 60

5.1 Introduction .. 60

5.2 Frame work for FCANN ... 61

5.2.1 Fuzzy clustering module ... 63

5.2.2 ANN module ... 65

5.2.3 Fuzzy aggregation module ... 67

5.3 Data preparation ... 68

5.5.1 DERIVED FEATURES .. 71

Chapter 6 .. 76

EXPERIMENTAL RESULTS .. 76

6.2.1 Preparation of the Data set ... 76

6.2.2 Training of IDS .. 77

6.2.3 Testing of IDS ... 78

6.3 Implementation of FCANN .. 79

6.3.1 Fuzzy Cluttering Module .. 79

6.3.2 ANN module ... 81

6.3.3 Fuzzy aggregation module ... 81

6.3.4 Testing of IDS ... 81

3

6.4 Conclusion and Future Scope .. 83

BIBLIOGRAPHY .. 84

4

Chapter 1
Introduction

In this thesis, we have explained two of the latest hybrid intrusion detection techniques which

address three significant issues which severely restrict the utility of anomaly and hybrid intrusion

detection systems in present networks and applications. The three issues are: limited attack

detection coverage, large number of false alarms and inefficiency in operation.

Today’s intrusion detection systems have a limited attack detection coverage due to which it may

suffer from some new attack. The number of false alarms may put the network administrator to

completely ignore them completely. As the most of existing intrusion detection systems such as

Snort and others are developed using knowledge engineering approaches where domain experts

can build focused and optimized pattern matching models. Though such systems result in very

few false alarms, they are specific in attack detection and often tend to be incomplete. As a result

their effectiveness is limited. Further, due to their manual development process, signature based

systems are expensive and slow to build. We, thus, address these shortcomings and develop

better anomaly and hybrid intrusion detection systems which are accurate in attack detection,

efficient in operation and have wide attack detection coverage.

1.1 Motivation and Problem Description

Intrusion detection as defined by the Sysadmin, Audit, Networking, and Security (SANS)

institute is the act of detecting actions that attempt to compromise the confidentiality, integrity or

availability of a resource [2]. Due to the rapid growth of internet and usage, the number of

attacks has increased. Attackers exploit the vulnerabilities in the system to attack the system. So,

sophisticated tool are required to protect these applications and data. The major objective of the

intrusion detection systems is to provide an extra layer of security to these application and data.

Increasing dependence of businesses on the services over the Internet, though, has led to their

rapid growth; it has also made the networks and applications a prime target of attacks.

5

Configuration errors and vulnerabilities in software are exploited by the attackers who launch

powerful attacks such as the Denial of Service (DoS) and Information attacks. Rapid increase in

the number of vulnerabilities has resulted in an exponential rise in the number of attacks.

According to the Computer Emergency Response Team (CERT), the number of vulnerabilities in

software has been increasing and many of them exist in highly deployed software [3], [4].

Considering that it is near to impossible to build ‘perfect’ software, it becomes critical to build

effective intrusion detection systems which can detect attacks reliably. The prospect of obtaining

valuable information, as a result of a successful attack, subside the threat of legal convictions.

The inability to prevent attacks furthers the need for intrusion detection. The problem becomes

more profound since authorized users can misuse their privileges and attackers can masquerade

as authentic users by exploiting vulnerable applications. Given the diverse type of attacks

(Denial of Service, Probing, Remote to Local, User to Root and others), it is a challenge for any

intrusion detection system to detect a wide variety of attacks with very few false alarms in real-

time environment. Ideally, the system must detect all intrusion with no false alarms.

1.1.1 Research Objectives

In this thesis:

1. Our aim is to analyze the hybrid intrusion detection techniques which have broad attack

detection coverage and which are not specific in detecting only the previously known attacks.

2. Our aim is to analyze the techniques which reduce the number of false alarms improving their

attack detection accuracy.

3. Our aim is to analyze the techniques which work efficiently on high speed networks.

1.2 Contributions to Thesis

Attacker use the vulnerabilities present in the various network applications to launch new and

unseen attacks. They normally use a sequence of events and may hide these events in normal

events. It affects the classification and produces a large number of false alarms. It has been seen

that anomaly based systems use the attack patterns and take features individually. So we are

6

focusing on hybrid intrusion detection systems that use both normal and attack data to train the

IDS.

We have implemented and compared two of the latest techniques Layered approach to intrusion

detection using conditional random fields and Fuzzy cluttering with artificial neural networks for

intrusion detection.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 describes the basics of intrusion detection and classification of the intrusion detection

systems. It provides the related literature review.

Chapter 3 provides layered approach overview and compares it to the centralized systems.

Chapter 4 provides the details of the layered approach to intrusion detection using conditional

random fields.

Chapter 5 provides another approach Fuzzy cluttering with artificial neural networks for

intrusion detection.

Chapter 6 provides the implementation details with conclusion and future scope.

1.4 Terminology

Attack (or Intrusion): An attack can be defined as a violation of the security policy.

Authentication: Authentication refers to validating the identity of a user or application accessing

a system.

7

Authorization: Authorization refers to a process to infer whether an authenticated user or an

application has the privilege to access a particular resource.

Availability: Availability refers to the property of a system which must ensure that any resource

(data or service) must be available to an authenticated and authorized entity upon request.

Conditional Random Fields: Conditional random fields are undirected and discriminative

graphical models which directly model the conditional distribution of the labels, y, given the

observation sequence x.

Confidentiality: Confidentiality refers to protecting the disclosure of data to unauthenticated

and/or unauthorized entity.

Data Mining: Data mining is the process of finding patterns, automatically, generally from a very

large data set.

Integrity: Integrity refers to ensuring that the data is free from modification by unauthenticated

and/or unauthorized entity.

Intrusion Detection: Given, an attack is a violation of a security policy; intrusion detection is

defined as the process of identifying such violations.

Intrusion Detection System: An intrusion detection system is a system which includes processes

to detect, identify and respond to attacks. The processes include audit data collection, data pre-

processing, data analysis and decision making followed by recovery and response mechanisms.

Machine Learning: Machine learning refers to the ability of a machine (usually a computational

system) to learn from the data in order to build a system which can then be used for

understanding underlying process that generated the data, classification of new instances,

clustering and other artificial intelligence tasks.

8

Non-Repudiation: Non-Repudiation refers to the property which ensures accountability by

preventing an entity from denying when it accessed a particular resource.

Pattern Matching: Pattern matching refers to the capability of a system to identify distinctive

features which constitute a well known pattern.

Security Policy: A security policy is a policy document which defines the rules applicable to

access any resource (data or service) in a network.

9

Chapter 2
Background

Intrusion detection as defined by the SysAdmin, Audit, Networking, and Security (SANS)

Institute is the art of detecting inappropriate, inaccurate, or anomalous activity [2]. The cost

involved in protecting valuable resources is often negligible as compared to the actual cost of a

successful intrusion, which strengthens the need to develop more powerful intrusion detection

systems. Thus, there is a need to safeguard the networks from known vulnerabilities and at the

same time take steps to detect new and unseen, but possible, system abuses by developing more

reliable and efficient intrusion detection systems. Any intrusion detection system has some

inherent requirements. Its prime purpose is to detect as many attacks as possible with minimum

number of false alarms, i.e., the system must be accurate in detecting attacks. However, an

accurate system that cannot handle large amount of network traffic and is slow in decision

making will not fulfill the purpose of an intrusion detection system. We desire a system that

detects most of the attacks, gives very few false alarms, copes with large amount of data, and is

fast enough to make real-time decisions. Intrusion detection started in 1980’s and since then a

number of approaches have been introduced to build intrusion detection systems. Various

techniques such as association rules, clustering, naive Bayes classifier, support vector machines,

genetic algorithms, artificial neural networks, and others have been applied to detect intrusions.

However, intrusion detection is still at its infancy and naive attackers can launch powerful

attacks which can bring down an entire network [5]. To identify the shortcoming of different

approaches for intrusion detection, we explore the related research in intrusion detection. We

describe the problem of intrusion detection in detail and analyze various well known methods for

intrusion detection with respect to two critical requirements viz. accuracy of attack detection and

efficiency of system operation. We observe that present methods for intrusion detection suffer

from a number of drawbacks which significantly affect their attack detection capability. Then we

explained two of the latest approaches layered approach using Conditional Random Field [67]

and FCANN [68] for building intrusion detection systems which can operate efficiently and

which can detect a wide variety of attacks with relatively higher accuracy, both at the network

10

and at the application level. In the subsequent chapters, we will explain both the techniques in

depth and compare the results.

2.1 Introduction

At present, networks use the concept of resource sharing as it is a necessity for collaboration, and

provides an easy means of communication and economic growth. The systems are getting bigger

with more and more add on features making them complex resulting in vulnerabilities in

software. Ease of access of resources in addition to vulnerabilities and poor management of

resources can be exploited to launch attacks [82]. As a result, the number of attacks has increased

significantly [3]. Additionally, the attacks have become more complex and difficult to detect

using traditional intrusion detection approaches, demanding more effective solutions [5]. More

stringent monitoring has further increased the resources required by the intrusion detection

systems. However, addition of more resources may not always provide a desired level of

security.

The notion of intrusion started in 1980’s with a paper from Anderson [6], which described that

audit trails contain valuable information and could be utilized for the purpose of misuse detection

by identifying anomalous user behaviour. The lead was then taken by Denning at the SRI

International and the first model of intrusion detection, ‘Intrusion Detection Expert System’

(IDES) [7], was born in 1984. This further led to the concept of distributed intrusion detection

system which augmented the existing solution by tracking client machines as well as the servers.

The last system to be released under the same generation, called ‘Stalker’, was released in 1989

which was again a host based, pattern matching system [8]. Until then, the majority of the

systems were host based and analyzed the individual host level audit records. Todd Heberlein, in

1990 introduced the concept of network intrusion detection and came up with the system called

the ‘Network Security Monitor’ (NSM), [83]. These developments gradually paved way for the

intrusion detection systems to enter into the commercial market with products such as ‘Net

Ranger’, ‘Real Secure’ and ‘Snort’ acquiring big market shares [8].

Present intrusion detection systems are very often based on analyzing individual audit patterns

by extracting signatures or are based on analyzing summary statistic collected at the network or

11

at the application level , [24]. Such systems are unable to detect attacks reliably because they

neglect the sequence structure in the audit patterns and consider every pattern to be independent.

In most situations such independence assumptions do not hold which severely affect the attack

detection capability of an intrusion detection system.

Another approach for intrusion detection is based on analyzing sequence structure in the audit

patterns. Methods based on analyzing sequence of system calls issued by privileged processes

are well known [11], [12]. However, to reduce system complexity, the system considers only one

feature which is the sequence of system calls. Other features, such as the arguments of the

system calls, are ignored. In cases, when multiple features are considered, the features are

assumed independent and separate models are built using individual features. Results from all the

models are then combined using a voting mechanism. This again may not detect attacks reliably.

To improve attack detection, all of the features must be considered collectively and not

independently [13], [14]. Assuming events to be independent makes the model simple and

improves speed of operation; but at the cost of reduced attack detection and increased number of

false alarms. Frequent false alarms, in turn, make the system administrators to ignore the alarms

altogether.

Present networks and applications are, thus, far away from a state where they can be considered

secure. Hence, in this chapter we explore the problem of intrusion detection to identify the root

causes of the inability of the present intrusion detection systems to detect attacks reliably. We

then motivate the use of conditional random fields [49] for building effective network and

application intrusion detection systems.

2.2 Intrusion Detection and Intrusion Detection System

The intrusion detection systems are a critical component in the network security arsenal. Security

is often implemented as a multi layer infrastructure and different approaches for providing

security can be categorized into the following six areas [15]:

1. Attack Deterrence – Attack deterrence refers to persuading an attacker not to launch an attack

by increasing the perceived risk of negative consequences for the attacker. Having a strong legal

12

system may be helpful in attack deterrence. However, it requires strong evidence against the

attacker in case an attack was launched. Research in this area focuses on methods such as those

discussed in [40] which can effectively trace the true source of attack as very often the attacks

are launched with spoofed source IP address. (Spoofing refers to sending IP packets with

modified source IP address so that the true sender of the packet cannot be traced.)

2. Attack Prevention – Attack prevention aims to prevent an attack by blocking it before an

attack can reach the target. However, it is very difficult to prevent all attacks. This is because, to

prevent an attack, the system requires complete knowledge of all possible attacks as well as the

complete knowledge of all the allowed normal activities which is not always available. An

example of attack prevention system is a firewall [16].

3. Attack Deflection – Attack deflection refers to tricking an attacker by making the attacker

believe that the attack was successful though, in reality, the attacker was trapped by the system

and deliberately made to reveal the attack. Research in this area focuses on attack deflection

systems such as the honey pots [53].

4. Attack Avoidance – Attack avoidance aims to make the resource unusable by an attacker even

though the attacker is able to illegitimately access that resource. An example of security

mechanism for attack avoidance is the use of cryptography [18]. Encrypting data renders the data

useless to the attacker, thus, avoiding possible threat.

5. Attack Detection – Attack detection refers to detecting an attack while the attack is still in

progress or to detect an attack which has already occurred in the past. Detecting an attack is

significant for two reasons; first the system must recover from the damage caused by the attack

and second, it allows the system to take measures to prevent similar attacks in future. Research in

this area focuses on building intrusion detection systems.

6. Attack Reaction and Recovery – Once an attack is detected, the system must react to an attack

and perform the recovery mechanisms as defined in the security policy. Tools available to

perform attack detection followed by reaction and recovery are known as the intrusion detection

13

systems. However, the difference between intrusion prevention and intrusion detection is slowly

diminishing as the present intrusion detection systems increasingly focus on real-time attack

detection and blocking an attack before it reaches the target. Such systems are better known as

the Intrusion Prevention Systems.

2.2.1 Principles and Assumptions in Intrusion Detection

Denning [7] defines the principle for characterizing a system under attack. The principle states

that for a system which is not under attack, the following three conditions hold true:

1. Actions of users conform to statistically predictable patterns.

2. Actions of users do not include sequences which violate the security policy.

3. Actions of every process correspond to a set of specifications which describe what the process

is allowed to do.

Systems under attack do not meet at least one of the three conditions. Further, intrusion detection

is based upon some assumptions which are true regardless of the approach adopted by the

intrusion detection system. These assumptions are:

1. There exists a security policy which defines the normal and (or) the abnormal usage of every

resource.

2. The patterns generated during the abnormal system usage are different from the patterns

generated during the normal usage of the system; i.e., the abnormal and normal usage of a

system results in different system behaviour. This difference in behaviour can be used to detect

intrusions.

As we shall discuss later, different methods can be used to detect intrusions which make a

number of assumptions that are specific only to the particular method. Hence, in addition to the

definition of the security policy and the access patterns which are used in the learning phase of

the detector, the attack detection capability of an intrusion detection system also depends upon

the assumptions made by individual methods for intrusion detection [19].

