
MAJOR PROJECT REPORT
ON

Implementation of SHA Algorithm using VHDL
for Hardware Security

A Major Dissertation Submitted in Partial Fulfilment of

the requirement for the award of degree of

MASTER OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

By

Meenakshi
Roll No. 2811

Under the Guidance

of

Mrs. S. Indu

Senior Lecturer

Dept. of Electronics and Communication Engineering

Delhi University, Delhi

Department of Electronics and Communication Engineering

Delhi College of Engineering

June-2007

 ii

Acknowledgement

I wish to express my deep sense of gratitude and indebtness to Mrs. S. Indu (Senior

Lecturer, Dept. of Electronics And Communication Engineering) for her guidance

and assistance without which completion of this project report would not have been

possible.

I also express my sincere gratitude to the Prof. Asok Bhattacharyya (Head of

Department, Dept. of Electronics And Communication Engineering) and faculty of

Dept. of Electronics And Communication Engineering Department.

I also express my sincere gratitude to Mrs. Mini Cherion (Scientist ‘F’, Divisional Head,

Integrated Hardware and Software Group, Defense avionics Research Establishment,

DRDO)

Last but not the least, I am thankful to my parents, my Husband and friends for their

encouragement and guidance.

 Meenakshi

 Univ. roll no. 2811

 iii

Certificate

This is to certify that Ms. Meenakshi student of Delhi College of Engineering, Delhi

worked under my guidance on major project entitled “Implementation of SHA

Algorithm using VHDL for Hardware security” being submitted in partial

fulfilment of the requirement for the award of the degree of “MASTER OF

ENGINEERING” to the Department of Electronics and Communication Engineering,

Delhi College of Engineering, Bawana Road, Delhi-42.

 Mrs. S.Indu

 Senior Lecturer,

Dept. Of Electronics & Comm. Engg.

Delhi University, Delhi

Department of Electronics and Communication Engineering
Delhi College of Engineering

Delhi-42

Prof. Asok Bhattacharyya

Head Of Division

Dept. Electronics & Comm. Engg.

Delhi University, Delhi

 i

Abstract

With introduction of new technologies inventors are more concerned about the security of

the new inventions they are bringing out. Data security is becoming ever more important

in embedded and portable electronic devices. External interfaces to memory in digital

devices and communication interfaces to other digital devices are more vulnerable to

probing. The principal goal guiding the design of any encryption algorithm must be

security against unauthorized attacks. These technique were sufficient to prevent the

unauthorized access of the device but if the attack is at the device interface level not to

access the system but to get the knowledge of complete architecture of device, algorithm

used etc. This is very serious security threat from IP (intellectual property) point of view.

So nowadays apart from the user authentication check device architecture information

and algorithm are encrypted so as to avoid any kind of reverse engineering. The analysis

techniques used by attackers are equally advanced. So the Defensive measures for

protecting a device must be more sophisticated and robust.

This thesis presents an architecture that provides the security to the embedded application

on a Field Programmable Gate Array (FPGA). The Identification Friend or Foe method is

presented as the framework for creating a secure authentication system for the embedded

system applications. It is shown that the Identification Friend or Foe method behaves like

a secure wrapper around the user design and protects it from the leakage of the algorithm

details of the device. The IFF concept is challenge and response based authentication

scheme that protects the Intellectual Property from the threat of the cloning of the

embedded application design. This scheme is capable of securing a variety of embedded

applications. The cryptographic method used in the system is Secure Hash Algorithm.

SHA is a standard specified in Federal Information Publication 180-1 and 180-2 (FIPS

180-1, FIPS 180-2). The SHA series hashes are currently the only FIPS-approved

method. SHA-1 is also specified in ISO/IEC 10118-3.

 ii

Table of Contents

1. Introduction 1

1.1 Motivation 1

1.2 Overview 3

1.3 Thesis Organization 3

2. Background 5

2.1 Need of Encryption 5

2.2 Evolution Of Encryption Techniques 5

2.3 Security Threats 7

2.2.1 Modern Encryption Techniques 8

2.2.1.1 Symmetric Key Algorithms 8

2.2.1.2 Asymmetric Key Algorithms 8

2.3 Requirement of Encryption Techniques 9

3. Algorithm Description 10

3.1 Secure Hash Algorithm 10

3.1.1 Introduction of Secure Hash Algorithm 10

3.1.2 Properties of a Secure Hash Algorithm 10

3.1.3 Terminology 11

3.1.4 Message Padding 11

3.1.4 Algorithm 12

3.2 IFFTEST Concept 16

4. Architecture 18

4.1 Functional Blocks 18

4.1.1 Wire Protocol 18

4.1.2 LOADTEST 21

4.1.3 IFFTEST 26

4.1.4 CRC Generation 29

4.1.5 3 To 8 Decoder 31

 iii

5. Platform 32

5.1 Implementation 32

5.2 Overview of DS2432 34

5.2.1 64-Bit Lasered Rom 34

5.2.2 Memory 35

5.2.3 Address Registers and Transfer Status 35

5.2.4 Writing with Verification 36

5.2.5 Memory and SHA Function Commands 36

5.2.6 Write Scratchpad [0Fh] 44

5.2.7 Read Scratchpad [AAh] 44

5.2.8 Load First Secret [5Ah] 45

5.2.9 Copy Scratchpad [55h] 45

5.2.10 Read Authenticated Page [A5h] 47

5.2.11 Read Memory [F0h] 48

6. Source Code 49

6.1 3 To 8 Decoder 49

6.2 IFFTEST 50

6.3 LOADTEST 61

6.4 Secure Hash Algorithm 75

6.5 CRC Generation 82

7. Results 84

8. Conclusion 108

9. Bibliography 109

 1

Chapter 1

Introduction

1.1 Motivation

With the rapidly growing concerns of security in nearly every aspect of electronics

system design, manufacturers and circuit designers are facing the challenges that never

before existed. Companies are coming up with new technologies and ideas and countries

are coming up with new devices and Weapons for Defense. With introduction of new

technologies inventors are also concerned about the security of the idea they are bringing

out. IP (Intellectual Property) security is becoming more and more important in today’s

competitive world. In the past security within electronic equipment was only faced by

software related technologies, military and access control markets. This will face a

change as designers will get set of new standard to meet in order to provide security.

