Implementation of Tiny Encryption Algorithm
For Securing System File

A

DISSERTATION
Submitted as a course in partial fulfillment of the

requirements for the award of the degree of

MASTER OF ENGINEERING

In

Computer Technology Application

Submitted By
Raman Kumar
Roll No: 13/CTA/09
University Roll No: 12210

Under the Esteemed Guidan

Of

Mr. Manoj Sethi
(Head of Computer Center)
Delhi College of engineering

Department of Computer Engineering
DELHI COLLEGE OF ENGINEERING
BAWANA ROAD, NEW DELHI-11002
2007-2009 (University Delhi)

CERTIFICATE

It is certified that the project entitledniplementation of Tiny Encryption Algorithm for
Securing System Filé being submitted byir. Raman Kumar M.E. in Computer Technology
Application, Delhi College of Engineeringis work carried out by his under nguidance and
supervision in partial fulfilment for the award oe degree of Master of Engineering in

Computer Technology and Applications from Delhi l€gé of Engineering, Delhi.

Lastly, | thank Almighty GOD for his countless desys.

Mr. Manoj Sethi
HeafdComputer Center
Delhi College of Engineering

Bawana Road, New Delhi

Raman M.E DCE (CTA-2007-09) i

ACKNOWLEDGEMENT

It gives me immense pleasure in expressing my deape of gratitude, indebtness and
thankfulness tavir.Manoj Sethi (Head of Computer Centre) for his invaluabledgmnice,
continual encouragement and support at every sthtigés work. | am also thankful to Dr. Daya
Gupta Head of Computer Department for the encounagé given throughout the execution of
this project.

| would also like to express my sincere thanksnip teachers’ viz. Dr S. K. Saxena,
Mrs. Rajni Jindal. Mr.Shailender Verma for theipport and encouragement.

I would like to express my heartiest felt regatdsFaculty of Computer Engineering
Department for providing facility and for their operation and patience.

I am thankful to my friends and classmates foirtheconditional support and motivation

during this project.

Finally 1 acknowledge my deep gratitude to myihgvfamily, who always gave moral
support and continuously encourage my academicasodewho always comfort and console,

never complain or interfere, ask nothing and endilre

Raman Kumar
University Roll No: 12210
College Roll No: 13/CTA/ 07
Delhi College of Engineering
Bawana Road, New Delhi

Raman M.E DCE (CTA-2007-09) ii

ABSTRACT

The file securing system requires a Tiny Encryptigorithm (TEA). It basically
consist of using a combination of XOR, ADD and SHiéperations on file blocks to encrypt is
using key bits and some junk bits. This algorittarhighly efficient and can satisfy need for a

user-friendly encryption system that can be usdwates and offices.

The Tiny Encryption Algorithm (TEA) is a block ciphencryption algorithm that is very

simple to implement, has fast execution time, akeés$ minimal storage space.

The Tiny Encryption Algorithm (TEA) is a cryptogtdaip algorithm designed to
minimize memory footprint and maximize speed. laifeistel type cipher that uses operations
from mixed (orthogonal) algebraic groups. This thgwesents the cryptanalysis of the Tiny
Encryption Algorithm. In this thesis proposed tspect the most common methods in the
cryptanalysis of a block cipher algorithm. TEA seeto be highly resistant to differential
cryptanalysis, and achieves complete diffusion ¢@ree one bit difference in the plaintext will
cause approximately 32 bit differences in the aipkext) after only six rounds. Time

performance on a modern desktop computer or wdigstes very impressive.

The objectivas notto make it difficult to read the data as cryptodmapoes it is hide the

existence of the data in the first place possiblprotect the courier.

Tiny Encryption algorithm has been ssjgd by researcher. It is proposed to carry
forward the work for attempt to implement Tigncryption Algorithm for confidentiality,
authenticity of system files.

File Encryption System (using Tiny Byyiton Algorithm) proposed to consist of
following functions:-

- User friendly encryption of text files.
- Encryption of images.

- Decryption of Encrypted files

Raman M.E DCE (CTA-2007-09) iii

Table of Contents

i

ACKNOWLED GEMENT ...t e e e e e e e e e e e, i

A B S T R A C T o e e e ili
CHAPTER No Page No
CHAPTER 1: - INtrodUCLION ... oot e e e e e e A

1.1 Encryption and DecCryptioncc.cee et iiiie e
1.2 History of Cryptography.........ccooeviiii e 2
1.3 Classical Cryptography

.. 3
1.4 Medieval Cryptography......c.ooei i 4
ISR\, oTo [=Tq'a @13 Y] o) o o =T] 1 Y/ 5
1.6 Application of Cryptography.......cccoove i viimr e e e ee e aaes 6
1.7 Need of ENCryptioN......cc.iniei i e e e e e e e e mme e e 8

CHAPTER 2: - LIterature REeVIEWccoui it e e e e 9

2.1 Symmetrical Cryptography Algorithms.............ccoiniiiiiiiiinenn. 9
2.1.1 Introduction

... 9
2.1.2 TEA, AES, DEg§mmetrical Algorithms 11
2.1.3 Symmetric Encryption vulnerabilities................................13
CHAPTER 3: - Proposed APProach..........oeuieiie e cee e e e e e ieeaneaaas 14
3.1 Background and Motivation...........coeveveiiiiiiiniiiiieieeeee enemaes 14
3.2 TEA Encryption and Decryption algorithm.......................... .. 16
3.2.1 ENncryption ROULINE........c.oviiiiieie i 20 16
3.2.2 Decryption ROULINE........ccvvviiiiiiii i e n 2. 20

Raman M.E DCE (CTA-2007-09) v

3.2.3 Basicsoftheroutine..........cccocviiii i 22
3.2.4 A Security Algorithm TEA.......ccoiiiiiiii e 0. 23
3.3 Proposed WOrkK.......cccouiiiii i e 24

3.4 Implementation of TEA. ... i e s 24

3.4.1 Requirement to Implement New algorithm....................... 24

CHAPTER: -4 Conclusion and Future WOorks............cooiiiiiiiiii i 28
REIEIENCES. ..ot e e e s 30
Appendix-1 Data Flow Diagram of File EncryptionSystemccooooviiiinnns 32
APPENIX-2 SOUICE COUB ... it ittt et et e e e et e e e e e e e e ete e aaeaans 34

Appendix -3 Result and Snapshotccoo o D3

Raman M.E DCE (CTA-2007-09)

CHAPTER :-1
Intoduction

1.1 Encryption and Decryption

A more flexible security approach - a combinatioh message

encryption (sealing) and message signing (digitadatures).

The key to Encryption

A Key is a set of characters of varying length tiatused with the cipher
encryptionformula) to generate encrypted data. There arerel@vant types of

keys:

1. Secret Key: - It is much like a secret password. The same pasktat is
used to encrypt the file is also used to decryptSécret keys are also called
symmetric keys, because there is only one keyrforyption and decryption.

The advantage of a secret key cipher is:

It is generally very fast: a computer can enciyparge amount of data in a very

short time using a secret key cipher.

2. Public/Private Key pair: - It is a special type of key relationship. This
arrangement consists of two very large keys thanzathematically related to one
another, but the mathematical relationship is \@ffycult to calculate. Only one
key is given to anyone who wants (public key), #walother key are accessed by
the user (private key).

The advantage to public/private key encryption is:

1. SecureThe keys are much more secured since one alore ¢@grol access to
the private key.

2. Hard to decryptAlso, since the key size is so large, the encryptad is very

hard to decrypt.

The disadvantage to public/private key encryptions:

Raman Kumar .MDCE
(CTA-2007-09)

1. Time consuming:Since the key size is so large, encryption andygéion is very
time consuming and CPU-intensiveHashing is a mathematical function that is
applied to a string of characters of any lengthto an entire file. The hashing
function reduces any length of characters to adfiemgth. Hashing is also called
a message digest, because the hashed value unigpedgents the original data.
Hashing functions are commonly used in messagengjdidigital signatures) to
create a unique "signature" of the message in mguesthere are a number of
algorithms that are used to create a message digelstding RSAs MD2, MD4
and MD5 which all create a 128-bit hash.

1.2 History of Cryptography

The history of cryptography begins thousands ofy@go. Until recent
decades, it has been the story of what might dedcalassic cryptography —
that is, of methods of encryption that use pen pager, or perhaps simple
mechanical aids. In the early 20th century, theirtion of complex mechanical
and electromechanical machines, such as the Enigtoa machine, provided
more sophisticated and efficient means of encryptiand the subsequent
introduction of electronics and computing has a#dvelaborate schemes of still
greater complexity, most of which are entirely utesilito pen and paper.[20]
The development of cryptography has been parallbiedhe development of
cryptanalysis — of the "breaking" of codes and eigh The discovery and
application, early on, of frequency analysis to treading of encrypted
communications has on occasion altered the coufséistory. Thus the
Zimmermann Telegram triggered the United Statesyento World War |; and
Allied reading of Nazi Germany's ciphers shortengdrld War II, in some
evaluations by as much as two years.

Until the 1970s, secure cryptography was largedy greserve of governments.
Two events have since brought it squarely intoghblic domain: the creation
of a public encryption standard (DES); and the inia of public-key
cryptography[21].

