

Implementation of Tiny Encryption Algorithm
For Securing System File

A

DISSERTATION

Submitted as a course in partial fulfillment of the

requirements for the award of the degree of

MASTER OF ENGINEERING

In

Computer Technology Application

Submitted By
Raman Kumar

Roll No: 13/CTA/09
 University Roll No: 12210

 Under the Esteemed Guidance

 Of

 Mr. Manoj Sethi
 (Head of Computer Center)

 Delhi College of engineering

Department of Computer Engineering

DELHI COLLEGE OF ENGINEERING
 BAWANA ROAD, NEW DELHI-110042
 2007-2009 (University of Delhi)

Raman M.E DCE (CTA-2007-09) i

CERTIFICATE

 It is certified that the project entitled “Implementation of Tiny Encryption Algorithm for

Securing System File” being submitted by Mr. Raman Kumar M.E. in Computer Technology

Application, Delhi College of Engineering is work carried out by his under my guidance and

supervision in partial fulfillment for the award of the degree of Master of Engineering in

Computer Technology and Applications from Delhi College of Engineering, Delhi.

Lastly, I thank Almighty GOD for his countless blessings.

 Mr. Manoj Sethi
 Head of Computer Center

Delhi College of Engineering
 Bawana Road, New Delhi

Raman M.E DCE (CTA-2007-09) ii

ACKNOWLEDGEMENT

 It gives me immense pleasure in expressing my deep sense of gratitude, indebtness and

thankfulness to Mr.Manoj Sethi (Head of Computer Centre) for his invaluable guidance,

continual encouragement and support at every stage of this work. I am also thankful to Dr. Daya

Gupta Head of Computer Department for the encouragement given throughout the execution of

this project.

 I would also like to express my sincere thanks to my teachers’ viz. Dr S. K. Saxena,

Mrs. Rajni Jindal. Mr.Shailender Verma for their support and encouragement.

 I would like to express my heartiest felt regards to Faculty of Computer Engineering

Department for providing facility and for their co-operation and patience.

 I am thankful to my friends and classmates for their unconditional support and motivation

during this project.

 Finally I acknowledge my deep gratitude to my loving family, who always gave moral

support and continuously encourage my academic endeavor, who always comfort and console,

never complain or interfere, ask nothing and endure all.

 Raman Kumar

 University Roll No: 12210
College Roll No: 13/CTA/ 07
Delhi College of Engineering
Bawana Road, New Delhi

Raman M.E DCE (CTA-2007-09) iii

ABSTRACT

 The file securing system requires a Tiny Encryption Algorithm (TEA). It basically

consist of using a combination of XOR, ADD and SHIFT operations on file blocks to encrypt is

using key bits and some junk bits. This algorithm is highly efficient and can satisfy need for a

user-friendly encryption system that can be used at homes and offices.

The Tiny Encryption Algorithm (TEA) is a block cipher encryption algorithm that is very

simple to implement, has fast execution time, and takes minimal storage space.

The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed to

minimize memory footprint and maximize speed. It is a Feistel type cipher that uses operations

from mixed (orthogonal) algebraic groups. This thesis presents the cryptanalysis of the Tiny

Encryption Algorithm. In this thesis proposed to inspect the most common methods in the

cryptanalysis of a block cipher algorithm. TEA seems to be highly resistant to differential

cryptanalysis, and achieves complete diffusion (where a one bit difference in the plaintext will

cause approximately 32 bit differences in the cipher text) after only six rounds. Time

performance on a modern desktop computer or workstation is very impressive.

 The objective is not to make it difficult to read the data as cryptography does it is hide the

existence of the data in the first place possible to protect the courier.

 Tiny Encryption algorithm has been suggested by researcher. It is proposed to carry

forward the work for attempt to implement Tiny Encryption Algorithm for confidentiality,

authenticity of system files.

 File Encryption System (using Tiny Encryption Algorithm) proposed to consist of

following functions:-

- User friendly encryption of text files.

- Encryption of images.

- Decryption of Encrypted files.

Raman M.E DCE (CTA-2007-09) iv

Table of Contents

 CERTIFICATE ………………………………………………………………………i

 ACKNOWLEDGEMENT……………………………………………………………ii

 ABSTRACT ………………………………………………………………………….iii

CHAPTER No Page No.

CHAPTER 1: - Introduction … ……………………………………………………….…..1

1.1 Encryption and Decryption …………… ………………………….…….1

 1.2 History of Cryptography ………………………………………………. .2

 1.3 Classical Cryptography ………………………………………….………3

1.4 Medieval Cryptography……………………………………………….....4

1.5 Modern Cryptography ……………………………………………………. ….5

 1.6 Application of Cryptography…………………………………………….6

 1.7 Need of Encryption………………………………………………………8

CHAPTER 2: - Literature Review ………………………………………………..….….. 9

 2.1 Symmetrical Cryptography Algorithms…………………………..………9
 2.1.1 Introduction………………………………………………………..9

 2.1.2 TEA, AES, DES, Symmetrical Algorithms ………………... …….11

 2.1.3 Symmetric Encryption vulnerabilities…………………… ………..13

CHAPTER 3: - Proposed Approach……………………………………………..…….….14

3.1 Background and Motivation …...14

3.2 TEA Encryption and Decryption algorithm…………………………… 16

3.2.1 Encryption Routine………………………………………………...16

3.2.2 Decryption Routine…………………………………………………20

Raman M.E DCE (CTA-2007-09) v

3.2.3 Basics of the routine…………………………………………..…..…22

3.2.4 A Security Algorithm TEA………………………………………….23

 3.3 Proposed Work…………………………………………………………..24

 3.4 Implementation of TEA……………………………………………… …24

 3.4.1 Requirement to Implement New algorithm ……………………….24

CHAPTER: - 4 Conclusion and Future Works………………………………………..28

References…………………………………………………………………………………....30

Appendix-1 Data Flow Diagram of File Encryption System ……………………….…32

Appendix-2 Source Code…………………………………………………………….…...34

Appendix -3 Result and Snapshot …………………………………………………….…53

1
Raman Kumar M.E DCE
(CTA-2007-09)

CHAPTER :-1
 Intoduction

1.1 Encryption and Decryption

A more flexible security approach - a combination of message

encryption (sealing) and message signing (digital signatures).

The key to Encryption

A Key is a set of characters of varying length that is used with the cipher

encryption formula) to generate encrypted data. There are two relevant types of

keys:

1. Secret Key: - It is much like a secret password. The same password that is

used to encrypt the file is also used to decrypt it. Secret keys are also called

symmetric keys, because there is only one key for encryption and decryption.

The advantage of a secret key cipher is:

 It is generally very fast: a computer can encrypt a large amount of data in a very

short time using a secret key cipher.

2. Public/Private Key pair: - It is a special type of key relationship. This

arrangement consists of two very large keys that are mathematically related to one

another, but the mathematical relationship is very difficult to calculate. Only one

key is given to anyone who wants (public key), and the other key are accessed by

the user (private key).

The advantage to public/private key encryption is:

1. Secure: The keys are much more secured since one alone has a control access to

the private key.
2. Hard to decrypt: Also, since the key size is so large, the encrypted data is very

hard to decrypt.

The disadvantage to public/private key encryption is:

2
Raman Kumar M.E DCE
(CTA-2007-09)

1. Time consuming: Since the key size is so large, encryption and decryption is very

time consuming and CPU-intensive. Hashing is a mathematical function that is

applied to a string of characters of any length, or to an entire file. The hashing

function reduces any length of characters to a fixed length. Hashing is also called

a message digest, because the hashed value uniquely represents the original data.

Hashing functions are commonly used in message signing (digital signatures) to

create a unique "signature" of the message in question. There are a number of

algorithms that are used to create a message digest, including RSAs MD2, MD4

and MD5 which all create a 128-bit hash.

1.2 History of Cryptography

 The history of cryptography begins thousands of years ago. Until recent

decades, it has been the story of what might be called classic cryptography —

that is, of methods of encryption that use pen and paper, or perhaps simple

mechanical aids. In the early 20th century, the invention of complex mechanical

and electromechanical machines, such as the Enigma rotor machine, provided

more sophisticated and efficient means of encryption; and the subsequent

introduction of electronics and computing has allowed elaborate schemes of still

greater complexity, most of which are entirely unsuited to pen and paper.[20]
The development of cryptography has been paralleled by the development of

cryptanalysis — of the "breaking" of codes and ciphers. The discovery and

application, early on, of frequency analysis to the reading of encrypted

communications has on occasion altered the course of history. Thus the

Zimmermann Telegram triggered the United States' entry into World War I; and

Allied reading of Nazi Germany's ciphers shortened World War II, in some

evaluations by as much as two years.

