AN INTERFACE BETWEEN CLIENT AND SERVER FOR WEB APPLICATION DATABASE [image: image2.emf]

DISSERTATION

on

AN INTERFACE BETWEEN CLIENT AND SERVER FOR WEB APPLICATION DATABASE

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE
of

MASTER OF ENGINEERING

(Computer Technology and Application)

Delhi University, Delhi

Submitted By:

Radha Krishan

University Roll No 12602

Under the Guidance of:

Mrs. Rajni Jindal

Assistant Professor

Department Of Computer Engineering

Delhi College of Engineering, Delhi

[image: image3.png]
DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY
2009

CERTIFICATE

[image: image4.png]

This is to

certify that the work contained in this dissertation entitled “An Interface Between Client and Server for Web Application Database” by Radha Krishan is the requirement for the partial fulfilment for the award of degree of Master of Engineering in Computer Technology & Application at Delhi College of Engineering. This is a record work done by him under my supervision and guidance in the academic year 2008- 2009.

Mrs. Rajni Jindal

Assistant Professor

Department of Computer Engineering

Delhi College of Engineering

Delhi - 110042

ACKNOWLEDGEMENT

[image: image5.png] From the deep of my heart I would say thanks to Lord Shiva and my Guruji for their wishes and grace for this wonderful work of my life.

This is my great honour and pleasure to have a very sincere, dedicated, and knowledgeable person as a guide with me as with her help now I am in a position to complete my ME thesis. I would like to take this opportunity to present my sincere regards to my guide Mrs. Rajni Jindal, Assistant Professor, Department of Computer Engineering, DCE for her support and encouragement.

My sincere thanks go to Dr. (Mrs) Daya Gupta, Head of the Department, Department of Computer Engineering for her encouragement towards the development of my thesis work, I would like to say thanks to all the respected faculties and all the staff members of the Department for their help and support

It is distinct pleasure to express my deep sense of gratitude and indebtedness to Mr. Vinay Kumar, Scientist D, NIC and Mr. Prateek Shrivastava, Technical Director, NIC for their invaluable guidance, encouragement and patient reviews. Their continuous inspiration has made me to complete this dissertation in time. They kept on boosting me time and again for putting an extra ounce of effort to realize this work. I am thankful to my classmates for their unconditional support and motivation during this work.

I am very much grateful to Prof. A K Tandon, Director BPIT for his valuable support at the Institution Level for giving me the opportunity for pursuing this ME course and help in conceptualising the thesis and to all those outstanding individuals with whom I have worked in this Institution, who helped me understanding the concept.

 I am grateful to my parents, wife and all my family members for their moral support, encouragement and love all the time. Without it, my thesis could never have been completed.

Radha Krishan

M.E. (Computer Technology and Application)

Department of Computer Engineering

Delhi College of Engineering, Delhi-42

Abstract

[image: image6.png]

Normally in case of client server model the server is the middle identity that can be installed to serve the basic purpose of the multi client environment. A client can send the request to the server and then wait for the response. The response time depends upon the speed of the server, speed of the network channel and the number of clients attached. This may be a time consuming process if the speed of any of the entities is slow or the number of clients are very large in number.

Therefore the basic purpose of the Interface is to create a middle layer for the company’s server and its business clients. This interface is used to facilitate the end users which were earlier being facilitated directly di

by the Main Server. With the help of the Interface one can easily find a fast solution of one’s fired request without any intervention of the Main Server whether the connectivity is available or not.

This application is a very good solution for all those organisations who want to make their work online without the help of a fast network channel. The web applications are not always be in the fast running mode because of many users. It may be possible that the database capacity is very high and the channel speed is low and in that situation one can easily do his job without the fear of the channel speed.

This interface is a very good suited for the far flung areas where it is difficult to provide the connectivity and the company wants to have a client database. For example in case of mountains it is very difficult to have a fast online connection and in that case the interface is one of the good solutions.

Certificate
1
Acknowledgement
2
Abstract
3
1. Introduction
7

1.1 Need of Interface
9

1.2 Motivation
10

1.3 Nature of operations
11

1.3.1 Database initialization
11

1.3.2 Open database
11

1.3.3 Data updation or modification
11

1.4 Level of Interfacing
12

1.4.1 Server-based Interfacing
13

1.4.2 Network-based Interfacing
14

1.4.3 Array-based interfacing
14

1.4.4 Client Based Interfacing
15

1.5 Scheduling
16

1.6 Methods used for Interfacing
18

1.7 Interfacing Model
19

1.7.1 Interfacing as Primary-Copy
20

1.7.2 Interfacing as a Master Copy
20
2. Problem Identification
23

2.1 Definition of Problem
23

2.2 Background of the Project
23

2.2.1 Existing Application Deployment Scenario at an Organisation
23

2.2.2 Distributed Application Architecture
25

2.2.3 Web Based Solution
27

2.2.4 Example of Data duplicacy at Central Database Server
28
3. Design of Interface Architecture
31

3.1 Standard Master-Slave Model
31

3.2 Interface Model Introduced
31

3.3 Multi-master- Main-server- Central Master Database Model
33

3.4 Terminology Used
39

3.5 Approaches to Problem for the Interface
41

3.6 Node Structure
43

3.7 Data Administration
44

3.8 Assumptions
48
4. Implementation
50

4.1 Modification in Database Schema
57

4.1.1 Creation of Initial Database
57

4.1.2 Database Structure at Remote Node
58

4.1.3 Database Structure at the Central Node
61

4.2 Implementation of the Interface
62
5. Technological background
87
6. Scope, Dimension and Limitations
89
7. Conclusion and Future Works
92
8. Links and References
94
[image: image7.png]
CHAPTER 1

INTRODUCTION
1. Introduction:

[image: image8.png]
Client Server is an old Technology where many clients jointly send their request to the server and the server can respond them as per the availability of the time frame. Every time when the user requests for the information he/she has to signup through a UserID and Password. Every time for the security point of view server checks the identification of every user. A server has to do two processes simultaneously; one is the security check and another is the data sharing and these processes require good speed. Now a days we have a very high speed channel (network) but still as the number of users are increasing day by day in some of the areas this speed is not sufficient.

Interface is a process that attempts to make a copy of a company's current data, or selected sets of data, onto other storage devices. Preferably, this should be performed in the background. Thus the applications using the data are not disabled and disrupt. This copy may then be kept on a local storage system (LS), ready to be used in an instant should the primary system fail; alternately, it may reside at a distant location (local distant server), quickly available should a disaster hit the primary data enter. In addition, the copies may be used for advanced backup initiatives, server or storage consolidations, or data migration.

In the market one of the Techniques available is the Data Replication Process, which can solve the problem of data sharing. This is the process of making a replica (a copy) of the information which is available at one area to some distinct area. On the Internet, a Web site that has been replicated in its entirety and put on another site is called a mirror site. Such mirror sites can exist in various locations, which are geographically distant. Using the groupware product, Lotus Notes, replication is the periodic electronic refreshing (copying) of a database from one computer server to another so that all users in the Notes network constantly share the same level of information.

[image: image9.png]
As defined by Wikipedia replication is the process of sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility. It could be data replication if the same data is stored on multiple storage devices, or computation replication if the same computing task is executed many times. A computational task is typically replicated in space, i.e. executed on separate devices, or it could be replicated in time, if it is executed repeatedly on a single device.

The access to a duplicated entity is typically uniform with access to a single, non-replicated entity. The replication itself should be transparent to an external user. Also, in a failure scenario, a failover of replicas is hidden as much as possible.

Database replication is the creation and maintenance of multiple copies of the same database. In most implementations of database replication, one database server maintains the master copy of the database and additional database servers maintain slave copies of the database.

Database writes are sent to the master database server and are then replicated by the slave database servers. Database reads are divided among the entire database servers, which results in a large performance advantage due to load sharing. Our aim is to give another name to the replicated data to the local database server and that is an interface between the end user and the main server.

In addition, database interface can also improve availability because the slave database servers (Local Server) can be configured to take over the master role if the master database server (Main Server) becomes unavailable.

Thus defining an interface database is pretty easy. The basic idea is that we want to copy data from one place to another. While the concept of interface is simple, several processes are involved in the interface namely collecting the data to be replicated, defining the condition of transferring the data and actually transferring the data. Whichever method of replication is used the processes remains the same.

[image: image10.png]1.1 Need of Interface

As mentioned above the database was originally aimed to serve as data backup methodology at local server level. The idea was to keep the data at another storage system to use it at every moment of time whether the system is online or off line. In case of failure of network the offline job will fulfil the user’s requirement. This offline database could be used for all other processes as well except latest update record (sometimes). Given the ever-increasing demand for round the clock data access, it gets harder and harder for companies to complete backups within time along with the server’s fast response. Backup is more a problem in the remote sites (mainly server site), user premises where there are no skilled staff.
Therefore the data as an interface has advantage of providing alternative mechanism of speed up data without the intervention of the server.

Secondly, Organisations generating data dynamically as required to conduct their business operations can effectively use data replication to enhance availability of computerised data. The data can be replicated to remote locations that will provide safety from disasters in the primary data centre and also serves as data backup. In case of failure of the primary resources the data can be made available from the replicated sites. These sites are known as disaster recovery sites.

Thirdly, data replication can be used to develop distribute applications. This is a more recent phenomenon. The master site handles all the writes to the database where as remote site can be used for read access. Thus the scalability and performance of the application is increased.
1.2 Motivation:

 The basis of disaster recovery planning is the business requirement of the organization. The need to know that what is being protected and why is essential for running the organisation. A well-documented requirement in the form of Business Continuity Plan spells out these clearly taking into account Risk Assessment and Business Impact Analysis. While building a replication solution for an organization the objectives mentioned in the Business Continuity Plan (BCP) have to be met.

Every organization must spell out its Recovery Point Objective (RPO) and the Recovery Time Objective (RTO) to get the application running.

Every organisation has primary data centre at its local office, while the disaster recovery site (DR site) is located at centralised office. It has deployed storage-based replication of data to DR site. This is working as a disaster recovery solution for recovering the data from DR site in case a disaster at the primary data centre struck. It is able to resume the operation from DR site if DR site configured with matching hardware and software. This data replication is generic and caters to all kind of data to be copied from different hardware and software resources.