[10]In early days security was provided only at the user authentication level. This

technique was sufficient to prevent the unauthorized access of the device but if the attack

is at the device interface level no to access the system but to get the knowledge of

complete architecture of device, algorithm used etc. This is very serious security threat

from IP (intellectual property) point of view. So nowadays apart from the user

authentication check device architecture information and algorithm are encrypted so as to

avoid any kind of reverse engineering.

[2] The principal goal guiding the design of any encryption algorithm must be security

against unauthorized attacks. However, for all practical applications, performance and the

cost of implementation are also important concerns. A data encryption algorithm would

not be of much use if it is secure enough but slow in performance because it is a common

practice to embed encryption algorithms in other applications such as e-commerce,

 2

banking, and online transaction processing applications. Embedding of encryption

algorithms in other applications also precludes a hardware implementation, and is thus a

major cause of degraded overall performance of the system.

Fig 1.1 Security Vulnerability at two difference interfaces

[1]In information security, message authentication is an essential technique to verify that

received messages come from the alleged source and has not been altered. A key element

of authentication schemes is the use of a message authentication code (MAC). One

technique to produce a MAC is based on using a hash function and is referred' to as an

HMAC. Secure Hash Algorithm 1 (SHA-I) is one of the algorithms, which has been

specified for use in Internet Protocol Security (IPSEC), as the basis for an HMAC. As we

shall show in the paper: it is reasonable to construct cryptographic accelerators using

hardware implementations based on SHA-I hash algorithm

User

Digital
Device

Device

Security Vulnerability – Possible loss of
protocol and user data information

Security Vulnerability – Possible loss
of Program, Design and Data

Memory
Interface

Authentication
Interface

 3

1.2 Overview

To secure the digital applications, the IFF (Identification Friend or Foe) concept is

implemented in FPGA. This architecture creates a wrapper around the FPGA based

application and provides authentication interface for user design. As the wrapper doesn’t

allow revealing the information to the unauthenticated user, thus the FPGA is secured

from unauthorized usage of the user design.

The IFF concept has been implemented using Virtex-2Pro Development Platform. This

design utilizes the key management systems to secure user design on the FPGA, thus

protecting its contents from discovery. The Maxim Dallas DS2432 1Kbit Protected 1-

wire EEPROM with SHA-1 Engine is used to authenticate a user and establishes a secure

channel to the FPGA. The communication between the DS2432 and the FPGA is through

1-wire protocol. The IFF test is designed to authenticate the system by using the

knowledge of Secret key, serial number, page data, and challenge present in the FPGA.

If EEPROM is valid the user design is activated, otherwise only limited functions are

made operational.

The IFF test has been synthesized using Xilinx 8.1i Foundation Series and ChipScope Pro

8.1i has been used for the real time debugging and on-chip verification of FPGA at

operating system speed.

1.3 Thesis Organization

Chapter 1 gives the introduction of the intention of this thesis work. Chapter 2 is about

the discussion about the background of Encryption technique and brief introduction of

different encryption techniques and requirement of encryption techniques. Chapter 3 is

the description of Secure Hash Algorithm anf IFFTest in detail. Chapter 4 explains the

functional blocks for IFF concept. Functional description consists of explanation of 1

 4

Wire Protocol Loadtest, Ifftest, Crc Generation, 3 To 8 Decoder. Chapter 5 describes the

hardware platform used for implementation of SHA algorithm which deals with the

overview Of DS2432. Chapter 6 gives the selected blocks of the SHA algorithm. Chapter

7 and 8 is about the discussion and results conclusion.

 5

 Chapter 2

Background

2.1 Need of Encryption

[4] Encryption is the process of obscuring information to make it unreadable without

special knowledge. In cryptography, a cipher (or cypher) is an algorithm for performing

encryption and decryption — a series of well-defined steps that can be followed as a

procedure. Cipher is also called as encipherment. The concept of encryption is based on

some Key value which changes the reception of data depending upon the correctness of

the key.

The original in information/ message is known as plaintext and after encryption it is

converted to ciphertext. As ciphertext is the encrypted form of the original message so it

contains all the information as the original message but it can’t be interpreted by a human

or computer without some extra information which is called key value. The key value and

ciphertext together are necessary and sufficient criteria to decrypt the plaintext.

The operation of a cipher usually depends on a piece of auxiliary information, called a

key a cryptovariable. The encrypting procedure is varied depending on the key, which

changes the detailed operation of the algorithm. A key must be selected before using a

cipher to encrypt a message. Without knowledge of the key, it should be difficult, if not

impossible, to decrypt the resulting ciphertext into readable plaintext.

2.2 Evolution of Encryption Techniques

Encryption techniques can be broadly classified into two classes, tradition and modern

encryption techniques. Traditional encryption techniques were developed when there

were no computers, so these are pen and paper based. With the invention of computer the

 6

computer era started and encryption techniques underwent a major change and the idea of

working on bits instead on alphabets was conceived.

Fig 2.1 Evolution of Encryption Techniques

[3]Chinese were the first to use the encryption concept and written language itself was

used as encryption technique. Caesar Cipher is the most popular traditional encryption

method which was developed by Julius Caesar between 50 and 60 BC. Principal of

substitution was used, where a letter is substituted by another letter. In 1553 the idea of a

password was first given by Giovan Belaso. Gilbert Vernam developed the Vernam

Cipher in 1917 which is the oldest encryption technique still in use. It uses substitution

where no pattern can arise.