1.3 Classical Cryptography

The earliest known use of cryptography is found nian-standard

hieroglyphs carved into monuments from Egypt's Kildlgdom (c 4500+ years

2
Raman Kumar .MDCE
(CTA-2007-09)

ago). These are not thought to be serious atteatps®cret communications,
however, but rather to have been attempts at nysietrigue, or even
amusement for literate onlookers. These are examnpiestill other uses of
cryptography, or of something that looks (impresbivf misleadingly) like it.
Some clay tablets from Mesopotamia, somewhat later clearly meant to
protect information -- they encrypt recipes, preabim commercially valuable.
Later still, Hebrew scholars made use of simple oatphabetic substitution
ciphers (such as the Atbash cipher) beginning perh@round 500 to 600
BCE.[22]

Cryptography has a long tradition in religious timg likely to offend the
dominant culture or political authorities. Perhajpe most famous is the
‘Number of the Beast' from the Book of Revelationsthe Christian New
Testament. '666' might be a cryptographic (i.ecrygsted) way of concealing a
dangerous reference; many scholars believe it'sraealed reference to the
Roman Empire, or more likely to the Emperor Nenmgelf, (and so to Roman
persecution policies) that would have been undedshy the initiated (who 'had
the key to understanding’), and yet be safe aeastlsomewhat deniable (and so
'less' dangerous) if it came to the attention @& #uthorities. At least for
orthodox Christian writing, most of the need foclsiconcealment ended with
Constantine's conversion and the adoption of Ganigy as the official religion
of the Empire.[21]

Raman Kumar .MDCE
(CTA-2007-09)

1.4 Medieval Cryptography

Although Alberti is usually considered the fatheir molyalphabetic
cipher, Prof. Al-Kadi's 1990 paper (ref- 3), review Arabic contributions to
cryptography reported knowledge of polyalphabetjghers 500 years before
Alberti, based on a recently discovered manuscripgppears that Abu Yusuf
Yaqub ibn Is-hag ibn as Sabbah ibn ‘omran ibn Is&aiKindi, who wrote a
book on cryptography called "Risalah fi Istikhr&Mu'amma" (Manuscript for
the Deciphering Cryptographic Messages), circa C&), may have described
cryptanalysis techniques (including some for paiiiabetic ciphers), cipher
classification, Arabic Phonetics and Syntax, an@strimportantly, described
the use of several statistical techniques for enyallysis. [This book seems to be
the first post-classical era reference by about $6@rs.] It also contains
probability and statistical work some 800 yearsolefPascal and Fermat.
Cryptography became (secretly) still more importaist a consequence of
political competition and religious revolution. Forstance, in Europe during
and after the Renaissance, citizens of the valiialian states -- the Papal States
and the Roman Catholic Church included -- were aesiple for rapid
proliferation of cryptographic techniques, few diieh reflect understanding (or
even knowledge) of Alberti's polyalphabetic advariéelvanced ciphers', even
after Alberti, weren't as advanced as their inventalevelopers / users claimed
(and probably even themselves believed). They wegellarly broken. This
over-optimism may be inherent in cryptography fowas then, and remains
today, fundamentally difficult to really know howulerable your system
actually is. In the absence of knowledge, guesseb lopes, as may be
expected, are common.

Cryptography, cryptanalysis, and secret agent/eouretrayal featured in the
Babington plot during the reign of Queen Elizablet¥hich led to the execution
of Mary, Queen of Scots. An encrypted message fraime of the Man in the
Iron Mask (decrypted just prior to 1900 by EtierBazeries) has shed some,
regrettably non-definitive, light on the identity that real, if legendary and
unfortunate, prisoner. Cryptography, and its misusere involved in the
plotting which led to the execution of Mata Hardan the conniving which led
to the travesty of Dreyfus' conviction and impris@nt, both in the early 20th

century. Fortunately, cryptographers were also lwea in exposing the

4
Raman Kumar .MDCE
(CTA-2007-09)

machinations which had led to Dreyfus' problemsgavidari, in contrast, was
shot.[19] Outside of Europe, after the end of kheslim Golden Age at the
hand of the Mongols, cryptography remained compaaigt undeveloped.
Cryptography in Japan seems not to have been usidabout 1510, and
advanced techniques were not known until afterappening of the country to
the West beginning in the 1860s.[22]

1.5 Modern Cryptography

The era of modern cryptography really begins withude Shannon,
arguably the father of mathematical cryptographyhwhe work he did during
WWIlI on communications security. In 1949 he pubddhthe paper
Communication Theory of Secrecy Systems in the Balftem Technical
Journal and a little later the book, Mathematidaédry of Communication, with
Warren Weaver. both included results from his WWark. These, in addition
to his other works on information and communicatioeory established a solid
theoretical basis for cryptography and for cryptgsia. And with that,
cryptography more or less disappeared into seaetrgment communications
organizations such as the NSA, GCHQ, and equivalelsewhere. Very little

work was again made public until the mid '70s, wheerything changed.

Modern Cryptanalysis

Modern cryptanalysts sometimes harness large nwdferircuits. This board
is part of the EFF DES cracker, which containedr dd@0customchips and

could brute force a DES key in a matter of days.

Raman Kumar .MDCE
(CTA-2007-09)

While modern ciphers like AES are widely considerenbreakable, poor
designs are still sometimes adopted and there i@ important cryptanalytic
breaks of deployed crypto systems in recent y&otable examples of broken
crypto designs include DES, the first Wi-Fi encigpt scheme WEP, the
Content Scrambling System used for encrypting amdrolling DVD use, and
the A5/1 and A5/2 ciphers used in GSM cell phoriéris far, not one of the
mathematical ideas underlying public key cryptobsapas been proven to be
‘'unbreakable' and so some future advance migheresydtems relying on them
insecure. While few informed observers foresee sutineakthrough, the key
size recommended for security keeps increasing@sased computing power
required for breaking codes becomes cheaper and available. [22]

1.6 Application of Cryptography

Some businesses began using strong cryptograghy ttenty years ago.
They seemed to do it in the half-instinctive wagyhused office safes and
armored-car services. Banks used DES (the US Datayftion Standard) to
secure the electronic transfers between branchmek|ager in ATMs. And any
business with a computer had some kind of passwgstem, either to control
access to the computer or to certain disk filesvds just done. No one made
much fuss about it. Little by little, things chanig&/ery strong cryptography left
the shadows of national security organizationsstaded to look like an essential
business tool -- not least for exercising a 'dutgare' for information in stored

electronic files or sent over electronic network8][

Business use of encryption will keep growing. Therare three
main reasons

1. Computers have changed greatly

Twenty-five years ago most computers were ceagdliin locked rooms and
were looked after by people with arcane vocabwawa electronic link to the
outside was unusual. And if there was a link, isvedong a dedicated line.
Security threatsn those days were mostly from insiders: peoplesadgutheir

accounts, theft of data and sometimes vandalisrasé threats were managed

6
Raman Kumar .MDCE
(CTA-2007-09)

by keeping the computers behind locked doors anduating scrupulously for
resources. Today computers are here, there angivédvere, including people's
private offices. Most computers are now connected networks. So central

management isn't feasible and security is harderaieage. Much harder.

3. Messages and electronic files now move along inseeuetworks, not
just along dedicated lines.

There is no security on the Internet. And eveinérnal LAN can be broken

into if there's just one insecure dial-in modem.

4. Faxes have proved hard to manage for sending conédtial material.

It is difficult to maintain a 'need to know' systavhen anyone walking by a
fax machine can glance at what comes in. Also,date sometimes sent to
the wrong number. And fax interception is now tecalty simple -- even
broadband fax interception from satellite or micaow links. Some fax
systems are now sold that encrypt the transmisdiahthey can leave a
manager hovering near the fax machine and waitngh incoming call --
because the message still comes out in plain viewmarter system is

proving to be point-to-point encryption for email.

1.7 Need of Encryption

As you've learned by now, your transmissions ltave only so much
physical security. It is reasonable to assume d@hatome point someone may
intercept your transmissions. Whether you expecdhimnception or whether you
just generally suspect that interceptions may qcgou should transmit your
information in a format that is useless to anyricgptors. At the simplest level,
this means when transmitting a message to somgoneyse a coded message
or slang (nicknames) that no one else understav®n Ulysses S. Grant
captured Vicksburg during the Civil War, he sentagled but predetermined
message to Abraham Lincoln that read "The fathewaters flows unsexed to
the sea,” meaning that the Union now owned the evhdlississippi river.
Perhaps a good plan at the time, but still, Gramd &incoln (or their
advisers/confidantes) had to communicate a predeied message and the

7
Raman Kumar .MDCE
(CTA-2007-09)

message's meaniné. more recent example of a coded message mightiavo
the use of nicknames. For instance, you and ystersgive nicknames to family
members whom you discuss unfavorably. Should acmak family member
decide to intercept a transmission, you would hdgewouldn't understand
which family members you and yougister refer to in youmessages. The
obvious drawback of this coded message, like tr@E@rincoln message, is that
you and the recipient musgstablish a system of code before you begin

transmitting messages. [4]

A better system is one that allows you to sendrapgsage, even one you had
not anticipated, to anyone without fear of intetmsp This is why an
encryption system is so valuable; it allows any sage to be transmitted that

will be useless to anyone who intercepts it. [23]

Raman Kumar .MDCE
(CTA-2007-09)

Chapter:-2 Literature Review

A Detailed literature survey shows that there hasnba lot of wor
done in the field of data security system, esplcralcrocontrollerin assembl
language and hardware design System such as pasatpiential and digit-
serial and there is a great need to imprdke Tiny algorithm for th

independent platform.[2]

Earlier research’s proposed TEA algorithm implemantC language at
hardware encryption core such as radio frequenentitication (RFID) usuall
employ public —key algorithm and Assembly language for microcdrdrs.
The concept of Tiny Encryption Algorithm was givey P. Israsengl]. The
TEA is updated and modified various researchershao it can be used

different applications.