However, computerised applications have variety of deployment architecture. The most common being centralised web based applications where in application servers and database servers both are located in the data centre. This can be handled easily by existing data copy solution. The other type of applications is deployed at remote locations accessing and manipulating the local database. The master database at the data centre consolidates the data from all remote locations where the local database server is laced.

1.3 Nature of operations:

1.3.1 Database initialisation:

The application can enter a newly published data to the subscriber at a predefined time interval or on continous synchronous basis. This data is being entered the time when we can start the local server. This is basically a process of data updation. After this process is over local server and the main server can share the data and make themselves at equal level so that data consistancy is maintained.

1.3.2 Open database:

Every time when the user wants to have an interaction with the server he can make an open request to the local server and the moment he can submit the UserID and Password the securiety measure can be varified by the local server. When the check is over a file is open and maintained by the local server that can provide the opening server mouth for the user. A log file is also created for the user that can have the complete log detail of the user. And if many users are trying to awail the services available, two log registers are created, one for each user and the other one that can maintained the complete detail of the local server’s users. It means the main log register that can have the detailed working knowledge of the clients that are attached with it(LS) and this can be done whenever subscrier wants to do the same. At this level of data handling the server is always trying to put its maximam resources to the local server so that the local server can provide an healthy environment to all its attached clients.

1.3.3 Data updation or modification:

The main problem faced when we are working with an on line application is the data consistacy. Normally when any body wants just to see the information nothing is dificult while data maintaining but the time when there is a requirement of data modification at a local level the local server has to take care about the all the clients that connected either locally or at far flung areas. Because it may be possible that the same data is being demanded by some other clients that is either attached with same local server or to the main server through some other local server. At this point of time to maintain the data consistancy is a very crucial and important factor for all the data users. Now at this level both the local server and the main server have flag out with a check alert that some modification is being done by some of the client. The check alert is first given by the client that can demand for the data modification. This signal first goes to the local server attached and then from local server to the main server so that the link is provided to the client for the data updation. A lock for that period is being given to that perticular database. The moment when updation is complete the server can update all the local server and the process is continued by all the clients. At a first look this process is very tedious but because as the speed of the available network is very high a very small interval of time is required for the same,

1.4 Level of Interfacing:

There are four types of interfacing techniques we are looking for our design. These are:

· Server-based,

· Network-based,

· Array-based and
· Client based.

The type of technology an organisation chooses depends on its specific replication objectives, its budgetary constraints, and the storage environment. Primary Objective of interfacing plays an important role in selecting the replication types. This can be achieved by answering following questions.

· Is data needed to provide a mirror of data for business continuance?

· If so, how long can the application afford to be out of service-seconds, minutes or hours?

· What are the infrastructure requirements and limitations?

· What are the company's data availability policies?

· What resources are available to implement, manage and maintain the database system?

1.4.1 Server-based Interfacing:

Server based interfacing uses replication software running on a server or dedicated appliances to pass data across a WAN to a target system. This is generally least expensive of the available methods but doesn’t always offer the same performance.

The data is copied at the logical level rather than at the physical level, which means that the primary and secondary storage devices do not need to have the same physical characteristics, or even to come from the same vendor. Logical level replication would be concerned with moving data, whether by block or file, from source to target. The specific hardware used to store the data would not be of primary concern as long as data could be read from the source drive, transferred over to the network and written to the target drive.

It supports data transaction between any two storage arrays, or even individual drives, and does not require any additional hardware to replicate data.

However, Server-based interfacing can be more difficult to manage with large groups of servers and Local Servers, if the tool does not provide a centralized management console. In addition, it consumes main server resources during transaction and duplication, and has operating system dependencies. Thus, as the database volume increases more resources of the server are needed therefore the server needs to be scaled up accordingly.

1.4.2 Network-based Interfacing:

It uses a switch or appliance that sits on the network in the data path to handle interfacing. Network-based interfacing devices have proprietary interfacing technology but are vendor-agnostic across host servers and storage hardware. Network-based interfacing provides vendor-neutral controller-based mirroring and TCP/IP protocol. It supports all Fibre (Fibre Channel) based I/O, does not consume any application server I/O resources, is storage vendor independent, and can provide some additional facilities when used in conjunction with a snapshot or mirror.

The main drawback of using this type of interfacing is that it requires a new layer of hardware to be installed in the data path, including at the remote site if replicating data for disaster recovery. Many of these systems require OS-dependent agents that add an additional layer of compatibility issues. In addition, Network-Based Interfacing has poor integration with application server software.

Network-Based Interfacing can be a powerful solution if the company is prepared to install a Storage Area Network (SAN) appliance in the data path. It offers the positive capabilities of a controller-based solution without being proprietary. Network-Based Interfacing is an ideal solution for active/active clusters or shared database environments, where Server-Based Interfacing cannot be supported.

1.4.3 Array-Based Interfacing:

It was the first method available, and is provided by the major hardware vendors. It was initially only available for high-end storage devices, but is now being seen on mid-tier arrays. However, this method only copies data between storage controllers from the same vendor. While Array-Based Interfacing requires proprietary hardware, it is not operating system or server-dependent.

Array-based interfacing is vendor specific, so an EMC source could not interchange data with a NetApps target, for example. Array-based interfacing is implemented in the storage control unit provided by the storage vendor. It offers high performance, and optimises host server resources by offloading copying to the array controllers.

On the down side, Array-Based Interfacing requires proprietary homogenous storage and dedicated network pipes between the arrays, making it the highest cost solution. In addition, set-up and management of array-based interfacing can be difficult and error-prone.

Array-based interfacing also provides poor integration with the application server, as well as applications. Interfacing at the controller level must be set up so that it includes full logical volumes, and preserves write order across the logical volume(s). In some cases, array-based offerings may not expand to capacities required by companies requiring high levels of interfacing.

1.4.4 Client Based Interfacing:

Here the client does not mean that every client has an interface to which the application can have the backup database copy. Here the client means that every local server is doing the job data transaction and this is the main motive of this thesis development. Every local server can have serving capability of more then a number of actual clients. Like the server based interfacing here we can create a similar channel so that the end user can have the online structured information like when it is connected to the main server.

Actually at this point the local server can have the similar kind of information like the main server. It can have the copy of the database that is available on the main server and through which we can access the information for the client (the user). Now this is the responsibility of the Local Server to get update its database from the server. To do so the local server has set a time period after that the local server can send a request to the main server and the server check for the coming request. If the request is valid then the server can create a channel through which the data can be shared and data consistency has been maintained.

This is one of the very good method by which the end user can get the data from the main server very easily. Actually the channel speed is varying on time to time basis. What ever is the speed of the channel, when many users are demanding for the channel it can affect the working of the server and the end users. But this method is an excellent method that can provide an easy method for the same.

1.5 Scheduling:

The data which is available on the Local server must be similar to the one that is available on the web. The data can be checked by the log register after a moment of time so that no lacking is occurred during the transaction.

To do so scheduling is required. Normally scheduling can be done in two ways: Synchronous scheduling and Asynchronous scheduling.

In case of synchronous scheduling the data which is available on the web can be duplicated completely. In this method the organisation need zero data loss. The system thus becomes highly available where in the event of a failure of the primary data source (example hardware failure) another mirror system should take over immediately from the latest point of failure. This type of scheduling is traditionally used over short distances so that application performance is not impacted.

In synchronous scheduling, a source system sends data to the target, mirroring device. The target device then sends a code back to the source providing a check value that the source verifies to be correct. If the acknowledgment is not correct, the data is retransmitted by the source to the target. In a synchronous system, the data is continually being synchronized, assuring that the data on both the source and target systems match.

While synchronous scheduling provides a complete mirror of data on both source and target, it can take a considerable amount of time to synchronize systems because of the delays inherent in the process. Additionally, if the server should go down, or the link between source and target are interrupted, data that has not yet been synchronized may be lost.

Fig 1.1 Shows Synchronous scheduling architecture where write on the local system is considered complete when the network from the remote site is received
On the other hand asynchronous scheduling allows the source device to send a continuous stream of data to the target. The delays required to synchronize the data between source and target don't impact the flow of data from source to target. Although asynchronous scheduling has the advantage of speed, there is an increased risk of data loss using this method, because received data is not verified. Asynchronous scheduling slows writes to the source volumes while the target volumes are updated in the background. It is used primarily in disaster recovery scenarios where the recovery site is located far away and the application would experience severe performance degradation with synchronous scheduling.

[image: image1.emf]
Fig. 1.2 shows asynchronous data scheduling where the acknowledgement is immediately sent to the sending host once it is written on the local storage.

1.6 Methods uaed for Interfacing:

Here we have used two different methods for the interfacing: Snap Shot and Mirroring.

In case of Snap Shot method the entire set of data is being transferred to the local server database. This is the most powerful and easy method to set up an Interface. However, the data size grows with every replication and becomes difficult and using more time and resources.

Example: A company has sales representatives in the field and the company wants to send the latest price list every day to them it can use snapshot method to send the data every day using push technology. Sales representative work on a offline mode with this new price list.

On the other hand mirroring is a technique where only the required set of data is being transferred and the link of the other database is being maintained in a log file. The moment any other set of data is being demanded by the customer then first the link of that data is copied to the channel and then only that set of data is transferred from he server to he local server. It takes an initial snapshot of data as well, but then tracks the changes that have been made at the Publisher and sends them to the Subscriber. This method is typically smaller and often used for remote clients.

1.7 Interfacing Model

Before going to define this modal we just want to define the Data Copy Areas: There are two database areas one is on the Local Server and another is on the Main Server. The database which is available on the Local Server is the primary copy and the one which is on the Main Server is the Master Copy of the database. At the beginning stage both of the copies are same but later on when more and more transations will be performed the master copy will become haviour. But the Primary copy is taking care of only those transaction that are required by its clients and by the end of the period of time the master copy can trace all the primary copies to update its file of data so that for the future if any failure is occurred then master will take care of the database. Actually the Master copy is having the complete knowledge of the database that is available on Each Local Server, but every local server may not have that knowledge of the other Local server.

Now when we open the local server database then we get the primary database copy. The moment when the database is open the log file is get connected with the Server so that it can update the record that is available in the previous copy of the the primary database. The memoent the database is get updated it can start the job of facilitating the end user.

On the other hand the server can maintains the Master copy of the whole database. It can update its database immediately and get itself updated for the local server. It can have all the log registers through which it can get the information of the database updation at the local server. The Master database can always be in the alert position for the regular updates. The main job of the master database is to have the complete details of the database so that it can support to all the clients through the local server.