[3]Encryption played a major role in the Second World War in 1942. Many encryption

techniques came as a result of necessity of perfect encryption techniques for the

information security. American military used spoken and written language as an

encryption device known as Navajo windtalkers. US military used wheel Ciphers in the

First World War. German government created TYPEX machine from Enigma machine

and used in the Second World War.

Ciphers

Classical

Rotor
Modern

Substitution Transposition Private Key Public Key

Stream Block

 7

Historical pen and paper ciphers used in the past are sometimes known as classical

ciphers. They include simple substitution ciphers and transposition ciphers. For example

MEENAKSHI may be encrypted as ODFMZLRIH where all the odd position alphabet is

replaced by next alphabet and even position character is replaced with previous alphabet

These simple ciphers are easy to crack, even without plaintext-ciphertext pairs.

With the invention of computer it became very easy to break the algorithms, which were

once very difficult to solve, in a short time. Now, it was not possible to rely on pen paper

techniques anymore and need for encryption techniques specific to computers re-

invented the encryption field. At this time the use of bits was focused instead of written

alphabets.

2.3 Security Threats

[6] Attack is any malicious intent to subvert a system to defraud it. In other words attack

is the intent to get access to a secure system. Few types of security are discussed here in

short:

Copy Attack

Copy attack is done by copying the valid service data from a device which is part of the

service to a device which is not part of the service. Purpose of this attack is to create an

unauthenticated but technically valid copy of the service device to get any kind of

advantage out of it.

Eavesdrop Attack

This technique is used where 1 wire communication is monitored to reveal the secret of a

repeating pattern that could be replicated.

Emulation Attack

In this type of attack a microprocessor is used to emulate the behavior of a 1- Wire token.

The emulator must be fast enough respond to a 1-Wre master as if it is a real device. This

 8

attack is not useful if authentication secret is not known. Risk can be further minimized

by including a ROM ID as a component in the calculation.

Secret Brute Force Attack

The Secret Brute Force Attack tries all the possible combination until it gets the correct

Service Identification code called MAC.A Token which is part of the service supplies the

correct MAC. After getting the secret it can be used to try all possible options in few

seconds.

Secret Microprobe Physical Attack

The physical attack is an attempt to probe the internal silicon chip to read the Unique

Identification Secret.

2.2.1 Modern Encryption Techniques

2.2.1.1 Symmetric key algorithms (Private-key cryptography) - In a symmetric key

algorithm (e.g., DES and AES), the sender and receiver must have a shared key set up in

advance and kept secret from all other parties; the sender uses this key for encryption,

and the receiver uses the same key for decryption.

Symmetric key ciphers can be distinguished into two types

� Block ciphers- work on blocks of symbols of fixed size

� Stream ciphers – Work on a continuous stream of symbols.

2.2.1.2 Asymmetric key algorithms (Public-key cryptography)- In an asymmetric key

algorithm (e.g., RSA), there are two separate keys: a public key is published and enables

any sender to perform encryption, while a private key is kept secret by the receiver and

enables only him to perform decryption.

 9

2.3 Requirement of Encription Techniques

Encryption Technique mush be able to provide/Ensure Integrity, Authenticity and

Confidentiality of the information.

Integrity – It means that the receiver of data can detect any modification of the data on

the way from the sender to the receiver.

Authenticity - Property that allows verifying that the data really originates from the

alleged sender.

Confidentiality - Feature that enables the sender to transform the original data in a way

that only the designated recipient can reconstruct it. No eavesdropper between sender and

receiver can recover the original data.

 10

 Chapter 3

Algorithm Description

3.1 Secure Hash Algorithm

3.1.1 Introduction of Secure Hash Algorithm

[5] SHA is a standard specified in Federal Information Publication 180-1 and 180-2

(FIPS 180-1, FIPS 180-2). The SHA series hashes are currently the only FIPS-approved

method. SHA-1 is also specified in ISO/IEC 10118-3.

The Secure Hash Algorithm (SHA-1) is required for use with the Digital Signature

Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and whenever a

secure hash algorithm is required for federal applications. For a message of length < 2^64

bits, the SHA-1 produces a 160-bit condensed representation of the message called a

message digest. The message digest is used during generation of a signature for the

message. The SHA-1 is also used to compute a message digest for the received version of

the message during the process of verifying the signature. Any change to the message in

transit will, with very high probability, result in a different message digest, and the

signature will fail to verify.

3.1.2 Properties of a Secure Hash Algorithm

1. Irreversibility - making it computationally infeasible to determine the input

corresponding to a HASH result.

2. Collision-resistance – One Hash result should not produce more than one input

message.

3. High avalanche effect – Large change in Output for slight change in input.

 11

The input bit string of length < 264 is called as the message and the condensed output of 160 bits

is called as message digest.

3.1.3 Terminology

 Following terminologies related to the bit string will be used in this algorithm:

1. Message: The input string which can be of any length l < 2^64 .

2. Message Digest: Condesed output of length 160 bits.

3. Word: A word is represented by a 32 bit string.

4. Block: A block is 512 bit string which may be represented by 16 words.

The following operations will be applied to the words:

1. X AND Y : Bitwise logical AND of X and Y.

2. X OR Y : Bitwise logical “inclusive OR” of X and Y.

3. X XOR Y : Bitwise logical “exclusive OR” of X and Y.

4. NOT X : Bitwise logical “ complement “ of X.

5. Sn(X) : Circular left shift of X by n positions to the left.

3.1.4 Message padding

SHA-1 computes the message digest for the input message bit string provided. The message is

processed as 512 bits at a time. So message padding is done to make the length multiple of 512

bits. The SHA-1 processes the 512 bit blocks sequentially to compute the message digest of 160

bits. In this process 1 is appended at the end of the message and then enough zeros followed by

64-bit representation of the length of the original message so that the padded message is multiple

of 512 bits.