Research Study

The Tiny Encryption Algorithm (TEA) is a cryptogiaip algorithm designe
by Wheeler and Needham (1994). It is designed tamize memory footprir
and maximize speed.[IThis research presents the cryptanalysis of the
Encryption Algorithm basedn the differential cryptanalysis proposed
Biham and Shamir (1992) and related-key cryptamalgsoposed by Keésy,
Schneier, and Wagner (1992p].

2.1 Symmetric Cryptography Algorithms

2.2.1Introduction

Symmetricor secret key, cryptography has been in use for thalsanh year
and includes any form where the same key is uséld tm encrypt and
decrypt the text involved. One of the simplest ferisisometimes known as
Caesar cipher -- reputedly used by Julius Caesariceal messagesir-which
the process is simply one of shifting the alphabetmany places in o

direction or another. The example given in part HAL/IBM is in exactly this

Raman Kumar .MDCE
(CTA-2007-09)

form with the key being the instrueti to shift one letter forwards to decrypt
this trivial example, the decryption key is a mirnmage rather than a replice
the encryption key, but that doesn't vitiate thassification as a symmet

mechanism. [1]

A variation on this simple seme involves using an arbitrarily orde
alphabet of the same length as the one used fopl#ne text message. In tl
case the key might be a long sequence of numbebsasi5, 19, 1, 2, 11[13]
indicating that A would map to E, Bto S, C to At®B, E to K and so on er
it might be one of a number of more or less ingesischemes involving lette
taken from, say, sentences of particular novel€hSsystems are ludicrou:
weak, of course, and modern systems use sophesticdgorithms basedn

mathematical problems that are difficult to solvel &0 tend to be very strol

[3]

Unlike the situation in asymmetric cryptography wehehere is a publ
element to the process and where the private keglnsst never share
symmetric cryptogramy normally requires the key to be shared
simultaneously kept secret within a restricted grdtls simply not possible f
a person who views the encrypted data with a symengpher to be able to
so without having access to the key used toygndt in the first place. If such
secret key falls into the wrong hands, then thaussigcof the data encrypt
using that key is immediately and completely compsed. [4Hence, what &
systems in this group of secret key methods sharéhe problemof key
management, something discussed in more detaiheénféature on practic

implications (to follow shortly in the series). [22

Reference is often made to keys of particulatdngths, such as 56-bit or 128
bit. These lengths are those for syetric key ciphers, while key lengths fo
least the private element of asymmetric ones ansiderably longer. Furth
there is no correlation between the key lengthshi& two groups exce
incidentally through the perceived level of segukithich a given key lengi
might offer using a given system. However, Phil @&iexmann, originator of tl
extremely efficient and important software packdg®mwn as Pretty Goc

Privacy (PGP), suggests than an®0symmetric key might approximatt

10
Raman Kumar .MDCE
(CTA-2007-09)

equate in security terms at the present momentl@4-bit asymmetric key5]
to gain the security offered by a 1B&-symmetric key, one might need to u:
3000bit asymmetric key. Others will certainly take isswith some of tho:

comparisons as well as, no doubt, with the atteeaph to make them.

Within any particular group, however, the lengthtod key used is generall
significant element in determining security. FuriHeey length is not linear t
doubles with each additional bit. Two to the poweo is four;to the powe
three is eight, to the power four sixteen, and so @iga Group offers
homespun analogy suggesting that if a teaspoon wuffecient to hold a
possible 40-bit key combinations, it would takeadnsming pool to hold all 56-
bit key combinations, while the volume to hold @ibssible 12&it key
combinations would be roughly equivalent to thattted earth. [8] A 12&it

value, rendered in decimal, is approximately 34veed by 36 zeros.

2.1.2 TEA, AES/Rijndael (Advanced Encryption Standad) ,

DES (Digital Encryption Standard), Symmetric Agorithms

Tiny Encryption Algorithm

Wheeler et al. (1994) at the computer laboratory GAmbridge
University developed the TEA encode routine. Fig@rgé presents the TEA
encode routine in C language where the key valigoied in k[0] — k[2] and

data are stored in v[0] — v[1]. P.israsena (1)

AES/Rijndael encryption

AES stands for Advanced Encryption Standard. AES symmetric key
encryption technigue which replaces the commonlgdu®ata Encryption
Standard (DES). It was the result of a worldwidédl ¢ar submissions of
encryption algorithms issued by the US GovernmeNggional Institute of
Standards and Technology (NIST) in 1997 and coraglein 2000.

The winning algorithm, Rijndael, was developed twp Belgian cryptologists,

11
Raman Kumar .MDCE
(CTA-2007-09)

Vincent Rijmen and Joan Daemen. AES provides stremgryption and was

selected by NIST as a Federal Information ProcgsSitandard in November
2001 (FIPS-197).[2] The AES algorithm uses threg $iges: a 128-, 192-, or
256-bit encryption key. Each encryption key sizeses the algorithm to behave
slightly differently, so the increasing key sizex nnly offer a larger number of
bits with which you can scramble the data, but a®oease the complexity of

the cipher algorithm.[3]

Data Encryption Standard (DES)

The earliest standard that defines the algorithti§AX9.52, published
in 1998) describes it as the "Triple Data Encryptidgorithm (TDEA)" — i.e.
three operations of the Data Encryption Algorithpedfied in ANSI X3.92 —
and does not use the terms "Triple DES" or "DESlllatFIPS PUB 46-3 (1999)
defines the "Triple Data Encryption Algorithm (TDEAbut also uses the terms
"DES" and "Triple DES". It uses the terms "Data Bption Algorithm" and
"DES" interchangeably, including starting the sfieation with. [4]

Data Encryption Standard (DES) is a block ciplégh 64-bit block size that
uses 56-bit keys. DES was invented over 20 yeasshgdBM in response to a
public request from the National Bureau of StandaRlie to recent advances in
computer technology, some experts no longer con$§diES secure against all
attacks; since then Triple-DES (3DES) has emergetisironger method. Using
standard DES encryption, Triple-DES encrypts dat@et times and uses a
different key for at least one of the three pasgeisg it a cumulative key size
of 112-168 bits [2].

2.1.3 Symmetric Encryption vulnerabilities

Breaking symmetric Encryption

There are two methods of breaking symmetric enmyp- brute force and
cryptanalysis. Brute Force Attack is a form of eltan which each possibility is
tried until success is obtained. Typically, a ciphext is deciphered under
different keys until plaintext is recognized. Noception software that is

12
Raman Kumar .MDCE
(CTA-2007-09)

entirely safe from the brute force method, buhé& number of possible keys is
high enough, it can make a program astronomicdificdlt to crack using brute
force. But the more bits in a key, the more sedui® so choose software with
as many bits as possible. Cryptanalysis is a fofnattack that attacks the
characteristics of the algorithm to deduce a spepli&intext or

The key used.

Weak passwords

In every kind of encryption software, there is sokind of password that must
be created so that the recipients of the informat@n read it. Creating a strong
password that cannot be easily guessed is jushpgriant as choosing a good

algorithm or strong encryption software.

Remembering passwords

If you forget your password, you will not be aldedecrypt data that you have
encrypted. Be sure to make a backup copy of yossward and store

Itin a safe place. [22]

Secret keys exchanging and storing

Symmetric key algorithms require sharing the dekeg - both the sender and
the receiver need the same key to encrypt or deciafa. Anyone who knows
the secret key can decrypt the message. So itsengal that the sender and
receiver have a way to exchange secret keys itw@eenanner. The weakness
of symmetric algorithms is that if the secret keyiscovered, all messages can
be decrypted.

13
Raman Kumar .MDCE
(CTA-2007-09)

CHAPTER: - 3 Proposed Approach

3.1Background and Motivation

Background many symmetric block ciphers have h@esented in recent
years. The Tiny encryption Algorithm (TEA) (Wheelat al., 1994) is a
compromise for safety, ease of implementation, latkspecialized tables, and
reasonable performance. TEA can repldgesign software, and is short enough to
integrate into almost any program on any comp@eme attempts have been made
to find weakness of the Tiny Encryption AlgorithBi.[The motivation of this
research is to study and implement the proposextkstton TEA to determine
whether such attempts are practically feasible. T}y Encryption Algorithm the
Tiny Encryption Algorithm is a Feistel type ciphéFeistel, 1973) that uses
operations from mixed (orthogonal) algebraic groupslual shift causes all bits of
the data and key to be mixed repeatedly. The kbgdide algorithm is simple; the
128-bit key K is split into four 32-bit blocks K & [0], K[1], K[2], K[3]). TEA
seems to be highly resistant to differential crpptgsis (Biham et al., 1992) and
achieves complete diffusion (where a one bit dififere in the plaintext will cause
approximately 32 bit differences in the cipher }extime performance on a

workstation is very impressive. [9]

The Tiny Encryption Algorithm is one of the fasteshd most efficient

cryptographic algorithms in existence. It was depel by David Wheeler and
Roger Needham at the Computer Laboratory of Cargéridniversity. It is a

Feistel cipher which uses operations from mixeth@onal) algebraic groups —
XOR, ADD and SHIFT in this case. This is a veryvele way of providing

Shannon’s twin properties of diffusion and confuswhich are necessary for a
secure block cipher, without the explicit need ferboxes and S-boxes
respectively. It encrypts 64 data bits at a timegis 128-bit key[14]. It seems
highly resistant to differential cryptanalysis, aadhieves complete diffusion
(where a one bit difference in the plaintext widuse approximately 32 bit
differences in the ciphertext) after only six roané@erformance on a modern

desktop computer or workstation is very impressieel can obtain a copy of
14

Raman Kumar .BMDCE

(CTA-2007-09)