14

2.2.2 Components of Intrusion Detection Systems

An intrusion detection system typically consists of three sub systems or components:

1. Data Preprocessor – Data preprocessor is responsible for collecting and providing the audit

data (in a specified form) that will be used by the next component (analyzer) to make a decision.

Data preprocessor is, thus, concerned with collecting the data from the desired source and

converting it into a format that is comprehensible by the analyzer.

Data used for detecting intrusions range from user access patterns (for example, the sequence of

commands issued at the terminal and the resources requested) to network packet level features

(such as the source and destination IP addresses, type of packets and rate of occurrence of

packets) to application and system level behavior (such as the sequence of system calls generated

by a process.) We refer to this data as the audit patterns.

2. Analyzer (Intrusion Detector) – The analyzer or the intrusion detector is the core component

which analyzes the audit patterns to detect attacks. This is a critical component and one of the

most researched. Various pattern matching, machine learning, data mining and statistical

techniques can be used as intrusion detectors. The capability of the analyzer to detect an attack

often determines the strength of the overall system.

3. Response Engine – The response engine controls the reaction mechanism and determines how

to respond when the analyzer detects an attack. The system may decide either to raise an alert

without taking any action against the source or may decide to block the source for a predefined

period of time. Such an action depends upon the predefined security policy of the network.

In [20], the authors define the Common Intrusion Detection Framework (CIDF) which

recognizes a common architecture for intrusion detection systems. The CIDF defines four

components that are common to any intrusion detection system. The four components are; Event

generators (Eboxes), event Analyzers (A-boxes), event Databases (D-boxes) and the Response

15

units (R-boxes). The additional component, called the D-boxes, is optional and can be used for

later analysis.

2.2.3 Challenges and Requirements for Intrusion Detection Systems

The purpose of an intrusion detection system is to detect attacks. However, it is equally

important to detect attacks at an early stage in order to minimize their impact. The major

challenges and requirements for building intrusion detection systems are:

1. The system must be able to detect attacks reliably without giving false alarms. It is very

important that the false alarm rate is low as in a live network with large amount of traffic, the

number of false alarms may exceed the total number of attacks detected correctly thereby

decreasing the confidence in the attack detection capability of the system. Ideally, the system

must detect all intrusions with no false alarms. The challenge is to build a system which has

broad attack detection coverage, i.e. it can detect a wide variety of attacks and at the same time

which results in very few false alarms.

2. The system must be able to handle large amount of data without affecting performance and

without dropping data, i.e. the rate at which the audit patterns are processed and decision is made

must be greater than or equal to the rate of arrival of new audit patterns. Hence the speed of

operation is critical for systems deployed in high speed networks. In addition, the system must be

capable of operating in real-time by initiating a response mechanism once an attack is detected.

The challenge is to prevent an attack rather than simply detecting it.

3. A system which can link an alert generated by the intrusion detector to the actual security

incident is desirable. Such a system would help in quick analysis of the attack and may also

provide effective response to intrusion as opposed to a system which offers no after attack

analysis. Hence, it is not only necessary to detect an attack, but it is also important to identify the

type of attack.

4. It is desirable to develop a system which is resistant to attacks since, a system that can be

exploited during an attack may not be able to detect attacks reliably.

16

5. Every network and application is different. The challenge is to build a system which is

scalable and which can be easily customized as per the specific requirements of the environment

where it is deployed.

2.3 Classification of Intrusion Detection Systems

Classifying intrusion detection systems helps to better understand their capabilities and

limitations. We therefore, present the classification of intrusion detection systems in Figure 2.1.

Figure 2.1 Classification of Intrusion Detection System

17

From Figure 2.1, we observe that for any intrusion detection system, security policy and audit

patterns are the two prime information sources. The audit patterns must be analyzed to detect an

attack and the security policy defines the acceptable and non acceptable usage of a resource and

helps to qualify whether an event is normal or attack. Hence, based on the given classification,

an example of an intrusion detection system can be a centralized system deployed on a network

with sliding window based data collection which operates in real-time and is based on signature

analysis with active response to intrusion.

2.3.1 Classification based upon the Security Policy definition

Intrusion detection systems are classified in two ways based upon the security policy definition.

1. Security policy defines the normal and abnormal usage of every resource. Consider a set U,

which represents the complete domain (universe) for a resource R. The set U consists of both,

normal and abnormal usage of R. Hence, U = UR¡normal, UR¡attack. The problem is to identify

the set U such that it is complete and unambiguous. However, in most practical situations it is

very difficult to identify and define the complete set U and only a small portion of this set is

available which is denoted as S. Hence, the security policy is defined with only the knowledge

contained in the subset S, where S = SR¡normal, SR¡attack. This is represented in Figure 2.2.

Figure 2.2 Representation for a resource R: (a) complete knowledge, and (b) available

knowledge, where |UR−normal| ≥ |SR−normal| and |UR−attack| ≥|SR−attack|.

18

Based upon the elements of subset S, intrusion detection system can be classified as:

(a) Signature (Misuse) Based – When the set S only contains the events which are known to

be attack, the system focuses on detecting known misuses and is known as signature or

misuse based system [53]. Signature based system are represented in Figure 2.3.

Fig. 2.3. Representation of a signature based system.

Signature based systems employ pattern matching approaches to detect attacks. They can detect

attacks with very few false alarms but have limited attack detection capability since they cannot

detect unseen attacks. Their attack detection capability is directly proportional to the available

knowledge of attacks in the set S, i.e. knowledge of SR¡attack. To be effective, such systems

require complete knowledge of attacks, i.e. SR¡attack should be equal to UR¡attack, which is not

always possible

19

(b) Behavior (Anomaly) Based – When the set S only consists of events which are known to be

normal, the goal of the intrusion detection system is to identify significant deviations from the

known normal behavior [53] as shown in Figure 2.4.

Figure2.4 Representation of a behavior based system.

For behavior based systems to be effective complete knowledge of normal behavior of a resource

is required, i.e. the set SR¡normal should be equal to the set UR¡normal. Since the complete

knowledge of a resource may not be available, a threshold is used which gives some flexibility to

the system. Events which lie beyond the threshold are detected as attacks. Hence, behaviour

based systems; in general, suffer from a large false alarm rate. False alarms can be reduced by

increasing the threshold, however, this affects the attack detection and the system may not be

able to detect a wide variety of attacks. Hence, there is a tradeoff in limiting the number of false

alarms and the capability of the system to detect a variety of attacks.

(c) Hybrid – In most environments, it may not be possible to completely define either the

normal or the abnormal behaviour. As a result, an intrusion detection system may generate a

large number of false alarms or may be specific in detecting only a few types of attacks. A

hybrid system uses the partial knowledge of both, i.e., SR¡normal and SR¡attack, to detect

20

attacks; often resulting in fewer false alarms and detecting more attacks. Such systems generally

employ machine learning approaches. A hybrid system is represented in Figure 2.5.

Figure 2.5: Representation of a Hybrid System

2. The security policy also defines how the system must respond when an attack is detected;

based upon which the intrusion detection systems can be classified as:

(a) Passive Response Systems – In a passive response system, the system does not take any

measure to respond to an attack once an attack is detected. It simply generates an alert which can

be analyzed by the administrator at some later stage [15], [53].

(b) Active Response Systems – In active response systems, the intrusion detection systems

respond to attacks by various possible approaches which may include blocking the source of the

attack for a predefined time period [15], [53].

2.3.2 Classification based upon the Audit Patterns

1. The source from which the audit patterns are collected affects the attack detection capability

21

of a system. For example, when network statistics are used as the audit patterns, they cannot

provide any detail about the user and system interaction. Based on this, intrusion detection

systems are classified as:

(a) Network Based – In a network based system, the audit patterns collected at the network level

are used by the intrusion detector [21], [22]. Though a single system (or a few strategically

placed systems) is (are) sufficient for the entire network, the attack detection capability of a

network based system is limited. This is because it is hard to infer the contextual information

directly from the network audit patterns. Further, the audit patterns may be encrypted rendering

them unusable by the intrusion detector at the network level. In addition, large amount of audit

patterns at the network level may also affect the total attack detection accuracy. This is because

of two reasons; first, a significant portion of the total incoming patterns may be allowed to pass

into the network without any analysis and second, in high speed networks, it may be practical to

analyze only the summary statistics collected at regular time intervals. These statistics may

include features such as the total number of connections, amount of incoming and outgoing

traffic. Such features only provide a high level summary which may not be able to detect attacks

reliably [53].

(b) Host Based – The intrusion detector in a host based system analyzes the audit patterns

generated at the kernel level of the system which include system access logs and the error logs

[53]. The audit patterns collected at the individual host contains more specific information than

the network level audit patterns, which may be used to detect attacks reliably. However, it

becomes difficult to manage a large number f host based systems in a big network. Additionally,

host based systems can themselves be the victims of an attack.

(c) Application Based – The application based systems are concerned only with a single

application and detect attacks directed at a particular application or a privileged process [12].

They can analyze either the application access logs or the system calls generated by the

processes to detect anomalous activities. The application based systems can be very effective as

they can exploit the complete knowledge of the application and can be used even when

22

encryption is used in communication. They can also analyze the user and application interactions

which can significantly improve the attack detection accuracy.

2. In order to detect intrusions, the audit patterns can be collected from a single source or from

a number of sources. When the audit patterns are collected from more than one source, the

decision can be made by individual nodes or by aggregating the audit patterns at a single point

and then analyzing them together. Based upon this property, the intrusion detection systems can

be classified as:

(a) Centralized System – In a centralized system, the audit patterns are collected either from a

single source or from multiple sources but are processed at a single point where they are

analyzed together to determine the global state of the network [53]. However, such systems may

themselves become a target of attacks.

(b) Distributed System – In contrast to the centralized systems, the distributed systems can

make local decisions close to the source of the audit patterns and may report only a small

summary of activities to a higher level in the system. The advantage of a distributed system for

intrusion detection is that immediate response mechanism can be activated based upon local

decisions. However, distributed systems can be less accurate due to lack of global knowledge.

Agent based systems are examples of distributed intrusion detection systems [53].

(c) Alert Correlation – Alert correlation based systems analyze the alert generated by a number

of cooperating intrusion detection system [15]. The individual systems may themselves be

centralized or decentralized. Alert correlation systems can only be effective when multiple

networks are attacked with similar attacks such as in case of worm outbreak. Incase when the

attacks are network specific, the alert correlation systems will not be effective even though a few

target networks may detect some anomalous activities. In such cases, the local alerts will be

discarded as false alarms due to lack of global consensus.

3. Regardless of the source and the number of audit patterns, the intrusion detection systems

23

can be classified depending upon the frequency at which the audit patterns are collected. Based

on this, they are classified as:

(a) Session Based – Audit patterns can be collected at the end of every session by summarizing

different features. Methods can be used which analyze the summary of every session once the

session is terminated.

(b) Sliding Window Based – In case of sliding window based collection of audit patterns, events

are recorded using a moving window of fixed or variable width. The width of the window

defines the number of events recorded together and the step size for sliding the window

determines how fast the window is advanced forward.

(c) Periodic Snapshot Based – Instead of recording every event or summarizing a session at its

termination, snapshots of different states of the entire system can be taken at regular intervals

which can be analyzed to detect intrusions.

4. Depending upon the frequency of analysis of audit patterns, the intrusion detection systems

can be classified as:

 (a) Batch Mode – In batch mode intrusion detection, the audit patterns are aggregated in a

central repository. The patterns are then analyzed for intrusions at predefined time intervals.

Such systems cannot provide any immediate response to intrusion and can only perform the

recovery task once an attack is detected.

(b) Near Real-time – An intrusion detection system is said to perform in near real-time when the

system cannot detect an intrusion when it commenced, but can detect it at some later stage

during the attack or immediately at the end of an attack. In such systems, there is some delay

before the patterns are made available to the intrusion detector. Patterns collected by taking

periodic snapshots or using moving window with step size greater than one can be used for near

real-time intrusion detection.

24

(c) Real-time – A real-time intrusion detection system must detect an attack as soon as it is

commenced, i.e. the system is said to perform in real-time if and only if, for an event ‘x’ when

the attack commenced, the attacker cannot succeed with the event ‘x+1’. Hence, for real-time

intrusion detection, the system must detect an attack immediately. However, in practice it is very

difficult to build such a system given the constraint that it should have low false alarm rate and

high attack detection accuracy. Real-time intrusion detection systems can be implemented by

using a moving window with a step of size one. Network based signature detection systems,

which perform pattern matching can also perform in real-time by checking every event for

known attacks. However, they are limited in detecting only those attacks whose signatures are

known in prior. A typical example is the Snort [23].

2.4 Audit Patterns

The raw patterns must be preprocessed and presented in a format which can be interpreted by the

intrusion detector before they can be analyzed.

2.4.1 Properties of Audit Patterns useful for Intrusion Detection

Different properties in the audit patterns can be analyzed for detecting intrusions. The authors

has described in [49] three properties which can be used to detect intrusions.

1. Frequency of Event(s) – Frequency determines how often an event occurs in a predefined

time interval. A threshold can be used to define the limit. When the frequency crosses this limit,

an alarm can be raised. Properties such as the number of invalid login attempts and the number

of rows accessed in a database can be used to measure frequency.

2. Duration of Event(s) – Rather than counting the number of occurrences of an event, the

duration property determines the acceptable time duration for a particular event. It is based upon

selecting a threshold which defines an acceptable range for a particular event. For example, large

number of invalid login attempts for a single user id in a very short time span can be considered

25

as an attempt to guess a password and hence an attack. Systems analyzing the frequency or (and)

duration property for the events can perform efficiently but they suffer from large false alarm

rate as it is often difficult to determine the correct threshold for the events.

3. Ordering of Events – Analyzing the order in which events occur can improve the attack

detection accuracy and reduce false alarms. This is because, very often, intrusion is a multi step

process in which a number of events must occur sequentially in order to launch a successful

attack. However, to avoid detection from systems which do analyze a sequence of events, the

attacks can be spread over a long period of time such that the events cannot be correlated unless

a long history is maintained by the intrusion detection system. A system which can analyze all of

the above mentioned properties can detect attacks with high accuracy. However, such a system

may be inefficient in operation.

2.4.2 Univariate or Multivariate Audit Patterns

The audit patterns used to detect attacks may either be univariate or multivariate. As, discussed

before, the audit patterns may be collected from the routers and switches for the network level

systems. When only one feature is analyzed, in case of univariate audit patterns, the analysis is

much simpler in comparison to when many features are analyzed together, as in case of

multivariate analysis. However, a single feature itself may not be the complete representation

and, hence, insufficient to detect attacks. For example, when the sequence of system calls

generated by a privileged process is analyzed for detecting abnormal behavior, discarding other

features such as the parameters of the system calls can affect the attack detection capability of

the system [24].