Until the 1970s, secure cryptography was largely the preserve of governments.

Two events have since brought it squarely into the public domain: the creation

of a public encryption standard (DES); and the invention of public-key

cryptography[21].

1.3 Classical Cryptography

The earliest known use of cryptography is found in non-standard

hieroglyphs carved into monuments from Egypt's Old Kingdom (c 4500+ years

3
Raman Kumar M.E DCE
(CTA-2007-09)

ago). These are not thought to be serious attempts at secret communications,

however, but rather to have been attempts at mystery, intrigue, or even

amusement for literate onlookers. These are examples of still other uses of

cryptography, or of something that looks (impressively if misleadingly) like it.

Some clay tablets from Mesopotamia, somewhat later are clearly meant to

protect information -- they encrypt recipes, presumably commercially valuable.

Later still, Hebrew scholars made use of simple monoalphabetic substitution

ciphers (such as the Atbash cipher) beginning perhaps around 500 to 600

BCE.[22]

 Cryptography has a long tradition in religious writing likely to offend the

dominant culture or political authorities. Perhaps the most famous is the

'Number of the Beast' from the Book of Revelations in the Christian New

Testament. '666' might be a cryptographic (i.e., encrypted) way of concealing a

dangerous reference; many scholars believe it's a concealed reference to the

Roman Empire, or more likely to the Emperor Nero himself, (and so to Roman

persecution policies) that would have been understood by the initiated (who 'had

the key to understanding'), and yet be safe or at least somewhat deniable (and so

'less' dangerous) if it came to the attention of the authorities. At least for

orthodox Christian writing, most of the need for such concealment ended with

Constantine's conversion and the adoption of Christianity as the official religion

of the Empire.[21]

4
Raman Kumar M.E DCE
(CTA-2007-09)

1.4 Medieval Cryptography

Although Alberti is usually considered the father of polyalphabetic

cipher, Prof. Al-Kadi's 1990 paper (ref- 3), reviewing Arabic contributions to

cryptography reported knowledge of polyalphabetic ciphers 500 years before

Alberti, based on a recently discovered manuscript). It appears that Abu Yusuf

Yaqub ibn Is-haq ibn as Sabbah ibn 'omran ibn Ismail Al- Kindi, who wrote a

book on cryptography called "Risalah fi Istikhraj al-Mu'amma" (Manuscript for

the Deciphering Cryptographic Messages), circa 750 CE), may have described

cryptanalysis techniques (including some for polyalphabetic ciphers), cipher

classification, Arabic Phonetics and Syntax, and, most importantly, described

the use of several statistical techniques for cryptanalysis. [This book seems to be

the first post-classical era reference by about 300 years.] It also contains

probability and statistical work some 800 years before Pascal and Fermat.

Cryptography became (secretly) still more important as a consequence of

political competition and religious revolution. For instance, in Europe during

and after the Renaissance, citizens of the various Italian states -- the Papal States

and the Roman Catholic Church included -- were responsible for rapid

proliferation of cryptographic techniques, few of which reflect understanding (or

even knowledge) of Alberti's polyalphabetic advance. 'Advanced ciphers', even

after Alberti, weren't as advanced as their inventors / developers / users claimed

(and probably even themselves believed). They were regularly broken. This

over-optimism may be inherent in cryptography for it was then, and remains

today, fundamentally difficult to really know how vulnerable your system

actually is. In the absence of knowledge, guesses and hopes, as may be

expected, are common.

Cryptography, cryptanalysis, and secret agent/courier betrayal featured in the

Babington plot during the reign of Queen Elizabeth I which led to the execution

of Mary, Queen of Scots. An encrypted message from the time of the Man in the

Iron Mask (decrypted just prior to 1900 by Étienne Bazeries) has shed some,

regrettably non-definitive, light on the identity of that real, if legendary and

unfortunate, prisoner. Cryptography, and its misuse, were involved in the

plotting which led to the execution of Mata Hari and in the conniving which led

to the travesty of Dreyfus' conviction and imprisonment, both in the early 20th

century. Fortunately, cryptographers were also involved in exposing the

5
Raman Kumar M.E DCE
(CTA-2007-09)

machinations which had led to Dreyfus' problems; Mata Hari, in contrast, was

shot.[19] Outside of Europe, after the end of the Muslim Golden Age at the

hand of the Mongols, cryptography remained comparatively undeveloped.

Cryptography in Japan seems not to have been used until about 1510, and

advanced techniques were not known until after the opening of the country to

the West beginning in the 1860s.[22]

1.5 Modern Cryptography

The era of modern cryptography really begins with Claude Shannon,

arguably the father of mathematical cryptography, with the work he did during

WWII on communications security. In 1949 he published the paper

Communication Theory of Secrecy Systems in the Bell System Technical

Journal and a little later the book, Mathematical Theory of Communication, with

Warren Weaver. both included results from his WWII work. These, in addition

to his other works on information and communication theory established a solid

theoretical basis for cryptography and for cryptanalysis. And with that,

cryptography more or less disappeared into secret government communications

organizations such as the NSA, GCHQ, and equivalents elsewhere. Very little

work was again made public until the mid '70s, when everything changed.

Modern Cryptanalysis

Modern cryptanalysts sometimes harness large numbers of circuits. This board

is part of the EFF DES cracker, which contained over 1800customchips and

could brute force a DES key in a matter of days.

6
Raman Kumar M.E DCE
(CTA-2007-09)

 While modern ciphers like AES are widely considered unbreakable, poor

designs are still sometimes adopted and there have been important cryptanalytic

breaks of deployed crypto systems in recent years. Notable examples of broken

crypto designs include DES, the first Wi-Fi encryption scheme WEP, the

Content Scrambling System used for encrypting and controlling DVD use, and

the A5/1 and A5/2 ciphers used in GSM cell phones. Thus far, not one of the

mathematical ideas underlying public key cryptography has been proven to be

'unbreakable' and so some future advance might render systems relying on them

insecure. While few informed observers foresee such a breakthrough, the key

size recommended for security keeps increasing as increased computing power

required for breaking codes becomes cheaper and more available. [22]

 1.6 Application of Cryptography

 Some businesses began using strong cryptography about twenty years ago.

They seemed to do it in the half-instinctive way they used office safes and

armored-car services. Banks used DES (the US Data Encryption Standard) to

secure the electronic transfers between branches, and later in ATMs. And any

business with a computer had some kind of password system, either to control

access to the computer or to certain disk files. It was just done. No one made

much fuss about it. Little by little, things changed. Very strong cryptography left

the shadows of national security organizations and started to look like an essential

business tool -- not least for exercising a 'duty of care' for information in stored

electronic files or sent over electronic networks.[19]

Business use of encryption will keep growing. There are three
main reasons:

1. Computers have changed greatly.

 Twenty-five years ago most computers were centralized, in locked rooms and

were looked after by people with arcane vocabularies. An electronic link to the

outside was unusual. And if there was a link, it was along a dedicated line.

Security threats in those days were mostly from insiders: people abusing their

accounts, theft of data and sometimes vandalism. These threats were managed

7
Raman Kumar M.E DCE
(CTA-2007-09)

by keeping the computers behind locked doors and accounting scrupulously for

resources. Today computers are here, there and everywhere, including people's

private offices. Most computers are now connected into networks. So central

management isn't feasible and security is harder to manage. Much harder.

3. Messages and electronic files now move along insecure networks, not

 just along dedicated lines.

 There is no security on the Internet. And even an internal LAN can be broken

into if there's just one insecure dial-in modem.

4. Faxes have proved hard to manage for sending confidential material.

 It is difficult to maintain a 'need to know' system when anyone walking by a

fax machine can glance at what comes in. Also, faxes are sometimes sent to

the wrong number. And fax interception is now technically simple -- even

broadband fax interception from satellite or microwave links. Some fax

systems are now sold that encrypt the transmission, but they can leave a

manager hovering near the fax machine and waiting for an incoming call --

because the message still comes out in plain view. A smarter system is

proving to be point-to-point encryption for email.