Roger Needham and David Wheeler's original papecrlgng TEA, from the
Security Group ftp site at the world-famous CamipeicComputer Laboratory at
Cambridge University. There’s also a paper on eddnvariants of TEA which
addresses a couple of minor weaknesses (irrelamaatmost all real world
applications), and introduces a block variant @f éfigorithm which can be even

faster in some circumstandeg]

Motivation

Motivation As computer systems become more peveaand complex,
security is increasingly important. Cryptographilgoaithms and protocols
constitute the central component of systems thaitiept network transmissions
and store data. The security of such systems greapends on the methods
used to manage, establish, and distribute the keygployed by the
cryptographic techniques. Even if a cryptograpHgo@dthm is ideal in both
theory and implementation, the strength of the rtlgm will be rendered
useless if the relevant keys are poorly managedte $f the art Cryptography is
the art and science behind the principles, meand, methods for keeping
messages secure. [2]Cryptanalysis is a study of toowompromise (defeat)
cryptographic mechanism. There are two classes eyfblased encryption
algorithms: symmetric (or secret-key) and asymroetfor public-key)
algorithms. Symmetric algorithms use the same key éncryption and
decryption, whereas asymmetric algorithms use mdiffe keys for encryption
and decryption. Ideally it is infeasible to comptite decryption key from the
encryption key. Symmetric algorithms can be divide stream ciphers and
block ciphers. Stream ciphers encrypt a singletlain text at a time, whereas
block ciphers take a number of bits (say 64 basy encrypt them as a single
unit. Symmetric encryption is the backbone of maegure communication
systems. Dozens of symmetric algorithms have baemied and implemented,
both in hardware and software. [6]

Background many symmetric block ciphers have beesgmted in recent years.
The Tiny Encryption Algorithm (TEA) (Wheeler et al994) is a compromise
for safety, ease of implementation, lack of sp&mtal tables, and reasonable
performance. [16]TEA can replace design software] & short enough to
integrate into almost any program on any compueme attempts have been
made to find weakness of the Tiny Encryption Algun. The motivation of this

15
Raman Kumar .MDCE
(CTA-2007-09)

research is to study and implement the proposedkatiton TEA to determine

whether such attempts are practically feasible [9]
3.2 TEA Encryption and Decryption algorithm

Wheeler et al. (1994) at the computer laboratofy Gambridge
University developed the TEA encode routine. Rriesthe TEA encode routine
in C language where the key value is stored in k[R]2] and data are stored in
v[0] — v[1]. [1]

3.2.1 Encryption Routine

void code (long* v, long* k) {

unsigned long y = v[0], z = v[1], sum = 0, /* sqt t
delta = 0x9e3779b9, n = 32; /* a key schedule st
while (n-->0) {/* basic cycle start */

sum += delta;

y += (z<<4)+K[0] * z+sum ~ (z>>5)+K[1] ;

z += (y<<4) +k [2] » y+sum ~ (y>>5) +k [3]; /* enclycle */

v[0l=y;v[l]=z;}

16
Raman Kumar .MDCE
(CTA-2007-09)

Input

Plam text ‘
Left[0] I - Right [0]
- K[1]
R '
F .<
K[2]
- =8
il
@
® |
@ |
® |
K[63]
\
) |
K[64]
\[/ [
| Right [64] Left [64]
)

Cipher text

Output

Figure 3.1 The abstract structure of TEA encryptionroutine.

Figure 3.1 shows the structure of the TEA encryptmutine. [1] The inputs
to the encryption algorithm are a plaintext blockla key K .The plaintext is P
= (Left [0], Right [0]) and the cipher text is C (teft [64], Right [64]). The
plaintext block is split into two halves, Left [@hd Right [0]. Each half is used
17

Raman Kumar .MDCE
(CTA-2007-09)

to encrypt the other half over 64 rounds of processind then combine to
produce the cipher text block [1].

e Each round has inputs Leftif1l] and Right {-1], derived from the previous

round, as well as a sub keyiKdlerived from the 128 bit overall K.

» The sub keys K] are different from K and from each other.

» The constant deltas£51)*2- =, is derived from the golde8E3779B9number
ratio to ensure that the sub keys are distinct imgrecise value has no
cryptographic significance.

» The round function differs slightly from a clasal Fiestel cipher structure in
that integer addition modulo 232 is used insteadexélusive-or as the

combining Operator.

Figure 3. 2 present the internal details of itmecycle of TEA. The round
function, [2] F consists of the key addition, bis&iXOR and left and right shift
operation. We can describe the output (Left]] , Rightf +1]) of theith cycle
of TEA with the input (Left]] ,Right[i]) as follows [2]

Left [i+1] = Left[i] F (Right[i], K [0, 1], delta[]),
Right [i +1] = Rightf] F (Right [i +1], K [2, 3], delta]]),
deltaj] = (i +1)/2 * delta,

18
Raman Kumar .MDCE
(CTA-2007-09)

) K[O]
Left[i] Right[i]
<< 4

delta[i]

K[1]

>>5 |c
W
K[2]
S| << 4
deltali]
W N
“;/“\ >
\’ \J
K[3]
S > 5
Left[i+1]
Right[i+1] 3\

Figure 3.2 An abstraction ofth cycle of TEA

The round function, F, is defined by

F (M, K[j,K], delta]) = (M << 4) K[j]) ® (M deltaf]) ® ((M >> 5) K[K]).

The round function has the same general structareedch round but is
parameterized by the round sub key]KThe key schedule algorithm is simple;
the 128-bit key K is split into four 32-bit blocks = (K[0], K[1], K[2], K[3]).

19
Raman Kumar .MDCE
(CTA-2007-09)

The keys K[0] and K[1] are used in the odd roundd the keys K[2] and K[3]

are used in even rounds.

3.2.2 Decryption Routine

Void decode (long* v, long* k) {

Unsigned long n = 32, sum, y = v[0], z = v[1],
delta = Ox9e3779b9;

sum = delta<<5;

[* start cycle */

while (n-->0) {

z - = (y<<4) +k [2] * y+sum * (y>>5) +k [3];
y -= (z<<4) +k [0] * z+sum ~ (z>>5) +k [1];
sum -= delta;}

/* end cycle */

v[0l=y;v[l]=z;}

Decryption is essentially the same as the encmppimocess; in the decode
routine the cipher text is used as input to thertigm, but the sub keys K[are

used in the reverse order.[1]

20
Raman Kumar .MDCE
(CTA-2007-09)

Cutput

‘ Plain text

DRight [64] = ELeft [0] 7 | DLeft [64) = ERight [0]

J\>_<l
L KI1]
| O I | ==
1_A_| S |
Ki2]
| [I
| - %
| [] AN
A
[= | E\E
T
K[e3]
=] IT?
e I—l'li
K[e4]
i

DLeft [0] = ERight [64] s DRight [0] = ELeft [64]
Cipher text |

Input

Figure 3.3 The abstract structure of TEA decryptiutine.

Figure 3.3. Presents the structure of the TEA qemwy routine.[2] The

intermediate value of the decryption process isabtjuthe corresponding value

of the encryption process with the two halves efthlue swapped.

For example, if the output of the nth encryptionnd is [2]

ELeft[i] || ERightf] (ELeft[i] concatenated with ERighl].

Then the corresponding input to the ($4h decryption round is

DRight][i] || DLeft[i] (DRight[i] concatenated with DLeff).

After the last iteration of the encryption procebsg, two halves of the output are

swapped, so that the cipher text is ERight[64]LifE§64], the output of that

round is the final cipher text C. Now this ciphexkttis used as the input to the
21

Raman Kumar .MDCE
(CTA-2007-09)

decryption algorithm. The input to the first roursdERIight [64] || ELeft [64],

th
which is equal to the 32-bit swap of the outputtbé 64 round of the
encryption process.

3.2.3 Basics of the routine

It is a Festal type routine although addition anbtsaction are used as
the reversible operators rather than XOR. The neutelies on the alternate use
of XOR and ADD to provide no linearity. A dual shdfauses all bits of the key

and data to be mixed repeatedly.

The number of rounds before a single bit changthefdata or key has spread
very close to 32 is at most six, so that sixteariesymay suffice and we suggest
32. The key is set at 128 bits, as this is enowgtprevent simple search

techniques being effective.

The top 5 and bottom four bits are probably sligkteaker than the middle bits.
These bits are generated from only two versiorns (of y) instead of three, plus
the other y or z. Thus the convergence rate to diférsion is slower. However

the shifting evens this out with perhaps a delagraf or two extra cycles.

The key scheduling uses addition, and is appliethéounshifted z rather than
the other uses of the key. In some tests k [O]weéce changed by addition, but

this version is simpler and seems as effective. Aumaber delta, derived from

the golden number is used where delt'[f‘/:g_ l)zalA different multiple of
delta is used in each round so that no bit of thdtiphe will not change
frequently. We suspect the algorithm is not venysgéve to the value of delta
and we merely need to avoid a bad value. It wilhb&ed that delta turns out to
be odd with truncation or nearest rounding, soximagorecautions are needed to

ensure that all the digits of sum change.