1.7.1 Interfacing as Primary-Copy:

Now when we can think of the Interface as Primary Copy our main emphesis goes to the Local Server. The main job of the Primary Copy Interfacing at the local Server end is to provide an online channel for all the end users, i.e., the local clients that are attached to the Local server. The end users gets an online environment even without any interaction with the main server. The Primary Copy interface can be update if required by the Main Server on the timely basis.

For example in an organisation where the basic information for the clients are important and there is not any frequent need to get the main database interaction, this Interface is used. Here the main drawback is the client record updation at the main server side. The client can get just the information required at the moment of the time rest every thing is almost hidden, and if any client demands for the hidden information it can be fulfilled by the main server. The major advantage of the Interface is the database transacion load. In this case the maximam load can be shared by the main server and the local server can be free from that. For a small organsation this system is good.

1.7.2 Interfacing as a Master Copy:

The Master copy is the main copy that contains the details of the whole database and the information about the complete local clients through the Local Server. This copy is stored either in the Local Server or in the main server depending upon the type of interfacing channel is used.

If the copy is available on the main server then the job of the server become very much tricky and lots of care is required on the srever side. The job for the server is increased and the local client has just to maintain the record to get update through the main server. The Local client can always be online to the main server as the local server is having no role for the local server. The local server can play a very small role in this case. This model is not fit for the job as the main server is doing all the jobs for the local client. Just by passing its information through the local server.

On the other hand if the master copy is available on the Local server then the local server can do the complete job. It can have the complete knowledge of the whole working environment and the database that it can provide is always be online for the environment of the local clients. Here the server can play a very important role of database connectivity between one local server to the other local servers. The local server can get the update information after a very small interval of time or we can say it is always checks the updates log file to get it updated.

In case of Intefacing as a primary copy no benefit is being find out for the local clients but the same thing can be done when the master copy interfacing is being used by the local server. This is the main part of this thesis and we will try to implement the same for any kind of database implementation.

CHAPTER 2

PROBLEM IDENTIFICATION

2. Problem Identification

2.1 Definition of Problem:

This problem is not a simple one to define but on working it will give an easy going environment to all its connected end users. Basically our aim to provide an online environment to every end user whether he is connected to the web or not and this is the main task behind this thesis work.

The problem can be defined as a set of techniques through which an organisation can get a healthy environment with a web channel through which the client can be satisfied by the solution of the queries. This research problem can be defined as a layer between the Server and the Client (the end user) using a multi-master (Local Server) to central master (Main Server) duplicate model. The proposed Interface solution is aimed to maintain a single consistent and consolidated copy of the multi master databases at the central master. This would facilitate deploying the client application at the remote sites with a local copy of the database in an offline mode. Whenever a remote site wants to access its data from the central master it gets connected and transfers differential data from the central master.

Approach adopted here is creating a layer between the Client and the Server in such a way that the every client feels that he/she is connected to the server and the server can think that it can provide its services to every client. Both of them are not aware about the middle layer that can be placed as an interface between the client and the server.

2.2 Background of the Project:

2.2.1 Existing Application Deployment Scenario at an Organisation

An organisation always demands for the detailed client structure and the shared environment. As we are growing in the field of IT organisation wants to have an online application for its regular working. Now if the work is small there is a need of small speed channel for the transaction of the database. A normal client server modal can take care of the same. The server can easily facilitate by its services to each of its clients. The client can get the online facility almost at every moment of time. The up speed here is 99%.

On the other hand if we can talk about the big organisation then the client can face some problem while providing the online facilities to the end user. Since there are so many clients doing their job and it is very difficult to have an online environment for every one. They can maintain this facility with the help of the fast channel of internet. Now one of the major issues is there and that is data the security. Many times we have seen that the important data is being lost by some of the reason or is hacked by some illegal user. To maintain the first one the DBA can play an important role. A DBA can resolve the problem of data inconsistency, data security, and data management. When the transaction is required the channel gets activated and the data is being transferred from one system to another system. But when it is required to get a client system design then the concept of the channel is more important. In this case the requests of the clients are very important to be facilitated by the server. Since the organisation is big there are thousands of employees are working together for their jobs and various activities. As there are unlimited customers continuously requesting for the same or different jobs and every one is looking for the online facility. To solve this issue the organisation need to opt a high speed channel so that every one can get the help from the server.

Now while doing the work with a single high speed channel work is going fine but the various important issues discussed above may be partially neglected and the moment of any miss happening is occurred with the database security then that loss is really uncountable. The hackers can easily do their job. Many times we can see through the newspapers that a server has been hacked by some illegal users.

One more issue of the virus is also disturbing the database and a heavy cost is required to maintain the database of the organisation. Since this is one of the crucial points to be handled, a heavy cost is being involved. This concept is similar to the security management of a country. The government of a country has spent a very heavy amount to the security measure. Any small mistake can harm the country and its innocent people.

To solve the above said problem the Interface designed under this thesis can handle the database in such a manner that only the required portion of the database can be shared by the server and the rest of the database is untouched. It is some what equivalent to the virtual database that is available for the end user but in a hidden format. Our main aim is to look forward for the same kind of environment and resolve every problem faced by a small as well as big organisation.

An Organisation has been implementing numerous applications of central and distributed nature. Many of the application users are located in the local areas and other for remote areas. In some case like in a Government Organisation, Common Integrated Police Application and Health Scheme application, there are multiple users within a city. These applications are either distributed in nature or a web-based solution.

2.2.2 Distributed Application Architecture:

Distributed application works on standalone model where in at every individual level the client application with the required database is installed at a local server level. This has advantage of response time, as some times there is no network constraints issues problem. Thus, the need of scaling to a high-end server is also ruled out. After a certain period of time the application’s database can get copied to the local server and that is sufficient for that area. Normally for a local area the policies are not changed frequently and that is why this type of interfacing is good enough.

There is a need to consolidate the information on a daily basis to the central database server. This is one of the good solution by which the remote location server can get the database back if in any case they have lost the data. This is also required by senior officials for getting the top-level information for decision making from all the remote sites. The current solution to this is a combination of interfacing as well as manual process of merging of databases.

The database at every remote site is being copied to the central database server daily during the off peak period. The main server thus receives copy of the database from all remote sites through this central database server. This copy of each Local Server database is merged with the Central Database. This process is repeated for the entire Local Servers Databases received at the central node.

The common database so generated is a point-in-time copy of the remote databases thus containing all the records of the database replicated earlier. As the volume of the database increases the volume of the database at the central location gets also increases. This requires higher bandwidth and more merger time. But the interfacing can reduce this problem for the local as well as the for the main server as it can pass on only the relevant database from its area to the central server and if required by any other remote location only then a replica of that is being transferred through the database server via main server.

Fig 2.1 Interface Architecture

2.2.3 Web Based Solution:

The browser based application architecture requires very minimum hardware and software sizing at the remote end (client side) there by reducing the cost and time of implementation to minimum.

All updates are done at the central site i.e. on the central master database server. Local application is connected over the Internet to access these databases for retrieving information and updating transactions.

These applications are public domain Organisation to Organisation based or Organisation to Customer based e-governance applications where Internet link break-up and high concurrent users delay the delivery of the services. This causes a huge embarrassment to the user of the application, which in the above applications is Police department and doctors respectively.

Disadvantages:

While the above architecture is good in terms of maintaining data consistency and synchronization of information at all time this suffers from possible delay in the delivery of services as indicated above at any point of time. Some time this delay can be in minutes or even in hours.

Secondly, the bandwidth limitation at many end-user organizations may further limit the response time and cause frustration to the user and the ultimate beneficiary i.e. public.

2.2.4 Example of Data duplicacy at Central Database Server:

A Big Level Organisation has its primary data centre called Internet Data Centre (IDC) at its head office. This data centre houses with many servers. There is a storage facility of approximately 100 TB online spaces. The organisation has hosted many client based web applications in these servers. Servers range from Sun Solaris, Microsoft, and Linux operating system with wide variety of databases likes Oracle, MS SQL Server, PostgresQL, MySQL etc.
The database centre is designated as disaster recovery site (DR site).

Both Primary and Disaster Recovery sites are connected through a WAN link. The total bandwidth of WAN is 100 Mbps.

The organisation demands a commercial solution using interfacing type. As depicted in the diagram, Interface based replication is connected to another similar storage at Disaster Recovery site to facilitate replication.

A user application in the internal network fabric requests for replication of its data has to provide the path of the mounted disk drive. This disk is mapped in central storage system as a disk to be copied.

CHAPTER 3
DESIGN OF INTERFACE ARCHITECTURE

3. Design of Interface Architecture:

3.1 Standard Master-Slave Model:

Standard RDBMS like Oracle and MS SQL Server supports broadly two models of database namely Primary Copy database and Multi-server database. In Primary Copy database a site declared as master site is the one where updates are written. The replica site(s) are located on the remote stations may be geographically hundreds of miles apart.

All the updates on the master are duplicated to remote site either synchronously or asynchronously. A duplicate site can also act as a forwarding node to other nodes to reduce the bandwidth requirement etc at the master site. This is known as 1 to 1 duplication.

In Multi-server duplication there are multiple local servers (say LS). The updates are written to the central machine known as the central server. There are advantages in that if one master fails others continue to update the database and this is done through the central database server. This comes under 1 to M duplication. Thus, there are number of masters having up to date copy of the database at all time.

3.2 Interface Model Introduced:

Various duplication solutions available in the market are explored both from the open source and from the commercial product ranges to meet backup requirements. These products are based on one of the above models. However, both standard Master-Slave and Multi Masters do not conform to the need. The updates are sent to the central database server for consolidation purposes.

Here we are introducing a new concept of the client server model that can solve the process of transaction analysis. Normally when we are working in a multi client environment where there are many clients trying to access the server facing a channel problem as we have discussed earlier. To solve this problem we have divided the whole group into the various local servers that are termed as multi master along with a separate database central server. Now each local client can find its record in the form of shared message that is not basically be the part of the main server.