2.4.3 Relational or Sequential Representation

Very often, the audit patterns collected are sequential where one or more features are recorded

continuously. However, the raw audit patterns may be processed into a relational form and a

number of new features can be added. These features often give a high level representation of

audit patterns in a summarized form. Examples of such features include; total amount of data

26

transferred in a session and duration of a session. Frequency and duration properties of events

can be easily represented in a relational form. Converting the audit patterns from sequential to

relational form has two advantages; first, more features can be added and second, efficient

methods can be used for analysis of audit patterns in relational form. However, this may result in

affecting the attack detection capability as in relational form the ordering of events and, hence,

the relationship among sequential events is lost. When the audit patterns are represented

sequentially, event ordering can be exploited in favour of higher attack detection accuracy.

However, in general, sequence analysis is slower when compared to the relational analysis.

2.5 Evaluation Metrics

Evaluating different methods for detecting intrusions is important. Intrusion detection is an

example of a problem with imbalanced classes, i.e. the number of instances in the classes is not

equally distributed. The number of attacks is very small when compared with the total number of

normal events. Note that, in case of the Denial of Service attacks, the amount of attack traffic is

extremely large as compared to the normal traffic. Hence, evaluating intrusion detection systems

using simple accuracy metric may result in very high accuracy [25]. Other metrics such as

Precision, Recall and F-Measure, which do not depend on the size of the test set, are, thus, used

for evaluating intrusion detectors. These are defined with the help of the confusion matrix as

follows:

 Predicted Normal Predicted Attack

True Normal True Negative False Positive

True Attack False Negative True Positive

Table 2.1: Confusion Matrix

Where b corresponds to the relative importance of Precision vs. Recall and is usually set to 1.

Hence, a system must have high Precision (i.e. it must detect only attacks), high Recall (i.e. it

must detect all attacks) and, thus, a high F-Measure.

27

In addition to evaluating the attack detection capability of the detector, time taken to detect an

attack is also significant. The time performance is generally measured for the time taken by the

intrusion detector to detect an attack from the time the audit patterns are fed into the detector.

This is sufficient for comparison when different methods use exactly the same data for analysis,

however, it does not represent the efficiency of the intrusion detection system, since the time

taken in collecting and preprocessing the audit patterns is not considered. Hence, in real

environments, total time must be measured which is the time from the point when intrusion

actually started to the point in time when the response mechanism is activated.

2.6 Literature Review

Two most significant motives to launch attacks as described in [82] are, either to force a network

to stop some service(s) that it is providing or to steal some information stored in a network. An

intrusion detection system must be able to detect such anomalous activities. However, what is

normal and what is anomalous is not defined, i.e., an event may be considered normal with

respect to some criteria, but the same may be labeled anomalous when this criterion is changed.

Hence, the objective is to find anomalous test patterns which are similar to the anomalous

patterns which occurred during training. The underlying assumption is that the evaluating

criterion is unchanged and the system is properly trained such that it can reliably separate normal

and anomalous events.

2.6.1 Frameworks for building Intrusion Detection Systems

A number of frameworks have been proposed for building intrusion detection systems. The

common intrusion detection framework is described in [20]. The authors in [25] and [26]

describe a data mining framework for building intrusion detection systems. Using the approach

described in [26], the rules can be learned inductively instead of manually coding the intrusion

patterns and profiles. However, their approach requires the use of a large amount of noise free

audit data to train the models. Agent based intrusion detection frameworks are discussed in [27]

and [28]. Frameworks which describe the collaborative use of intrusion detection systems have

28

also been proposed [29], [30]. The system described in [29] is based on the combination of

network based and host based systems while the system in [30] employs both, signature based

and behavior based techniques for detecting intrusions. All of these frameworks suffer from one

major drawback; a single intrusion detector used within these frameworks is trained to detect a

wide variety of attacks. This results in a large number of false alarms.

2.6.2 Network Intrusion Detection

The prospect of maintaining a single system which can be used to detect network wide attacks

make network monitoring a preferred option as opposed to monitoring individual hosts in a large

network. A number of techniques such as association rules, clustering, naive Bayes classifier,

support vector machines, genetic algorithms, artificial neural networks and others have been

applied to detect intrusions at network level. It is important to note that different methods are

based on specific assumptions and analyze different properties in the audit patterns, resulting in

different attack detection capabilities. These methods can be broadly divided into three major

categories:

Pattern Matching

Pattern matching techniques search for predefined set of patterns (known as signatures) in the

audit patterns to detect intrusions. Pattern matching approaches are employed on the audit

patterns which do not have any state or sequence information. Hence, they assume independence

among events. However, this assumption may not always hold as a single intrusion may span

over multiple events which are correlated. The prime advantage of pattern matching approaches

is that they are very efficient and triggers an alert only when an exact match of an attack

signature is found resulting in very few false alarms. They can, however, detect attacks only if

the corresponding pattern (signature) exists in the signature database. Hence, they cannot detect

unseen attacks, for which there are no signatures [24], [53]. Snort system [23] is based upon

pattern matching.

29

Statistical Methods

Statistical methods based on modeling the monitored variables as independent Gaussian random

variables and methods such as those based on the Hotelling T2 test statistic can be used to detect

attacks by calculating deviations in the present profile from the stored normal profile [24]. They

are based upon modeling the underlying process which generates the audit patterns and exploit

the frequency and duration property of events. They often analyze properties such as the overall

system load and statistical distribution of events, which represent a summary measure. When the

deviations exceed a predefined threshold, the system triggers an alarm. To determine this

threshold accurately is a critical issue. When the threshold is low, the system raises a large

number of (false) alarms and when the threshold is high, the system may not detect attacks

reliably. Though these methods can handle multiple features in the audit patterns, very often, in

order to reduce complexity and improve system performance only a single feature is considered,

as in the Intrusion Detection Expert System (IDES) [54].This, however, affects the attack

detection accuracy. Statistical methods can operate either in batch mode (Haystack system) or in

real-time mode (IDES).

Data Mining and Machine Learning

Data mining and machine learning methods focus on analyzing the properties of the audit

patterns rather than identifying the process which generated them [24]. These methods include

approaches for mining association rules, classification and cluster analysis. Classification

methods are one of the most researched and include methods like the decision trees, Bayesian

classifiers, artificial neural networks, k-nearest neighbor classification, support vector machines

and many others.

 Clustering – Clustering of data has been applied extensively for intrusion detection using a

number of methods such as k-means, fuzzy c-means and others [31], [32]. Clustering methods

are based upon calculating the numeric distance of a test point from different cluster centers and

then adding the point to the closest cluster. One of the main drawbacks of clustering technique is

that since a numeric distance measure is used, the observations must be numeric. Observations

30

with symbolic features cannot be readily used for clustering which results in inaccuracy. In

addition, clustering methods consider the features independently and are unable to capture the

relationship between different features of a single record which results in lower accuracy.

Another issue when applying any clustering method is to select the distance measure as different

distance measures result in clusters with different shapes and sizes. Frequently used distance

measures are the Euclidian distance and the Mahalanobis distance [24]. Clustering can, however,

be performed in case only the normal audit patterns are available. In such cases, density based

clustering methods can be used which are based on the assumption that intrusions are rare and

dissimilar to the normal events. This is similar to identifying the outlier points which can be

considered as intrusions.

 Data Mining – Data mining approaches [25], [26] are based on mining association rules[33]

and using frequent episodes [34] to build classifiers by discovering relevant patterns of program

and user behaviour. Association rules and frequent episodes are used to learn the record patterns

that describe user behaviour. These approaches can deal with symbolic features and the features

can be defined in the form of packet and connection details. Mining association rules for

intrusion detection has the advantage that they are easy to interpret. However, they are based

upon building a database of rules of normal and frequent items during the training phase. During

testing, patterns from the test data are extracted and various classification methods can be used to

classify the test data. The detection accuracy suffers as the database of rules is not a complete

representation of the normal audit patterns.

 Bayesian Classifiers – Naive Bayes classifiers are also proposed for intrusion detection [35].

However, they make strict independence assumption between the features in an observation

resulting in lower attack detection accuracy when the features are correlated, which is often the

case. Bayesian network [36] can also be used for intrusion detection [37], [38]. However, they

tend to be attack specific and build a decision network based on special characteristics of

individual attacks. As a result, the size of a Bayesian network increases rapidly as the number of

features and the type of attacks modeled by the network increases.

31

 Decision Trees – Decision trees have also been used for intrusion detection [35], [39]. Decision

trees select the best features for each decision node during tree construction based on some well

defined criteria. One such criterion is the gain ratio which is used in C4.5. Decision trees

generally have very high speed of operation and high attack detection accuracy and have been

successfully used to build effective intrusion detection systems.

Artificial Neural Networks – Neural networks have been used extensively to build network

intrusion detection systems. Though, the neural networks can work effectively with noisy data,

like other methods, they require large amount of data for training and it is often hard to select the

best possible architecture for the neural network.

 Support Vector Machines – Support vector machines map real valued input feature vector to

higher dimensional feature space through nonlinear mapping and have been used for detecting

intrusions [40], [41], [42]. They can provide real-time attack detection capability, deal with large

dimensionality of data and perform multi class classification.

For data mining and machine learning based approaches, the accuracy of the trained system also

depends upon the amount of audit patterns available during training. Generally, training with

more audit patterns result in a better model. The above discussed methods often deal with the

summarized representation of the audit patterns and may analyze multiple features which are

considered independently. The prime reason for working with summary patterns is that the

system tends to be simple, efficient and give fairly good attack detection accuracy. Similar to the

pattern matching and statistical methods, these methods assume independence among

consecutive events and hence do not consider the order of occurrence of events for attack

detection.

Markov Models – Markov chains [43], [44] and hidden Markov models [45] can be used when

dealing with sequential representation of audit patterns. [12], [46], [47] and [48] describes the

use of hidden Markov model for intrusion detection. Hidden Markov models have been shown to

be effective in modeling sequences of system calls of a privileged process, which can be used to

32

detect anomalous traces. However, modeling system calls alone may not always provide accurate

classification as various connection level features are ignored.

Further, hidden Markov models cannot model long range dependencies between the observations

[84]. Very often the sequence itself is a vector and has many correlated features. However, in

order to gain computational efficiency the multivariate data analysis problem is broken into

multiple univariate data analysis problems and the individual results are combined using a voting

mechanism [24]. This however, results in inaccuracy as the correlation among the features is

lost. The authors in [84] show that modeling the ordering property of events, in addition to the

duration and frequency, results in higher attack detection accuracy. The drawback with modeling

the ordering of events is that the complexity of the system increases which affects the

performance of the system. Hence, there is a tradeoff between detection accuracy and the time

required for attack detection.

A number of intrusion detection systems such as the IDES (Intrusion Detection Expert System),

Haystack system, the MIDAS (Multics Intrusion Detection System), W&S (Wisdom and Sense)

system, TIM (Time based Inductive Machine), Snort and others have been developed which

operate at the network level [1]. However, network intrusion detection systems must perform

very efficiently in order to handle large amount of network data and hence many of the network

intrusion detection systems are primarily based on signature matching. When anomaly detection

systems are used at network level, they either consider only one feature [54] or assume the

features to be independent [85]. However, we propose to use a hybrid system based on

conditional random fields and integrate the layered framework to build a single system which

can operate in high speed networks and can detect a wide variety of attacks with very few false

alarms.

2.7 Layered approach for intrusion detection

We now describe the Layer-based Intrusion Detection System (LIDS) in detail. The LIDS draws

its motivation from what we call as the Airport Security model, where a number of security

checks are performed one after the other in a sequence. Similar to this model, the LIDS

33

represents a sequential Layered Approach and is based on ensuring availability, confidentiality,

and integrity of data and (or) services over a network. Fig. 2.7 gives a generic representation of

the framework.

The goal of using a layered model is to reduce computation and the overall time required to

detect anomalous events. The time required to detect an intrusive event is significant and can be

reduced by eliminating the communication overhead among different layers. This can be

achieved by making the layers autonomous and self-sufficient to block an attack without the

need of a central decision-maker. Every layer in the LIDS framework is trained separately and

then deployed sequentially. We define four layers that correspond to the four attack groups

mentioned in the data set. They are Probe layer, DoS layer, R2L layer, and U2R layer. Each layer

is then separately trained with a small set of relevant features.

Feature selection is significant for Layered Approach and discussed in the next section. In order

to make the layers independent, some features may be present in more than one layer. The layers

essentially act as filters that block any anomalous connection, thereby eliminating the need of

further processing at subsequent layers enabling quick response to intrusion. The effect of such a

sequence of layers is that the anomalous events are identified and blocked as soon as they are

detected. Our second goal is to improve the speed of operation of the system. Hence, we

implement the LIDS and select a small set of features for every layer rather than using all the 41

features. This results in significant performance improvement during both the training and the

testing of the system. In many situations, there is a trade-off between efficiency and accuracy of

the system and there can be various avenues to improve system performance. Methods such as

naive Bayes assume independence among the observed data. This certainly increases system

efficiency, but it may severely affect the accuracy. To balance this trade-off, we use the CRFs

that are more accurate, though expensive, but we implement the Layered Approach to improve

overall system performance. The performance of, layered CRFs, is comparable to that of the

decision trees and the naive Bayes, and our system has higher attack detection accuracy.

Advantages of Layered Framework

34

We now summarize the advantages of using our layered framework. Using our layered

framework improves attack detection accuracy and the system can detect a wide variety of

attacks by making use of the domain specific knowledge. The layered framework does not

degrade system performance as individual layers are independent and are trained with only a

small number of features, thereby, resulting in an efficient system. Additionally, using our

layered framework opens avenues to perform pipelining resulting in very high speed of

operation. Implementing pipelining, particularly in multi core processors, can significantly

improve the performance by reducing the multiple I/O operations to a single I/O operation since

all the features can be read in a single operation and analyzed by different layers in the layered

framework. Our framework is easily customizable and the number of layers can be adjusted

depending upon the requirements of the target network.

Layered framework is not restrictive in using a single method to detect attacks. Different

methods can be seamlessly integrated in our framework to build effective intrusion detectors.

Layered framework for building effective and efficient network intrusion detection systems fits

well in the traditional layered defense approach for providing network and enterprise level

security.

Layered framework has the advantage that the type of attack can be inferred directly from the

layer at which it is detected. As a result, specific intrusion response mechanisms can be activated

for different attacks.

Comparison with other Frameworks

Ensuring continuity of services and security of data from unauthorized disclosure and malicious

modifications are critical for any organization. However, providing a desired level of security at

the enterprise level can be challenging. No single tool can provide enterprise wide security and

hence, a number of different security tools are deployed. For this, a layered defense approach is

often employed to provide security at the organizational level. This traditional layered defense

approach incorporates a variety of security tools such as the network surveillance, perimeter

35

access control, firewalls, network, host and application intrusion detection systems, file integrity

checkers, data encryption and others which are deployed at different access points in a layered

security framework. The traditional layered architecture is perceived as a framework for ensuring

complete organizational security rather than as an approach for building effective and efficient

intrusion detection systems. Figure 3.2 represents the traditional layered defense approach.