1.7 Need of Encryption
 As you've learned by now, your transmissions can have only so much

physical security. It is reasonable to assume that at some point someone may

intercept your transmissions. Whether you expect an interception or whether you

just generally suspect that interceptions may occur, you should transmit your

information in a format that is useless to any interceptors. At the simplest level,

this means when transmitting a message to someone, you use a coded message

or slang (nicknames) that no one else understands. When Ulysses S. Grant

captured Vicksburg during the Civil War, he sent a coded but predetermined

message to Abraham Lincoln that read "The father of waters flows unsexed to

the sea," meaning that the Union now owned the whole Mississippi river.

Perhaps a good plan at the time, but still, Grant and Lincoln (or their

advisers/confidantes) had to communicate a predetermined message and the

8
Raman Kumar M.E DCE
(CTA-2007-09)

message's meaning. A more recent example of a coded message might involve

the use of nicknames. For instance, you and your sister give nicknames to family

members whom you discuss unfavorably. Should a malicious family member

decide to intercept a transmission, you would hope he wouldn't understand

which family members you and your sister refer to in your messages. The

obvious drawback of this coded message, like the Grant-Lincoln message, is that

you and the recipient must establish a system of code before you begin

transmitting messages. [4]

 A better system is one that allows you to send any message, even one you had

not anticipated, to anyone without fear of interception. This is why an

encryption system is so valuable; it allows any message to be transmitted that

will be useless to anyone who intercepts it. [23]

9
Raman Kumar M.E DCE
(CTA-2007-09)

Chapter:-2 Literature Review

 A Detailed literature survey shows that there has been a lot of work

done in the field of data security system, especially microcontroller in assembly

language and hardware design System such as parallel, sequential and digit-

serial and there is a great need to improve the Tiny algorithm for the

independent platform.[2]

 Earlier research’s proposed TEA algorithm implement in C language and

hardware encryption core such as radio frequency identification (RFID) usually

employ public – key algorithm and Assembly language for microcontrollers.

The concept of Tiny Encryption Algorithm was given by P. Israsena [1]. The

TEA is updated and modified various researchers so that it can be used in

different applications.

 Research Study

The Tiny Encryption Algorithm (TEA) is a cryptographic algorithm designed

by Wheeler and Needham (1994). It is designed to minimize memory footprint

and maximize speed.[1] This research presents the cryptanalysis of the Tiny

Encryption Algorithm based on the differential cryptanalysis proposed by

Biham and Shamir (1992) and related-key cryptanalysis proposed by Kelsey,

Schneier, and Wagner (1997) [22].

2.1 Symmetric Cryptography Algorithms

 2.2.1 Introduction

 Symmetric or secret key, cryptography has been in use for thousands of years

and includes any form where the same key is used both to encrypt and to

decrypt the text involved. One of the simplest forms is sometimes known as the

Caesar cipher -- reputedly used by Julius Caesar to conceal messages -- in which

the process is simply one of shifting the alphabet so many places in one

direction or another. The example given in part 1 of HAL/IBM is in exactly this

10
Raman Kumar M.E DCE
(CTA-2007-09)

form with the key being the instruction to shift one letter forwards to decrypt. In

this trivial example, the decryption key is a mirror image rather than a replica of

the encryption key, but that doesn't vitiate the classification as a symmetric

mechanism. [1]

 A variation on this simple scheme involves using an arbitrarily ordered

alphabet of the same length as the one used for the plain text message. In this

case the key might be a long sequence of numbers such as 5, 19, 1, 2, 11 ...[13]

indicating that A would map to E, B to S, C to A, D to B, E to K and so on -- or

it might be one of a number of more or less ingenious schemes involving letters

taken from, say, sentences of particular novels. Such systems are ludicrously

weak, of course, and modern systems use sophisticated algorithms based on

mathematical problems that are difficult to solve and so tend to be very strong.

[3]

 Unlike the situation in asymmetric cryptography where there is a public

element to the process and where the private key is almost never shared,

symmetric cryptography normally requires the key to be shared and

simultaneously kept secret within a restricted group. It's simply not possible for

a person who views the encrypted data with a symmetric cipher to be able to do

so without having access to the key used to encrypt it in the first place. If such a

secret key falls into the wrong hands, then the security of the data encrypted

using that key is immediately and completely compromised. [4]Hence, what all

systems in this group of secret key methods share is the problem of key

management, something discussed in more detail in the feature on practical

implications (to follow shortly in the series). [22]

 Reference is often made to keys of particular bit lengths, such as 56-bit or 128-

bit. These lengths are those for symmetric key ciphers, while key lengths for at

least the private element of asymmetric ones are considerably longer. Further,

there is no correlation between the key lengths in the two groups except

incidentally through the perceived level of security which a given key length

might offer using a given system. However, Phil Zimmermann, originator of the

extremely efficient and important software package known as Pretty Good

Privacy (PGP), suggests than an 80-bit symmetric key might approximately

11
Raman Kumar M.E DCE
(CTA-2007-09)

equate in security terms at the present moment to a 1024-bit asymmetric key; [5]

to gain the security offered by a 128-bit symmetric key, one might need to use a

3000-bit asymmetric key. Others will certainly take issue with some of those

comparisons as well as, no doubt, with the attempt even to make them.

 Within any particular group, however, the length of the key used is generally a

significant element in determining security. Further, key length is not linear but

doubles with each additional bit. Two to the power two is four; to the power

three is eight, to the power four sixteen, and so on. Giga Group offers a

homespun analogy suggesting that if a teaspoon were sufficient to hold all

possible 40-bit key combinations, it would take a swimming pool to hold all 56-

bit key combinations, while the volume to hold all possible 128-bit key

combinations would be roughly equivalent to that of the earth. [8] A 128-bit

value, rendered in decimal, is approximately 340 followed by 36 zeros.

2.1.2 TEA, AES/Rijndael (Advanced Encryption Standard) ,

DES (Digital Encryption Standard), Symmetric Algorithms

Tiny Encryption Algorithm

Wheeler et al. (1994) at the computer laboratory of Cambridge

University developed the TEA encode routine. Figure 2.1 presents the TEA

encode routine in C language where the key value is stored in k[0] – k[2] and

data are stored in v[0] – v[1]. P.israsena (1)

AES/Rijndael encryption

 AES stands for Advanced Encryption Standard. AES is a symmetric key

encryption technique which replaces the commonly used Data Encryption

Standard (DES). It was the result of a worldwide call for submissions of

encryption algorithms issued by the US Government's National Institute of

Standards and Technology (NIST) in 1997 and completed in 2000.

The winning algorithm, Rijndael, was developed by two Belgian cryptologists,

12
Raman Kumar M.E DCE
(CTA-2007-09)

Vincent Rijmen and Joan Daemen. AES provides strong encryption and was

selected by NIST as a Federal Information Processing Standard in November

2001 (FIPS-197).[2] The AES algorithm uses three key sizes: a 128-, 192-, or

256-bit encryption key. Each encryption key size causes the algorithm to behave

slightly differently, so the increasing key sizes not only offer a larger number of

bits with which you can scramble the data, but also increase the complexity of

the cipher algorithm.[3]

Data Encryption Standard (DES)

The earliest standard that defines the algorithm (ANS X9.52, published

in 1998) describes it as the "Triple Data Encryption Algorithm (TDEA)" — i.e.

three operations of the Data Encryption Algorithm specified in ANSI X3.92 —

and does not use the terms "Triple DES" or "DES" at all. FIPS PUB 46-3 (1999)

defines the "Triple Data Encryption Algorithm (TDEA)", but also uses the terms

"DES" and "Triple DES". It uses the terms "Data Encryption Algorithm" and

"DES" interchangeably, including starting the specification with. [4]

 Data Encryption Standard (DES) is a block cipher with 64-bit block size that

uses 56-bit keys. DES was invented over 20 years ago by IBM in response to a

public request from the National Bureau of Standards. Due to recent advances in

computer technology, some experts no longer consider DES secure against all

attacks; since then Triple-DES (3DES) has emerged as a stronger method. Using

standard DES encryption, Triple-DES encrypts data three times and uses a

different key for at least one of the three passes giving it a cumulative key size

of 112-168 bits [2].