Through this modal the very important issue of data backup and security along with fast transaction is resolved. The interface modal that is introduced here can create a layer for all the local clients and give a relaxation for the job which is earlier being given by the client directly is now come through the local server and only in the situation when required. Almost every job is being resolved at local server level and the database security is being now taken care by the central server,

This thesis is therefore processes a job in between a Client – (interface) – Server on one to many basis. The Main Server M can be connected with Local sever(s) LS and the local server can be connected with the end users (the local hosts) and the central database server. The central database sever can also be connected with a backup database server which is a part of Main Server.

Now the time when the application of the end user wants to start the job it can implement the part of its job by the local server which is connected to the main server and the database server with the help of that the end user gets the help of its application. If at any moment of time the local server gets affected by the external entity the database server can fulfil the job by providing the data back to the Local Server.

One Main Server and many Local Servers are connected to each other for their jobs and the multi master system can be connected to the database server. The whole system is also connected to the backup application server and the database system.

3.3 Multi-Master- Main-Server- Central Master Database Model:

For an organisation where the clients are distributed through out the areas there is a need to have common system for all the users. Since the web application is required by every client and may be possible that the database recovery software is not perfect for that area in that case there is a requirement of a backup server for every group of local clients.

This system requires many local servers and some database servers for the fulfilment of the job. The database server should be active and always connected to the main server, from where it gets the latest update going on at each local client site.

The client applications always give a signal to the main server for any kind of updates at its end. The client application at a remote master site updates the database in an offline mode. The changes in the local master database are captured at transaction level and recorded in a local control log table. Whenever a client application fires Update, Insert or Delete DML statements on the local database an event is triggered to capture, the changes affecting the database. This capture is therefore transactional and done instantaneously. The change is recorded only when the concerned DML statement causing this change has been committed.

These changes are then copied to the central database site hosting central master database. The purpose of the central master database is to consolidate the data from all remote masters. The consolidation of data is carried out using the merge process at the central master site. The above method of duplication is named as M to 1 transaction. This is transactional method of for the interface at the Local Server – Master database.

On the other hand the central database maintains all master tables consisting of standard list of codes which have been located at remote areas and other code list used in the application sites. A client application on the central master site will update these master tables through their log tables.

Remote sites will continuously poll the central master database to check the timestamp of the last change occurred in the master log table. If the timestamp at the central site and the polling remote site do not match (i.e. the time stamp at the central site is greater or newer than the time stamp of the polling remote site) then the remote site will pull the master data in. This pull duplication is based on snapshot method.

The above architecture is depicted in the figures 3.1a, 3.1b, and 3.1c below. Figures 3.1a and 3.1b are the earlier modals but the 3.1c in the model that we have proposed for the future. In this case there is no direct link is being provided between client and the main server. The client can be connected to the main server through the central database server which is a part of the central administration, in our case which is the Interface.

The solution that we have proposed is based on the last model. Implementation of this model necessitates modification in implementation strategies of the existing original database to include the interface features. These features are described in the chapter 4 “Implementation of the Interface”.

 Fig 3.1a Architecture Design:

 An outlook of Multi-master- Main-server- Central Maser Database Model

Fig 3.1b Architecture Design

An outlook of Multi-master- Main-server- Central Maser Database Interface Mode

Fig 3.1c Architecture Design
An outlook of the proposed interface between local host and the main server.

Write fidelity:

Write fidelity is an important aspect while keeping track of the changes as they occur in the database. To maintain strict write order every change is recorded in the log table with a timestamp and an auto sequencing system. The writes are applied on the master site in the same order as they were applied in the remote site. The merging algorithm takes care of this. Write fidelity helps in maintaining consistency across the duplication and local database after consolidation.

Writes on different remote sites (multi master) are independent of each other and while applying these changes on master site the control log table is read one by one from every remote site.

Atomicity of the Transaction:

The control file records the changes in a row on insert delete or update event of an underlying table when the commit is being done on the table. The trigger, executed on the occurrence of any of these events, is a part of the transaction responsible for making changes in the table. Therefore, the databases do not permit committing within the trigger.

If the transaction does not commit successfully it rolls back and so does the changes affected by the trigger. Thus atomicity of the database is maintained.

Conflict Resolution:

Conflicts have to be resolved in case of remote merging of the changes at the central master. Conflict can occur in case of violation of referential integrity. In the remote database it is presumed that the client application manipulating the local database (on the remote site) does it uniquely across all remote databases.

Timestamp: every row updated is recorded in the control table using the time stamping.

Data partitioning: each row is guaranteed to be manipulated by only one server.

The present solution is thus free from conflicts.
3.4 Terminology Used:

To describe the proposed interface architecture we need to understand certain terminology and their functioning as they are used in this solution.

Transaction Table:

Tables in the database those are used by application programs for recording transactions as per the business logic. Thus, the business logic of the software system determines the transaction tables in the database being used. Transaction tables are referred in this document as transaction files.

Master Log Table:

Master log table is the one in the database used as look up tables for getting the codes of lists at the remote area site. Master log table can be referred in this document as master file.

Node:

The database instance at any site involved is known as node.

Central Node (Administrator):

There is one central database consisting of consolidated information of all the remote databases (called stations in this thesis). The central database administrator is responsible for creating and maintaining all the master files. Any updates on these masters are done centrally at this database.

Local Server Nodes:

As mentioned above a Local Server is a remote site containing the local copy of the database. The end user application is configured to make changes in the local database. These applications are permitted to change only transaction tables using the application interface woven with business logic.

Cluster:

A group of nodes involved in the transactional Database form a cluster. Every node willing to participate in the transaction process needs to register in the cluster.

Master Server (the Publisher):

The site that hosts the database and publishes the information is known as Master Server. In the present problem the node that publishes the data is known as central node.

Local Server (Subscriber):

The site that subscribes the articles from the master server receives periodically these articles.

Articles:

Articles are related set of relational objects those are published by the Main Server. These objects are generally the database tables.

3.5 Approaches to Problem for the Interface:

To implement the Interface we will be dealing with the three different areas such as Central Master, Database server, Local Server. Through these entities our ultimate clients will develop their jobs for the customers. As per our research there are many ways to implement this tool some of them are already working in the market also but we are trying to implement a new and different one that can solve the problem of the channel.

As we have discussed in the introduction part, and the detail of that will be discussed in the implementation section, many ways of the interface are there to cop up the problem while facing in this area. On the same guidelines we have defined that the client server method is the one through which we can find the solution of our problem.

We have taken the help of the existing replication system to find a nice way of the solution. In the first approach we have taken the help of the pure client server system where the main database server will take care of all the new and the existing database. The data that is being updated by the client can be shared by all the other clients and there is a one to one interaction between all the clients only in the situation of requirement. In this approach the central database server which is attached with the main server is directly linked with the Local Server but the data that is being transferred is done only with the permission and joint agreement of the Main server and the Local server.

Both the local server and the main server are having their own log register. The Local server log register can have the information all the local clients that are attached with the local server. Now through this log register the local server can maintain the updates of the clients. The moment the local server gets the connectivity of the main server it can be upload to the main database server. Now the other local server can also do the same job for their clients and main server can maintain the whole job.

In the second approach we have installed two dedicated database servers one for the local server and the other for the main server. Here the dedicated database server is attached to the local server that is having the copy of the whole database of the attached clients. The main database server attached to the main server is having the duplicate copy of the entire local database servers as a backup. Now the client can get the information from the local database server which is attached to its local server. Its local list of log record is placed in the data log register the similar copy is also placed in the main database server. With the help of the local log file the server can exchanged the database and maintain the data consistency. Rest every job is similar

In the third approach we can just modify the second approach just to combine entire local database servers into a single one and that single server will be taking care of that region. In a region it may be possible that three to four local servers are there and having their own databases with them. Now the new database server is termed as the Central Database Server. This server is doing the complete data backup service for our local servers. This server is connected to the main server. Now, if in any case, any miss happening with any of the local server data cannot harm the work and with a very small interval of time this server can update the local server for the user. This server is also having an auto click option that can take care of the clients when their own server is being in a defected mode. The Central database server can hold the local server’s responsibilities and till the time when that server is not come up to an OK position its complete job is transferred to a comparatively less loaded local server or to the main server if it required very urgently.

This is one of the best approach out of all the above discussed approaches that we will be going to implement in our thesis. In this approach we will develop a system that can take care of all the required parameters used for the speed up the work with the data security and consistency.

3.6 Node Structure

Figure 3.2 shows the basic node structure. Data Centre Node is a central node (central database server) hosting the master database. Remote nodes are installations at remote sites of the database.

As it is clear from the figure above that the publisher-subscriber model implemented in this system both the Remote Node and Central Node have a dual roles to play. In master data replication Central node publishes the data and Remote Node subscribes it. In transaction data replication Remote Node publishes the data, which is subscribed by Central Node.

This is bi-directional replication topology. Transactional Changes in remote sites are propagated asynchronously to central node at a predetermined interval. Similarly, the changes from central to remote will happen asynchronously.

Central Node:

The central note will publish the master data to the remote node as and when it changes the data. This data is subscribed by one or more remote node(s).

Remote Node:

The remote node will publish transaction data at the end of every day. The published data is transactional. The changes are recorded locally in case of any transaction takes place during the day. Central Node subscribes this data.

3.7 Data Administration
Data administration is one of the main issue that has been taken under the consideration as a whole. Every node which is being connected directly or indirectly to the main server must be having the knowledge of its admin. This is also for the administration part. The data admin that we have proposed here have the responsibility of taking care of the entire data management connected to the central database server.
The data administrator is a man who can handle the data replication as a main. The moment any part of the system get disturbed by some miss happening the data administrator can make that active and provide entire resources. It can also provide an alternative path to the problematic area so that the nodes that are connected to the zonal server get the connectivity to either the neighbouring zonal server or to the central database server. The ultimate aim is to give a healthy environment to the local host so that the client can not be the sufferer.

Following diagram shows that how the local host can be connected to the main server. If in any case any of the zonal server gets affected by the external attack then central admin can transfer the control of the connected locals hosts to the central server through the central admin.

3.8 Assumptions:

We have assumed that all nodes involved in this system maintain certain minimum standards.

1. Database at either end can be heterogeneous in nature.

2. Database must support some method of recording unique row identification, which is normally all standard RDBMS do support.

3. Basic schema of all the tables will remain same in master node and remote node(s) with a variation as mentioned in the following section.