However, as discussed earlier, we present a layered framework for building intrusion detection

systems. Our framework fits well in the traditional layered defense approach and can be used to

develop effective and efficient network intrusion detection systems. Further, the four

components viz., event generators, event Analyzers, event Databases and the response units,

presented in the Common Intrusion Detection Framework [20] can be defined for every intrusion

detection sub system in our layered framework.

In the data mining framework for intrusion detection, [50], the authors describe the use of data

mining algorithms to compute activity patterns from system audit data to extract features which

are then used to generate rules to detect intrusions. The same approach can be applied for

building an intrusion detection system based on our layered framework. Our framework can not

only seamlessly integrate the use of data mining technique for intrusion detection, but can Figure

3.2: Traditional Layered Defense Approach to Provide Enterprise Wide Security also help to

improve its performance by selecting only a small number of significant features for building

separate intrusion detection sub systems which can be used to effectively detect different classes

of attacks at different layers.

2.8 Conditional Random Fields

Conditional models are probabilistic systems which are used to model the conditional

distribution over a set of random variables. Such models have been extensively used in natural

language processing tasks and computational biology. Conditional models offer a better

framework as they o not make any unwarranted assumptions on the observations and can be used

to model rich overlapping features among the visible observations. Maxent classifiers [55], [56],

[57] maximum entropy Markov models [66], [58] and conditional random fields [49] are such

36

conditional models. The simplest conditional classifier is the Maxent classifier based upon

maximum entropy classification which estimates the conditional distribution of every class given

the observations. The training data is used to constrain this conditional distribution while

ensuring maximum entropy and hence maximum uniformity. We now give a brief description of

the conditional random fields which is motivated from the work in [49]. Let X be the random

variable over a data sequence to be labeled and Y be the corresponding label sequence. Also, let

G = (V, E) be a graph such that Y = (Yv) so that Y is indexed by the vertices of G. Then (X,Y) is a

conditional random field, when conditioned on X, the random variables Yv obey the Markov

property with respect to the graph: : p(Yv|X, Yw, w ≠ v) = p(Yv|X, Yw, w ∼ v)where w ∼ v
means that w and v are neighbors in G, i.e. a conditional random field is a random field globally

conditioned on X. For a simple sequence (or chain) modeling, as in our case, the joint

distribution over the label sequence Y given X has the form:

pθ(y|x) exp(σ ாǡאሻݔȁ݁ǡݕሺ݁ǡ݂݇ߣ݇ +σ ǡאሻ௩ݔǡݒȁݕǡݒሺ݇݃ߤ݇)

where x is the data sequence, y is a label sequence, and yjs is the set of components of y

associated with the vertices or edges in sub graph S. The features fk and gk are assumed to be

given and fixed.

Further, the parameter estimation problem is to find the parameters q = (l1, l2, ...; m1, m2, ...)

from the training data D = (xi, yi)i=1 N with the empirical distribution ̃ p(x, y).

The graphical structure of a conditional random field is represented in Figure 2.6 where x1, x2, x3,

x4 represents an observed sequence of length four and every event in the sequence are

correspondingly labeled as y1, y2, y3, y4.

37

Figure 2.6 Graphical Representation of a Conditional Random Field

The prime advantage of conditional random fields is that they are discriminative models which

directly model the conditional distribution p(y/x). Further, conditional random fields are

undirected models and free from label bias and observation bias which are present in other

conditional models [59]. Generative models such as the Markov chains, hidden Markov models

and joint distribution have two disadvantages. First, the joint distribution is not required since the

observations are completely visible and the interest is in finding the correct class which is the

conditional distribution p(y/x). Second, inferring conditional probability p(y/x) from the joint

distribution, using the Bayes rule, requires marginal distribution p(x) which is difficult to

estimate as the amount of training data is limited and the observation x contains highly

dependent features. As a result strong independence assumptions are made to reduce complexity.

This results in reduced accuracy [60]. Instead, conditional random fields predict the label

sequence y given the observation sequence x, allowing them to model arbitrary relationships

among different features in the observations without making independence assumptions.

Conditional random fields, thus, offer us the required framework to build effective intrusion

detection systems. The task of intrusion detection can be compared to many problems in machine

learning, natural language processing and bio-informatics such as gene prediction, determining

secondary structures of protein sequences, part of speech tagging, text segmentation, shallow

parsing, named entity recognition, object recognition and many others. The conditional random

38

fields have proven to be very successful in such tasks. Hence, in this thesis, we explore the

suitability of conditional random fields for building robust intrusion detection systems.

2.9 FCANN

Artificial Neural Network (ANN) is one of the widely used techniques and has been successful

in solving many complex practical problems. And ANN has been successfully applied into IDS

[76] [71]. However, the main drawbacks of ANN-based IDS exist in two aspects:

(1) Lower detection precision, especially for low-frequent attacks, e.g., Remote to Local (R2L),

User to Root (U2R), and

(2) Weaker detection stability [77].

For the above two aspects, the main reason is that the distribution of different types of attacks is

imbalanced. For low-frequent attacks, the leaning sample size is too small compared to high-

frequent attacks. It makes ANN not easy to learn the characters of these attacks and therefore

detection precision is much lower. In practice, low-frequent attacks do not mean they are

unimportant. Instead, serious consequence will be caused if these attacks succeeded. For

example, if the U2R attacks succeeded, the attacker can get the authority of root user and do

everything he likes to the targeted computer systems or network device. Furthermore in IDS the

low-frequent attacks are often outliers. Thus ANN is unstable as it often converges to the local

minimum [69]. Although prior research has proposed some approaches, when encountering large

datasets, these approaches become not effective [75] [24]. To solve the above two problems, we

propose a novel approach for ANN-based IDS, FC-ANN, to enhance the detection precision for

low-frequent attacks and detection stability. The general procedure of FC-ANN approach has the

following three stages. In the first stage, a fuzzy clustering technique is used to generate different

training subsets. Based on different training sets, different ANNs are trained in the second stage.

In the third stage, in order to eliminate the errors of different ANNs, a meta-learner, fuzzy

aggregation module, is introduced to learn again and combine the different ANN’s results. The

39

whole approach reflects the famous philosophy ‘‘divide and conquer”. By fuzzy clustering, the

whole training set is divided into subsets which have less number and lower complexity. Thus

the ANN can learn each subset more quickly, robustly and precisely, especially for low-frequent

attacks, such as U2R and R2L attacks. To illustrate the applicability and capability of the new

approach, the results of experiments on KDD CUP 1999 dataset.

40

Chapter 3
Layered Framework for Building Intrusion Detection Systems

The LIDS draws its motivation from what we call as the Airport Security model, where a number

of security checks are performed one after the other in a sequence. Today’s networks and

enterprises use Layered Defense Approach to ensure security at different access levels. A

variety of tools such as network surveillance, perimeter access control, firewalls network, host

and application intrusion detection systems, data encryption are used at different layers to detect

attacks at that layer. However, with the rapid increase in the number and type of attacks, a single

system is not effective enough given the constraints of achieving high attack detection accuracy

and high system throughput. Hence, a layered framework for building intrusion detection

systems which can be used, for example, to build a network intrusion detection system which can

detect a wide variety of attacks reliably and efficiently when compared to the traditional network

intrusion detection systems. Another advantage of our Layer based Intrusion Detection System

(LIDS) framework is that it is very general and easily customizable depending upon the specific

requirements of individual networks.

3.1 Introduction

 The characteristics required for the intrusion detection system are as follows:

1. Broad attack detection coverage i.e., an intrusion detection system must detect different type

of attacks effectively

2. Efficiency in operation, i.e. it must operate efficiently in high traffic networks

Today’s networks are susceptive to a number of attacks, a large number of which are previously

known. However, the number of previously unseen attacks is on a rise [3]. Signature based

systems using pattern matching approaches can be used effectively and efficiently to detect

previously known attacks in high speed networks. However, even a slight variation in attacks

may not be detected by a signature based system. As a result, anomaly and hybrid systems are

used to detect previously unseen attacks and have been proven to be more reliable in detecting

41

novel attacks when compared with the signature based systems. A common practice to build

anomaly and hybrid intrusion detection systems is to train a single system with labeled data to

build a classifier which can then be used to detect attacks from a previously unseen test set.

At times, when labeled data is not available, clustering based systems can be used to distinguish

between legitimate and malicious packets. However, a significant disadvantage of such systems

is that they result in a large number of false alarms. The attack detection coverage of the system

is further affected when a single system is trained to detect different type of attacks. To

maximize attack detection, various systems such as [30] and [61] employ both the signature

based and the anomaly based systems together. However, the anomaly based systems still remain

a bottleneck in the joint system. This is because, a single anomaly detector is trained which is

expected to accurately detect a variety of attacks and perform efficiently.

Thus, for a network intrusion detection system monitoring the incoming and outgoing network

traffic and ensuring confidentiality, integrity and availability via a single system may not be

possible due to several reasons including the complexity and the diverse type of attacks at the

network level. Ensuring high speed of operation further limits the deployment, particularly, of

anomaly and hybrid network intrusion detection systems. Network monitoring using a network

intrusion detection system is only a single line of defense in the traditional layered defense

approach which aims to provide complete organizational security. Hence, network intrusion

detection systems are complemented by a variety of other tools such as network surveillance,

perimeter access control, firewalls, host and application intrusion detection systems, file integrity

checkers, data encryption and others and are deployed at different access points in a layered

organizational security framework [62]. In this chapter we propose a layered framework for

building anomaly and hybrid network intrusion detection systems which can operate efficiently

in high speed networks and can accurately detect a variety of attacks. Layered framework is very

general and can be easily customized by adding domain specific knowledge as per the specific

requirements of the network in concern, thereby, giving flexibility in implementation.

The rest of the chapter is organized as follows; we give motivating examples to highlight the

significance of the layered framework for intrusion detection in Section 3.2. We then describe

42

our layered framework in Section 3.3. We highlight the advantages of our framework in Section

3.4 and compare the layered framework with others in Section 3.5.

3.2 Motivating Examples

Anomaly and hybrid intrusion detection systems typically employ various data mining and

machine learning based approaches which are inefficient when compared to the signature based

systems which employ pattern matching. Hence, it becomes critical to search for methods which

can be used to build efficient anomaly and hybrid intrusion detection systems. However, given

that the present networks are prone to a wide variety of attacks, using a single system would not

only degrade performance but will also be less effective in attack detection.

Consider for example, a single network intrusion detection system which is deployed to detect

every network attack in a high speed network. A network is prone to different types of attacks

such as the Denial of Service (DoS), Probe and others. We note that the DoS and Probe attacks

are different and require different features for their effective detection. When same features are

used to detect the two attacks the accuracy decreases. It also makes the system bulky which

affects its speed of operation. Hence, for effective attack detection, a network intrusion detection

system must differentiate between different types of attacks. Thus, using a single system is not a

viable option. One possible solution is having a number of sub systems each of which is specific

in detecting a single category of attack (such as DoS, Probe and others). This is not only more

effective in detecting individual classes of attacks, but it also results in an efficient system. The

number of sub systems to be used can be determined by analyzing the potential risks and the

availability of resources at individual installations. Hence, we propose a layered framework for

building efficient anomaly and hybrid intrusion detection systems where different layers in the

system are trained independently to detect different type of attacks with high accuracy. For

example, based on Layered framework a network intrusion detection system may consist of four

layers, where the layers correspond to four different attack classes; Denial of Service, Probe,

Remote to Local and User to Root.

43

3.3 Description of our Framework

Figure 3.1 Framework for building LIDS

Figure 3.1 represents our framework for building Layer based Intrusion Detection Systems

(LIDS). The figure represents an ‘n’ layer system where every layer in itself is a small intrusion

detection system which is specifically trained to detect only a single type of attack, for example

the DoS attack. A number of such sub systems are then deployed sequentially, one after the

other. This serves dual purpose; first, every layer can be trained with only a small number of

features which are significant in detecting a particular class of attack. Second, the size of the sub

system remains small and hence, it performs efficiently. A common disadvantage of using a

modular approach, similar to our layered framework, is that it increases the communication

overhead among the modules (sub systems). However, this can be easily eliminated in our

framework by making every layer completely independent of every other layer. As a result, some

features may be present in more than one layer. Depending upon the security policy of the

44

network, every layer can simply block an attack once it is detected without the need of a central

decision maker. A number of such layers essentially act as filters, which blocks anomalous

connection as soon as they are detected in a particular layer, thereby providing a quick response

to intrusion and simultaneously reducing the analysis at subsequent layers. It is important to note

that a different response may be initiated at different layers depending upon the class of attack

the layer is trained to detect. The amount of audit data analyzed by the system is more at the first

layer and decreases at subsequent layers as more and more attacks are detected and blocked. In

the worst case, when no attacks are detected until at the last layer, all the layers have the same

load. However, the overall load for the average case is expected to be much less since attacks are

detected and blocked at every subsequent layer. On the contrary, if the layers are arranged in

parallel rather than in a sequence, the load at every sub system is same and is equal to that of the

worst case in the sequential configuration. Additionally, the initial layers in the sequential

configuration can be replicated to perform load balancing in order to improve performance.

3.3.1 Components of Individual Layers

Given that a network is prone to a wide variety of attacks, it is often not feasible to add a

separate layer to detect every single attack. However, a number of similar attacks can be grouped

together and represented as a single attack class. Every layer in our framework corresponds to a

sub system which is trained independently to detect attacks belonging to a single attack class. As

a result, the total number of layers in our framework remains small. For example, both, ‘Smurf’

and ‘Neptune’ result in Denial of Service and, hence, can be detected at a single layer rather than

at two different layers.

Additionally, the layered framework is very general and the number of layers in the overall

system can be adjusted depending upon the individual requirements of the network in concern.

Consider for example, a data repository which is a replica of a real-time application data and

which does not provide any online services. To ensure security of this data, the priority is to

simply detect network scans as opposed to detecting malicious data accesses. For such an

environment, only a single layer which can reliably detect the Probe attacks is sufficient. Hence,

45

the number of layers in our framework can be easily customized depending upon the identified

threats and the availability of resources.

Even though the number of layers and the significance of every layer in our framework depend

upon the target network, every layer has two significant components:

1. Feature Selection Component – In order to detect intrusions, a large number of features can be

monitored. These features include ‘protocol’, ‘type of service’, ‘number of bytes from source to

destination’, ‘number of bytes from destination to source’, ‘whether or not a user is logged in’,

‘number of root accesses’, ‘number of files accessed’ and many others. However, to detect a

single attack class, only a small set of these features is required at every layer. Using more

features than required makes the system inefficient. For example, to detect Probe attacks,

features such as the ‘protocol’ and ‘type of service’ are significant while features such as

‘number of root accesses’ and ‘number of files accessed’ are not significant.