The use of multiplication is an effective mixertmeeds shifts anyway. It was
about twice as slow per cycle on our implementasiod more complicated. The
use of a table look up in the cycle was investidaldere is the possibility of a

delay ere one entry of the table is used. For elamf [z&] is used instead of

i (3 /4y
k[O], there is a chance one element may not be of# , and a much

22
Raman Kumar .MDCE
(CTA-2007-09)

higher chance that the use is delayed apprecialitg table also needed
preparation from the key. Large tables were thouglie undesirable due to the
set up time and complication. The algorithm wilsiéatranslate into assembly
code as long as the exclusive or is an operatiba.hardware implementation is
not difficult, and is of the same order of comptgxas DES, taking into account

the double length key.

3.2.4 ASecurity Algorithm TEA

There has been no known successful cryptanalysi€ef. It's believed
to be as secure as the IDEA algorithm, designetMagsey and Xuejia Lai. It
uses the same mixed algebraic group’s techniqu®Ba, but it's very much
simpler, hence faster. Also its public domain, véasr IDEA is patented by
Ascom-Tech AG in Switzerland. IBM's Don Coppersmignd Massey
independently showed that mixing operations froth@gyonal algebraic groups
performs the diffusion and confusion functions thatraditional block cipher
would implement. As a simple plug-in encryptiontiog, it's great. The code is
lightweight and portable enough to be used justibboywhere. It even makes a
great random number generator for Monte Carlo satraris and the like. The
minor weaknesses identified by David Wagner at Blerk are unlikely to have
any impact in the real world, and you can alwayglement the new variant
TEA which addresses them. If you want a low-ovedhead to- end cipher (for
real-time data, for example), then TEA fits thd. bil

23
Raman Kumar .MDCE
(CTA-2007-09)

3.3 Proposed work

The TEA can also be used in such open system usgecial
arrangement similar to that proposed by Xingxin [@ha TEA based system
may be adopted to implement the hash functioneaepense of an increase in

overall system complexity, and addition requirengnth as RAM.

This thesis is purposed to attempt the implemimtadf TEA algorithm using
secret - key in java core for secure file systerthwiase on cryptography. Java

is independent platform.

3.4 Implementation

3.4.1 Requirement to implement new algorithm
The new algorithm (TEA) was implemented usingKl.4. The

algorithm is implemented using java language thattsy it can run on any
operating system which has java runtime environment

Implementation uses the design document to prodade. Demonstration that
the program satisfies its specifications validaitescode. Typically, sample runs
of the program demonstrating the behavior for etqubodata values and
boundary values are required. It may take seveeshtions of the model to

produce working program.

Data for encryption and decryption is 64-databloakd 128 bit keys. Keys
which is used have define both in client and sen&p that it doesn’'t need to
distributed of key A simple improvement is to cdg@-3] into a,b,c,d before the
iteration so that the indexing is taken out of khep. In one implementation it
reduced the time by about 1/6th.

24
Raman Kumar .MDCE
(CTA-2007-09)

Java was chosen

The Java platform (JDK 1.4) was usedrplementthe TEAalgorithms.The

following are somef the mainreasondelow.

* Java is considered platform independent becausectampiler produces byte
code rather than machine code for a specific tyfpeacdware - this feature of
Java makes sure that the programs will run on alayfopm (with Java

interpreter). Thus, the implemented algorithms bantested on a variety of
platforms for comparison purposes.* Java (in paldic JDK 1.4) provides a
large library of built-in classes and methods (ia form of API) that assist the
programmer in writing code for cryptographic algoms. For example, the
Biginteger class in Java lets the programmer apgalghmetic and bit

manipulation operations on integer values of aahily large sizes.

* Conversion from integer to string and vice vermsagd Likewise conversion of
integer values from one radix to another is reidyiveasier in Java due to the
built-in routines provided for this purpose. Fostance, one frequently needs to

convert a decimal value to binary or hexadecimad, &ce versa.

* The concepts of object serialization and streaput/output make it easy to
read and write objects to external disk files hogvewsing Java to implement
cryptography algorithms has some drawbacks as Wwhk. main drawback of
using Java is its slow speed - this is because Jawgiler does not generate
native machine code, rather it produces an intelstedorm code (called byte
code) which needs an interpreter to run. This cbalk been a concern because
the performance of various algorithms had to beetksbut the effect of
inefficiency was balanced out because all the #@lyns were implemented in
the same language (Java) and were tested on the @atform. As mentioned
earlier, the primary goal of this research was toothave the most efficient
implementation of cryptography algorithms — buttjts compare the relative
performance of various popular algorithms. So fgeréhms were implemented
as is, using a uniform language, and were testeal wmform platform. Each of

the above algorithms was implemented as a Java.clasthe subsequent

25
Raman Kumar .MDCE
(CTA-2007-09)

sections, for each algorithm, a description of th&tance variables and the

implemented methods is provided.

Tests

A few tests were run to detect when a single chamag propagated to 32
changes within a small margin. Also some loop tésttuding a differential

loop test to determine loop closures.

A considerable number of small algorithms weredtragad the selected one is
neither the fastest, nor the shortest but is thbtmbe the best compromise for
safety, ease of implementation, lack of specializadles, and reasonable
performance. On languages, which lack shifts andRX® will be difficult to
code. Standard C does makes an arithmetic rightt siid overflows
implementation dependent so that the right shiftogical and y and z are

unsigned.

Usage

This type of algorithm can replace DES in softwara] is short enough to write
into almost any program on any computer. Althougleesl is not a strong
objective with 32 cycles (64 rounds) on one implatagon it is three times as

fast as a good software implementation of DES whi$ 16 rounds.

The modes of use of DES are all applicable. Thdecgount can readily be
varied, or even made part die key. It is expected that increasing the number

of iterations can enhance security.

Analysis

The shifts and XOR cause changes to be propageftednid right, and a single
change will have propagated the full word in abéuterations. Measurements

showed the diffusion was complete at about siaitens.

There was also a cycle test using up to 34 of tteetb find the lengths of the
cycles. A more powerful version found the cyclegin of the differential
function. D(x) =f(x XOR 2) XOR f(x) which may test the resistance to some

forms of differential crypto-analysis.

26
Raman Kumar .MDCE
(CTA-2007-09)

Chapter:-4 Conclusion and Future
Work

The principal goal guiding the implementation afyt Encryption
Algorithm must be security file system against uhatized attack .The Tiny
Encryption Algorithm is thought to be one of thestist and most efficient
cryptographic algorithms. TEA is a Feistel ciphattuses only XOR, ADD and
SHIFT operations to provide Shannon's propertieslifiision and confusion
necessary for a secure block cipher without thel riee P-boxes and S-boxes.
TEA operates on a 64-bit data block using a 128kby and can achieve
complete diffusion after six rounds. Earlier resb& proposed TEA algorithm
implement in C language, and hardware encryptioa sach as radio frequency
identification (RFID)design for parallel , seriahdh digit serial architecture

using public —key and microcontrollers in Assemlalyguage.

For software implementation, the java core codaised and portable and
therefore particularly suits real-time applicationsAlthough TEA has a few
weaknesses, most notably from equivalent keys atated-key attacks the
former is the weakness that led to a method fokihgc This technique is
successfully applied over reduce round versionheftilock cipher TEA. This
thesis purposed is based on securing file systethatdt can be applicable on
applications such as banking and online Transagtimeessing. At last this
thesis is an attempt to implement the TEA algorithsng secret-key in java

core for secure file system with base on cryptolgyap

A proposed direction for the future work could lbeahalyze the performance
/security trade -off of great depth for instan@an ,algorithm with more complex
round and large Number of round is generally carsidore secure .the impact
of these and other such factor on the overall perdoce of an algorithm needs
to be measured .For future enhancement to thisicapph public key

encryption can be applied where two keys can bergéed: one to encrypt a file
using the public key and another private key torgscit. Also, other more

advanced encryption operations can be includedhbamce the security of the

27
Raman Kumar .MDCE
(CTA-2007-09)

application so that it can be used to encrypt mseasitive administrative
material.

Some other software package and different algoritechnique may also be
chosen for further study to encryption and decoyptf data can be applied for
other application such as Digital Signatures’, MiitAuthentication, and Secure
data transmission. Adding graphical user interfacdile location and file name

this project only supports command line.

28
Raman Kumar .MDCE
(CTA-2007-09)

REFERENCES:

[1] P. Israsena IEEE 2005 “Design and Implementation of Low Power
Hardware Encryption for Low Cost Secure RFID Using TEA” page
no 1402 to 1406.

[2] Xingxin Gao, Zhe Xiang, Hao Wang, Jun Shen, Jian Huang, and
Song ,An approach to security and privacy of RFID system for supply
chain,2004 IEEE International Conference on E-Commerce
Technology for Dynamic E-Business, pp. 164 - 168, Sept. 2004

[3] Eka Suwartadi, Candra Gunawan, Ary Setijadi P, Carmadi Machbub “
First Step Toward Internet Based Embedded Control System” page

1226-1231. 2005 5" Asian Control Conference.

[4] S.A Weis, "RFID privacy workshop," IEEE Security & Privacy
Magazine, Issue 2, vol.2, pp. 48-50, Mar-Apr 2004

[5] Stephan J Engberg, Morten B Harning, and Christian D Jensen,

Zero- Knowledge Device Authentication: Privacy & Security Enhanced
RFID preserving Business Value and Consumer Convenience,"
Proceedings of second annual conference on Privacy,

[6] Security and Trust, pp. 89-101, Brunwick, Canada, October 13-15,
2004.

[7] Philippe Golle, Markus Jacobson, Ari Juel, and Paul Syverson,
"Universal Re-encryption for Mixnets," Proc. RSA Conference
Cryptographers' Track '04, pp. 163-178, 2004

[8] S. Liu, O.V. Gavrylyako, P.G. Bradford, "Implementing the TEA
algorithm on Sensors", ACMSE '04, April 2-3, 2004.