4. Master and Transaction tables are clearly identified at the time of implementing the replication feature.

5. Only the central node application will write on the master files.

6. Transactions files are updated by remote node(s).

7. Replication programs developed in this thesis have administrative privileges to make schema level changes.

CHAPTER 4
IMPLEMENTATION

4. Implementation:

While doing implementation we get to know the ultimate requirement of the customer to whom the client is directly related and the organisation is looking forward for the same. The way on which we are working now is quite tough and require a heavy type of requirement to satisfy the need of the customer. Today is the world of challenge and at every moment of time we face a new kind situation. To be at the top every organisation need a best system and also the cost is one of the major factor. Today we have seen that people can switch over from one set to another set of information and that is not because of bad performance but due to some other factors also. Some of the factors are fast response, accuracy, security, backup, and the same. All these things are possible but to maintain now a days the cost is become a very crucial factor. Up to a certain level cost is immaterial but beyond that one cost matters.

To overcome the above problems and to provide a new good looking system one has to move from the current environment to another one or modify the existing environment. The system that we have proposed is having all the facilities along with a new look so that the user can get a new feel also.

Now before going to implement the system we can recollect the main things that are the part of the thesis.

We are going to implement an interface between client server modal for a web application and its database. The main feature that is required here is a layered system that can facilitates the end user in almost same ways which is similar to that when the same client is working on the web.

The implementation of the proposed system is really a tricky job because every client that is connected to the Local server is having a feeling that he is working with the main server. Now we have designed accordingly the Interface. As we have discussed in the previous chapters that the working modal is basically having various methods for the user out of which we can take the best one so that the ultimate user can be benefited and also the database part is maintained. We have designed our system accordingly.

We have taken an outlook of an organisation which has many clients at various remote locations. For our simplicity we have divided the complete remote areas into five zones East, West, North, South and the central zone. Each zone is having its own level of working with its database. Every zone can take care of all its clients. The client information is zone dependent and stored in the specified zonal server. The entire zonal data is also replicated in two different areas. One is Central Database Server and another is the Main Database Server. The Central Database Server can be connected with each zonal server and directly connected to the main server.

Now the question comes that how the system gets updated when every system wants the web link of the main server. Now as we have discussed, every client is having a unique id number and a client log register. This log register can have complete information about the database used by the client. Any modification of the record can be first gone to the local log register in such a way that the log register can get the details of the table where the record is being stored. Now this log register is transferred to the local zonal server and then the local zonal server first checks that record in the existing database. If the record is available then the same record is replaced by the new one and if it is not available then this new record is being added in the existing list.

The above method of data modification is the simplest one. But at some advance level when more then one clients want to update the record simultaneously for the single database then more care is required. In this typical situation an exclusive lock is being provided so that data consistency is being maintained.

Our system can maintain three different log registers, one at the main server termed as main log resister that is having the complete record of every client connected through the zonal server, second is the zonal log register available at each zonal server termed as zonal log register, the last one is the client log register which is allotted at each client.

The client log register can be having the record of the tables of record that are related to the clients. If any new client wants to add himself at the zonal level then its information is added to the zonal server and a log register is created for this new client. Now this log register’s entry is added to the zonal register and because the same type of the log register is also there at local, zonal, and main servers this is very difficult to maintain all the log registers. To solve this issue the log register of the clients has been exempted and the responsibility goes to the zonal server.

Now when there is any requirement for the client to modify the database the client can send the request to the zonal server to give him permission, this permission can be first checked by the zonal server that whether the similar kind of request is being requested by the other client or not. If no such type of request is being there the zonal register can be activated with a exclusive lock for the requested client. Now this is the time when the requested client can get the facility to update the database. After this process is over the same job is being taken care between the zonal server and the central database and then central database to the main database server. It will be discussed in the latter section.

Database modification is one of he major issue but apart from this many other issues are also be taken care very carefully. And for that we must follow a rout plan where we have to consider the client request raising, request submission, request acknowledgement, and at the end request handling.

First case: Every time when the local host has open its account, its first job is to get the log register file from the zonal level server to its log area. With the help of this file the local host can get the details about the existing clients. This log register is a very small information file where the entries are only the client ID and the date of joining. This is for the entire clients at a particular zone. Here we are taking an example of North Zone only.

Suppose that a client is coming at north zone. He is interested to join the community for the future work as a member of the organisation. In that case the client has to fill a form for the registration. The local host can provide an e-form. The entries that are being filled by the client are being submitted on line and then entered to the record list. This entry is then goes to the central database server to update the local host log register. Now in the future when the same client is coming for the next or other job it can be easily be recognised by he local host because the local host can have that information with it. Now suppose that the local host is offline and the same client is coming for the job but due to off line its information is not available. In that case the local host can check with the duplicate copy of the log register and if that duplicate copy is also not having the record of the current client it can submit its record as a temporary basis so that it gets an easy feel with the system. Now the moment when the local host gets the connectivity with the central database through the zonal server it can be checked immediately the status of the client. If the client’s information is not available in the central database then it can be updated on the same time and then generate an client ID and send it back to the local host to update its local log register. The local host can attach the Client Id with all its information and send it to the zonal server. At the end of the day or the set time period the zonal server database can be copied to the central database.

The above is the simplest case for the required Interface. But every time this case can not fulfil the system’s requirement. For a client who is the part of one zone wants to get the facilities of the system through another zone. Now in this case the work is little bit difficult or when a client wants to utilise the facilities available at different zone. Some of the issues we will discuss in the sections below.

Second case: in this case the clients need the facility which is not available at connect to the local host but that is available at another local host and that one is not the part of the current zone. In the normal case when there is direct link in between the local host and the main server this case does not face any problem but here as we are having an interface it is very difficult to facilitate the client through the local host. Now to solve this issue we have created a new idea. The very first thing is to create a temporary log register for that client where the clients ID is being copied and then send to the central database server through the zonal server. The central database server can check it from the available log register. The moment it can find the entry it can send an acknowledgement with the local host ID to the requested local host. Now the current local host can send the request of the client to the local host whose ID is being given by the central database. This can be looked after by the zonal server because the main responsibility is of the zonal server to take care of all the jobs taken by the local host. The figure shows this case that how one client can get the facilities of its own local host through another local host

Third case: This case little bit more complicated then the second case. Here the client of one local host demands the facilities of the services available at some another local host which is a part of another zonal server. In this case there is a very important role of the central database server. As we have discussed above that one client whose entry, which is not available at the current local host, is being transferred to the zonal server and then to the central database for the checking. So in this case what ever be the decision of the central database, it is valid for the clients. If the entry is not available in the central database the client is being rejected by the local host and that client has to register through proper channel. Yes this is possible to enter a client of one zone through another zone. This task is automatically done by the zonal server by providing the client ID by viewing the zone address chose. For example if a client living at north zone wants to register himself by west zone, his zone address which is currently the north zone, is automatically be added to the north zone. Now in the future he can re-enter at the local client just by giving the client ID. Otherwise the zonal server local host can give an appropriate ID to that client. Now it is the choice of the client to accept the ID provided by the zonal server or to choose the new ID. This is one of the facilities provided by the system to change the ID as per the requirement or choice of the client, because, it may be possible that the client wants to shift its entire database from one area to another one. To do so the system can replicate the client’s record from one area to another one. But it does not mean that the database is being transferred but it is just the change the Client ID and the zone address rest every thing is same. Since we have the central database system this shifting is just a formality for the server but the client can get the facility as a global database accessibility.

4.1 Modification in Database Schema

4.1.1 Creation of Initial Database:

Initially the database at the central server contains the detail about the existing application code that is to be utilised by the local host to fill when the first client come for the data facilitation. At the beginning level the master log register is playing a very important role. The master log register (MLR) whose one copy is at the central database server and the duplicate copy is available at the main server.

The master log register is the key data structure. It can give an open picture of the whole Interface. It can have all the possible entries of the system. Every database can have this knowledge and its copy is also available to the central database.

To initialise the database this is required to take a careful action to fill all the entries of the master log register. Now when the master log register is filled fully it is the time to check that how many local hosts are installed at the very first stage. This is because at the beginning it may be possible that only very few of the local hosts are being installed and later on the new list of local hosts is being provided to the master log register. The very important entries through which one can find out the genuinely of the client is the client ID. This is the primary key and this is automatically generated by the MLR. The client database application needing to implement the proposed duplication feature has to host the initial database at the central node. The schema of the database will have to be modified to include these features.

The duplication features include additional control tables, triggers, modification in standard schema and the replication programs. Following sections list the additional components at the central and remote nodes.

Control tables are created at the central node to record various duplication parameters and changed transactional data. Similarly remote nodes will also have additional control tables and changed schema.

4.1.2 Database Structure at Remote Node:
Remote nodes have to register first with the central node as a cluster member. A remote node hosts the standard database schema as designed originally for the client application. This schema will be modified to facilitate duplication features as follows.

Transaction Tables

Transaction tables are the set of tables storing all transactional changes at a remote site. The client application will fire DML queries to perform these changes. The changes in data of these tables are recorded and replicated to the central master site. Following design changes are carried out for replication purposes in the transaction tables.

Unique Identification of a row:

It is necessary to uniquely identify every row in a master log table. Although, the primary key is a unique identifier for a table the generic replication system should better seek an alternative since many tables would not have declared primary key column as it not strictly enforced by DBMS systems. However, to record the changes taken place in a database table unique row identification is a must. The fact that every standard RDBMS system has one or the other mechanism to define the row uniquely in a table, makes it easier to identify the same row in remote and central node correctly. Since this primary key is being automatically generated by the MLR the half of the tension goes to the Master Server. Instead of this entire feature is being modified as per the requirement of the Interface, and because of this we have generated our Interface in such a manner that the local host can modify the client ID but it should be done by the prior permission of the master log register.

For example, MS SQL Server’s uniqueidentifier data type with rowguid activated generates the unique identifier for a row in the table. Every row inserted in the table is given a unique ID based by the database. Unique ID thus generated is not duplicated in the table.

Oracle’s rowid: A rowid is a pseudo column that uniquely identifies a row within a table, but not within a database. It is possible for two rows of two different tables stored in the same cluster to have the same rowid.

Postgres maintains an OID: PostgresQL defines a series of system columns in all tables, which are normally invisible to the user. The unique object identifier of a row is OID. PostgresQL automatically adds this 4-byte number to all rows. It is never re-used within the same table.

MySql: We have user here the RDBMS tool MySql which is free in the market and that can help us for our database to produce the automatic ID generation. It can also provide all the options through which we can easily do the transactional process easily.