2. Intrusion Detection and Response Sub System – The second component in every layer is the

intrusion detection and response unit. To detect intrusions, our framework is not restrictive in

using a particular anomaly or hybrid detector. A variety of previously well known intrusion

detection methods such as the naive Bayes classifier, decision trees, support vector machines and

others can be used. A prime advantage of our framework is that newer methods, such as

conditional random fields as we will discuss in the following chapters, which are more effective

in detecting attacks can be easily incorporated in our framework. Finally, once an attack is

detected, the response unit can provide adequate intrusion response depending upon the security

policy. In order to take advantages of Layered framework, each layer must contain both of the

above mentioned components.

3.4 Advantages of Layered Framework

We now summarize the advantages of using our layered framework.

1. Using our layered framework improves attack detection accuracy and the system can detect

a wide variety of attacks by making use of the domain specific knowledge.

46

2. The layered framework does not degrade system performance as individual layers are

independent and are trained with only a small number of features, thereby, resulting in an

efficient system.

 Additionally, using our layered framework opens avenues to perform pipelining resulting in

very high speed of operation. Implementing pipelining, particularly in multi core processors,

can significantly improve the performance by reducing the multiple I/O operations to a single

I/O operation since all the features can be read in a single operation and analyzed by different

layers in the layered framework.

3. Our framework is easily customizable and the number of layers can be adjusted depending

upon the requirements of the target network.

4. Our framework is not restrictive in using a single method to detect attacks. Different

methods can be seamlessly integrated in our framework to build effective intrusion detectors.

5. Layered framework for building effective and efficient network intrusion detection systems

fits well in the traditional layered defense approach for providing network and enterprise

level security.

6. Our framework has the advantage that the type of attack can be inferred directly from the

layer at which it is detected. As a result, specific intrusion response mechanisms can be

activated for different attacks.

3.5 Comparison with other Frameworks

Ensuring continuity of services and security of data from unauthorized disclosure and malicious

modifications are critical for any organization. However, providing a desired level of security at

the enterprise level can be challenging. No single tool can provide enterprise wide security and

hence, a number of different security tools are deployed. For this, a layered defense approach is

often employed to provide security at the organizational level. This traditional layered defense

approach incorporates a variety of security tools such as the network surveillance, perimeter

47

access control, firewalls, network, host and application intrusion detection systems, file integrity

checkers, data encryption and others which are deployed at different access points in a layered

security framework. The traditional layered architecture is perceived as a framework for ensuring

complete organizational security rather than as an approach for building effective and efficient

intrusion detection systems. Figure 3.2 represents the traditional layered defense approach.

However, as discussed earlier, we present a layered framework for building intrusion detection

systems. Our framework fits well in the traditional layered defense approach and can be used to

develop effective and efficient network intrusion detection systems. Further, the four

components viz., event generators, event Analyzers, event Databases and the response units,

presented in the Common Intrusion Detection Framework [20] can be defined for every intrusion

detection subsystem in our layered framework.

Figure 3.2 Traditional Layered defense approach

48

In the data mining framework for intrusion detection, [50], the authors describe the use of data

mining algorithms to compute activity patterns from system audit data to extract features which

are then used to generate rules to detect intrusions. The same approach can be applied for

building an intrusion detection system based on our layered framework. Our framework can not

only seamlessly integrate the use of data mining technique for intrusion detection, but can also

help to improve its performance by selecting only a small number of significant features for

building separate intrusion detection sub systems which can be used to effectively detect

different classes of attacks at different layers.

A number of other frameworks have been proposed which describe the use of classifier

combination [30], [61], [63], [64]. In [30] and [61], the authors apply a combination of anomaly

and misuse detectors for better qualification of analyzed events. The authors in [63] describe the

combination of ‘strong’ classifiers using stacking where decision tress, naive Bayes and a

number of other classification methods are used as base classifiers. The authors show that the

output from these classifiers can be combined to generate a better classifier rather than selecting

the individual best classifier. In [64], the authors use a combination of ‘weak’ classifiers where

the individual classification power of weak classifiers is slightly better than that of random

guessing. The authors show that a number of such classifiers when combined by using simple

majority voting mechanism provide good classification. Our framework is, however, not based

upon classifier combination. Combination of classifiers is expensive with regards to the

processing time and decision making. In addition, centralized decision making systems often

tend to be complex and slow in operation.

The only purpose of classifier combination is to improve accuracy. Rather, our system is based

upon serial layering of multiple hybrid detectors which are trained independently and which

operate without the influence of any central controller. In our framework, the results from

individual classifiers at a layer are not combined at any later stage and, hence, an attack is

blocked at the layer where it is detected. There is no communication overhead among the layers

and the central decision maker which results in an efficient system. In addition, since the layers

are independent they can be trained separately and deployed independently. As already

49

discussed, using a stacked system is expensive when compared to the sequential model. From

our experimental results in the following chapters, we will show that an intrusion detection

system based on our layered framework performs better and is more efficient when compared

with individual systems as well as with systems based on classifier combination.

50

Chapter 4
Layered Approach Using Conditional Random Fields

In previous chapter we have seen that layered approach is better than centralized approach and

provide better results. It can also be used with various techniques. In this chapter we will give the

various benefits of using conditional random fields and combine it with the layered approach.

4.1 Conditional Random Fields

Conditional Random Fields are undirected graphical models used for the task of sequence

tagging. The difference between the Conditional Random Fields (CRF) and other graphical

models such as the Hidden Markov Models (HMM) is that the HMM, being generative, models

the joint distribution p(y, x) whereas the CRF are discriminative models directly modeling the

conditional distribution p(y|x) which is the distribution of interest. Similar to HMM, the Naive

Bayes are also generative and model the joint distribution.

Modeling the joint distribution for the task of classification and sequence labeling has two

disadvantages.

1. Since the observations are completely visible so it is not the distribution of interest. The interest

is in finding the correct class for the visible observation which is the same as the conditional

distribution p(y|x).

2. Inferring the conditional probability p(y|x) from the modeled joint distribution, using the Bayes

rule, requires the marginal distribution p(x). To calculate this marginal distribution is difficult as

the amount of training data is often limited and the observation x contains highly dependent

features which are difficult to model and hence strong independence assumptions are made to

simplify the task. This results in reduced accuracy [86].

51

Thus, the Conditional Random Fields simply try to predict y given the x. This allows them to

model arbitrary features in different attributes in x [87]. Conditional Random Fields also avoid

the observation bias and the label bias problem which is present in other discriminative models,

such as the Maximum Entropy Markov Models. The Maximum Entropy Markov Models use per-

state exponential model for the conditional probabilities of the next state given the current state

and the observation sequence [88] while the Conditional Random Fields have a single

exponential model for the joint probability of the entire sequence of labels given the observation

sequence, thus avoiding the label bias problem [89]. Given X and Y , the random variables over

data sequence to be labeled and corresponding label sequences, let G = (V,E) be a graph such

that Y = (Yv) is represented by the vertices of the graph G, then, (X, Y) is a Conditional Random

Field, when conditioned on X, the random variables Yv obey the Markov property with respect to

the graph: p(Yv|X, Yw, w ≠ v) = p(Yv|X, Yw, w ∼ v), where w ∼ v means that w and v are neighbors

in G, [89], i.e. a CRF is a random field globally conditioned on X. For a simple sequence

modeling, as in our case, the joint distribution over the label sequence Y given X has the form:

pθ(y|x) exp(σ ாǡאሻݔȁ݁ǡݕሺ݁ǡ݂݇ߣ݇ +σ ǡאሻ௩ݔǡݒȁݕǡݒሺ݇݃ߤ݇)

where x is the data sequence, y is a label sequence, and y|s is the set of components of y

associated with the vertices in sub graph S. Also, the features fk and gk are assumed to be

given and fixed [89]. The parameter estimation problem is to find the parameters θ = (λ1, λ2, ...;

μ1, μ2, ...) from the training data D = (xi, yi)i=1 N with the empirical distribution ̃p(x, y) [89]. The

graphical structure of a Conditional Random Fields can be represented as shown in Figure 1

Figure 4.1. Graphical Representation of a Conditional Random Field

52

where�ܺԦ represents a sequence of length five, in this case, and each attribute of ܺԦ is

correspondingly labeled as Yi. The task of Intrusion Detection can now be compared to many

problems in Machine Learning, Natural Language Processing and Bio-Informatics. The

Conditional Random Fields have been proven to be very successful in such tasks, as they make

no unwarranted assumptions about the data, and once trained they also appear to be very efficient

and robust. The task of Intrusion Detection, however, has some major requirements. It has to be

an online task and there is no knowledge available for the future observations. Further, once

deployed, the system has to deal with large amount of data and thus it must be able to perform

fast enough to be effective. Conditional Random Fields satisfy all of these requirements and once

the model has been trained and deployed, they are very fast in labeling the data as either normal

or as attack. The complexity of a Conditional Random Field is quadratic with respect to the

number of labels. This is problematic when the number of labels is large, such as in the language

tasks, but in our case we have only two labels; normal and attack. We observe that the training of

a Conditional Random Field is expensive but once trained their performance is comparable to

that of the Decision Trees and Naive Bayes classifiers. Thus our system is very efficient and can

be used online. As discussed in Section 2, the current work does not consider the relationships

among the attributes in the observations. They either consider only one attribute, such as in the

system call modeling, or assume conditional independence among the attributes. However, if we

can model these relations suitably, the system is bound to perform better. As we will show from

our experimental results, the Conditional Random Fields can be effectively used to model such

complex relationships among the attributes of an observation without compromising the

accuracy and efficiency of classification. We first perform the sequence labeling using a

Conditional Random Field where the system considers every record as a separate sequence of

attributes and labels each attribute of this sequence to give the final label for each record. We

then perform experiments with the Decision Trees and Naive Bayes classifier and compare the

results with the Conditional Random Fields.

53

4.2. Motivating Examples

It is necessary to search for methods which can be used to hybrid intrusion detection systems.

However, given that the present networks are prone to a wide variety of attacks, using a single

system would not only degrade performance but will also be less effective in attack detection.

Consider for example, a single network intrusion detection system which is deployed to detect

every network attack in a high speed network. A network is prone to different types of attacks

such as the Denial of Service (DoS), Probe and others. We note that the DoS and Probe attacks

are different and require different features for their effective detection. When same features are

used to detect the two attacks the accuracy decreases. It also makes the system bulky which

affects its speed of operation. Hence, for effective attack detection, a network intrusion detection

system must differentiate between different types of attacks. Thus, using a single system is not a

viable option. One possible solution is having a number of sub systems each of which is specific

in detecting a single category of attack (such as DoS, Probe and others). This is not only more

effective in detecting individual classes of attacks, but it also results in an efficient system. The

number of sub systems to be used can be determined by analyzing the potential risks and the

availability of resources at individual installations.

For example, a network intrusion detection system may consist of four layers, where the layers

correspond to four different attack classes; Denial of Service, Probe, Remote to Local and User

to Root.

Two main requirements for an intrusion detection system;

1) Accuracy of detection and

2) Efficiency in operation.

The CRFs can be effective in improving the attack detection accuracy by reducing the number of

false alarms, while the Layered Approach can be implemented to improve the overall system

efficiency. Hence, a natural choice is to integrate them to build a single system that is accurate in

detecting attacks and efficient in operation. Given the data, we first select four layers

54

corresponding to the four attack groups (Probe, DoS, R2L, and U2R) and perform feature

selection for each layer, which is described next.

4.3 Feature Selection

Ideally, feature selection should be done automatically. However, the methods for automatic

feature selection were not found to be effective. In this section, we describe our approach for

selecting features for every layer and why some features were chosen over others. In this system,

every layer is separately trained to detect a single type of attack category. We observe that the

attack groups are different in their impact, and hence, it becomes necessary to treat them

differently. Hence, we select features for each layer based upon the type of attacks that the layer

is trained to detect.

4.3.1 Probe Layer

The probe attacks are aimed at acquiring information about the target network from a source that

is often external to the network. Hence, basic connection level features such as the “duration of

connection” and “source bytes” are significant while features like “number of files creations”

and “number of files accessed” are not expected to provide information for detecting probes.

4.3.2 DoS Layer

The DoS attacks are meant to force the target to stop the service(s) that is (are) provided by

flooding it with illegitimate requests. Hence, for the DoS layer, traffic features such as the

“percentage of connections having same destination host and same service” and packet level

features such as the “source bytes” and “percentage of packets with errors” are significant. To

detect DoS attacks, it may not be important to know whether a user is “logged in or not.”

55

4.3.3 R2L Layer

The R2L attacks are one of the most difficult to detect as they involve the network level and the

host level features. We therefore selected both the network level features such as the “duration of

connection” and “service requested” and the host level features such as the “number of failed

login attempts” among others for detecting R2L attacks.

4.3.4 U2R Layer

The U2R attacks involve the semantic details that are very difficult to capture at an early stage.

Such attacks are often content based and target an application. Hence, for U2R attacks, we

selected features such as “number of file creations” and “number of shell prompts invoked,”

while we ignored features such as “protocol” and “source bytes.” We used domain knowledge

together with the practical significance and the feasibility of each feature before selecting it for a

particular layer. Thus, from the total 41 features, we selected only 5 features for Probe layer, 9

features for DoS layer, 14 features for R2L layer, and 8 features for U2R layer. Since each layer

is independent of every other layer, the feature set for the layers is not disjoint. The selected

features for all the four layers are presented in Appendix A. We then use the CRFs for attack

detection as discussed in Section 3. However, the difference is that we use only the selected

features for each layer rather than using all the 41 features. We now give the algorithm for

integrating CRFs with the Layered Approach.

Algorithm

Training

Step 1: Select the number of layers, n, for the complete system.

Step 2: Separately perform features selection for each layer.

Step 3: Train a separate model with CRFs for each layer using the features selected from Step 2.

Step 4: Plug in the trained models sequentially such that only the connections labeled as normal

are passed to the next layer.

56

Testing

Step 5: For each (next) test instance perform Steps 6 through 9.

Step 6: Test the instance and label it either as attack or normal.

Step 7: If the instance is labeled as attack, block it and identify it as an attack represented by the

layer name at which it is detected and go to Step 5. Else pass the sequence to the next layer.

Step 8: If the current layer is not the last layer in the system, test the instance and go to Step 7.

Else go to Step 9.

Step 9: Test the instance and label it either as normal or as an attack. If the instance is labeled as

an attack, block it and identify it as an attack corresponding to the layer name.

Our final goal is to improve both the attack detection accuracy and the efficiency of the system.

Hence, we integrate the CRFs and the Layered Approach to build a single system. We perform

detailed experiments and show that our integrated system has dual advantage. First, as expected,

the efficiency of the system increases significantly. Second, since we select significant features

for each layer, the accuracy of the system further increases. This is because all the 41 features are

not required for detecting attacks belonging to a particular attack group. Using more features

than required can result in fitting irregularities in the data, which has a negative effect on the

attack detection accuracy of the system.