The padded message can be represented as M1, M2, M3,…,Mn where Mi is 16 words block and

M1 contains the first character of the input message.

 12

Fig 3.1 Secure Hash Algorithm

3.1.4 Algorithm

SHA-1 is based on a nonlinear function ft which operates on 32-bit words B,C,D and produces a

32-bit word. ft(B,C,D) is defined as follows:

 (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)

ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)

 (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

 B XOR C XOR D (60 <= t <= 79)

 13

SHA-1 uses a sequence of constant words defined as:

 0x5A827999 (0 <= t <= 19)

Kt = 0x6ED9EBA1 (20 <= t <= 39)

 0x8F1BBCDC (40 <= t <= 59)

 0xCA62C1D6 (60 <= t <= 79).

The 512-bit message block is broken into sixteen 32-bit words m0,m1,m2,…,m15 which are used

for the calculating the 80 words W0,W1,W2,…,W79 using formula :

Wt = mt (0 <= t <= 15)

 St(Wt-3 XOR Wt-8XOR Wt-14 XOR Wt-16) (16 <= t <= 19)

In the beginning of the process five constant words are initialized as follows:

 H0 = 0x67452301

 H1 = 0xEFCDAB89

 H2 = 0x98BADCFE

 H3 = 0x10325476

 H4 = 0xC3D2E1F0

Before calculation starts five word variables A, B, C, D, E are initialized as:

 A = H0, B = H1, C = H2, D = H3, E = H4

SHA-1 algorithm is as follows:

For t = 0 to 79

 TEMP = S5 (A) + ft(B,C,D) + E + Wt + Kt;

 E = D;

 14

D = C;

C = S30(B);

B = A;

A = TEMP

After all these calculations the values of H0, H1, H2, H3 and H4 are updated as follows

 H0 = H0 + A;

 H1 = H1 + B;

 H2 = H2 + C;

 H3 = H3 + D;

 H4 = H4 + E.

If there are more 512-bit blocks then these are processed using the updated values of H0, H1, H2,

H3 and H4. After the processing of the last block the condensed 160-bit output, message digest, is

the concatenation of the final values of H0, H1, H2, H3 and H4 :

 Message digest = H0H1H2H3H4

 15

Start

Message
bnbn-1…b0

Append 1 at end
bnbn-1…b01

l=length(Message)
m = l +1

Append 0 at end
bnbn-1…b0100….
m= m+1

Is m > 448

Is IH > 64

Pad 0 before HL
IH = LH + 1

HL = Hex(l)
IH =len(HL)

M1,M2,M3,…Mn
Where Mi(512 bits)

ft(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)
ft(B,C,D) = B XOR C XOR D (20 <= t <= 39) ft(B,C,D) = (B
AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)
ft(B,C,D) = B XOR C XOR D (60 <= t <= 79).

K = 5A827999 (0 <= t <= 19)
Kt = 6ED9EBA1 (20 <= t <= 39)
Kt = 8F1BBCDC (40 <= t <= 59)
Kt = CA62C1D6 (60 <= t <= 79).

H0 = 67452301 ,H1 = EFCDAB89 ,H2 = 98BADCFE
H3 = 10325476 ,H4 = C3D2E1F0.

Process Mi

A=H0 ,B= H1 ,C =H2 ,D =H3
,E=H4

Is I > n

Is t<=79

Is t > 15

t = 0

Wj= Extract(32 bits)
j = j + 1

j = 0 Wt = S1(Wt-3 XOR Wt-8 XOR
Wt- 14 XOR Wt-16)

Is j>16

TEMP = S5(A) + ft(B,C,D) + E + Wt + Kt
E = D;D = C;C =S30(B); B = A; A = TEMP t = t+1

H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 =
H3 + D, H4 = H4 + E

Message Digest
H0H1H2H3H4

End

Yes

No

Yes No

No Yes

Yes

No

No Yes

Yes

No

3.1.5 Flow chart

 16

3.2 IFFTEST Concept

[7] Figure 3.2 shows the IFF concept. The following steps describe the concept of the

Identification as Friend and Foe test for the authentication of the Secure EEPROM

DS2432:

1. FPGA sends a Challenge ‘Q’ to DS2432.

2. The DS2432 uses a secret key programmed by the designer which is known only

to the designer and SHA engine generates a 512-bit MAC, the actual response ‘A’

for the Challenge ‘Q’.

Fig. 3.2 Identification Friend and Foe

3. The FPGA calculates the MAC, the expected response ‘E’ using the same key and

compares it with the actual response A, produced by the DS2432.

4. Now expected and actual response is matched to determine whether the design is

Friend or Foe. If it matches design is Friend, otherwise the design is Foe. It may

occur because of the tampering.

HASH Secret
Key HASH

Challenge

Secret
Key

Q

A

FOE

E

 17

5. FPGA application is designed in such a way that if design is detected as Foe, then

either application does not operate or it operates with limited functionality. If the

design is detected as Friend then it operates correctly and all features are

operational.

 18

Chapter 4

Architecture

4.1 Functional Blocks
The design includes six functional blocks:

1. 1-wire Protocol: For the interfacing of EEPROM with the FPGA.

2. IFFTEST: To authenticate the user design in FPGA using EEPROM and the
secret key written in the FPGA.

3. LOADTEST: To load the secret key in the EEPROM. It is not included in the
user design.

4. SHA (Secure Hash Algorithm): To generate unique 160-bit message digest
using 512-bits as input.

5. 3 to 8 decoder: It converts the decimal number from 0 to 7 into the binary
equivalent. It is designed only for demonstration purpose.

6. CRC (Cyclic Redundancy Check): To determine whether the ROM data has

been read without error or not.