2.1.3 Symmetric Encryption vulnerabilities

Breaking symmetric Encryption

 There are two methods of breaking symmetric encryption - brute force and

cryptanalysis. Brute Force Attack is a form of attack in which each possibility is

tried until success is obtained. Typically, a cipher text is deciphered under

different keys until plaintext is recognized. No encryption software that is

13
Raman Kumar M.E DCE
(CTA-2007-09)

entirely safe from the brute force method, but if the number of possible keys is

high enough, it can make a program astronomically difficult to crack using brute

force. But the more bits in a key, the more secure it is, so choose software with

as many bits as possible. Cryptanalysis is a form of attack that attacks the

characteristics of the algorithm to deduce a specific plaintext or

The key used.

Weak passwords

 In every kind of encryption software, there is some kind of password that must

be created so that the recipients of the information can read it. Creating a strong

password that cannot be easily guessed is just as important as choosing a good

algorithm or strong encryption software.

 Remembering passwords

 If you forget your password, you will not be able to decrypt data that you have

encrypted. Be sure to make a backup copy of your password and store

It in a safe place. [22]

 Secret keys exchanging and storing

 Symmetric key algorithms require sharing the secret key - both the sender and

the receiver need the same key to encrypt or decrypt data. Anyone who knows

the secret key can decrypt the message. So it is essential that the sender and

receiver have a way to exchange secret keys in a secure manner. The weakness

of symmetric algorithms is that if the secret key is discovered, all messages can

be decrypted.

14
Raman Kumar M.E DCE
(CTA-2007-09)

CHAPTER: - 3 Proposed Approach

3.1Background and Motivation

 Background many symmetric block ciphers have been presented in recent

years. The Tiny encryption Algorithm (TEA) (Wheeler et al., 1994) is a

compromise for safety, ease of implementation, lack of specialized tables, and

reasonable performance. TEA can replace 1 Design software, and is short enough to

integrate into almost any program on any computer. Some attempts have been made

to find weakness of the Tiny Encryption Algorithm.[5] The motivation of this

research is to study and implement the proposed attacks on TEA to determine

whether such attempts are practically feasible. [2] Tiny Encryption Algorithm the

Tiny Encryption Algorithm is a Feistel type cipher (Feistel, 1973) that uses

operations from mixed (orthogonal) algebraic groups. A dual shift causes all bits of

the data and key to be mixed repeatedly. The key schedule algorithm is simple; the

128-bit key K is split into four 32-bit blocks K = (K [0], K[1], K[2], K[3]). TEA

seems to be highly resistant to differential cryptanalysis (Biham et al., 1992) and

achieves complete diffusion (where a one bit difference in the plaintext will cause

approximately 32 bit differences in the cipher text). Time performance on a

workstation is very impressive. [9]

The Tiny Encryption Algorithm is one of the fastest and most efficient

cryptographic algorithms in existence. It was developed by David Wheeler and

Roger Needham at the Computer Laboratory of Cambridge University. It is a

Feistel cipher which uses operations from mixed (orthogonal) algebraic groups –

XOR, ADD and SHIFT in this case. This is a very clever way of providing

Shannon’s twin properties of diffusion and confusion which are necessary for a

secure block cipher, without the explicit need for P-boxes and S-boxes

respectively. It encrypts 64 data bits at a time using a 128-bit key[14]. It seems

highly resistant to differential cryptanalysis, and achieves complete diffusion

(where a one bit difference in the plaintext will cause approximately 32 bit

differences in the ciphertext) after only six rounds. Performance on a modern

desktop computer or workstation is very impressive You can obtain a copy of

15
Raman Kumar M.E DCE
(CTA-2007-09)

Roger Needham and David Wheeler’s original paper describing TEA, from the

Security Group ftp site at the world-famous Cambridge Computer Laboratory at

Cambridge University. There’s also a paper on extended variants of TEA which

addresses a couple of minor weaknesses (irrelevant in almost all real world

applications), and introduces a block variant of the algorithm which can be even

faster in some circumstances.[17]

 Motivation

 Motivation As computer systems become more pervasive and complex,

security is increasingly important. Cryptographic algorithms and protocols

constitute the central component of systems that protect network transmissions

and store data. The security of such systems greatly depends on the methods

used to manage, establish, and distribute the keys employed by the

cryptographic techniques. Even if a cryptographic algorithm is ideal in both

theory and implementation, the strength of the algorithm will be rendered

useless if the relevant keys are poorly managed. State of the art Cryptography is

the art and science behind the principles, means, and methods for keeping

messages secure. [2]Cryptanalysis is a study of how to compromise (defeat)

cryptographic mechanism. There are two classes of key-based encryption

algorithms: symmetric (or secret-key) and asymmetric (or public-key)

algorithms. Symmetric algorithms use the same key for encryption and

decryption, whereas asymmetric algorithms use different keys for encryption

and decryption. Ideally it is infeasible to compute the decryption key from the

encryption key. Symmetric algorithms can be divided into stream ciphers and

block ciphers. Stream ciphers encrypt a single bit of plain text at a time, whereas

block ciphers take a number of bits (say 64 bits), and encrypt them as a single

unit. Symmetric encryption is the backbone of many secure communication

systems. Dozens of symmetric algorithms have been invented and implemented,

both in hardware and software. [6]

Background many symmetric block ciphers have been presented in recent years.

The Tiny Encryption Algorithm (TEA) (Wheeler et al., 1994) is a compromise

for safety, ease of implementation, lack of specialized tables, and reasonable

performance. [16]TEA can replace design software, and is short enough to

integrate into almost any program on any computer. Some attempts have been

made to find weakness of the Tiny Encryption Algorithm. The motivation of this

16
Raman Kumar M.E DCE
(CTA-2007-09)

research is to study and implement the proposed attacks on TEA to determine

whether such attempts are practically feasible [9]

3.2 TEA Encryption and Decryption algorithm

 Wheeler et al. (1994) at the computer laboratory of Cambridge

University developed the TEA encode routine. Presents the TEA encode routine

in C language where the key value is stored in k[0] – k[2] and data are stored in

v[0] – v[1]. [1]

3.2.1 Encryption Routine

void code (long* v, long* k) {

unsigned long y = v[0], z = v[1], sum = 0, /* set up */

delta = 0x9e3779b9, n = 32; /* a key schedule constant */

while (n-->0) {/* basic cycle start */

sum += delta;

y += (z<<4)+k[0] ^ z+sum ^ (z>>5)+k[1] ;

z += (y<<4) +k [2] ^ y+sum ^ (y>>5) +k [3]; /* end cycle */

}

v [0] = y ; v[1] = z ; }

17
Raman Kumar M.E DCE
(CTA-2007-09)

Figure 3.1 The abstract structure of TEA encryption routine.

Figure 3.1 shows the structure of the TEA encryption routine. [1] The inputs

to the encryption algorithm are a plaintext block and a key K .The plaintext is P

= (Left [0], Right [0]) and the cipher text is C = (Left [64], Right [64]). The

plaintext block is split into two halves, Left [0] and Right [0]. Each half is used

18
Raman Kumar M.E DCE
(CTA-2007-09)

to encrypt the other half over 64 rounds of processing and then combine to

produce the cipher text block [1].

• Each round i has inputs Left [i-1] and Right [i-1], derived from the previous

round, as well as a sub key K[i] derived from the 128 bit overall K.

• The sub keys K[i] are different from K and from each other.

• The constant delta =31(51)*2- =, is derived from the golden h9E3779B9 number

ratio to ensure that the sub keys are distinct and its precise value has no

cryptographic significance.

• The round function differs slightly from a classical Fiestel cipher structure in

that integer addition modulo 2³² is used instead of exclusive-or as the

combining Operator.

Figure 3. 2 present the internal details of the ith cycle of TEA. The round

function, [2] F consists of the key addition, bitwise XOR and left and right shift

operation. We can describe the output (Left [i +1] , Right[i +1]) of the ith cycle

of TEA with the input (Left[i] ,Right[i]) as follows [2]

Left [i+1] = Left[i] F (Right[i], K [0, 1], delta[i]),

Right [i +1] = Right[i] F (Right [i +1], K [2, 3], delta[i]),

delta[i] = (i +1)/2 * delta,

19
Raman Kumar M.E DCE
(CTA-2007-09)

Figure 3.2 An abstraction of i-th cycle of TEA

The round function, F, is defined by

F (M, K [j,k], delta[i]) = ((M << 4) K[j]) ⊕ (M delta[i]) ⊕ ((M >> 5) K[k]).