[9] Julio Cesar Hernandez, Pedro Isasi IEEE 2003“Finding efficient
distinguishers for cryptographic mappings, with an application to the
block cipher TEA page 2189- 2193.

[10] Sozo Inoue and Hiroto Yasuura, "RFID Privacy Using User-
controllableniqueness,” Proc. RFID Privacy Workshop, MIT,
Massachusetts, November 15,2003.

[11] Finkenzeller, RFID-Handbook, 2nd edition -Fundamentals and
Applications in Contactless

29
Raman Kumar .MDCE
(CTA-2007-09)

[12] Moon, D., Hwang, K., Lee, W., Lee, S., & Lim, J. (2002). Impossible
differential cryptanalysis of reduced round XTEA and TEA. In Fast
Software Encryption —Proceedings of the 9th International
Workshop

[13] Dukjae Moon, Kyungdeok Hwang, Wonil Lee, Sangjin Lee and
Jongim Lim. Impossible Differential Clyptanalysis of Reduced Round
XTEA and TEA. Fast Software Encryption, FSE 2002, Leuven,
Belgium, February 4-6, 2002. Springer LNCS, v.2365. pp 49-60
[14] F. Akyildiz, W. Su, E. Cayirci, Y. Sankarasubramaniam, "A
Survey on Sensor Networks", IEEE communications magazine, Aug
2002.

[15] Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Avi
Rubin, and Michael Szydlo,"Security Analysis of a Cryptographically-
Enabled RFID Device," Draft academic paper
http://www.rfidanalysis.org

[16] H. Qi, S. Sitharama lyengar, K. Chakarabarty, "Distributed sensor
networks- a review of recent research”, Journal of the Franklin
Institute, 2001

[17] Stephen A Weis, Sanjay E Sarma, Ronald L Rivest, and Daniel W
Engels, "Security and Privacy Aspects of Low-Cost Radio Frequency
Identification Systems," Proc. First International Conference on
Security in Pervasive Computing, Boppard, Germany, March 12-14,
2003

[18] John Kelsey, Bruce Schneier, David Wagner Mod n cryptoanalysis
with applications against RC5P and M6, Proceedings of the 1999
Fast Software Encryption Workshop, pp. 139-155 Springer-Verlag.
19909.

[19] The Complete Reference Java2 by H. Schildt.
[20] http://java.sun.com/j2se
[21] http://javaworld.com

[22] http:// www.cs.utexas.edu/tutorial/index.html

30
Raman Kumar .MDCE
(CTA-2007-09)

[23] Cryptanalysis of the TINY Encryption Algorithm by VIKRAM REDDY
ANDEMTUSCALOOSA, ALABAMA 2003 1-61pages

Appedix-1

Data Flow Diagram of File Encryption System

31
Raman Kumar .MDCE
(CTA-2007-09)

Diagrams for Encryption and Decryption of Datawrlo

There are two aspects to consider when planning for transmission
security. The first aspect, discussed in the preceding paragraph, is how
transmissions are physically sent (that is, over wire or air). The
impossibility of preventing physical interception should now be clear. The
second aspect of secure transmission relates to the content that is being
transmitted. Securing the content of the message is done through

encryption.

Encryption involves transforming messages to make them legible only for
the intended recipients. Encryption is the process of translating plain text
into ciphertext. Human-readable information intended for transmission is
plain text, whereas ciphertext is the text that is actually transmitted. At
the other end, decryption is the process of translating ciphertext back
into plain text. Encryption algorithm refers to the steps that a personal
computer takes to turn plain text into ciphertext. A key is a piece of
information, usually a number that allows the sender to encode a
message only for the receiver. Another key also allows the receiver to

decode messages sent to him or her.

Flain Text

Plain Texl Ciphartexl

— Ky Kay

p— v L@ v

— i-!

e md T e TR =
— ‘@ Dacryption

Sourcg22] Figure 4.1 Encryption and Decryption of Data

32
Raman Kumar .MDCE
(CTA-2007-09)

.=
au]
5-
—
=

L=
B
=
—
e]
=4

DII1]1]

Private Key Encryption

Ky
Ciphertex
Key
N~ |-®
-
nd A g P g N
@) Decryplion
Public Key Encryption
()< Pusc () Secre
key Ciphertax key
]« o D «
x-!
— +“~ — 8y —> -~ -3

Encryption

Yol

i

Decryption

Figure 4.2 Private Key and Publiog/Eacryption

33

Raman Kumar
(CTA-2007-09)

.IMDCE

L=
v e]
-
—
=

-7
i
=

—4
=

ST

Appendix -2

Source Code

import java.io.*,;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;
import javax.swing.border.*;
import java.applet.*;

import java.lang.*;

class GUI implements Action Listener

{

JFrame f;

JPanel p;

JTextField tf1;
JButton b1,b2,b3,b4;
JTextArea t;

GUI()

{

f=new JFrame("File Encryption System");
p=new JPanel();
bl=new JButton("Encrypt");
b2=new JButton("Decrypt");
b3=new JButton("Information™);
b4=new JButton("Exit");
tfl=new JTextField(20);
t=new JTextArea(10,30);

f.getContentPane().add(p);

34
Raman Kumar .MDCE
(CTA-2007-09)

p.add(bl);

p.add(b2);

p.add(b3);

p.add(b4);

p.add(tfl);

p-add(t);
bl.addActionListener(this);
b2.addActionListener(this);
b3.addActionListener(this);
b4.addActionListener(this);
f.setVisible(true);
f.setSize(300,300);

}

public void actionPerformed(ActionEvent ae)
{

tfl.setText(ae.getActionCommand());

if (ae.getSource() == b1l)

{

/I perform action for button b1l
tfl.setText("encryption begin");

byte[] theFile;

String txt = JOptionPane.showlnputDialog("Pleasteethe path of the file: ");

byte[] readFromFile = null;

try
{

FilelnputStream in = new FilelnputStream(txt);

35
Raman Kumar .MDCE
(CTA-2007-09)

readFromFile = new byte[in.available()];
in.read(readFromFile);
in.close();

}

catch(IOException e)

{

t.setText("sorry - file not found");

System.out.printin("\nSorry - file not found! Youight have entered the wrong
location\n"+ "\n Do the procedure again \n" + "\nojéct Made By Raman
Kumar CTA (ME) DCE -07 \n");

System.exit(0);

}

theFile=readFromFile;

String key = JOptionPane.showlnputDialog ("Enteuryéey (the longer the
better):");

/l This is an update from previous versions
// Decided it would be easier to put
/I encryption stuff in to a class

Encryption = new Encryption (theFile,key);

Il encrypt file
I =mmmmmmmeee

encryption.encrypt();

/I get encrypted file bytes and save it
I =mmmmmmmeee -

byte[] to Save=encryption.getFileBytes();
String text ="";

String tx = JOptionPane.showlInputDialog("Enter fime: ");

try

36
Raman Kumar .MDCE
(CTA-2007-09)

{

FileOutputStream out = new FileOutputStream(tx);
out.write(toSave);

out.close();

}
catch(IOException €)

{

t.setText("Sorry, but there seems to have beerobhlgm" + "saving your file.
Perhaps your hard-drive is ful\n" + "or the wripermissions need to be
changed\n®);

}

t.setText("\nYour file has been encrypted and savgd
}

else if (ae.getSource() == b2)

{

/I perform action for button b2
tfl.setText("decryption begin");
byte[] theFile;

String txx = JOptionPane.showlInputDialog ("Pleastethe path of the file: ");

byte[] readFromFile = null;
try

{

FilelnputStream in = new FilelnputStream (txx);
readFromFile = new byte[in. available()];
in.read(readFromFile);

in.close();

}

catch(IOException e)

37
Raman Kumar .MDCE
(CTA-2007-09)

{

t.setText("\nSorry - file not found\n");

System.out.printin("\nSorry - file not found! Youight have entered the wrong
location\n"+ "\n Do the procedure again \n" + "\roject Made By ‘Raman
Kumar, CTA(M.E) DCE. -07 \n");

System.exit(0);

}

theFile=readFromFile;

JPasswordField pf = new JPasswordField("Enter #ye 'R;
String key = JOptionPane.showlInputDialog("Enterkbg: ");
Encryption encryption = new Encryption(theFile key)
encryption.decrypt();

byte[] toSave=encryption.getFileBytes();

String text =",

String txtt = JOptionPane.showlInputDialog("Entée fiame: ");
try

{

FileOutputStream out = new FileOutputStream(txtt);
out.write(toSave);
out.close();

}

catch(IOException e)
{

t.setText("Sorry, but there seems to have beermhblgmn\n" +"saving your file.
Perhaps your hard-drive is ful\n" +"or the writeermissions need to be
changed\n®);

}

38
Raman Kumar .MDCE
(CTA-2007-09)

t.setText("\nYour file has been decrypted and savgd

}

else if (ae.getSource() == b3)

{

tfl.setText ("information regarding encryption algo.");

t.setText ("\n\important info on key choice: \n\w""The longer the key, the
better. This program\n" +"implements a key expamsitgorithm that given\n"
+"an average length of user-entered key is almbstianalogous to the one-
time pad encryption method\n\n" +"For example: Weg length of 1: 128bit
encryption\n\n"+"Use key length of 2: 256bit endrgp\n\n"+ "Use key length
of 8: 1024bit encryption\n\n"+"etc...\n\n\n");

}

else if (ae.getSource() == b4)