4.1.1 Wire Protocol

[8] The DS2432 uses 1-wire protocol to communicate with host on single line. It consists

of following type of signaling:

• Reset Sequence with Reset Pulse and Presence Pulse

• Write 0

• Write 1

• Read Data.

All these signals are initiated by the bus master except the presence pulse. The Fig. 4.1

shows the initialization process. DS2432 receives data when a reset pulse is followed by

the Presence Pulse. If the device is in Overdrive mode then tRSTL is less than 80µs and if

 19

tRSTL is longer than 480µs it operates on standard speed. Speed is undetermined if tRSTL is

between 80µs and 480µs.

Once the bus master has released the line it goes into the receive mode. The pullup

resistor pulls the 1-wire bus to VPUP. The DS2432 waits for the tPDH after the threshold

VTH is crossed and then transmits a Presence Pulse for tPDL by pulling the line low.

Fig. 4.1 Initialization Procedure: Reset and Presence Pulse

During data communication with DS2432 each time slot carries a single bit. During the

Write time slots data is transferred from bus master to slave and during Read time slots

data transfer takes place from slave to master. Master pulls the data line low to start

communication. DS2432 starts its internal timing generator, when voltage on 1-Wire line

falls below threshold VTH, to determine when to sample the data line during a write time

slot and how data is valid during Read time slot.

tRSTL tF

tPDH tPDL

tMSP

�

tRSTH

RESISTOR MASTER DS2432

 MASTER TX “RESET PULSE” MASTER RX “PRESENCE PULSE”

VPUP

VIHMASTER

VTH

VTL

VILMAX

0V

 20

Fig. 4.2 Write One Time Slot

Fig. 4.3 Write-Zero Time Slot

In the Fig 4.2 write-One time slot the voltage on data line should cross the VTH before

expiration of write one low time tW1LMAX. In the Fig. 4.3 write-zero time slot the voltage

on data line should stay below VTH before expiration of write one low time tW0LMIN.

VPUP

VIHMASTER

VTH

VTL

VILMAX

0V

tF

�

tw1L

tSLOT

RESISTOR MASTER

VPUP

VIHMASTER

VTH

VTL

VILMAX

0V

tW0L

tF

tSLOT

tREC

RESISTOR MASTER

 21

Fig. 4.4 Read-Data Time Slot

During the Read time slot (Fig 4.4) the data line voltage should remain low till expiration

of read time low time tRL. While responding to 0, the DS2432 pulls the data line low and

its internal timing generator will determine when this pull down ends and the voltage

starts rising again. . While responding to 1, the voltage will rise again when tRL is over.

The master should wait for tSLOT to expire after reading from the data line. It ensures the

recovery for DS2432 to start next time slot.

4.1.2 LOADTEST

Loading of the key into the DS2432 device is done using the LOADTEST design. The

64-bit Secret key is loaded in a very secure environment and it is protected from the

leakage of information. LOADTEST is not included in the final user design. The figure

4.5 shows the instantiation block diagram of the LOADTEST design. The inputs to the

LODATEST design are:

1. C100MHz: The available clock of 100MHz is used as input and it is divided by

100 to get the 1MHz frequency. It is done to met the timing specifications of the

DS2432.

2. RSTIN: An active-Low RSTIN signal is provided for the initialization of the

design process.

VPUP

VIHMASTER

VTH

VTL

VILMAX

0V
tF

tRL

tMSR

tSLOT �

Master
Sampling
Window

RESISTOR MASTER DS2432

 22

3. START: Start signal initiates the loading process of the Secret Key. It’s an active-

High signal.

4. BI: BI is single wire interface between the DS2432 and the FPGA. All

communication between the two devices is possible through this signal only.

5. LDDONE: This signal shows the status of the LOADTEST design. This signal

will be high only if the key is loaded successfully, otherwise it remains low. It’s

an active high signal.

Fig. 4.5 LOADTEST Instantiation Block Diagram

The Fig. 4.6 shows the data flow of the LOADTEST design.

RSTIN

C100MHz

START

LDDONE

BI

LOADTEST

 23

Initial

Skip Rom

Memory Command

Write Scratch Pad

Rx CRC

Initial

Skip Rom

Memory Command

Read Scratch Pad

Initial

Skip Rom

Memory Command

Load First Key

Program Wait

Rx CRC

 24

Initial

Skip Rom

Memory Command

Read Memory

Initial

Skip Rom

Memory Command

Write Scratch Pad

Initial

Skip Rom

Memory Command

Read Scratch Pad

Rx CRC

Initial

Skip Rom

Memory Command

 25

Copy Scratch Pad

MAC wait

Send MAC

Program Wait

Rx CRC

Initial

Skip Rom

Memory Command

Read Memory

Initial

Skip Rom

Memory Command

Write Scratch Pad

Rx CRC

 26

Fig. 4.6 Load Test Flow diagram

4.1.3 IFFTEST

IFFTEST is designed as a part of user design to authenticate the system. The DS2432 is

used as the platform for the IFFTEST. The MAXIM-DALLAS DS2432 consists of a 64-

bit secret key which can be rewritten by the user but can’t be read back from the external

interface. The DS2432 also consists a 64-bit serial number which is unique to all device,

Initial

Skip Rom

Memory Command

Read Scratch Pad

Initial

Skip Rom

Memory Command

Copy Scratch Pad

MAC wait

Send MAC

Program Wait

 27

no two devices can have same serial number. IFFTEST is designed in such a way that

the user design is deactivated on power on. Upon power on the IFFTEST authenticate

the system by using the knowledge of Secret key, serial number, page data, and challenge

present in the FPGA. If EEPROM is valid the user design is activated, otherwise only

limited functions are made operational. The Fig. 4.7 shows the instantiation block

diagram of the IFFTEST design. The inputs to the IFFTEST design are:

1. C100MHz: The available clock of 100MHz is used as input and it is divided by

100 to get the 1MHz frequency. It is done to met the timing specifications of the

DS2432.