The round function has the same general structure for each round but is

parameterized by the round sub key K[i]. The key schedule algorithm is simple;

the 128-bit key K is split into four 32-bit blocks K = (K[0], K[1], K[2], K[3]).

20
Raman Kumar M.E DCE
(CTA-2007-09)

The keys K[0] and K[1] are used in the odd rounds and the keys K[2] and K[3]

are used in even rounds.

3.2.2 Decryption Routine

Void decode (long* v, long* k) {

Unsigned long n = 32, sum, y = v[0], z = v[1],

delta = 0x9e3779b9;

sum = delta<<5;

/* start cycle */

while (n-->0) {

z - = (y<<4) +k [2] ^ y+sum ^ (y>>5) +k [3];

y -= (z<<4) +k [0] ^ z+sum ^ (z>>5) +k [1];

sum -= delta;}

/* end cycle */

v [0] = y ; v[1] = z ; }

Decryption is essentially the same as the encryption process; in the decode

routine the cipher text is used as input to the algorithm, but the sub keys K[i] are

used in the reverse order.[1]

21
Raman Kumar M.E DCE
(CTA-2007-09)

Figure 3.3 The abstract structure of TEA decryption routine.

Figure 3.3. Presents the structure of the TEA decryption routine.[2] The

intermediate value of the decryption process is equal to the corresponding value

of the encryption process with the two halves of the value swapped.

 For example, if the output of the nth encryption round is [2]

ELeft[i] || ERight[i] (ELeft[i] concatenated with ERight[i]).

Then the corresponding input to the (64-i) th decryption round is

DRight[i] || DLeft[i] (DRight[i] concatenated with DLeft[i]).

After the last iteration of the encryption process, the two halves of the output are

swapped, so that the cipher text is ERight[64] || ELeft[64], the output of that

round is the final cipher text C. Now this cipher text is used as the input to the

22
Raman Kumar M.E DCE
(CTA-2007-09)

decryption algorithm. The input to the first round is ERight [64] || ELeft [64],

which is equal to the 32-bit swap of the output of the 64
th

round of the

encryption process.

3.2.3 Basics of the routine

It is a Festal type routine although addition and subtraction are used as

the reversible operators rather than XOR. The routine relies on the alternate use

of XOR and ADD to provide no linearity. A dual shift causes all bits of the key

and data to be mixed repeatedly.

The number of rounds before a single bit change of the data or key has spread

very close to 32 is at most six, so that sixteen cycles may suffice and we suggest

32. The key is set at 128 bits, as this is enough to prevent simple search

techniques being effective.

The top 5 and bottom four bits are probably slightly weaker than the middle bits.

These bits are generated from only two versions of z (or y) instead of three, plus

the other y or z. Thus the convergence rate to even diffusion is slower. However

the shifting evens this out with perhaps a delay of one or two extra cycles.

The key scheduling uses addition, and is applied to the unshifted z rather than

the other uses of the key. In some tests k [0] etc. were changed by addition, but

this version is simpler and seems as effective. The number delta, derived from

the golden number is used where delta = A different multiple of

delta is used in each round so that no bit of the multiple will not change

frequently. We suspect the algorithm is not very sensitive to the value of delta

and we merely need to avoid a bad value. It will be noted that delta turns out to

be odd with truncation or nearest rounding, so no extra precautions are needed to

ensure that all the digits of sum change.

The use of multiplication is an effective mixer, but needs shifts anyway. It was

about twice as slow per cycle on our implementation and more complicated. The

use of a table look up in the cycle was investigated. There is the possibility of a

delay ere one entry of the table is used. For example if k [z&] is used instead of

k[0], there is a chance one element may not be used of , and a much

23
Raman Kumar M.E DCE
(CTA-2007-09)

higher chance that the use is delayed appreciably. The table also needed

preparation from the key. Large tables were thought to be undesirable due to the

set up time and complication. The algorithm will easily translate into assembly

code as long as the exclusive or is an operation. The hardware implementation is

not difficult, and is of the same order of complexity as DES, taking into account

the double length key.

3.2.4 A Security Algorithm TEA

There has been no known successful cryptanalysis of TEA. It's believed

to be as secure as the IDEA algorithm, designed by Massey and Xuejia Lai. It

uses the same mixed algebraic group’s technique as IDEA, but it's very much

simpler, hence faster. Also its public domain, whereas IDEA is patented by

Ascom-Tech AG in Switzerland. IBM's Don Coppersmith and Massey

independently showed that mixing operations from orthogonal algebraic groups

performs the diffusion and confusion functions that a traditional block cipher

would implement. As a simple plug-in encryption routine, it's great. The code is

lightweight and portable enough to be used just about anywhere. It even makes a

great random number generator for Monte Carlo simulations and the like. The

minor weaknesses identified by David Wagner at Berkeley are unlikely to have

any impact in the real world, and you can always implement the new variant

TEA which addresses them. If you want a low-overhead end to- end cipher (for

real-time data, for example), then TEA fits the bill.

24
Raman Kumar M.E DCE
(CTA-2007-09)

3.3 Proposed work

 The TEA can also be used in such open system under special

arrangement similar to that proposed by Xingxin Gao[2] a TEA based system

may be adopted to implement the hash function at the expense of an increase in

overall system complexity, and addition requirement such as RAM.

 This thesis is purposed to attempt the implementation of TEA algorithm using

secret - key in java core for secure file system with base on cryptography. Java

is independent platform.

3.4 Implementation

3.4.1 Requirement to implement new algorithm

 The new algorithm (TEA) was implemented using JDK1.4. The

algorithm is implemented using java language that’s why it can run on any

operating system which has java runtime environment.
Implementation uses the design document to produce code. Demonstration that

the program satisfies its specifications validates the code. Typically, sample runs

of the program demonstrating the behavior for expected data values and

boundary values are required. It may take several iterations of the model to

produce working program.

Data for encryption and decryption is 64-datablock, and 128 bit keys. Keys

which is used have define both in client and server , so that it doesn’t need to

distributed of key A simple improvement is to copy k[0-3] into a,b,c,d before the

iteration so that the indexing is taken out of the loop. In one implementation it

reduced the time by about 1/6th.

25
Raman Kumar M.E DCE
(CTA-2007-09)

Java was chosen

The Java platform (JDK 1.4) was used to implement the TEA algorithms. The

following are some of the main reasons below.

* Java is considered platform independent because Java compiler produces byte

code rather than machine code for a specific type of hardware - this feature of

Java makes sure that the programs will run on any platform (with Java

interpreter). Thus, the implemented algorithms can be tested on a variety of

platforms for comparison purposes.* Java (in particular JDK 1.4) provides a

large library of built-in classes and methods (in the form of API) that assist the

programmer in writing code for cryptographic algorithms. For example, the

BigInteger class in Java lets the programmer apply arithmetic and bit

manipulation operations on integer values of arbitrarily large sizes.

* Conversion from integer to string and vice versa, and Likewise conversion of

integer values from one radix to another is relatively easier in Java due to the

built-in routines provided for this purpose. For instance, one frequently needs to

convert a decimal value to binary or hexadecimal, and vice versa.

* The concepts of object serialization and stream input/output make it easy to

read and write objects to external disk files however, using Java to implement

cryptography algorithms has some drawbacks as well. The main drawback of

using Java is its slow speed - this is because Java compiler does not generate

native machine code, rather it produces an intermediate form code (called byte

code) which needs an interpreter to run. This could have been a concern because

the performance of various algorithms had to be tested, but the effect of

inefficiency was balanced out because all the algorithms were implemented in

the same language (Java) and were tested on the same platform. As mentioned

earlier, the primary goal of this research was not to have the most efficient

implementation of cryptography algorithms – but just to compare the relative

performance of various popular algorithms. So the algorithms were implemented

as is, using a uniform language, and were tested on a uniform platform. Each of

the above algorithms was implemented as a Java class. In the subsequent

26
Raman Kumar M.E DCE
(CTA-2007-09)

sections, for each algorithm, a description of the instance variables and the

implemented methods is provided.

Tests

A few tests were run to detect when a single change had propagated to 32

changes within a small margin. Also some loop tests including a differential

loop test to determine loop closures.

A considerable number of small algorithms were tried and the selected one is

neither the fastest, nor the shortest but is thought to be the best compromise for

safety, ease of implementation, lack of specialized tables, and reasonable

performance. On languages, which lack shifts and XOR, it will be difficult to

code. Standard C does makes an arithmetic right shift and overflows

implementation dependent so that the right shift is logical and y and z are

unsigned.