{

tfl.setText("choose to exit frm program™);

t.setText("Bye Bye!");
System.out.printin("\n THANKS FOR USING THIS APPLATION \n" +
"\nProject Made By Raman Kumar CTA (M.E) DCE -07)\n

System.exit(0);
}
}

public static void main(String args[])

{

GUI g = new GUI();
}
}

import java.io.*;

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;
import javax.swing.border.*;

39

Raman Kumar .MDCE
(CTA-2007-09)

class Encryption

/*********-k*****/

{
private String key;
private char[] keys;
private byte[] fileBytes;
private byte[] fileBytez;
private int pivot;
private int inter;
private long alpha;
private long beta;
private long gamma;
private long delta;
private long sumA,
private long sumB;
private long sumC;
private long sumD;
private byte[] fileBytesB;
private int forLevel2;

public Encryption(byte[] fileBytes,String key)
{

this.fileBytes = fileBytes;

this.key = key;

/I Stick the key in to a character array

/I This is so the file bytes can be offset with

/Il the characters as defined by the overall dfitigm when either encrypting or
decrypting

keys = new char[key.length()];
pivot = (int)(fileBytes.length/2);

/Il These long values are just random bits of #gatk that are added during the
encryption //process to add to the overall scramgblicapability | got this idea
from the TINY //encryption algorithm.

delta = O0x9e3779b9;
alpha = 0x7f2637c6;
beta = 0x5d656dc8;
gamma = 0x653654d9;
40

Raman Kumar .MDCE
(CTA-2007-09)

/I Shift the bits slightly (>> and << bitwise /fe@tors) as determined by
characters in the key

sumA = (long)(alpha >> key.charAt(0));
sumB = (long)(beta << key.charAt(1));
sumC = (long)(gamma >> key.charAt(2));
sumD = (long)(delta >> key.charAt(3));

if (fileBytes.length%5 > 0)

{

inter = (int)((fileBytes.length-1)/5);

}

else inter = (int)(fileBytes.length/5);

/I forLevel2 is used in the level2 method
A - --

forLevel2 = key.length();

}

/**********************************/

/¥ some methods *

/**********************************/

public void setFileBytes(byte[] newBytes)

{

fileBytes = newBytes;

}
public byte[] getFileBytes()

{

return fileBytes;

}

/*************************************/

Does exactly what?
[*it says */
41

Raman Kumar .MDCE
(CTA-2007-09)

/*************************************/

public void encrypt()
{

intf=0;
boolean truth = true;
Il Takes user key and makes a bigger one

/I for added security
I —=-mmmmeee- -

key = keyStream();

keys = new char[key.length()];
for(int c = 0;c<key.length();c++)

{
keys[c] = key.charAt(c);
}

System.out.printin("\nEncrypting\n");

/Il the outer for loop ensure that the algorithm
// loops round a lot of time, so that

/I the file is encrypted mutliple times

for(int extra = 0;extra<127;extrat+)

{

for(int i = O;i<fileBytes.length;i = i + keys.lenig}t
{

if (truth == false)

break;

f=0;

for(int j = i;j<i+keys.length;j++)

{

42
Raman Kumar .MDCE
(CTA-2007-09)

if(j>=fileBytes.length)

{

truth = false;

break;

}

fileBytes|[j] = (byte)((fileBytes][j] *(keys[f] - 'A'<< sumD)) » (keys[f] + sumD));
sumD - = delta;

f++;

}

}

fileBytes = splitNSwap(fileBytes);
setFileBytes(fileBytes);

}

setFileBytes(level2(fileBytes,true));

}
public void decrypt()

{
setFileBytes(level2(fileBytes,false));
intf=0;

boolean truth = true;

key = keyStream();

keys = new char[key.length()];
for(int c = 0;c<key.length();c++)

{

keys|c] = key.charAt(c);

}

System.out.printin("\nDecrypting\n");

43
Raman Kumar .MDCE
(CTA-2007-09)

for(int extra = 0;extra<127;extra++)
{
fileBytes = getFileBytes();

fileBytes = splitNSwap(fileBytes);
for(int i = O;i<fileBytes.length;i = i + keys.lenigt

{

if (truth == false)
break;

f=0;

for(int j = i;j<i+keys.length;j++)

{
if(j>=fileBytes.length)
{

truth = false;

break;

}
fileBytes|[j] = (byte)((fileBytes][j] *(keys[f] - 'A'<< sumD)) ~ (keys[f] + sumD));
sumD - = delta;

f++;

}
}

setFileBytes(fileBytes);
}
}

/l To add to the confusion, this method basically

/Il takes the byte[] array as encrypted so far

/I splits it in half and then swaps two halvesrdimd i.e. a b ¢ d e f would
becomedefal//bc

44

Raman Kumar .MDCE
(CTA-2007-09)

public byte[] splitNSwap(byte[] zeBytes)

{

if(zeBytes.length%2==0)

{

pivot = (int)(zeBytes.length/2);
}

else pivot = (int)((zeBytes.length-1)/2);

fileBytez = new byte[zeBytes.length];

for(int reverse = O;reverse<pivot;reverse++)

{

fileBytez[reverse] = (byte)(zeBytes[reverse+piviit¥Bytez[reverse));
}

for (int reverseB = pivot;reverseB<zeBytes.lengiharseB++)

{

fileBytez[reverseB] = (byte)(zeBytes[reverseB -qgii¢fileBytez[reverseB]);
}

setFileBytes(fileBytez);

return fileBytez;

}

/I if a long key is used and only some of //thg ke correct then first part of
cipher text //Il still be decrypted so:

/I (if you want to see the key that it producesmiment print statement)

I ==eemeeneen- memmmememememmeeeesseeeeeeeee ffmmemmmnenee

public String scrambleKey(String toBeScrambledFerth

{

45
Raman Kumar .MDCE
(CTA-2007-09)

pivot = (int)(toBeScrambledFurther.length()/2);
String newKey ="";
Stnng subil = ""1 sub2 = uu;

for (int a = 0; a<pivot;a++)

{

subl += toBeScrambledFurther.charAt(a+pivot);

}

for (int b = pivot; b<toBeScrambledFurther.lengthf}+)
{

sub2 += toBeScrambledFurther.charAt(b-pivot);

}

newKey = subl+sub2;
//System.out.printin(newkey);

return newKey;

}

/ What is this function passed ?
/I Answer - basically two parameters - the fisst
/l an array of bytes that need to be scrambl@&tie/second is a boolean - true if
the array is //being scrambled and false if §éidescrambled etc.....
I o

public byte[] level2(byte[] oldBytes, boolean siate

{

if(state)

System.out.println ("Scrambling encrypted data");
else System.out.printin("\nDescrambling encryptath;

int s = forLevel2;

46
Raman Kumar .MDCE
(CTA-2007-09)

int stop = oldBytes.length%s;

byte[] newBytes = new byte[oldBytes.length];
byte[] tempBytes = new byte[oldBytes.length-stop];
byte[] resultBytes = new byte[oldBytes.length];
byte[] remainderBytes = new byte[stop];

int hello = oldBytes.length-stop;

for (int old = 0;old<oldBytes.length-stop;old++)

{

tempBytes|old] = oldBytes[old];

f(})l‘ (int old = O;old<stop;old++)

{

remainderBytes[old] = oldBytes[(oldBytes.lengthgstold)];
}

if (state)

{

for (int outer = O;outer<s;outer++)

{

for (int ¢ = outer;c<hello+outer;c+=s)
{

if(c+s<oldBytes.length)

{

newBytes|c] = (byte)(oldBytes[c+s]-sumA);

newBytes[c+s] = (byte)(oldBytes[c]+sumB);

}

47
Raman Kumar .MDCE
(CTA-2007-09)

else break;

else if (Istate)

{

for (int outer = s-1;outer >=0;outer--)

{

for(int ¢ = (hello-1-outer);c>=0-outer;c-=s)

{

if(c-s>=0)

{

newBytes|c-s] = (byte)(oldBytes[c]-sumB);
newBytes|c] = (byte)(oldBytes[c-s]+sumA);
}

else break;

}

if (outer <= 0)break;else continue;

}
}

for(int rep = O;rep<newBytes.length;rep++)

{

resultBytes[rep]=newBytes|rep];

48
Raman Kumar .MDCE
(CTA-2007-09)

}

for(int rep = O;rep<remainderBytes.length;rep++)

{

resultBytes[rep]=remainderBytes[rep];

}

setFileBytes(newBytes);
return newBytes;

}
/* The keyStream() method takes the user key

* and enlarges it to (key.length()*key.length()
* key.length())*128, in the following algorithmimethod.
* This improves security. l.e. longer keys are
* much harder to crack
*/
public String keyStream()

{

System.out.printin("\nGenerating key stream\n");
String answer = key;

String thekey = key;

for(int i = 0;i<(thekey.length()*128);i++)

{

answer = answer + getPart(thekey);

thekey = getPart(thekey);

}

/lanswer = scrambleKey(answer);
49

Raman Kumar .MDCE
(CTA-2007-09)

return answer;

}

/I KeyStream helper method
I =mmmmmm e

public String getPart(String thekey)
{

char[] keyPart = new char[thekey.length()];
String result =",

for(int c = 0;c<thekey.length()-1;c++)

{

keyPart[c] = (char)(thekey.charAt(c+1) - 1);
}

keyPart[thekey.length()-1] = thekey.charAt(0);
for(int put = O;put<keyPart.length;put++)
{

result = result + keyPart[put];

}

return result;

}
}

50
Raman Kumar
(CTA-2007-09)

.BMDCE

Appendix-3

Result and Snapshot

This is the Frame, which prompts the user whercompiles and runs the
program.