2. RSTIN: An active-Low RSTIN signal is provided for the initialization of the

design process.

3. START: START signal initiates the authentication process of the DS2432, the

Secret EEPROM device. It’s an active-High signal.

4. FRND_OUT: This signal shows the status of the IFFTEST design. This signal

will be high only if the secret EEPROM device is Friend i.e. authenticated and its

low if the system integrity is altered.

5. BI: BI is single wire interface between the DS2432 and the FPGA. All

communication between the two devices is possible through this signal only.

Fig. 4.7 IFFTEST instantiation Block Diagram

The Fig. 4.8 describes the process of EEPROM authentication.

RSTIN

C100MHz

START

FRND_OUT

BI

IFFTEST

 28

Fig. 4.8 IFF Test Flow diagram

Skip Rom

Memory Command

Read Authentication Command

Initial

Skip Rom

Memory Command

Read MAC

Done

Initial

Skip Rom

Memory Command

Write Scratch Pad

Rx CRC

Initial

 29

4.1.4 CRC Generation

With the DS2432 there are two different types of CRCs (Cyclic Redundancy Checks).

One CRC is an 8-bit type. It is computed at the factory and lasered into the most

significant byte of the 64-bit ROM. The equivalent polynomial function of this CRC is

X8 + X5 + X4+ 1. To determine whether the ROM data has been read without error the

bus master can compute the CRC value from the first 56 bits of the 64-bit ROM and

compare it to the value read from the DS2432. This 8-bit CRC is received in the true

form (non-inverted) when reading the ROM.

The other CRC is a 16-bit type, generated according to the standardized CRC16-

polynomial function X16 + X15 + X2 + 1. This CRC is used for error detection with the

Read Authenticated Page command, when reading the scratchpad and for fast verification

of a data transfer when writing to the scratchpad. In contrast to the 8-bit CRC, the 16-bit

CRC is always communicated in the inverted form. A CRC-generator inside the DS2432

chip calculates a new 16-bit CRC as shown in the command flow chart of Fig. 4.9 . The

bus master may compare the CRC value read from the device to the one it calculates from

the data and decide whether to continue with an operation or to re-read the portion of the

data with the CRC error.

With the Write Scratchpad command the CRC is generated by first clearing the CRC

generator and then shifting in the command code, the Target Addresses TA1 (with T2 to

T0 set to 0) and TA2, and all data bytes as sent by the master. The DS2432 transmits this

CRC only if the master has sent exactly eight bytes.

With the Read Scratchpad command the CRC is generated by first clearing the CRC

generator and then shifting in the command code, the Target Addresses TA1 and TA2,

the E/S byte, and the scratchpad data, which may have been modified by the DS2432.

 30

The DS2432 will transmit this CRC only if the reading continues through the end of the

scratchpad.

With the Read Authenticated Page command the 16-bit CRC value is the result of

shifting the command byte into the cleared CRC generator, followed by the two address

bytes, the data bytes, and the FFh byte. The CRC that follows the Message

Authentication Code (MAC) results from clearing the CRC generator and then shifting in

the 160-bit MAC in the same bit sequence as the master receives it.

Fig. 4.9 CRC-8 Hardware Description and Polynomial

Fig. 4.10 CRC-16 Hardware Description and Polynomial

 31

4.1.5 3 to 8 Decoder

3 to 8 decoder has been implemented for the verification of the design. This functional

block is the main application which is to be protected from the security attacks. This

application is executed only when it is authenticated against the secure EEPROM

DS2432. 3 to 8 decoder converts the decimal numbers from 0 to 7 into their equivalent

binary value.

 32

Chapter 5

Platform

5.1 Implementation

We have used DALLAS Semiconductor/ MAXIM DS2432 1KBit protected 1-Wire

secure EEPROM with SHA Engine and VIRTEX-2PRO P4 development kit to

implement the IFF concept.

The features of the DS2432 secure EEPROM include:

1. 64-bit read-only unique serial number (no two devices share the same ID).

2. 64-bit write-only secret key that can be rewritten at any time, but there is no way

of reading it back.

3. Four 256-bit pages that can be write protected.

4. Five general purpose read/write registers.

5. On-chip 512-bit SHA-1(ISO/IEC 10118-3) engine to compute 160-bit Message

Authentication Codes (MAC)

6. Serial 1 wire interface for low pin count.

7. Reads and writes over a wide voltage range of 2.8V to 5.25V from –400C to

+850C.

The 1-wire PROTOCOL is implemented for interfacing FPGA and the secure EEPROM.

LOADTEST loads the secret key into the EEPROM and its not included in the final user

design. IFFTEST authenticates the EEPROM .It enables the design only when FPGA

contains the valid key otherwise, the design is disabled. A 3 to 8 decoder is implemented

for the verification purpose.

 33

Fig. 5.1 DS2432 Secure EEPROM Connectivity to XILINX FPGA

The Fig 5.1 shows the connectivity diagram between the DS2432 secure EEPROM and

FPGA to implement the copy protection scheme. First, the FPGA configures itself from a

flash PROM. When the FPGA is configured, the user design is automatically disabled

until it authenticates with the secure EEPROM using a secret key that is stored in the

FPGA against the stored encrypted key in the secure EEPROM.

SIO

User
Design

Design
Disable

Check
Request

Authentication
Core

FOE
SIO

IFF

Unencrypted
Bitstream

Flash PROM FPGA
3.3V

Secure
EEPROM

DS2432

1K

 34

5.2 Overview of DS2432

[8] The DS2432 has five main data components:

1) 64-bit lasered ROM,

2) 64-bit scratchpad,

3) four 32-byte pages of EEPROM,

4) 64-bit register page,

5) 64-bit Secrets Memory, and

6) a 512-bit SHA-1 Engine

The bus master must first provide one of the seven ROM Function Commands:

1) Read ROM,

2) Match ROM,

3) Search ROM,

4) Skip ROM,

5) Resume Communication,

6) Overdrive-Skip ROM

7) Overdrive-Match ROM.