Usage

This type of algorithm can replace DES in software, and is short enough to write

into almost any program on any computer. Although speed is not a strong

objective with 32 cycles (64 rounds) on one implementation it is three times as

fast as a good software implementation of DES which has 16 rounds.

The modes of use of DES are all applicable. The cycle count can readily be

varied, or even made part of the key. It is expected that increasing the number

of iterations can enhance security.

Analysis

The shifts and XOR cause changes to be propagated left and right, and a single

change will have propagated the full word in about 4 iterations. Measurements

showed the diffusion was complete at about six iterations.

There was also a cycle test using up to 34 of the bits to find the lengths of the

cycles. A more powerful version found the cycle length of the differential

function. D(x) =f(x XOR 2) XOR f(x) which may test the resistance to some

forms of differential crypto-analysis.

27
Raman Kumar M.E DCE
(CTA-2007-09)

Chapter:-4 Conclusion and Future
 Work

 The principal goal guiding the implementation of tiny Encryption

Algorithm must be security file system against unauthorized attack .The Tiny

Encryption Algorithm is thought to be one of the fastest and most efficient

cryptographic algorithms. TEA is a Feistel cipher that uses only XOR, ADD and

SHIFT operations to provide Shannon's properties of diffusion and confusion

necessary for a secure block cipher without the need for P-boxes and S-boxes.

TEA operates on a 64-bit data block using a 128-bit key and can achieve

complete diffusion after six rounds. Earlier research’s proposed TEA algorithm

implement in C language, and hardware encryption core such as radio frequency

identification (RFID)design for parallel , serial and digit serial architecture

using public –key and microcontrollers in Assembly language.

 For software implementation, the java core code is used and portable and

therefore particularly suits real-time applications. . Although TEA has a few

weaknesses, most notably from equivalent keys and related-key attacks the

former is the weakness that led to a method for hacking. This technique is

successfully applied over reduce round version of the block cipher TEA. This

thesis purposed is based on securing file system so that it can be applicable on

applications such as banking and online Transaction processing. At last this

thesis is an attempt to implement the TEA algorithm using secret-key in java

core for secure file system with base on cryptography.

 A proposed direction for the future work could be to analyze the performance

/security trade -off of great depth for instance , an algorithm with more complex

round and large Number of round is generally consider more secure .the impact

of these and other such factor on the overall performance of an algorithm needs

to be measured .For future enhancement to this application public key

encryption can be applied where two keys can be generated: one to encrypt a file

using the public key and another private key to decrypt it. Also, other more

advanced encryption operations can be included to enhance the security of the

28
Raman Kumar M.E DCE
(CTA-2007-09)

application so that it can be used to encrypt more sensitive administrative

material.

 Some other software package and different algorithm technique may also be

chosen for further study to encryption and decryption of data can be applied for

other application such as Digital Signatures’, Mutual Authentication, and Secure

data transmission. Adding graphical user interface for file location and file name

this project only supports command line.

29
Raman Kumar M.E DCE
(CTA-2007-09)

REFERENCES:

[1] P. Israsena IEEE 2005 “Design and Implementation of Low Power

 Hardware Encryption for Low Cost Secure RFID Using TEA” page

no 1402 to 1406.

[2] Xingxin Gao, Zhe Xiang, Hao Wang, Jun Shen, Jian Huang, and

 Song ,An approach to security and privacy of RFID system for supply

 chain,2004 IEEE International Conference on E-Commerce

 Technology for Dynamic E-Business, pp. 164 - 168, Sept. 2004

[3] Eka Suwartadi, Candra Gunawan, Ary Setijadi P, Carmadi Machbub “

 First Step Toward Internet Based Embedded Control System” page

 1226-1231. 2005 5TH Asian Control Conference.

[4] S.A Weis, "RFID privacy workshop," IEEE Security & Privacy

 Magazine, Issue 2, vol.2, pp. 48-50, Mar-Apr 2004

[5] Stephan J Engberg, Morten B Harning, and Christian D Jensen,

 Zero- Knowledge Device Authentication: Privacy & Security Enhanced

RFID preserving Business Value and Consumer Convenience,"

Proceedings of second annual conference on Privacy,

[6] Security and Trust, pp. 89-101, Brunwick, Canada, October 13-15,

2004.

 [7] Philippe Golle, Markus Jacobson, Ari Juel, and Paul Syverson,

"Universal Re-encryption for Mixnets," Proc. RSA Conference

Cryptographers' Track '04, pp. 163-178, 2004

[8] S. Liu, O.V. Gavrylyako, P.G. Bradford, "Implementing the TEA

algorithm on Sensors", ACMSE '04, April 2-3, 2004.

[9] Julio Cesar Hernandez, Pedro Isasi IEEE 2003“Finding efficient

distinguishers for cryptographic mappings, with an application to the

block cipher TEA page 2189- 2193.

[10] Sozo Inoue and Hiroto Yasuura, "RFID Privacy Using User-

controllableniqueness," Proc. RFID Privacy Workshop, MIT,

Massachusetts, November 15,2003.

[11] Finkenzeller, RFID-Handbook, 2nd edition -Fundamentals and

Applications in Contactless

30
Raman Kumar M.E DCE
(CTA-2007-09)

[12] Moon, D., Hwang, K., Lee, W., Lee, S., & Lim, J. (2002). Impossible

differential cryptanalysis of reduced round XTEA and TEA. In Fast

Software Encryption –Proceedings of the 9th International

Workshop

[13] Dukjae Moon, Kyungdeok Hwang, Wonil Lee, Sangjin Lee and

Jongim Lim. Impossible Differential Clyptanalysis of Reduced Round

XTEA and TEA. Fast Software Encryption, FSE 2002, Leuven,

Belgium, February 4-6, 2002. Springer LNCS, v.2365. pp 49-60

[14] F. Akyildiz, W. Su, E. Cayirci, Y. Sankarasubramaniam, "A

Survey on Sensor Networks", IEEE communications magazine, Aug

2002.

[15] Steve Bono, Matthew Green, Adam Stubblefield, Ari Juels, Avi

Rubin, and Michael Szydlo,"Security Analysis of a Cryptographically-

Enabled RFID Device," Draft academic paper

http://www.rfidanalysis.org

[16] H. Qi, S. Sitharama Iyengar, K. Chakarabarty, "Distributed sensor

networks- a review of recent research", Journal of the Franklin

Institute, 2001

[17] Stephen A Weis, Sanjay E Sarma, Ronald L Rivest, and Daniel W

Engels, "Security and Privacy Aspects of Low-Cost Radio Frequency

Identification Systems," Proc. First International Conference on

Security in Pervasive Computing, Boppard, Germany, March 12-14,

2003

[18] John Kelsey, Bruce Schneier, David Wagner Mod n cryptoanalysis

with applications against RC5P and M6, Proceedings of the 1999

Fast Software Encryption Workshop, pp. 139-155 Springer-Verlag.

1999.

 [19] The Complete Reference Java2 by H. Schildt.

[20] http://java.sun.com/j2se

[21] http://javaworld.com

[22] http:// www.cs.utexas.edu/tutorial/index.html

31
Raman Kumar M.E DCE
(CTA-2007-09)

[23] Cryptanalysis of the TINY Encryption Algorithm by VIKRAM REDDY

ANDEMTUSCALOOSA, ALABAMA 2003 1-61pages

Appedix-1

Data Flow Diagram of File Encryption System

32
Raman Kumar M.E DCE
(CTA-2007-09)

 Diagrams for Encryption and Decryption of Data Flow

There are two aspects to consider when planning for transmission

security. The first aspect, discussed in the preceding paragraph, is how

transmissions are physically sent (that is, over wire or air). The

impossibility of preventing physical interception should now be clear. The

second aspect of secure transmission relates to the content that is being

transmitted. Securing the content of the message is done through

encryption.

Encryption involves transforming messages to make them legible only for

the intended recipients. Encryption is the process of translating plain text

into ciphertext. Human-readable information intended for transmission is

plain text, whereas ciphertext is the text that is actually transmitted. At

the other end, decryption is the process of translating ciphertext back

into plain text. Encryption algorithm refers to the steps that a personal

computer takes to turn plain text into ciphertext. A key is a piece of

information, usually a number that allows the sender to encode a

message only for the receiver. Another key also allows the receiver to

decode messages sent to him or her.