Thus it is fairly easy to identify a row in a table to be copied using one of this row identifier depending on the DBMS used.

Control Tables:
Here we have defined five base tables for each zone. We have defined each table as a start emp_e, emp_w, emp_n, emp_s, and emp_c. Here all these table are the part of the employees of the organisation. We have taken just one part of entire thesis.

Structure:

DUMMY Column:

Uid
it is the user Id given by the Local Host

Dept
the department where Local host is located

Loc
The Zone of the Local Host

Curpro name of the thesis

Produr Duration of the thesis

Prosts the thesis status

Note:

a) The above structure is created in MySQL and remains same in other RDBMS with change in equivalent data types.

b) Uid field will get the unique user identifier of the table.
c) Loc is one of the important field that can show the zonal address. This field will disclose that the particular user Id belong to X zone.

Table: Registration

Every table must be registered at the time of its creation. The first entry goes to the local host and then the record goes to the central database. By the end of the session its entry will be added to the Master Log Register. The main purpose of the table registration is to make its entry permanent for the future and provide the unique ID.

Table : ACK

The moment the table is created its information goes to the central database. Before going to commit the creation of the table its request goes to the central database. The central database can send the acknowledgement with ACK signal to the local host through the zonal server so that the local host can commit the creation.

Suppose the network is not being provided to the local host and in that case it is the responsibility of the zonal server to make the authentication and then provide the ACK to the local host. Now to provide the data consistency it is very important have knowledge of the entire zone at the zonal server. For this purpose the zonal server can be provided with the Zonal Log Register (ZLR). This ZLR can be maintained by the zonal server and it can have the basic knowledge of the central database server and the entire connecting network of local hosts. But till the connectivity is not being provided in between the local host – zonal server – central database server the creation is not be committed permanently and in this situation a temporary ID is provided to the client.

Now when the zonal server can be provided with the network connectivity the first of all it has to check the new client identification with he central database. And if client is not available then request to the central database to add the new client record and then collect the ACK for that local host. But if the client is already available then the previous information is over written to the central database with a stop ACK. This stop ACK can send a warning ACK to the local host so that the client can be intimated for the same. If the client is interested to rejoin the system then its previous information is being over written with the new added information.

4.1.3 Database Structure at the Central Node:

Master Table:

As we have discussed in the previous section about the Master Log Register, this master table is having the records of the entire database. Yes it is normalised as per the requirement but it can be updated at every time when any of the local host can add a new client for the system. But it can always be updated by the central database. Remote node(s) Zonal Server will receive replica of master table as and when they are changed at central node. This replication will also happen asynchronously to remote site as per the availability of the network.

Transaction Tables:

The transaction table is the one that can be helpful for the data transformation from the local host to the central database and vice versa. The main job of these tables is to carry the required information from one area t the another one. Whenever the client request for some information this can be done through the transaction table and submitted to the client. The main responsibility of the master log register is that it can instruct to the transaction table to do its complete job work.

Control Table:

All the tables are being controlled by the master log register. So we have this MLR for the main control system as a whole.

4.2 Implementation of the Interface:

This is the time to start the implementation of the Interface. Till now we have discussed about the database as a backend. But on the front end the user is having a friendly screen over which all type of problem will be handled by the server.

The end user wants to have an on line web services always. For that he can log on to any of the local host at any moment of time. But as per our earlier discussion this is not always be the case that the local host can get the connectivity. In the normal cases the local host can be stuck up and nothing could be possible. But our new system helps us for the facilitation to the client. Since the zonal server can have the local log register it can give the full facilities to the local host so that the local host can facilitates the client.

This system is a proposed system in between a client and server for a web application database and therefore it is the responsibility of the Interface to do the same work for a client whether the channel is on or off, for this our local database is very useful. As it can have the complete knowledge of the entire clients, every client can get the facility from the zonal server.

To simplify the task the entire resources have been divided into group of resources. Every local host will be allotted with that list of resources that are attached with the zonal server. Suppose that the local server is not get connected with the main server it may be possible that the central database is provided to it. In this simple case the situation is little bit simple. But when the zonal server is disconnected from the both central database and the main server then he has to facilitate the client with the available resources.

Let us take an example of a railway reservation system. Suppose that a particular railway reservation centre is disconnected with the central server and the passengers are looking for the rail ticket booking. The centre is unable to facilitate the client.

Now all the passengers have to wait for either the situation when the centre is again being connected to the central server or they all have to come for their rail ticket next time. Now compare this computerised system with the older manual rail ticket system. In the older days every local station can have the allotted quota system for the passengers. As per the quota the reservation person can allot the ticket to the passenger. But when the quota is full it can be a rejection for the customer.

Now the problem of the current system is sorted out by merging of the old railway reservation system and the new one. Whether the connection is being there or not there is no effect to the rail reservation. As such this thing is not available in the current railways but still the work is going on.

As per the example we are trying to propose our system according to the availability of the resources. Every zonal server can logged with some resources. The full authority goes to the zonal server whether to provide the services to the client or not. If the connectivity is there the first resource that has to be provided to the client is the central resources so that the quota will be used at the time of disconnectivity. One major advantage of the same system is the resources allocation is a central manner without any hitch of the web connectivity.

Now one complicated case is, what will happen if the connectivity is not being provided for a long, or what will happen if the zonal server is not able to respond so well or what will happen if the zonal server gets failed because of the software or the hardware failure.

In the first case of the above said cases the zonal server is trying get the connectivity from another zonal server. For example if there is some problem in the east location server then it checks the other linkage available but little bit less occupied. The control goes automatically to the neighbouring zonal server. To do so every zonal server has two additional connectivity so that at such type of failure the client will not be affected.

In the other cases, since the data is already be there in the central server, it can easily be recovered. But till the time the data is to be under process to recover, the entire list of local hosts can be divided into small groups and the groups are being connected to the neighbouring servers to facilitate the client. This part of the work is predefined by the interface in such a way that if N local horst are there, then the N local hosts are divided into M groups, where M is the number of neighbouring zonal servers. Now it is the responsibility of that particular zonal server to put the assigned job to the local host if that host is free, otherwise the while job can be taken care by the neighbour zonal server. In this case the complete local hosts of the neighbouring zonal server are get increased. Now to overcome this problem one good solution is to avoid the help of neighbour zonal server and the entire job can be taken care directly with the central database server or to the main server. The first case is valid because we do not want to disturb our main server otherwise the purpose of the Interface in not being solved.

In the mean time the problem faced in the zonal server is being resolved on the immediate basis. In the same time the entire of job of the defected zonal server that has been taken care by the central server has been collected in the local log registers. The moment the server being repaired, the very first job is the copy of the local log register, and then the local log register can recollect the entire database from the central database server. Now this is the time when the entire job is being recollected the zonal server can regain the services back from the central database server for the working.

To provide the facility we have developed the central database server as a main server and replicate the entire set of data from the main server to the central database server so that if in any case the above said problem rose out then in that critical situation the central database server can handle the problem. When the problems get solved then the whole database is being replicated to the repaired zonal server. The replication processes comprise of following major sub-processes:

· Set up of the databases with local log register.

· Capturing (Recording) of transaction level changes for and at remote site.

· Replicating the changes to the central master.

· Merging the replicated changes with the central master

Development:

To develop the whole thesis work is really difficult task because it requires lots of time and designing methodology. But if it is fulfilled by any body it will really create very new kind of environment for the big organisation. We have designed here a small dummy for the whole system where a small part is being demonstrates its functionalities.

We have developed only one phase out of all the phases discussed in this thesis. Here we have taken the case of central admin server where the main backup part is taken under the development.

To make it easy we have taken the record of the employees for each zone. The names of the table at zone level are

Emp_e

table at east zone

Emp_w

table at west zone

Emp_n

table at north zone

Emp_s

table at south zone

We have taken the structure as a common for all the table

Above two pictures demonstrate the detailed structure of two of our tables emp_e, and emp_n. As we have discussed every table is having common fields and their domains. It will help us at the primary level of working and for the demonstration.

Code: following are the codes of table creation

CREATE TABLE emp_e (

UserID
varchar2(10)

PRIMARY KEY,

Dept

text,

Location

text,

CurrentProject
text,

ProjectDuration
int(3),

ProjectStatus
text);

CREATE TABLE emp_w (

UserID
varchar2(10)

PRIMARY KEY,

Dept

text,

Location

text,

CurrentProject
text,

ProjectDuration
int(3),

ProjectStatus
text);

CREATE TABLE emp_n (

UserID
varchar2(10)

PRIMARY KEY,

Dept

text,

Location

text,

CurrentProject
text,

ProjectDuration
int(3),

ProjectStatus
text);

CREATE TABLE emp_s (

UserID
varchar2(10)

PRIMARY KEY,

Dept

text,

Location

text,

CurrentProject
text,

ProjectDuration
int(3),

ProjectStatus
text);

Data security is must and that is why we have secured our system with login and password page. We have created two types of users

Admin

The Administrative login

Normal

the normal users at the zonal level

The administrator is the key ma who is having the complete write to access to do the following things

1. Checking of the records at the zonal level.

2. Modifying of the records at the zonal level.

3. Replicating the records from central database server to the zonal level

4. Replicating the records from zonal level to the central database server

5. Deleting the records from the zone.

Only the Administrator has been provided with the above facilities. The works taken care by the admin are user creation, set priorities to the user, remove the user, create the database, and the same. We have taken these things in the implementation part as a manual job for the administrator and dedicated to the DBA.

The user connectivity page is designed for the login

The admin login will give the following screen

Now as mentioned, in the above picture, the administrator is having all the facilities but and additional link is provided to enter into the administrator area.

With the help of the available facilities the centre admin can perform his job.