4.4 Implementing the System in Real Life

In real scenario, we are not aware of the category of an attack. Rather, we are interested in

identifying the attack category once the system detects an event as anomalous. Layered

Approach not only improves the attack detection, but it also helps identify the type of attack once

detected because every layer is trained to detect only a particular category of attack. Hence, if an

attack is detected at the U2R layer, it is very likely that the attack is of “U2R” type. This enables

to perform quick recovery and prevent similar attacks. Fig. 4.1 gives the real-time system

representation.

57

Figure 4.2 Real time systems representation.

We integrate the four models (with feature selection) to develop the final system. In this

experiment, we use the same data for training the individual models as used in our previous

experiments. However, the data in the test set is relabeled either as normal or as attack and all the

data from the test set is passed though the system starting from the first layer. If layer 1 detects

any connection as an attack, it is blocked and labeled as “Probe.” Only the events labeled as

“Normal” are allowed to go to the next layer. The same process is repeated at the next layers

where an attack is blocked and labeled as “DoS,” “R2L,” or “U2R” at layer 2, layer 3, and layer

4, respectively. We perform all the experiments 10 times and report their average.

A number of features are selected at various layers. These features are selected on the basis of

the layers and may not be disjoint. So, each layer may include some of the features from the

other layer to make it independent to find that types of attack. It also increases the efficiency of

each layer. These features include various network and user level features. These features are

shown in the table given below:

58

 5 features for Probe layer,

 9 features for DoS layer,

 14 features for R2L layer, and

 8 features for U2R layer.

Features to be checked and stored at various Layers.

Feature Number Feature Name

1 duration

2 protocol_type

3 service

4 Flag

5 scr_bytes

Table 4.1 Features for Probe layer

Feature Number Feature Name

1 Duration

2 protocol_type

4 Flag

5 Count

23 scr_byte

34 dst_host_same_srv_rate

38 dst_host_serror_rate

39 dst_host_srv_serror_rate

40 dst_host_rerror_rate

Table 4.2 Features for DoS layer

59

Feature Number Feature Name

1 Duration

2 protocol_type

3 Service

4 Flag

5 scr_bytes

10 Hot

11 num_failed_logins

12 logged_in

13 num_compromised

17 num_file_creation

18 num_shells

19 num_scess_files

21 is_host_login

22 is_guest_login

Table 4.3 Features of R2L Layer

Table 4.4 Features for U2R layer.

Feature Number Feature Name

10 Hot

13 num_compromised

14 root_shell

16 num_root

17 num_file_creations

18 num_shells

19 num_access_files

21 is_host_login

60

Chapter 5
Intrusion detection using Artificial Neural Networks and fuzzy

clustering

Many researchers have argued that Artificial Neural Networks (ANNs) can improve the

performance of intrusion detection systems (IDS) when compared with traditional methods.

However for ANN-based IDS, detection precision, especially for low-frequent attacks, and

detection stability are still needed to be enhanced. Gang Wang, Jinxing Hao, Jian Ma and Lihua

Huang proposed an approach called FC-ANN [68], based on ANN and fuzzy clustering, to solve

the problem and help IDS achieve higher detection rate, less false positive rate and stronger

stability.

5.1 Introduction

In the early stage, the research focus lies in using rule-based expert systems and statistical

approaches [78]. But when encountering larger datasets, the results of rule-based expert systems

and statistical approaches become worse. Thus a lot of data mining techniques have been

introduced to solve the problem [70]. Among these techniques, Artificial Neural Network (ANN)

is one of the widely used techniques and has been successful in solving many complex practical

problems. And ANN has been successfully applied into IDS [71].

However, the main drawbacks of ANN-based IDS exist in two aspects:

 (1) Lower detection precision, especially for low-frequent attacks, e.g., Remote to Local (R2L),

User to Root (U2R),

 (2) Weaker detection stability [77].

For the above two aspects, the main reason is that the distribution of different types of attacks is

imbalanced. In practice, low-frequent attacks do not mean they are unimportant. Instead, serious

consequence will be caused if these attacks succeeded. For example, if the U2R attacks

61

succeeded, the attacker can get the authority of root user and do everything he likes to the

targeted computer systems or network device. Furthermore in IDS the low-frequent attacks are

often outliers. Thus ANN is unstable as it often converges to the local minimum [69] Although

prior research has proposed some approaches, when encountering large datasets, these

approaches become not effective [75]. To solve the above two problems, we propose a novel

approach for ANN-based IDS, FC-ANN, to enhance the detection precision for low-frequent

attacks and detection stability.

5.2 Frame work for FCANN

FC-ANN firstly divides the training data into several subsets using fuzzy clustering technique.

Subsequently, it trains the different ANN using different subsets. Then it determines membership

grades of these subsets and combines them via a new ANN to get final results. The whole

framework of FC-ANN is illustrated in Fig.5.1. As typical machine learning framework, FC-

ANN incorporates both the training phase and testing phase. The training phase includes the

following three major stages:

Stage I: For an arbitrary data set DS, it is firstly divided into training set TR and testing set TS.

Then the different training subsets TR1; TR2; . . . ; TRk are created from TR with fuzzy clustering

module.

Stage II: For each training subset TRi (i= 1; 2; . . . ; k), the ANN model, ANNi, (i =1; 2; . . . ; k)

is training by the specific learning algorithm to formulate k different base ANN models.

Stage III: In order to reduce the error for every ANNi, we simulate the ANNi using the whole

training set TR and get the results. Then we use the membership grades, which were generated

by fuzzy clustering module, to combine the results. Subsequently, we train a new ANN using the

combined results. The whole framework is shown in figure 5.1

62

In the testing phase, we directly input the testing set data into the k different ANNi and get

outputs. Based on these outputs, the final results can then be achieved by the last fuzzy

aggregation module.

The three stages of FC-ANN framework raise three important issues:

(1) How to create k different training subsets from the original training dataset TR;

(2) How to create different base model ANNi with different training subsets;

(3) How to aggregate the different results produced by different base model ANNi. These issues

will be addressed by the following sections, respectively.

.

Figure 5.1 Framework of FCANN for IDS

63

5.2.1 Fuzzy clustering module

The aim of fuzzy cluster module is to partition a given set of data into clusters, and it should

have the following properties:

 Homogeneity within the clusters,

 Concerning data in same cluster, and

 Heterogeneity between clusters, where data belonging to different clusters should be as different

as possible.

Through fuzzy clustering module, the training set is clustered into several subsets. Due to the

fact that the size and complexity of every training subset is reduced, the efficiency and

effectiveness of subsequent ANN module can be improved. The clustering techniques can be

divided into hard clustering techniques and soft clustering techniques [73]. Beside partition of

training set, we also need to aggregate the results for Fuzzy aggregation module. Therefore, we

choose one of the popular soft clustering techniques, fuzzy c-means clustering, for fuzzy

clustering module [72].

Fuzzy c-means is a data clustering algorithm in which each data point belongs to a clustering to a

degree specified by a membership grade [72].In fuzzy clustering module, it is based on the

minimization of the following objective function:

1) Homogeneity within the clusters, concerning data in same cluster.

2) Heterogeneity between clusters, where data belonging to different clusters should be as different

as possible.

64

Fuzzy c-means

Fuzzy c-means is a data clustering algorithm in which each data point belongs to a clustering to a

degree specified by a membership grade (Chiu, 1994; Yager & Filev, 1994). In fuzzy clustering

module, it is based on the minimization of the following objective function

ோ் = σܬ σ ோ்ݑ
ฮݔோ்െ ܿ

ோ்ฮ
ଶ

ୀଵ

ୀଵ , 1 ≤ m < ∞ (5.1)

where m is any real number greater than 1, ݑோ்is the degree of membership of ݔோ் i in the

cluster j, i is the ith of d-dimensional measured data, ܿோ் j is the d-dimensional center of cluster,

and ԡכ��ԡ is any norm expressing the similarity between any measured data and center. Fuzzy

partitioning is carried out through an iterative optimization of the object function shown above,

with the update of membership ݑோ்and the cluster centers�ܿோ் by

��=�ோ்ݑ
ଵ

σ ൭
ቛೣ
ೃషೕ

ೃቛ

ቛೣ
ೃష

ೃቛ
൱

మ
షభ

ೖ
సభ

 , ܿோ்=
σ ௨ೕ

ೃ௫
ೃ�

సభ

σ ௨ೕ
ೃ

సభ
 (5.2)

This iteration will stop when:

���ቄቚݑ
ோ்ሺାଵሻെݑ

ோ்ሺሻቚቅ < є (5.3)

Where є is a termination criterion between 0 and 1 and q is the iteration steps. Based on the

above analysis, the fuzzy cluster module is composed of the following steps:

65

Step 1: Initialize ܷ ோ் = ൣݑோ்൧ matrix: ்ݑோሺͲሻ�and q = 1.

Step 2: At q-step: calculate the centers vectors ்ܥோሺݍሻൌൣܿோ்൧ with ܷ ோ்ሺݍሻ

,

 ܿோ்=
σ ௨ೕ

ೃ௫
ೃ�

సభ

σ ௨ೕ
ೃ

సభ
 (5.4)

Step 3: Update U(q + 1)

� = ோ்ݑ
ଵ

σ ൭
ቛೣ
ೃషೕ

ೃቛ

ቛೣ
ೃష

ೃቛ
൱

మ
షభ

ೖ
సభ

 (5.5)

Step 3: If �ԡܷ ோ்ሺݍͳሻെ்ܷோሺݍሻԡ < є then Step 4; otherwise return to Step 2.

Step 4: Based on argmaxሺݑோ்), every individual sample of TR can be allocated into subsets ܶ ܴ

After completing the above four steps, the training set TR can be divided into k subsets TRk.

Subsequently, ANNi is needed to train using these subsets TRk. Next section, we will discuss

how to create different base model ANNi with different training subset TRk.

5.2.2 ANN module

ANN module aims to learn the pattern of every subset. ANN is a biologically inspired form of

distributed computation [69]. It is composed of simple processing units, and connections

between them. In this study, we will employ classic feed-forward neural networks trained with

the back-propagation algorithm to predict intrusion. A feed-forward neural network has an input

layer, an output layer, with one or more hidden layers in between the input and output layer. The

ANN functions as follows: each node i in the input layer has a signal xi as network’s input,

multiplied by a weight value between the input layer and the hidden layer. Each node j in the

hidden layer receives the signal ݊ܫ(j) according to:

66

 + σ˵ = (j)ܫ݊ ݓݔ
ୀଵ (5.6)

Then it is passed through the bipolar sigmoid activation function:

F(x) = ଶ
ሺଵାୣ ୶୮�ሺି௫ሻሻ

 – 1 (5.7)

The output of the activation function f(݊ܫ(j)) is then broadcast all of the neurons to the output

layer:

 = ˵ +�σݕ ݂ݓ ሺ��ሺ݆ሻሻ
ୀଵ (5.8)

Where hj and hk are the biases values in the hidden layer and the output layer respectively. The

output value will be compared with the target; in this study, we used the mean absolute error as

error function:

 =ܧ
ଵ
ଶ
 σ ඥሺܶെ ܻሻଶ (5.9)

when n is the number of training patterns, Yk and Tk are the output value and the target value,

respectively. The gradient descent method searches for the global optimum of the network

weights, and partial derivatives ∂E/ ∂w are computed for each weight in the network. And the

weight will adjust according to the expression:

w(t+1) = w(t) – η ∂E(t)/ ∂w(t) (5.10)

Where t is the number of epochs, g is the learning rate. To accelerate the convergence of the

error in the learning procedure, the momentum with the momentum gain, a, is includes into Eq.

(5.10) (Anderson, 1995):

w(t+1) = w(t) – η ∂E(t)/ ∂w(t) + α ∆w(t) (5.11)

67

Where the value for a is within 0 and 1. Based on the feed-forward neural networks trained with

the back-propagation algorithm, every ANNi can complete training using different subsets TRk.

However, next question is how to aggregate the different results produced by different base

model ANNi.

5.2.3 Fuzzy aggregation module

The aim of fuzzy aggregation module is to aggregate different ANN’s result and reduce the

detection errors as every ANNi in ANN module only learns from the subset TRi. Because the

errors are nonlinear, in order to achieve the objective, we use another new ANN to learn the

errors as follows:

Step 1: Let the whole training set TR as data to input the every trained ANNi and get the outputs:

ܻ
ோ் =ൣ ଵܻ

ோ்�ǡܻଶோ்�ǡǥǤǤǡܻோ்�൧ , j=1,2,…..,n (5.12)

Where n is the number of training set: �ܴܶ ǡ���ܻோ் is the output of ANNk.

Step 2: Form the input for new ANN:

ܻ௨௧=ሾܻଵோ்Ǥܷଵ
ோ்ǡܻଶோ்Ǥܷଶ

ோ்�ǡǥǤǤǡܻோ்Ǥܷ
ோ்�ሿ (5.13)

Where ܷோ் is the membership grade of TRn belonging to ்ܥோ.

Step 3: Train the new ANN. We can use Yinput as input and use the whole training set TR’s class

label as output to train the new ANN. Through above three steps, the new ANN can learn the

errors which caused by the individual ANNi in ANN module. During the stage of testing, work

procedure of ANN module and fuzzy aggregation module is similar to the above. Firstly we

calculate the membership grade, based on the cluster centers CTR. For a new input ݔௌ் coming,

firstly based on CTR, the membership UTS can be calculated by:

� = ோ்ݑ
ଵ

σ ൭
ቛೣ
ೃషೕ

ೃቛ

ቛೣ
ೃష

ೃቛ
൱

మ
షభ

ೖ
సభ

 (5.14)

68

Then, respectively, using ANN module and fuzzy aggregation module, the output, ܻ௨௧௨௧ௌ் , can

be gotten.

5.3 Data preparation

In the experiments, KDD CUP 1999 dataset is used (KDD dataset, 1999)[79]. The KDD CUP

1999 dataset is a version of the original 1998 DARPA intrusion detection evaluation program,

which is prepared and managed by the MIT Lincoln Laboratory. The dataset contains about five

million connection records as training data and about two million connection records as test data.

And the dataset includes a set of 41 features derived from each connection and a label which

specifies the status of connection records as either normal or specific attack type. These features

have all forms of continuous, discrete, and symbolic variables, with significantly varying ranges

falling in four categories: (1) the first category consists of the intrinsic features of a connection,

which include the basic features of individual TCP connections. The duration of the connection,

the type of the protocol (TCP, UDP, etc.), and network service (http, telnet, etc.) are some of the

features. (2) The content features within a connection suggested by domain knowledge are used

to assess the payload of the original TCP packets, such as the number of failed login attempts.