 Source [22] Figure 4.1 Encryption and Decryption of Data

33
Raman Kumar M.E DCE
(CTA-2007-09)

 Figure 4.2 Private Key and Public Key Encryption

34
Raman Kumar M.E DCE
(CTA-2007-09)

Appendix -2

Source Code

import java.io.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;
import java.applet.*;
import java.lang.*;

class GUI implements Action Listener

{
 JFrame f;

JPanel p;

 JTextField tf1;

 JButton b1,b2,b3,b4;

 JTextArea t;

 GUI()

 {
 f=new JFrame("File Encryption System");

 p=new JPanel();

 b1=new JButton("Encrypt");

 b2=new JButton("Decrypt");

b3=new JButton("Information");

b4=new JButton("Exit");

tf1=new JTextField(20);

 t=new JTextArea(10,30);

 f.getContentPane().add(p);

35
Raman Kumar M.E DCE
(CTA-2007-09)

p.add(b1);

p.add(b2);

p.add(b3);

p.add(b4);

p.add(tf1);

p.add(t);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

f.setVisible(true);

f.setSize(300,300);

}

 public void actionPerformed(ActionEvent ae)

{

tf1.setText(ae.getActionCommand());

if (ae.getSource() == b1)

{

// perform action for button b1

tf1.setText("encryption begin");

byte[] theFile;

String txt = JOptionPane.showInputDialog("Please enter the path of the file: ");

byte[] readFromFile = null;

try
{

FileInputStream in = new FileInputStream(txt);

36
Raman Kumar M.E DCE
(CTA-2007-09)

readFromFile = new byte[in.available()];

in.read(readFromFile);

in.close();

}

catch(IOException e)

{

t.setText("sorry - file not found");

System.out.println("\nSorry - file not found! You might have entered the wrong
location\n"+ "\n Do the procedure again \n" + "\n Project Made By Raman
Kumar CTA (ME) DCE -07 \n");

System.exit(0);

}

theFile=readFromFile;

String key = JOptionPane.showInputDialog ("Enter your key (the longer the
better):");

// This is an update from previous versions
// Decided it would be easier to put
// encryption stuff in to a class
// ------------------------------------

Encryption = new Encryption (theFile,key);

// encrypt file
// ------------

 encryption.encrypt();

// get encrypted file bytes and save it
// ------------------------------------

byte[] to Save=encryption.getFileBytes();

String text = "";

String tx = JOptionPane.showInputDialog("Enter file name: ");

try

37
Raman Kumar M.E DCE
(CTA-2007-09)

{

FileOutputStream out = new FileOutputStream(tx);

out.write(toSave);

out.close();

}
catch(IOException e)
{

t.setText("Sorry, but there seems to have been a problem" + "saving your file.
Perhaps your hard-drive is full\n" + "or the write permissions need to be
changed\n");
}

t.setText("\nYour file has been encrypted and saved\n");

 }

else if (ae.getSource() == b2)

{

// perform action for button b2

tf1.setText("decryption begin");

byte[] theFile;

String txx = JOptionPane.showInputDialog ("Please enter the path of the file: ");

byte[] readFromFile = null;

try

{

FileInputStream in = new FileInputStream (txx);

readFromFile = new byte[in. available()];

in.read(readFromFile);

in.close();

}

catch(IOException e)

38
Raman Kumar M.E DCE
(CTA-2007-09)

{

t.setText("\nSorry - file not found!\n");

System.out.println("\nSorry - file not found! You might have entered the wrong
location\n"+ "\n Do the procedure again \n" + "\n Project Made By ‘Raman
Kumar, CTA(M.E) DCE. -07 \n");

System.exit(0);

}

theFile=readFromFile;

JPasswordField pf = new JPasswordField("Enter the key: ");

String key = JOptionPane.showInputDialog("Enter the key: ");

Encryption encryption = new Encryption(theFile,key);

encryption.decrypt();

byte[] toSave=encryption.getFileBytes();

String text = "";

String txtt = JOptionPane.showInputDialog("Enter file name: ");

try

{

FileOutputStream out = new FileOutputStream(txtt);

out.write(toSave);

out.close();

 }

catch(IOException e)

{

t.setText("Sorry, but there seems to have been a problem\n" +"saving your file.
Perhaps your hard-drive is full\n" +"or the write permissions need to be
changed\n");

}

39
Raman Kumar M.E DCE
(CTA-2007-09)

t.setText("\nYour file has been decrypted and saved\n");

 }

else if (ae.getSource() == b3)

{

tf1.setText ("information regarding encryption algo......");

t.setText ("\n\important info on key choice: \n\n" + "The longer the key, the
better. This program\n" +"implements a key expansion algorithm that given\n"
+"an average length of user-entered key is almost\n" +"analogous to the one-
time pad encryption method\n\n" +"For example: Use key length of 1: 128bit
encryption\n\n"+"Use key length of 2: 256bit encryption\n\n"+ "Use key length
of 8: 1024bit encryption\n\n"+"etc...\n\n\n");

}

else if (ae.getSource() == b4)

{

tf1.setText("choose to exit frm program");

t.setText("Bye Bye!");
System.out.println("\n THANKS FOR USING THIS APPLICATION \n" +
"\nProject Made By Raman Kumar CTA (M.E) DCE -07 \n");

System.exit(0);

}

}

 public static void main(String args[])

{

GUI g = new GUI();

}

}
import java.io.*;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.border.*;

40
Raman Kumar M.E DCE
(CTA-2007-09)

class Encryption
/***************/
{
 private String key;
 private char[] keys;
 private byte[] fileBytes;
 private byte[] fileBytez;
 private int pivot;
 private int inter;
 private long alpha;
 private long beta;
 private long gamma;
 private long delta;
 private long sumA;
 private long sumB;
 private long sumC;
 private long sumD;
 private byte[] fileBytesB;
 private int forLevel2;

 public Encryption(byte[] fileBytes,String key)
 {
 this.fileBytes = fileBytes;
 this.key = key;

// Stick the key in to a character array
// This is so the file bytes can be offset with
// the characters as defined by the overall //algorithm when either encrypting or
decrypting
// --

keys = new char[key.length()];

pivot = (int)(fileBytes.length/2);

// These long values are just random bits of //data junk that are added during the
encryption //process to add to the overall scrambling //capability I got this idea
from the TINY //encryption algorithm.

delta = 0x9e3779b9;

alpha = 0x7f2637c6;

beta = 0x5d656dc8;

gamma = 0x653654d9;

41
Raman Kumar M.E DCE
(CTA-2007-09)

// Shift the bits slightly (>> and << bitwise //operators) as determined by
characters in the key
// ---

sumA = (long)(alpha >> key.charAt(0));

sumB = (long)(beta << key.charAt(1));

sumC = (long)(gamma >> key.charAt(2));

sumD = (long)(delta >> key.charAt(3));

if (fileBytes.length%5 > 0)

{

inter = (int)((fileBytes.length-1)/5);

}

else inter = (int)(fileBytes.length/5);

// forLevel2 is used in the level2 method
// --------------------------------------

forLevel2 = key.length();

 }

 /**********************************/
 /* s o m e m e t h o d s */
/**********************************/

public void setFileBytes(byte[] newBytes)

 {

fileBytes = newBytes;

 }

public byte[] getFileBytes()

{
return fileBytes;
 }

 /*************************************/
 /* D o e s e x a c t l y w h a t */
 /* i t s a y s */

42
Raman Kumar M.E DCE
(CTA-2007-09)

 /*************************************/

public void encrypt()
{

int f = 0;

boolean truth = true;

// Takes user key and makes a bigger one
// for added security
// ------------------------------------

key = keyStream();

keys = new char[key.length()];
for(int c = 0;c<key.length();c++)

{

keys[c] = key.charAt(c);

 }

System.out.println("\nEncrypting\n");

// the outer for loop ensure that the algorithm

// loops round a lot of time, so that

// the file is encrypted mutliple times

// --

for(int extra = 0;extra<127;extra++)

 {

for(int i = 0;i<fileBytes.length;i = i + keys.length)

{

if (truth == false)

break;

f = 0;

for(int j = i;j<i+keys.length;j++)

 {

43
Raman Kumar M.E DCE
(CTA-2007-09)

if(j>=fileBytes.length)

 {

truth = false;

break;