CODE FOR LOGIN PAGE

<html>

<head>

 <title>User Login Page</title>

 <style type="text/css">

 .style1

 {

 width: 2px;

 }

 .style3

 {

 width: 77px;

 }

 .style4

 {

 width: 28px;

 }

 .style5

 {

 width: 282px;

 }

 #Reset1

 {

 width: 52px;

 }

 .style6

 {

 width: 25px;

 }

 </style>

</head>

<body bgcolor="#9999ff">

<form method="post" action="userlogin.php">

<center>

 <p>

 <h1> WELCOME TO THE INTERFACE </h1>

 <h2> THE CENTRAL DATABASE SERVER</h2>

 </p>

 <table style="margin: auto; width:33%; height: 112px; position: fixed; z-index: auto;"

 border="1" bgcolor="LightSteelBlue"

 align="center" frame="border">

 <tr>

 <td class="style5" align="center">

 <center>

<table style="width: 323px; height: 80px;" bgcolor="LightSteelBlue">

 <tr>

 <td class="style3">

 User Name</td>

 <td class="style1">

 :</td>

 <td class="style4">

 <input id="Text1" type="text" name="UserID" /></td>

 <td class="style6">

 <input id="Reset1" type="reset" value="reset" /></td>

 </tr>

 <tr>

 <td class="style3">

 Password</td>

 <td class="style1">

 :</td>

 <td class="style4">

 <input id="Text2" type="password" name="Pass" /></td>

 <td class="style6">

 <input id="Submit1" type="submit" value="submit" /></td>

 </tr>

 </table>

 </center>

 </td>

 </tr>

 </table>

</center>

</form>

 </body>

</html>

Code for central Admin

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Untitled Page</title>

 <style type="text/css">

 .style1

 {

 width: 77%;

 height: 226px;

 border: 1px solid #0000FF;

 background-color: #808080;

 }

 .style2

 {

 height: 107px;

 }

 .style3

 {

 height: 19px;

 }

 .style4

 {

 height: 19px;

 }

 #Select1

 {

 width: 298px;

 }

 #Select2

 {

 width: 297px;

 }

 #Select3

 {

 width: 99px;

 }

 #Select4

 {

 width: 135px;

 }

 #Select5

 {

 width: 300px;

 }

 .style6

 {

 height: 19px;

 width: 170px;

 }

 .style7

 {

 height: 19px;

 width: 182px;

 }

 .style8

 {

 height: 19px;

 width: 219px;

 }

 </style>

</head>

<body bgcolor="#9393ff">

 <center>

 <table border="1" class="style1">

 <tr>

 <td align="center" class="style2" colspan="3"

 style="font-size: xx-large; font-weight: bold; color: #800000">

 Centre Addministration</td>

 </tr>

 <tr>

<td align="Left" class="style8" style="font-size: large; font-weight: bold">

 Restore Data from Server to

 </td>

 <td align="left" class="style3" colspan="2">

 <form name="rdfst" action="Restore.php" method="post">

 <select id="Select1" name="D1">

 <option value="north">North Zone</option>

 <option value="east">East Zone</option>

 <option value="south">South Zone</option>

 <option value="west">West Zone</option>

 </select>

 <input type="submit" value="GO">

 </form>

 </td>

 </tr>

 <tr>

<td align="Left" class="style8" style="font-size: large; font-weight: bold">

 Centre Server Backup in

 </td>

 <td align="left" class="style3" colspan="2">

<form name="backup" action="backup.php" method="post">

 <select id="Select2" name="D2">

 <option value="IndiaServer">India Server</option>

 <option value="AtlantaServer">Atlanta Server</option>

 </select>

 <input type="submit" value="GO">

 </form>

 </td>

 </tr>

 <tr>

<td align="left" class="style8" style="font-size: large; font-weight: bold">

 Delete Data from Zone

 </td>

<td align="left" class="style7" style="font-size: large; font-weight: bold">

 All Records

 <form name="allrec" action="allrecord.php" method="post">

 <select id="Select3" name="D3">

 <option value="emp_n">North Zone</option>

 <option value="emp_e">East Zone</option>

 <option value="emp_s">South Zone</option>

 <option value="emp_w">West Zone</option>

 </select>

 <input type="submit" value="GO">

 </form>

 </td>

 </tr>

 <tr>

<td align="left" class="style8" style="font-size: large; font-weight: bold">

 Delete Zone

 </td>

 <td align="left" class="style3" colspan="2">

 <form name="delzone" action="delzone.php" method="post">

 <select id="Select5" name="D5">

 <option value="emp_n">North Zone</option>

 <option value="emp_e">East Zone</option>

 <option value="emp_s">South Zone</option>

 <option value="emp_w">West Zone</option>

 </select>

 <input type="submit" value="GO">

 </form>

 </td>

 </tr>

 <tr>

 <td align="center" class="style4" colspan="3"

 style="font-size: large; font-weight: bold">

 THE CENTRAL DATABASE SERVER</td>

 </tr>

 </table>

 </center>

</body>

</html>

Now at the zonal level the user can get the following screen. With the help of it the user can enter the record and see the entered at each level.

Now it is the time enter the data into the specified location. The following screen demonstrates the data enter part into the record table at the zonal level. We have entered one record at east zone

THE CODE FOR THE ENTERING THE ZONAL RECORD

<head>

 <title>Untitled Page</title>

</head>

<body>

<?php

$uid=$_POST['UID'];

$dept=$_POST['DEPT'];

$loc=$_POST['LOC'];

$curpro=$_POST['CURPRO'];

$produr=$_POST['PRODUR'];

$prosts=$_POST['PROSTS'];

$server="main";

$db="userdatamain";

switch($loc)

{

case "West":

$server="WEST";

$db="emp_w";

break;

case "East":

$server="EAST";

$db="emp_e";

break;

case "North":

$server="NORTH";

$db="emp_n";

break;

case "South":

$server="SOUTH";

$db="emp_s";

break;

}

//mysql_connect($server,"admin","pass123")

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "INSERT INTO $db VALUES ('$uid','$dept','$loc','$curpro',$produr,'$prosts');";

$query1 = "INSERT INTO employeeinfo VALUES ('$uid','$dept','$loc','$curpro',$produr,'$prosts');";

$result = mysql_query($query) or die("Error");

$result1 = mysql_query($query1) or die("Error");

echo "<h2>
$result : Record Insert into Database</h2>";

?>

</body>

</html>

After the insert button is pressed the record is entered and we have got a message

1 : Record Insert into Database

When the data is entered it can be shown through the zonal server.

Project Status EAST ZONE LOCAL SERVER

THE COMPLETE SET OF RECORD WITH ALL THE USERS

	User ID
	Department
	Location
	Current Project
	Project Duration
	Project Statu

	ts
	CSE
	East
	DATABASE
	4
	unning

	ts
	CSE
	East
	Graphics
	5
	Begining

Like the same one can easily the data entered at the each zone. One can see the complete list of records at the central server

CENTRAL DATABASE SERVER

THE COMPLETE SET OF RECORD WITH ALL THE USERS

	User ID
	Department
	Location
	Current Project
	Project Duration
	Project Status

	anand
	IT
	West
	LL
	36
	S

	manas
	Sales
	West
	DD
	35
	22 H

	ts
	IT
	West
	CRM
	40
	D3

	ts
	ECE
	West
	EMBEDDED
	2
	R

	ts
	CSE
	West
	DATABASE
	5
	R

	ts
	IT
	North
	LU
	64
	36 D

	ts
	CS
	North
	Deepak
	2
	Start

	ts
	CS
	South
	PPA
	3
	Begin

	ts
	cse
	South
	BS
	2
	Process

	py
	IT
	South
	PS
	2
	25

	py
	IT
	South
	PS
	2
	25

	ts
	CSE
	East
	DATABASE
	4
	Unning

	ts
	CSE
	East
	Graphics
	5
	Beginning

On the similar fashion we can implement all the tasks discussed in the thesis. The main advantage of this implement module is to have a rough idea about the working of the interface.

CODE FOR EAST ZONE DATABASE SERVER DISPLAY

<html>

<head>

<title>East Zone Data</title>

</head>

<body>

<table border="1">

<tr>

<td>User ID</td>

<td>Department</td>

<td>Location</td>

<td>Current Project</td>

<td>Project Duration</td>

<td>Project Status</td>

</tr>

 <h2> EAST ZONE LOCAL SERVER</h1>

 <h3> THE COMPLETE SET OF RECORD WITH ALL THE USERS</h2>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "select * from emp_e";

$result = mysql_query($query);

while ($name_row = mysql_fetch_row($result))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

</table>

</body>

</html>

CODE FOR WEST ZONE DATABASE SERVER DISPLAY

<html>

<head>

<title>West Zone Data</title>

</head>

<body>

<table border="1">

<tr>

<td>User ID</td>

<td>Department</td>

<td>Location</td>

<td>Current Project</td>

<td>Project Duration</td>

<td>Project Status</td>

</tr>

 <h2> WEST ZONE LOCAL SERVER</h1>

 <h3> THE COMPLETE SET OF RECORD WITH ALL THE USERS</h2>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "select * from emp_w";

$result = mysql_query($query);

while ($name_row = mysql_fetch_row($result))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

</table>

</body>

</html>

CODE FOR CENTRE DATABASE SERVER DISPLAY

<html>

<head>

<title>Central Database </title>

</head>

<body>

<table border="1">

<tr>

<td>User ID</td>

<td>Department</td>

<td>Location</td>

<td>Current Project</td>

<td>Project Duration</td>

<td>Project Status</td>

</tr>

 <h2> CENTRAL DATABASE SERVER</h1>

 <h3> THE COMPLETE SET OF RECORD WITH ALL THE USERS</h2>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query1 = "select * from emp_w";

$result1 = mysql_query($query1);

while ($name_row = mysql_fetch_row($result1))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "select * from emp_n";

$result = mysql_query($query);

while ($name_row = mysql_fetch_row($result))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "select * from emp_s";

$result = mysql_query($query);

while ($name_row = mysql_fetch_row($result))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

<?php

mysql_connect("rktiwari","admin","pass123")

or die("Failure to communicate with database");

mysql_select_db("userdatamain");

$query = "select * from emp_e";

$result = mysql_query($query);

while ($name_row = mysql_fetch_row($result))

{

 ?>

<tr><td>

<?php

echo $name_row[0];

?>

</td>

<td>

<?php

echo $name_row[1];

?>

</td>

<td>

<?php

echo $name_row[2];

?>

</td>

<td>

<?php

echo $name_row[3];

?>

</td>

<td>

<?php

echo $name_row[4];

?>

</td>

<td>

<?php

echo $name_row[5];

}

?>

</td></tr>

</body>

</html>

CHAPTER 5

TECHNOLOGICAL BACKGROUND
5. Technological background
While implementing this concept it was came to my mind that what technology is best suited and through which software we can see the better and easy result. For the web application we have so many techniques with us and that is also for the backend part. I have taken Hypertext Preprocessor (PHP) as a scripting language, which we have embed in the Hypertext Markup Language (HTML). For the back end part I have taken My Sql.