(3) the same host features examine established connections in the past two seconds that have the

same destination host as the current connection, and calculate the statistics related to the protocol

behavior, service, etc. (4) the similar same service features inspect the connections in the past

two seconds that have the same service as the current connection. Likewise, attacks fall into four

categories: (1) Denial of Service (DoS): making some computing or memory resources too busy

to accept legitimate users access these resources. (2) Probe (PRB): host and port scans to gather

information or find known vulnerabilities. (3) Remote to Local (R2L): unauthorized access from

a remote machine in order to exploit machine’s vulnerabilities. (4) User to Root (U2R):

unauthorized access to local super user (root) privileges using system’s susceptibility. Random

selection has been used in many applications to reduce the size of the dataset. In this study, we

69

randomly select 18,285 records, similar to prior research [77]. The PRB, R2L, and U2R attack

classes were totally selected because of their low portion.

5.4. Evaluation criteria

The following measurements are often proposed to evaluate the detection precision of IDS [81]:

true positives, true negatives, false positives, and false negatives.

 A true positive indicates that the intrusion detection system detects precisely a particular attack

having occurred.

 A true negative indicates that the intrusion detection system has not made a mistake in

detecting a normal condition.

A false positive indicates that a particular attack has been detected by the intrusion detection

system but that such an attack did not actually occur.

 A false positive is often produced due to loose recognition conditions, a limitation on detection

methods in the intrusion detection system or phenomena caused by particular environmental

factors. It represents the accuracy of the detection system. If it is consistently high, this will lead

to administrators intentionally ignoring system warnings, and thus allow the system to remain in

a dangerous status.

A false negative indicates that the intrusion detection system is unable to detect the intrusion

after a particular attack has occurred. This is probably caused by a shortage of information about

an intrusion type or by the recognition information about such an intrusion event having been

excluded from the intrusion detection system. This reveals the completeness of the detection

system.

However as the number of instance for the U2R, PRB, and R2L attacks in the training set and

test set is every low, these quantities is not sufficient as a standard performance measure (Dokas

70

et al.,2002). Hence, if we use these quantities as a measure for testing the performance of the

systems, it could be biased. For these reasons, we give the precision, recall, and F-value which

are not dependent on the size of the training and the testing samples. They are defined as follows:

Precision = ்
்ାி
 (5.15)

Recall = ்
்ାிே
 (5.16)

F-value = ൫ଵାఉ
మ൯כோכ௦

ఉమכሺோା௦ሻ
 (5.17)

Where TP, FP, and FN are the number of true positives, false positives and false negatives,

respectively, and b corresponds to the relative importance of precision versus recall and is

usually set to 1.

5.5 INTRUSION DETECTOR LEARNING

Software to detect network intrusions protects a computer network from unauthorized users,

including perhaps insiders. The intrusion detector learning task is to build a predictive model

(i.e. a classifier) capable of distinguishing between ̀̀bad'' connections, called intrusions or

attacks, and ̀̀good'' normal connections.

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and managed by MIT

Lincoln Labs. The objective was to survey and evaluate research in intrusion detection. A

standard set of data to be audited, which includes a wide variety of intrusions simulated in a

military network environment, was provided. The 1999 KDD intrusion detection contest uses a

version of this dataset.

Lincoln Labs set up an environment to acquire nine weeks of raw TCP dump data for a local-

area network (LAN) simulating a typical U.S. Air Force LAN. They operated the LAN as if it

were a true Air Force environment, but peppered it with multiple attacks.

71

The raw training data was about four gigabytes of compressed binary TCP dump data from seven

weeks of network traffic. This was processed into about five million connection records.

Similarly, the two weeks of test data yielded around two million connection records.

A connection is a sequence of TCP packets starting and ending at some well defined times,

between which data flows to and from a source IP address to a target IP address under some well

defined protocol. Each connection is labeled as either normal, or as an attack, with exactly one

specific attack type. Each connection record consists of about 100 bytes.

Attacks fall into four main categories:

 DOS: denial-of-service, e.g. syn flood;

 R2L: unauthorized access from a remote machine, e.g. guessing password;

 U2R: unauthorized access to local super user (root) privileges, e.g., various ̀̀buffer overflow''

attacks;

 Probing: surveillance and other probing, e.g., port scanning.

It is important to note that the test data is not from the same probability distribution as the

training data, and it includes specific attack types not in the training data. This makes the task

more realistic. Some intrusion experts believe that most novel attacks are variants of known

attacks and the "signature" of known attacks can be sufficient to catch novel variants. The

datasets contain a total of 24 training attack types, with an additional 14 types in the test data

only.

5.5.1 DERIVED FEATURES

Stolfo et al. defined higher-level features that help in distinguishing normal connections from

attacks. There are several categories of derived features.

The ̀̀same host'' features examine only the connections in the past two seconds that have the

same destination host as the current connection, and calculate statistics related to protocol

behavior, service, etc.

72

The similar ̀̀same service'' features examine only the connections in the past two seconds that

have the same service as the current connection.

"Same host" and "same service" features are together called time-based traffic features of the

connection records.

Some probing attacks scan the hosts (or ports) using a much larger time interval than two

seconds, for example once per minute. Therefore, connection records were also sorted by

destination host, and features were constructed using a window of 100 connections to the same

host instead of a time window. This yields a set of so-called host-based traffic features.

Unlike most of the DOS and probing attacks, there appear to be no sequential patterns that are

frequent in records of R2L and U2R attacks. This is because the DOS and probing attacks

involve many connections to some host(s) in a very short period of time, but the R2L and U2R

attacks are embedded in the data portions of packets, and normally involve only a single

connection.

Useful algorithms for mining the unstructured data portions of packets automatically are an open

research question. Stolfo et al. used domain knowledge to add features that look for suspicious

behavior in the data portions, such as the number of failed login attempts. These features are

called ̀̀content'' features.

A complete listing of the set of features defined for the connection records is given in the three

tables below. The data schema of the contest dataset is available in machine readable form.

73

feature name description Type

duration length (number of seconds) of the connection Continuous

protocol_type type of the protocol, e.g. tcp, udp, etc. Discrete

service
network service on the destination, e.g., http,

telnet, etc.
Discrete

src_bytes
number of data bytes from source to

destination
Continuous

dst_bytes
number of data bytes from destination to

source
Continuous

flag normal or error status of the connection discrete

land
1 if connection is from/to the same host/port; 0

otherwise
Discrete

wrong_fragment number of ̀̀wrong'' fragments Continuous

urgent number of urgent packets Continuous

Table5.1: Basic features of individual TCP connections.

74

feature name description Type

hot number of ̀̀hot'' indicators Continuous

num_failed_logins number of failed login attempts Continuous

logged_in 1 if successfully logged in; 0 otherwise Discrete

num_compromised number of ̀̀compromised'' conditions Continuous

root_shell 1 if root shell is obtained; 0 otherwise Discrete

su_attempted
1 if ̀ s̀u root'' command attempted; 0

otherwise
Discrete

num_root number of ̀̀root'' accesses Continuous

num_file_creations number of file creation operations Continuous

num_shells number of shell prompts Continuous

num_access_files
number of operations on access control

files
Continuous

num_outbound_cmds
number of outbound commands in an ftp

session
Continuous

is_hot_login
1 if the login belongs to the ̀̀hot'' list; 0

otherwise
Discrete

is_guest_login
1 if the login is a ̀ g̀uest'' login; 0

otherwise
Discrete

Table5.2: Content features within a connection suggested by domain

knowledge.

75

feature name description type

count
number of connections to the same host as
the current connection in the past two
seconds

continuous

Note: The following features refer to these
same-host connections.

serror_rate % of connections that have ̀̀SYN'' errors continuous
rerror_rate % of connections that have ̀̀REJ'' errors continuous
same_srv_rate % of connections to the same service continuous
diff_srv_rate % of connections to different services continuous

srv_count
number of connections to the same service
as the current connection in the past two
seconds

continuous

Note: The following features refer to these
same-service connections.

srv_serror_rate % of connections that have ̀̀SYN'' errors continuous
srv_rerror_rate % of connections that have ̀̀REJ'' errors continuous
srv_diff_host_rate % of connections to different hosts continuous

Table 3: Traffic features computed using a two-second time window.

76

Chapter 6
EXPERIMENTAL RESULTS

Intrusion detection is one of the critical tasks for networks and applications. We have studied two

of the latest approaches for intrusion detection. First approach uses the conditional random fields

for the probability calculation while the second approach uses Fuzzy cluttering with artificial

neural networks. In this chapter, we will describe the implementation of the both the approaches.

We will compare the results of both the approaches.

6.1 Experimental Setup

To evaluate the performance of both the approaches, a series of experiments on KDD CUP 1999

dataset were conducted. In these experiments, we implemented and evaluated the methods in

Matlab 2010a on a Windows XP PC with Duo-Core 1.60 GHz CPU and 2.5 GB RAM.

6.2 Implementation of Layered Approach to intrusion Detection Using Conditional

Random Fields

The complete procedure has been divided into three sub activities:

1. Preparation of the Data set

2. Training of the IDS

3. Testing of the IDS

6.2.1 Preparation of the Data set

We have used the 10% of the KDD CUP 1999 dataset. Feature selection is one of the most

critical task for each layer. Different features are required to train the different layers. As it is a

hybrid approach we have used both the normal and attack data for each layer separately as shown

in figure 6.1

77

Figure 6.1 Representation of Probe Layer with feature selection and Audit data

We have tagged the data into two forms

1. Attack

2. Normal

The complete data is present under the attack folder.

6.2.2 Training of IDS

To train with CRF and data set we have used an open source CRF++. Individual layer is trained

separately as shown in the figure 6.2. We have used four files to train the system

1) NormalAndProbTrain.m

2)NormalAndDosTrain.m

3)NormalAndRLATrain.m

4) NormalAndURATrain.m

78

Figure 6.2 Training of probe layer

6.2.3 Testing of IDS

We have created a file of 50 records which include 10 normal and 40 attack data. We run

CRFTesting.m to check the performance of the system as shown in figure 6.3

79

Figure 6.3 Results of Layered approach using Conditional random fields.

6.3 Implementation of FCANN

FCANN is an artificial neural network technique which uses Fuzzy cluttering to make the

training subsets for the individual neural network elements. Framework for the FCANN is shown

in the figure 6.4.

6.3.1 Fuzzy Cluttering Module

From the complete data set we first selected the dataset used for the testing and training. The

training data is provided as the input to the Fuzzy cluttering module which prepares the dataset

for individual neural network. This training set consists of both the kind of data normal as well as

80

attack. We have created “findCluster.m” to create these data set. These datasets are saved in the

following matrices.

 TrainDosconData.mat

 TrainProbconData.mat

 TrainRLAconData.mat

 TrainURAconData.mat

 TrainNorconData.mat

6.4 Framework of FCANN for IDS

81

6.3.2 ANN module

We have used Levenberg-Marquardt (trainlm) for training of Artificial Neural Network which is

a classic feed-forward neural networks trained with the back-propagation algorithm to predict

intrusion. A feed-forward neural network has an input layer, an output layer, with one or more

hidden layers in between the input and output layer. The ANN functions as follows: each node i

in the input layer has a signal xi as network’s input, multiplied by a weight value between the

input layer and the hidden layer. Each node j in the hidden layer receives the signal In(j)

according to:

In(j) = ˵ + σ ݓݔ
ୀଵ

It gives a Mean squared Error performance with random data division. We have used 2

validation checks.

6.3.3 Fuzzy aggregation module

Fuzzy aggregation module aggregates different ANN’s result and reduce the detection errors as

every ANNi in ANN module only learns from the subset TRi. NeuralNetworkTest.m perform the

aggregation for net1, net2, net3, net4.

6.3.4 Testing of IDS

Testing.m is run for testing the IDS with the dataset TD which consist of 10 normal records and

40 attack records. The output is shown in the figure 6.6

82

Figure 6.5 Training of IDS

Figure 6.6 Output of FCANN

83

6.4 Conclusion and Future Scope

We have observed that FCANN provides better precision and accuracy as compared to

conditional random field. Intrusion Detection is one of the major tasks in networks and

application. It gives no margin of error. The effective cost of a successful intrusion overshadows

the cost of developing intrusion detection system. IDS offers the potential advantages of

reducing the manpower needed in monitoring, increasing detection efficiency, providing data

that would otherwise not be available, helping the information security community learn about

new vulnerabilities and providing legal evidence.

Another possible direction for future research is to employ our approach, layered framework, for

building highly efficient systems since they give opportunity to implement pipelining of layers in

multi core processors.

Moreover, other data mining techniques, such as support vector machine, evolutionary

computing, outlier detection, may be introduced into IDS. Comparisons of various data mining

techniques will provide clues for constructing more effective hybrid ANN for intrusions

detection.

There is ample scope and need to build systems which aim at preventing attacks rather than

simply detecting them. Integrating intrusion detection systems with the security policy in

individual networks would help to minimize the false alarms and qualify the alarms raised by the

intrusion detection systems.

84

BIBLIOGRAPHY

[1] Stefan Axelsson. Research in Intrusion-Detection Systems: A Survey. Technical Report 98-

17, Department of Computer Engineering, Chalmers University of Technology, 1998.

[2] SANS Institute - Intrusion Detection FAQ http://www.sans.org/resources/idfaq/.

[3] CERT/CC Statistics. http://www.cert.org/stats/

[4] Thomas A. Longstaff, James T. Ellis, Shawn V. Hernan, Howard F. Lipson, Robert

D.Mcmillan, Linda Hutz Pesante, and Derek Simmel. Security of the Internet. Technical Report.

The Froehlich/Kent Encyclopedia of Telecommunications Vol (15), CERT Coordination Center,

1997. http://www.cert.org/encyc_article/tocencyc.html

[5] Kapil Kumar Gupta, Baikunth Nath, Kotagiri Ramamohanarao, and Ashraf Kazi. Attacking

Confidentiality: An Agent Based Approach. In Proceedings of IEEE International Conference

on Intelligence and Security Informatics, pages 285–296. Lecture Notes in Computer Science,

Springer Verlag, Vol (3975), 2006.

[6] James P. Anderson. Computer Security Threat Monitoring and Surveillance, 1980.

http://csrc.nist.gov/publications/history/ande80.pdf.

[7] Dorothy E. Denning. An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, 13(2):222–232, 1987. IEEE.

[8] Paul Innella. The Evolution of Intrusion Detection Systems, 2001.

http://www.securityfocus.com/infocus/1514

[9] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt. Network Intrusion Detection.

IEEE Network, 8(3):26–41, 1994. IEEE.

[10] Herv́e Debar, Marc Dacier, and AndreasWespi. Towards a taxonomy of intrusion-detection

systems. Computer Networks, 31(9):805–822, 1999. Elsevier.

[11] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of Self for Unix

Processes. In Proceeding of the IEEE Symposium on Research in Security and Privacy, pages

120–128. IEEE, 1996.