}

fileBytes[j] = (byte)((fileBytes[j] ^(keys[f] - 'A' << sumD)) ^ (keys[f] + sumD));

sumD - = delta;

f++;
 }

}

fileBytes = splitNSwap(fileBytes);

setFileBytes(fileBytes);

 }

setFileBytes(level2(fileBytes,true));

 }
public void decrypt()

{

setFileBytes(level2(fileBytes,false));

int f = 0;

boolean truth = true;

key = keyStream();

keys = new char[key.length()];

for(int c = 0;c<key.length();c++)

{

keys[c] = key.charAt(c);

 }

System.out.println("\nDecrypting\n");

44
Raman Kumar M.E DCE
(CTA-2007-09)

for(int extra = 0;extra<127;extra++)

 {

fileBytes = getFileBytes();

fileBytes = splitNSwap(fileBytes);
for(int i = 0;i<fileBytes.length;i = i + keys.length)

{

if (truth == false)

 break;

f = 0;

for(int j = i;j<i+keys.length;j++)

{

if(j>=fileBytes.length)

 {

truth = false;

break;

 }

fileBytes[j] = (byte)((fileBytes[j] ^(keys[f] - 'A' << sumD)) ^ (keys[f] + sumD));

sumD - = delta;

f++;

 }

}

setFileBytes(fileBytes);

}

}

 // To add to the confusion, this method basically
// takes the byte[] array as encrypted so far
// splits it in half and then swaps two halves //around i.e. a b c d e f would
become d e f a // b c

45
Raman Kumar M.E DCE
(CTA-2007-09)

// --

public byte[] splitNSwap(byte[] zeBytes)

{

if(zeBytes.length%2==0)

{

pivot = (int)(zeBytes.length/2);

}

else pivot = (int)((zeBytes.length-1)/2);

fileBytez = new byte[zeBytes.length];

for(int reverse = 0;reverse<pivot;reverse++)

{

fileBytez[reverse] = (byte)(zeBytes[reverse+pivot]^fileBytez[reverse]);

}

for (int reverseB = pivot;reverseB<zeBytes.length;reverseB++)

{

fileBytez[reverseB] = (byte)(zeBytes[reverseB - pivot]^fileBytez[reverseB]);

 }

setFileBytes(fileBytez);

return fileBytez;

}

 // if a long key is used and only some of //the key is correct then first part of
cipher text //ll still be decrypted so:
// (if you want to see the key that it produces //comment print statement)
// ---//-------------

public String scrambleKey(String toBeScrambledFurther)

{

46
Raman Kumar M.E DCE
(CTA-2007-09)

pivot = (int)(toBeScrambledFurther.length()/2);

String newKey = "";

String sub1 = "", sub2 = "";

for (int a = 0; a<pivot;a++)

{

sub1 += toBeScrambledFurther.charAt(a+pivot);

 }

for (int b = pivot; b<toBeScrambledFurther.length();b++)

{

sub2 += toBeScrambledFurther.charAt(b-pivot);

}

newKey = sub1+sub2;

//System.out.println(newkey);

return newKey;

 }

 // What is this function passed ?
 // Answer - basically two parameters - the first is
 // an array of bytes that need to be scrambled. //The second is a boolean - true if
the array is //being scrambled and false if being //descrambled etc.....
 // ---

public byte[] level2(byte[] oldBytes, boolean state)

{

if(state)

System.out.println ("Scrambling encrypted data");

else System.out.println("\nDescrambling encrypted data");

int s = forLevel2;

47
Raman Kumar M.E DCE
(CTA-2007-09)

int stop = oldBytes.length%s;

byte[] newBytes = new byte[oldBytes.length];

byte[] tempBytes = new byte[oldBytes.length-stop];

byte[] resultBytes = new byte[oldBytes.length];

byte[] remainderBytes = new byte[stop];

int hello = oldBytes.length-stop;

for (int old = 0;old<oldBytes.length-stop;old++)

 {

tempBytes[old] = oldBytes[old];

 }
for (int old = 0;old<stop;old++)

{

remainderBytes[old] = oldBytes[(oldBytes.length-stop+old)];

 }

if (state)

{

for (int outer = 0;outer<s;outer++)

 {

for (int c = outer;c<hello+outer;c+=s)

{

if(c+s<oldBytes.length)

 {

newBytes[c] = (byte)(oldBytes[c+s]-sumA);

newBytes[c+s] = (byte)(oldBytes[c]+sumB);

 }

48
Raman Kumar M.E DCE
(CTA-2007-09)

else break;

 }

 }

 }

else if (!state)

{

for (int outer = s-1;outer >=0;outer--)

 {

for(int c = (hello-1-outer);c>=0-outer;c-=s)

{

if(c-s>=0)

{

newBytes[c-s] = (byte)(oldBytes[c]-sumB);

newBytes[c] = (byte)(oldBytes[c-s]+sumA);

 }

else break;

}

if (outer <= 0)break;else continue;
 }

 }

for(int rep = 0;rep<newBytes.length;rep++)

{

resultBytes[rep]=newBytes[rep];

49
Raman Kumar M.E DCE
(CTA-2007-09)

}

for(int rep = 0;rep<remainderBytes.length;rep++)

{

resultBytes[rep]=remainderBytes[rep];

 }

setFileBytes(newBytes);

return newBytes;

}
 /* The keyStream() method takes the user key

 * and enlarges it to (key.length()*key.length()+

 * key.length())*128, in the following algorithmic method.

 * This improves security. I.e. longer keys are

 * much harder to crack

 */

 public String keyStream()

{

System.out.println("\nGenerating key stream\n");

String answer = key;

String thekey = key;

for(int i = 0;i<(thekey.length()*128);i++)

 {

answer = answer + getPart(thekey);

thekey = getPart(thekey);

 }

//answer = scrambleKey(answer);

50
Raman Kumar M.E DCE
(CTA-2007-09)

return answer;

}

 // KeyStream helper method
// -----------------------

public String getPart(String thekey)

{

char[] keyPart = new char[thekey.length()];

String result = "";

for(int c = 0;c<thekey.length()-1;c++)

{

keyPart[c] = (char)(thekey.charAt(c+1) - 1);

}

keyPart[thekey.length()-1] = thekey.charAt(0);

for(int put = 0;put<keyPart.length;put++)

 {

result = result + keyPart[put];

 }
return result;

 }

}

51
Raman Kumar M.E DCE
(CTA-2007-09)

Appendix-3

 Result and Snapshot

 This is the Frame, which prompts the user when he compiles and runs the
program.

52
Raman Kumar M.E DCE
(CTA-2007-09)

This is the file, which is to be encrypted.

53
Raman Kumar M.E DCE
(CTA-2007-09)

After pressing the “Encrypt” button, it will make u enter the path of the file.

54
Raman Kumar M.E DCE
(CTA-2007-09)

Enter the key…. the longer the better.

55
Raman Kumar M.E DCE
(CTA-2007-09)

Enter the file name…the name by which u wants to save the encrypted file.

56
Raman Kumar M.E DCE
(CTA-2007-09)

After the Encryption procedure…A message prints in the Text Area.

57
Raman Kumar M.E DCE
(CTA-2007-09)

Encrypted File.

58
Raman Kumar M.E DCE
(CTA-2007-09)

After pressing the “Decrypt” button, it will make u enter the path of the file,
which is to be decrypted.

59
Raman Kumar M.E DCE
(CTA-2007-09)

Enter the key… the same key which u have entered during the Encrypt
procedure.

60
Raman Kumar M.E DCE
(CTA-2007-09)

Enter the file name…the names by which u want to save the decrypted file.

61
Raman Kumar M.E DCE
(CTA-2007-09)

After the Decryption procedure…a message prints in the Text Area.

62
Raman Kumar M.E DCE
(CTA-2007-09)

Decrypted File.

63
Raman Kumar M.E DCE
(CTA-2007-09)

Following messages appear in the command prompt during the encryption and
decryption procedures.

64
Raman Kumar M.E DCE
(CTA-2007-09)

If file is not found at the entered location, following messages appear in the
command prompt during the encryption and decryption procedures.

65
Raman Kumar M.E DCE
(CTA-2007-09)

When “Information” Button is pressed…. a message prints in the Text Area.

66
Raman Kumar M.E DCE
(CTA-2007-09)

When “Exit” button is pressed, following messages appear in the command
prompt.