Now the very important part while chosing the PHP and MySql is their open source nature. Both of these software are free and open in the market.

Now to execute the process we have taken the help of WAMP server. It is a Windows based server providing the help of Appachi server, Mysql facilities, and PHP execution area.

The system presented in this thesis is developed for Microsoft Platform for the first level but it can be used in any platform just by moving the code from Windows platform to the other platform. For example for the linux platform we can use LAMP server.

As we have taken only few issues in this thesis there is no need to have a vast knowledge of heavy tools. But if we want to move this concept for a very big organisational data security basis it requires lots of hard core knowledge of the database and the RDMMS like Oracle.

CHAPTER 6
SCOPE, DIMENSION
AND
LIMITATION
6. Scope, Dimension, and Limitations

Our thesis is doing best work when it is being installed for an organisation which is having a very big database and many clients. The scope of the thesis is for all the organisations who can make themselves fit for the client and their satisfaction we have made the research part in to a deep consideration that data accessibility along with the security is a big issue. Both of these can not be discarded and partially they can not satisfy the clients.

The thesis deals with all the parameters that are involved in the customer satisfaction level. Our thesis can deal with all the ares where the client is involved. If we can see in the detail explanation where we have taken an example of railway reservation system, it becomes clear that for such a big work this thesis is good enough and provide vast area connectivity for the reservation system. We do not have such implementation at this moment of time but it can be implemented easily.

The interface that we have discussed is one of the very good result for the current and future wrok (discussed in the next section).

If we can see the area where it is being applicable, we can see that almost every organisation which is a client based, demands such type of facilities from the automated system. So the concept here is the best for such organissations. One more thing is that this is a solution of client server based technology and that is why it is a best solution for every such type of client server system where the number of clients are more and spreded into vearous level of areas. Some of the area are not being connected properly. For the mountains like area the solution is good enough for web based applications. Now the clients at such a difficult situations do not have to wait for a long for their requests. The requests are being fulfilled on the instant basis. Also the main server is not have any trouble to solve and fulfill the requests for any such clients. Now a frequent question raised that how this system can be improved more for the entire database management system. This part can be solved just by adding two technologies here that we have taken on the partial basis

1. Distributed database system and

2. Network database system.

With the addition of these our system becomes more advantageous and affective. As such we have added indirectly both these Distributed and Network database facilities but currently we have not embed these fully.

As such the concept behind this system is perfect The limitation as such is the installation of the system and the maintaince. To maintain the system is really a very difficult job for the organisation. One more task is there and that database server. This system requires an additional database server for the backup part and that one is again not possible for every type of area. Actually server maintainace is a difficult task for almost every organisation.

CHAPTER 7

CONCLUSION AND

FUTURE WORK

7. Conclusion and Future Works:

Proposed solution in this thesis has several advantages. This is a customized solution for any big organisation’ s applications deployed at the user premises having low speed Internet connectivity and do not have uninterrupted WAN connection. Such places still exist in large number across India and other developed world and a potential computerization scheme might fail because of inability to keep up-to-date information.

 This product is developed at middle level thereby providing full control on the database duplication solution for further related work like optimisation etc. the central server model (Interface) seeks to build a solution that would facilitate high flexibility in the database deployment at remote location. It reduces bandwidth requirement, which is crucial in asynchronous replication.

7.1 Service Agents:

Service agent function’s as background process and continuously executes the scheduled tasks.

The Interface developed in this thesis is composed of four major components. Recording Changes at remote site, replicating changes to the central site, database backup at the central and the main server, and merging changes to the master database.

Changes are captured synchronously using triggers implemented on transaction tables. They are written in a master log table and the local log register and ordered using timestamp and auto sequence number.

Replication from remote site to central site requires this log file to be replicated. This process can be automated by executing a central Administration process at central database site. This feature will wake up automatically whenever the data is being inserted by the local host at remote site.

7.2 Standby Server for Critical Applications:

It may be possible that either of the site of the central server gets affected by the un wanted miss-happening. If any such type, like hardware failure, software failure, linkage failure etc, situation happened the database may not be recovered. To solved the problem we have taken two backup servers

India Server
installed at the local area and

Atlanta Server installed at a far flung area.

The central database server can do the backup process for the system.

The Audits log file captures changes on every DML operation performed on the transaction tables at the remote master. The replication process in the background keeps replicating records asynchronously from this log table to the master site. In case the remote master fails due to hardware failure or system crash, the replication process aborts abnormally and the un-replicated data in the remote site gets lost.

To avoid this situation the modification can be made in such a way that for every Insert, Update and Delete operations on the local transaction tables at the remote master two logs are maintained. Replication process sets the flag in both these logs to indicate the status of transfer of a log record. The first log file is at local server originating the transaction while the second log file is maintained at another server. The second server can be located locally or in a remote location at the most 8 to 10 KM away. These servers should be connected with high bandwidth connectivity. Thus, in case of disaster we can just change the applications to point to this standby server and run from the point of failure of the primary remote server.

CHAPTER 8

LINKS

AND REFERENCES

	8. Links and References

	1
	Efficient Keyword Search Across Heterogeneous Relational Databases

Mayssam Sayyadian1, Hieu LeKhac2, AnHai Doan1, Luis Gravano3,1University of Wisconsin-Madison 2University of Illinois-Urbana 3Columbia University

	2
	Meeting great expectations - client/server technology trends - Industry Trend or Event,Software Magazine , Oct 15, 1995 by Doug MacIntyre

	3
	Model Checking a client – server system with a scalable level of concurrency by Topi Pohjolainen, Prof Ilkka Niemelia

	4
	Client Server Technology, Richard W. Boss

	5
	The role of client/server computing technology in the management of global enterprises, Baker, J. Savino, S. Beechwood Data Syst., Clark, NJ;

	6
	 DISTRIBUTED MEASUREMENT SYSTEM BASED ON JAVA AND WEB TECHNOLOGIES M. Shopov, G. Spasov ,Technical University of Sofia, branch Plovdiv, Faculty of Electronics and Automation, 61 St. Petersburg Blvd., Plovdiv, {mshopov, gvs}@tu-plovdiv.bg

	7
	The Security Mechanism for IEEE 802.11 Wireless, Networks Alicia Laing, November 24, 2001, Version 1.2f

	8
	Centralized Versus Replicated Client-Server Database Systems, K. Day, F.A. Masoud, A.B. Mnaouer, and M. Al-Towaiq (Oman)

Keyword : Client-Server Databases, Replicated Databases, Performance Modeling

	9
	http://web.urz.uni-heidelberg.de/UnixCluster/Hinweise/Hilfe/Anwendung/Db/oracle.doc.816/java.816/a81356/trans.htm

	9
	Client/server system having middleware-based interface between client and server image processing objects United States Patent 5928335

	10
	Client-server implementation: some management pointers, Duchessi, P., Engineering Management, IEEE Transactions on Volume 47, Issue 1, Feb 2000 Page(s):127 – 145

	11
	Rodrigues, L.; Carvalho, N.; Vilaca, R.; Oliveira, R.; Guedes, S.
” GORDA – An Open Architecture for Database Replication” Network Computing and Applications, 2007. NCA 2007.

	12
	Tyler Carter Symantec Senior Product Marketing Manager, “Long Distance Replication Technologies”, Symantec Veritas Architecture Network, 2007

	13
	Kevin Adams, Denis Gracanin, Michael G. Hinchey, “Increasing Resiliency through Priority Scheduling of Asynchronous Data Replication” , 11th International Conference on Parallel and Distributed System, 2005, IEEE 2005.

	14
	Client/Server: Past, Present and Future; http://www.dciexpo.com/geos/dbsejava.htm

	15
	Client/Server Software Architecture – Overview; http://web.simmons.edu/~benoit/LIS455/Client-Server1.doc

	16
	Three tier client/server model for legacy switches , Bailis, Jason (Novato, CA), 2001, http://www.freepatentsonline.com/6310945.html

	17
	Sending rich messages between client and server using asynchronous messaging

An easy API framework to apply to your Web applications, Erik Hatcher 2001; http://www.ibm.com/developerworks/web/library/wa-rich/

	
	

Internet

Local Server at Remote areas

Central Database Server

Web Based Main Interface

Query Processor for the main server

Local Server at Remote areas

Local Server at Remote areas

DB 1

Local Server

DB 2

Local Server

DB 3

Local Server

Central Database

Main Server

Site 1 1i1sher

Site 2

Site 3

An outlook of Multi-master- Main-server- Central Maser Database Model

Data transaction Channels

Local Server

Local Server

Database Server for the Local Server

Local Server

Central Database server for the backup

Main Server application and the database backup

Site 1 1i1sher

Site 2

Site 3

An outlook of Multi-master- Main-server- Central Maser Database Interface Model

Local Server

Site 4

Local Server

Local Server

Database Server for the Local Server

Local Server

Central Database server for the backup

Interface between client and server

Site 1 1i1sher

Site 2

Site 3

An outlook of the proposed interface between local host and the main server

Site 4

Database server

Main Server

Local Server

Local Server

Main Server

Main Data Centre

Remote Node 4

Remote Node 3

Remote Node 2

Remote Node 1

Local Data Centre

Zonal Sever

Zonal Sever

Database Server for the Zonal Server

Zonal Sever

Central Database server for the backup

Interface between client and server

Site 1 1i1sher

Site 2

Site 3

Site 3

Database server

Main Server

Zonal Sever

Central Administrator

An outlook of the proposed interface between local host and the main server

Zonal Server

Local Host

Local Host

Local Host

Local Host

Local Host

Zonal Server

Local Host

Local Host

Local Host

Local Host

Local Host

Zonal Server

Local Host

Local Host

Local Host

Local Host

Local Host

Central Server

Main Server

Central Admin

Zonal server

Local host L1

Local host L2

Local host L3

Local database

Client of L3

Actual requirement

Zonal server Z1

Local host Z1.L1

Local host Z1.L2

Local host

Z1.L3

Local database

Client of Z2.L3

Actual requirement

Zonal server Z2

Local host

Z2.L1

Local host Z2.L2

Local host Z2.L3

Local database

Central Database

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

�HYPERLINK \l "START"��START�

PAGE
- 1 -