[12] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting Intrusions Using

System Calls: Alternative Data Models. In Proceedings of the IEEE Symposium on Security and

Privacy, pages 133–145. IEEE, 1999.

http://www.sans.org/resources/idfaq/
http://www.cert.org/stats/
http://www.cert.org/encyc_article/tocencyc.html
http://csrc.nist.gov/publications/history/ande80.pdf
http://www.securityfocus.com/infocus/1514

85

[13] Kapil Kumar Gupta, Baikunth Nath, and Kotagiri Ramamohanarao. Layered Approach

using Conditional Random Fields for Intrusion Detection. IEEE Transactions on Dependable

and Secure Computing, In Press.

[14] Kapil Kumar Gupta, Baikunth Nath, and Kotagiri Ramamohanarao. Robust Application

Intrusion Detection using User Session Modeling. ACM Transactions on Information and

Systems Security, Under Review.

[15] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion Detection and

Correlation: Challenges and Solutions. Springer, 2005.

[16] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security. Addison-

Wesley, 1994.

[17] Joseph S. Sherif and Tommy G. Dearmond. Intrusion Detection: Systems and Models. In

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises. WET ICE, pages 115–133. IEEE, 2002.

 [18] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[19] Kymie Tan. Defining the Operational Limits of Sequence-Based Anomaly Detectors. PhD

thesis, The University of Melbourne, 2002.

[20] Stuart Staniford-Chen, Brian Tung, Phil Porras, Cliff Kahn, Dan Schnackenberg, Rich

Feiertag, and Maureen Stillman. The Common Intrusion Detection Framework - Data Formats,

March 1998. http://tools.ietf.org/html/draft-staniford-cidf-data-formats-00.

[21] Giovanni Vigna and Richard A. Kemmerer. NetSTAT: A Network-based Intrusion

Detection Approach. In Proceedings of the 14th Annual Computer Security Applications

Conference, pages 25–34. IEEE, 1998.

[22] Carol Taylor and Jim Alves-Foss. An Empirical Analysis of NATE: Network Analysis of

Anomalous Traffic Events. In Proceedings of the 2002 Workshop on New Security Paradigms,

pages 18–26. ACM, 2002.

[23] Snort, a Network based Intrusion Detection System http://www.snort.org/

[24] Animesh Patcha and Jung-Min Park. An Overview of Anomaly Detection Techniques:

Existing Solutions and Latest Technological Trends. Computer Networks, 51(12):3448– 3470,

2007.

http://tools.ietf.org/html/draft-staniford-cidf-data-formats-00
http://www.snort.org/

86

[25] Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava, and

Pang-Ning Tan. Data Mining for Network Intrusion Detection. In Proceedings of the NSF

Workshop on Next Generation Data Mining, pages 21–30, 2002.

[26] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A Data Mining Framework for Building

Intrusion Detection Model. In Proceedings of the IEEE Symposium on Security and Privacy,

pages 120–132. IEEE, 1999.

[27] Dalila Boughaci, Habiba Drias, Ahmed Bendib, Youcef Bouznit, and Belaid Benhamou.

Distributed Intrusion Detection Framework Based on Mobile Agents. In Proceedings of the

International Conference on Dependability of Computer Systems, pages 248–255. IEEE, 2006.

[28] Jai Sundar Balasubramaniyan, Jose Omar Garcia-Fernandez, David Isacoff, Eugene

H.Spafford, and Diego Zamboni. Architecture for Intrusion Detection Using Autonomous

Agents. In Proceeding of the 14th Annual Computer Security Applications Conference, pages

13–24. IEEE, 1998.

[29] Yu-Sung Wu, Bingrui Foo, Yongguo Mei, and Saurabh Bagchi. Collaborative Intrusion

Detection System (CIDS): A Framework for Accurate and Efficient IDS. In Proceedings of the

19th Annual Computer Security Applications Conference, pages 234–244. IEEE, 2003.

[30] Elvis Tombini, Herv́e Debar, Ludovic Me, and Mireille Ducasse. A Serial Combination of

Anomaly and Misuse IDSes Applied to HTTP Traffic. In Proceedings of the 20th Annual

Computer Security Applications Conference, pages 428–437. IEEE, 2004.

[31] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion Detection with Unlabeled Data using

Clustering. In Proceedings of the ACM Workshop on Data Mining Applied to Security (DMSA).

ACM, 2001.

[32] H. Shah, J. Undercoffer, and A. Joshi. Fuzzy Clustering for Intrusion Detection. In

Proceedings

of the 12th IEEE International Conference on Fuzzy Systems, pages 1274–1278. IEEE, 2003.

[33] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items

in Large Databases. In Proceedings of the International Conference on Management of Data

(SIGMOD), pages 207–216. ACM, 1993.

 [34] H.Mannila, H.Toivonen, and A.I.Verkamo. Discovering Frequent Episodes in Sequences.

In Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining,

pages 210–215. AAAI, 1995.

87

[35] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. Naive Bayes vs Decision Trees in

Intrusion Detection Systems. In Proceedings of the ACM Symposium on Applied Computing,

pages 420–424. ACM, 2004.

[36] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian Network Classifiers. Machine

Learning, 29(2-3):131–163, 1997. Springer. [37] Darren Mutz, Fredrik Valeur, Giovanni Vigna,

and Christopher Kruegel. Anomalous System Call Detection. ACM Transactions on Information

and System Security, 9(1):61–93,

2006. ACM.

[38] Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur. Bayesian Event

Classification for Intrusion Detection. In Proceedings of 19th Annual Computer Security

Applications Conference, pages 14–23. IEEE, 2003.

[39] Gray Stein, Bing Chen, Annie S. Wu, and Kien A. Hua. Decision Tree Classifier for

Network Intrusion Detection with GA-Based Feature Selection. In Proceedings of the

43rdAnnual South East Regional Conference - Volume 2, pages 136–141. ACM, 2005.

[40] Srinivas Mukkamala, Guadalupe Janoski, and Andrew H. Sung. Intrusion Detection Using

Neural Networks and Support Vector Machines. In Proceedings of the International Joint

Conference on Neural Networks (IJCNN), pages 1702–1707. IEEE, 2002.

[41] Andrew H. Sung and Srinivas Mukkamala. Identifying Important Features for Intrusion

Detection Using Support Vector Machines and Neural Networks. In Proceedings of Symposium

on Applications and the Internet, pages 209–216. IEEE, 2003.

[42] Dong Seong Kim and Jong Sou Park. Network-Based Intrusion Detection with Support

Vector Machines. In Proceedings of the Information Networking, Networking Technologies for

Enhanced Internet Services International Conference, ICOIN, pages 747–756. Lecture Notes in

Computer Science, Springer Verlag, 2003.

[43] S. Jha, K. Tan, and R.A. Maxion. Markov chains, Classifiers, and Intrusion Detection. In

Proceedings of the 14th IEEE Computer Security Foundations Workshop, pages 206–219. IEEE,

2001.

[44] Nong Ye, Yebin Zhang, and Connie M. Borror. Robustness of the Markov-Chain Model for

Cyber-Attack Detection. IEEE Transactions on Reliability, 53(1):116–123, 2004.

[45] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

88

[46] Svetlana Radosavac. Detection and Classification of Network Intrusions using Hidden

Markov Models. Master’s thesis, University of Maryland, 2003.

[47] Wei Wang, Xiao-Hong Guan, and Xiang-Liang Zhang. Modeling Program behaviors by

Hidden Markov Models for Intrusion Detection. In Proceedings of International Conference on

Machine Learning and Cybernetics, pages 2830–2835. IEEE, 2004.

 [48] Ye Du, Huiqiang Wang, and Yonggang Pang. A Hidden Markov Models-Based Anomaly

Intrusion Detection Method. In Proceeedings of the Fifth World Congress on Intelligent Control

and Automation (WCICA), pages 4348–4351. IEEE, 2004.

[49] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of Eighteenth

International Conference on Machine Learning, pages 282–289. Morgan Kaufmann, 2001.

[50] Wenke Lee and Salvatore J. Stolfo. A Framework for Constructing Features and Models for

Intrusion Detection Systems. ACM Transactions on Information and System Security (TISSEC),

3(4):227–261, 2000. ACM.

[51] CERT/CC Statistics. http://www.cert.org/stats/.

[52] L. T. Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J.Wood, and D.Wolber. A Network

Security Monitor. In Proceedings of the IEEE Symposium on Research in Security and Privacy,

pages 296–304. IEEE, 1990.

[53] Rebecca Bace and Peter Mell. Intrusion Detection Systems. Gaithersburg, MD : Computer

Security Division, Information Technology Laboratory, National Institute of Standards and

Technology, 2001.

 [54] H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly Detector. In Proceedings of

the IEEE Symposium on Security and Privacy, pages 316–326. IEEE, 1991.

[55] Adwait Ratnaparkhi. A Maximum Entropy Model for Part-of-Speech Tagging. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages

133–142. Association for Computational Linguistics, 1996.

[56] Adwait Ratnaparkhi. Maximum Entropy Models for Natural Language Ambiguity

Resolution. PhD thesis, University of Pennsylvania, 1998.

[57] Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A Maximum Entropy

Approach to Natural Language Processing. Computational Linguistics, 22(1):39–71, 1996.

http://www.cert.org/stats/

89

[58] Andrew McCallum, Dyane Freitag, and Fernando Pereira. Maximum Entropy Markov

Models for Information Extraction and Segmentation. In Proceedings of the 17th International

Conference on Machine Learning, pages 591–598. Morgan Kaufmann, 2000.

[59] Dan Klein and Christopher D. Manning. Conditional Structure versus Conditional

Estimation in NLP Models. In Proceedings of the ACL-02 Conference on Empirical methods in

Natural Language Processing Vol (10), pages 9–16. Association for Computational Linguistics,

2002.

[60] Charles Sutton and Andrew McCallum. An Introduction to Conditional Random Fields for

Relational Learning. In Introduction to Statistical Relational Learning. MIT, 2006.

[61] L. Ertoz, A. Lazarevic, E. Eilertson, Pang-Ning Tan, Paul Dokas, V. Kumar, and Jaideep

Srivastava. Protecting Against Cyber Threats in Networked Information Systems. In Proceedings

of SPIE; Battlespace Digitization and Network Centric Systems III, pages 51–56, 2003.

[62] Shon Harris. CISSP All-in-One Exam Guide. McGraw-Hill Osborne Media, 2007.

[63] Saso Dzeroski and Bernard Zenko. Is Combining Classifiers Better than Selecting the Best

One. In Proceedings of the Nineteenth International Conference on Machine Learning, pages

123–129. Morgan Kaufmann, 2002.

[64] Chuanyi Ji and Sheng Ma. Combinations of Weak Classifiers. IEEE Transactions on Neural

Networks, 8(1):32–42, 1997.

[65] Andrew Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[66]Yu Gu, Andrew McCallum, and Don Towsley. Detecting Anomalies in Network Traffic

Using Maximum Entropy Estimation. In Proceedings of the Internet Measurement Conference,

pages 345–350. USENIX Association, 2005.

[67]Layered Approach Using Conditional Random Fields for Intrusion Detection by Kapil
Kumar Gupta, Baikunth Nath, Senior Member and Ramamohanarao Kotagiri, IEEE, 2010

[68]A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering
by Gang Wang , Jinxing Hao , Jian Ma, Lihua Huang, ELSEVIER, 2010.

[69]Haykin, S. (1999). Neural networks: A comprehensive foundation. Prentice Hall.
Manikopoulos, C., & Papavassiliou, S. (2002). Network intrusion and fault detection: A
statistical anomaly approach. IEEE Communications Magazine, 40(10), 76–82.

[70]Dokas, P., Ertoz, L., Lazarevic, A., Srivastava, J., & Tan, P. N. (2002). Data mining for
network intrusion detection. Proceeding of NGDM, 21–30.

90

[71]Ryan, J., Lin, M., & Miikkulainen, R. (1998). Intrusion detection with neural networks.
Advances in neural information processing systems (Vol. 10). Cambridge, MA: Springer

[72]Yager, R. R., & Filev, D. P. (1994). Approximate clustering via the mountain method. IEEE
Transactions on Systems, Man and Cybernetics, 24(8), 1279–1284.

[73]Bezdek, J. C. (1973). Fuzzy mathematics in pattern classification. PhD thesis, Applied Math.
Center, Cornell University Ithaca.

[74]Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Computer Networks, 51(12), 3448–3470.

[75]Joo, D., Hong, T., & Han, I. (2003). The neural network models for IDS based on the
asymmetric costs of false negative errors and false positive errors. Expert Systems with
Applications, 25(1), 69–75.

[76]Endorf, C., Schultz, E., & Mellander, J. (2004). Intrusion detection and prevention.
California: McGraw-Hill.

[77]Beghdad, R. (2008). Critical study of neural networks in detecting intrusions. Computers and
Security, 27(5-6), 168–175.

[78]Manikopoulos, C., & Papavassiliou, S. (2002). Network intrusion and fault detection: A
statistical anomaly approach. IEEE Communications Magazine, 40(10), 76–82.

[79]KDD Cup 1999 Intrusion Detection Data,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 2010.

[80] CRFall http://en.pudn.com/downloads148/sourcecode/.../detail640513_en.html.

[81]Axelsson, S. (2003). The base-rate fallacy and the difficulty of intrusion detection. ACM
Transaction on Information and System Security, 3, 186–205.

[82] Kotagiri Ramamohanarao, Kapil Kumar Gupta, Tao Peng, and Christopher Leckie. The
Curse of Ease of Access to the Internet. In Proceedings of the 3rd International Conference on
Information Systems Security (ICISS), pages 234–249. Lecture Notes in Computer Science,
Springer Verlag, Vol (4812), 2007

[83] L. T. Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J.Wood, and D.Wolber. A Network
Security Monitor. In Proceedings of the IEEE Symposium on Research in Security and
Privacy, pages 296–304. IEEE, 1990.

[84] Nong Ye, Xiangyang Li, Qiang Chen, Syed Masum Emran, and Mingming Xu. Probabilistic
Techniques for Intrusion Detection Based on Computer Audit Data. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 31(4):266–274, 2001.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://en.pudn.com/downloads148/sourcecode/.../detail640513_en.html

91

[85] S.E.Smaha. Haystack: An Intrusion Detection System. In Proceedings of the 4th Aerospace
Computer Security Applications Conference, pages 37–44. IEEE, 1988.

[86] C. Sutton and A. McCallum. Introduction to Statistical Relational Learning: An
Introduction to ConditionalRandom Fields for Relational Learning. MIT Press, 2006.
.http://www.cs.umass.edu/̃mccallum/papers/crf-tutorial.pdf.

[87]T. G. Dietterich. Machine learning for sequential data: A review.In Proceedings of the Joint
IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition,
pages 15–30. Lecture Notes in Computer Science, Springer-Verlag, No. (2396), 2002.

[88] A. Ratnaparkhi. A maximum entropy model for part-ofspeech tagging. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages 133– 142.
Association for Computational Linguistics, 1996.

[89] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of Eighteenth International
Conference on Machine Learning, ICML, pages 282–289, 2001.

http://www.cs.umass.edu/