= File Encryption System |;HEHE\

QQQD;_

51
Raman Kumar .IMDCE
(CTA-2007-09)

This is the file, which is to be encrypted.

rosoft Word

JE\E Edit View Insert Formst Tools Table Window Help
=W g‘@@' m‘?‘ e .|g|7sow - @ ’_’“BodyText + Times New Roman = 16 -| B I U

o B, 1 b3t 3ot S
=

IBlack, white and gray box tests provide different appreaches for
assessing the security of Web applications. Each approach has
specific advantages and disadvantages, and selecting a testing
approach needs to be done based on the time and resources
available, as well as the overall goals of the test being performed

Tou can assume most real-world attackers will approach systems
from a black-box perspective, But to better account for the
advantage attackers have with regard to time and resources, and to
avoid relying on security through obscurity, gray and white box
tests can be appropriate approaches as well Mazimizing the
security value of testing approaches when you have limited time
and resources requires careful test planning and a thorough
understanding of how testing constraints affect the completeness of
testing results.

Let's take a look at the differences between the three tests.

Black box testing

It refers to testing a system without having specific knowledge to
the internal workings of the system, no access to the source code,
and no knowledge of the architecture.

In essence, this approach most closely mimics how an attacker
typically approaches applications. Howewer, due to the lack of
internal application knowledge, the uncovering of bugs andfor

52
Raman Kumar .MDCE
(CTA-2007-09)

After pressing the “Encrypt” button, it will makeenmter the path of the file.

=S

Input

53
Raman Kumar B®DCE
(CTA-2007-09)

Enter the key.... the longer the better.

< File Encripti,, untitled - Paint

54
Raman Kumar WIDCE
(CTA-2007-09)

Enter the file name...the name by which u wants te she encrypted file.

! it | [encryption begin

untitled - Paint il Black.doc-M...

55
Raman Kumar .IMDCE
(CTA-2007-09)

After the Encryption procedure...A message printhenText Area.

£ File Encryption System |:__||E\|z\

Yourfile has been encrypted and saved

| T T —

untitled - Paink

56
Raman Kumar .IMDCE
(CTA-2007-09)

Encrypted File.

a.doc - Microsoft Word

Ele Edit Yiew Insert Format Tools Table Window Help
NEES SR_RY L L@ o - @O o - G 2[danTer - coertew =2 |A-= 3
L§.1uzu3 FE R e

vy 2dra2gn - vamtcs Ei0y 08 U#k-o=¢ falpGEroy, *r0° «esalcUyOcpli, *O00=E4|0 L
fektms” 10 ¢&/uD0L * =0y G40EOY: 4+sI0C0C0Ok " 1A%A
Plasltlec” 1o eoviOprari e« Tolite. es000"0ces :08
ub&a' »- yeodasds] i
O-Virre>#00Z &Qukd™~@-d>5>E40X &0r *06000d1 15~E«Q—&dm? aCe 10 [A w0
e4i-0F0[&, weiHO@E"*6:cB

Page Break.

Fed, n ptOCO0 65(E
E—iegtl 0¥, 00! glyun T Tge«a 0. 0V ¢, rO0 0G0« &8 | MORSE (p t BSOFY oidWiDN b#1°ER. EdZog-
O I00-
a«E70E0e™a+HT , aE0d0 ¢ - | 0o™es j8aRten” e L x i0TDUT 08,0 Y ie~2 2 yEDOOR: 67} LiT™EL0 - 4
SHOaci3 {4 (N-T%2°57—I0%e%. £ *€L000vEEBAEDZ00 *r * $RECO™S 6~
Pt il d T0&% 1/ ug0o™ « | 148@FE0MA-ufOFO= b s f~ 1
TV&E1T-Fe 117 i3ad
o6l 14x=41 Y& 1908 T0e-==, i0w¥a+*/ *OFE0: " C4~E
0-&(lreBSn0Zeidyhdl-1 ! hle=fal 2 ¥ &0um0GO =1 190E«Q s&yp * YEOLO_Oodzk!0-
fir, 30102 20xiBH OMGRa<! IOVOS+q-000C0&2 15 {5008 'o-utafmi 3 (
OM- T&h®: 0, E0Zke, r " OHOOOE@SLEEOUBA ™ - } DEOL ¥i6UA0Q T#17 2. E0T¥g-
1;0LOY!i@° ; FEOVed-R pHOSO 2e6| i

Page Break.
Sk fnvhCtan ¥e s 2O T5108 21 A W tes 0K 00, &1) G/ Wed g pD 00 #i6) LiN~ag 2 uE-
i\, 1t%
olurnn Break.
N E°E;0EOW00-t ' ¢A0-0™§H90c S o& (kpyESBO ! i2x) N-Tdk® et I0X0&0x000 7 Tz h-660¢
olurnn Break.
VNE) o, BE¢AibS1i304 0s8' 039 Qa['k*CRFi0Tes/ 5,000 1 £-0<FE
olurnn Break.
"=+ {00 s0b* &7z 4
Page Break.
O™b £ndiit
Page Break.

01£&0z;0 07 ' g&s 74#E0Y &, q=O0EDC0={ 68~C TS&LATUBIO0w. 6~ASP &% (= dBMIOY wE/ uMEE v« 1 H-&
o FE00 sm-u - o0 =0AGHS~4

S»2alny* " I0_sé0=za0L- Taleat+ IDvOeousng - «Oemdo0A0vid" o OCHOBCEESFA
ma_'1=Qusinscen:WOn’ “-heP:Ei0

@4, SHODOF-c@sxel

i34 pOyDel0_Séfiwl OOU#kEs: . 1-2 gwaOHAT-d:6;€F| VD4In DH°DOR 12| &{Q—

=
=
o
3 &
.:}m a] 4 5- j

57
Raman Kumar .MDCE
(CTA-2007-09)

After pressing the “Decrypt” button, it will makeamter the path of the file,
which is to be decrypted.

Yourfile has been encrypted and saved

|| Exit |

58
Raman Kumar .IMDCE
(CTA-2007-09)

Enter the key... the same key which u have enteredglthe Encrypt
procedure.

our file has been encryated and saved

] t | [aecryation begin

59
Raman Kumar .IMDCE
(CTA-2007-09)

Enter the file name...the names by which u want @ she decrypted file.

Yourfile has been encrypted and saved

Input

60
Raman Kumar .IMDCE
(CTA-2007-09)

After the Decryption procedure...a message printeénText Area.

= File Encryption System

Yourfile has been decrypted and saved

Dot |feorponien |

untitled - Paink

61
Raman Kumar .IMDCE
(CTA-2007-09)

Decrypted File.

rosoft Word

J Ele Edit View Insert Format Tools Table MWindow Help
|D-¢.“ﬂ-g"i§|§1§§"g§ B @ @|?5°a - @ ’:“BudyText + TimesMewRoman = 16 - | B 7 U : »
o R, 1123 e s =

tBlaEk, white and gray box tests provide different approaches for
assessing the security of Web applications. Each approach has
specific advantages and disadvantages, and selecting a testing
approach needs to be done based on the time and resources
available, as well as the overall goals of the test being performed

o 0

Tou can assume most real-world attackers will approach systems
from a black-box perspective. But to better account for the
advantage attackers have with regard to time and resources, and to
avoid relying on security through obscurity, gray and white box
tests can be appropriate approaches as well Mazimizing the
security value of testing approaches when you have limited time
and resources requires careful test planning and a thorough
understanding of how testing constraints affect the completeness of
testing results.

Let's take a look at the differences between the three tests.
Black box testing

It refers to testing a system without having specific knowledge to
the internal workings of the system, no access to the source code,
and no knowledge of the architecture

In essence, this approach most clozely mitnics how an attacker
typically approaches applications. Howewver, due to the lack of
internal application knowledge, the uncovering of bugs andfor

62
Raman Kumar .MDCE
(CTA-2007-09)

Following messages appear in the command prompigltire encryption and
decryption procedures.

\WINDOWS\System32\emd.exe - java GUI

Nrjavac GUI. java
D:\>java GUI

Generating key stream

Encrypting
Scrambling encrypted data

Descrambling encrypted data

Final Repart

Wsta, @

63
Raman Kumar .MDCE
(CTA-2007-09)

If file is not found at the entered location, fallmg messages appear in the
command prompt during the encryption and decryppi@tedures.

The system cannot find message text for message number Bx2334 in the message Fil
e for fApplication.

Jocunents and Settings\RAMAN>CIN

Bc: > PROJECT

project’java GUI

Sorry — file not found! You might have entered the wrong location

Project Made By RAMAN KUMAR ME CAT/13,87 DCE.

\project?

64
Raman Kumar .MDCE
(CTA-2007-09)

When “Information” Button is pressed.... a messagetpin the Text Area.

= File Encryption System

Impotant info on key ch

| Far example: Use key length of 1: 128bit encryption

Use key langth af 2: 256kit encryption

‘Use key [ength of 8 1024kt encryption

& untitled - Paint

65
Raman Kumar .IMDCE
(CTA-2007-09)

When “Exit” button is pressed, following messagppear in the command
prompt.

The system cannot find message text for message number Bx2358 in the message filn

e for Application.
The system cannot find message text for message number Bx2334 in the message fill
e for Application.

C:\Docunments and Settings\RAMAN>cdN

C:\>ed project

C:\project>java GUI

THANKS POR USING THIS APFLICATION

Project Made By & RAMAN KUMAR M.E CTA/13,87 DCE DELHI

C:\project,

66
Raman Kumar .MDCE
(CTA-2007-09)