The protocol required for these ROM function commands is described in Figure . After a

ROM function command is successfully executed, the memory and SHA-1 functions

become accessible and the master can provide any one of the seven available function

commands. The protocol for these memory function commands is described in Figure .

All data is read and written least significant bit first.

5.2.1 64-BIT LASERED ROM

Each DS2432 contains a unique ROM code that is 64 bits long. The first eight bits are a

1-Wire family code. The next 48 bits are a unique serial number. The last eight bits are a

CRC of the first 56 bits. The 1-Wire CRC is generated using a polynomial generator

consisting of a shift register and XOR gates as shown in Figure. The polynomial is X8 +

X5 + X4 + 1. The shift register bits are initialized to zero. Then starting with the least

 35

significant bit of the family code, one bit at a time is shifted in. After the 8th bit of the

family code has been entered, then the serial number is entered. After the 48th bit of the

serial number has been entered, the shift register contains the CRC value. Shifting in the

eight bits of CRC should return the shift register to all zeros.

5.2.2 Memory

The DS2432 has four memory areas: data memory, secrets memory, register page with

special function registers and user-bytes, and a scratchpad. The data memory is organized

in pages of 32 bytes. Secret, register page and scratchpad are 8 bytes each. The

scratchpad acts as a buffer when writing to the data memory, loading the initial secret or

when writing to the register page.

The data memory and the register page have unrestricted read access. Writing to the data

memory and the register page requires the knowledge of the secret .The secret can be

installed either by copying data from the scratchpad to the secrets memory The secret

cannot be read directly; only the SHA engine has access to it for computing message

authentication codes.

5.2.3 Address Registers and Transfer Status

The DS2432 employs three address registers: TA1, TA2 and E/S DS2432. Registers TA1

and TA2 must be loaded with the target address to which the data will be written or from

which data will be read. Register E/S is a read-only transfer-status register, used to verify

data integrity with write commands. Since the scratchpad of the DS2432 is designed to

accept data in blocks of eight bytes only, the lower three bits of TA1 will be forced to 0

and the lower three bits of the E/S register (Ending Offset) will always read 1. This

indicates that all the data in the scratchpad will be used for a subsequent copying into

main memory or secret. is not an integer multiple of 8 or if the data in the scratchpad is

not valid due to a loss of power. A valid write to the scratchpad will clear the PF bit. Bits

3, 4 and 6 have no function; they always read 1. The Partial Flag supports the master

checking the data integrity after a Write command.

 36

5.2.4 Writing With Verification

To write data to the DS2432, the scratchpad has to be used as intermediate storage. First

the master issues the Write Scratchpad command to specify the desired target address,

followed by memory when commanded; therefore eight bytes of data should be written

into the scratchpad to ensure that the data to be copied is known. Under certain conditions

the master will receive an inverted CRC16 of the command, address and data at the end

of the write scratchpad command sequence. Knowing this CRC value, the master can

compare it to the value it has calculated itself to decide if the communication was

successful and proceed to the Copy Scratchpad command. If the master could not receive

the CRC16, it should send the Read Scratchpad command to verify data integrity. As

preamble to the scratchpad data, the DS2432 repeats the target address TA1 and TA2 and

sends the contents of the E/S register. If the PF flag is set, data did not arrive correctly in

the scratchpad or there was a loss of power since data was last written to the scratchpad.

The master does not need to continue reading; it can start a new trial to write data to the

scratchpad. Similarly, a set AA flag together with a cleared PF flag indicates that the

device did not recognize the Write command. If everything went correctly, both flags are

cleared. Now the master can continue reading and verifying every data byte. After the

master has verified the data, it can send the Copy Scratchpad command.

5.2.5 Memory and SHA Function Commands

The “Memory and SHA Function Flow Chart” (Fig. 5.2) describes the protocols

necessary for accessing the memory and operating the SHA engine.

 37

Fig 5.2 Memory and SHA Function Flow Chart

Bus Master TX
Reset Pulse

DS2432 TX
Presence Pulse

CCh
SkipROM
Command

RC = 0

Bus Master TX
Memory Command

OD Reset
Pulse? OD = 0

N

Y

Memory Command

 38

0Fh Write
Scratchpad?

Bus Master TX TA1(T7:T0),
TA2(T15:T8)

Address
<90?

DS2432 sets Scratchpad; Byte Counter = 0; Clears
PF, AA; Sets T2: T0 = 0,0,0; Sets E2:E0 = 1,1,1

Y

Master TX Data Byte to Scratchpad

Master TX
Reset ?

Byte
Counter = 7?

Master TX
Reset?

Partial Byte

DS2432 TX NOT(CRC16) of
Command, Address, Data Bytes as
they were sent by the Bus Master

PF = 1

Y

Y

Y

Y

Bus Master
RX “1”s

DS2432
Increments

Byte Counter
N

N

N

N

Bus Master
RX “1”s

Master
TX Reset

N

N

Y

Memory Command

To Page 3

 39

From Page 2
3 AAh Read

Scratchpad?

Bus Master RX TA1(T7:T0),
TA2(T15:T8) and E/S Byte

To Page 4

DS2432 sets Scratchpad; Byte Counter = 0

Bus Master RX Data Byte from Scratchpad

Master TX
Reset?

Byte
Counter = 7

Master TX
Reset?

Bus Master RX NOT(CRC16) of
Command, Address, E/S Byte, Data

Bytes as sent by the DS2432

DS2432 Increments
Byte Counter

To Memory
Command

N

N

N

N
Bus Master
RX “1”s

Y

Y

Y

Y

 40

From Page 3
3

5Ah Load
First Secret

Bus Master TX TA1(T7:T0),
TA2(T15:T8) and E/S Byte

To Page 5 N

Y

Auth. Code
Match?

Address of
Secret?

Write-
Protected?

AA =1

Bus Master waits for DS2432
to copy Scratchpad Data to

Memory

DS2432 TX “0”

Master TX
Reset?

Master TX
Reset?

DS2432 TX “1”

To Memory
Command

Bus Master
RX “1”s

Master TX
Reset?

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

 41

55h Copy
Scratchpad

Bus Master TX
TA1; TA2; E/S Byte

Auth. Code
Match?

Write-
Protected?

Bus Master
RX “1”s

Master TX
Reset?

Bus Master waits for DS2432 to
compute a MAC of Secret, 28 Byte
of Page Data, Scratchpad Data, and

Device Registration number

Bus Master computes MAC and
sends it to DS2432

Bus Master waits for DS2432 to
compare MAC and copy to
Scratchpad Data to Memory

MAC Code
Match?

AA =1

DS2432 copies Scratchpad
Data to Memory

DS2432 TX “0”

Master TX
Reset?

Master TX
Reset?

DS2432 TX “1”

N

N

Y

Master
TX Reset

DS2432
TX “0”

To Page 6

To Memory
Command

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

 42

A5h Read
Auth. Page?

Bus Master TX
TA1; TA2; E/S Byte

Address
 < 80h?

DS2432 sets Memory
Address = (T15:T0)

Master RX Data Byte
from Memory Address

Master TX
Reset?

End of
Page ?

Master one
Byte FFh

Master TX
Reset?

DS2432
increments

Address
Counter

Bus Master
RX “1”s

Master TX
Reset?

Bus Master waits for DS2432
to compute a MAC of Secret,
Data of Selected Page, Device
Registration Number and 3-

byte Challenge

Bus Master RX 160-Bit
Message Auth. code

Bus Master RX
NOT(CRC16) of MAC

DS2432 TX “0”

Master TX
Reset?

Master TX
Reset?

DS2432 TX “1”

N

Bus Master RX
NOT(CRC16) of Command,
Address, Data, and FFh Byte

From Page 5 To Page 7

To Memory
Command

N

N

N
N

N

N

N

Y

Y

Y

Y

Y

Y

Y

 43

F0h Read
Memory?

Bus Master
TX TA1; TA2

Address
 < 98h?

DS2432 sets Memory
Address = (T15:T0)

Address
of Secret

Master RX Data Byte
from Memory Address

Master TX
Reset?

Master TX
Reset?

Bus Master
RX “1”s

Master TX
Reset?

N

Address
 < 98h?

Bus Master
RX “1”s

DS2432
increments

Address
Counter

Bus Master
RX Byte FFh

From
Page 6

To Memory
Command

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

 44

5.2.6 Write Scratchpad [0Fh]

The Write Scratchpad command applies to the data memory, the secret and the writable

addresses in the register page. If the bus master sends a target address higher than 90h,

the command will not be executed. After issuing the write scratchpad command, the

master must first provide the 2-byte target address, followed by the data to be written to

the scratchpad. The data will be written to the scratchpad starting at the beginning of the

scratchpad. the master should always send 8 bytes, especially if the data is to be loaded as

a secret. If the master sends less than eight data bytes and does not read back the

scratchpad for verification, parts of the new secret may be random data that is unknown

to the master. Only full data bytes are accepted. If the last data byte is incomplete its

content will be ignored and the partial byte flag PF will be set.

When executing the Write Scratchpad command the CRC generator inside the DS2432

(Figure) calculates a CRC of the entire data stream, starting at the command code and

ending at the last data byte as sent by the master. This CRC is generated using the CRC16

polynomial by first clearing the CRC generator and then shifting in the command code

(0FH) of the Write Scratchpad command, the Target Addresses (TA1 and TA2), and all

the data bytes. The master may end the Write Scratchpad command at any time.

However, if the scratchpad is filled to its capacity, the master may send 16 read time slots

and will receive the CRC generated by the DS2432.

5.2.7 Read Scratchpad [AAh]

The Read Scratchpad command allows verifying the target address and the integrity of

the scratchpad data. After issuing the command code, the master begins reading. The first

two bytes will be the target address with T2 to T0 = 0. The next byte will be the ending

offset/data status byte (E/S) followed by the scratchpad data, which may be different

from what the master has originally sent. This is of particular importance if the target

address is the secret, the register page or page 1 in EPROM mode. The master should

read through the end of the scratchpad after which it will receive the inverted CRC. This

 45

is based on data as it was sent by the DS2432. If the master continues reading after the

CRC all data will be logic 1’s.

5.2.8 Load First Secret [5Ah]

The Load First Secret command is used to replace the device’s current secret with the

contents of the scratchpad, provided that the secret is not write-protected. This command

does not require the knowledge of the device’s current secret. Before the Load First

Secret command can be used the master must have written the new secret to the

scratchpad using the starting address of the secret (0080h). After issuing the Load First

Secret command, the master must provide a 3-byte authorization pattern, which should

have been obtained by an immediately preceding Read Scratchpad command. This 3-byte

pattern must exactly match the data contained in the three address registers (TA1, TA2,

E/S, in that order). If the pattern matches and the secret is not write-protected, the AA

(Authorization Accepted) flag will be set and the copy will begin. All eight bytes of

scratchpad contents will be copied to the secret’s memory location. Reading AAh

indicates that the copy was successful, while reading FFh indicates that the copy was not

successful.

5.2.9 Copy Scratchpad [55h]

The data memory of the DS2432 can be read without any restrictions. Executing the

Copy Scratchpad command to write new data to the memory or register page requires the

knowledge of the device’s secret and the ability to perform a SHA-1 computation to

generate the 160-bit Message Authentication Code (MAC) to start the data transfer from

the scratchpad to the memory. Table 5.1 Show how the various data components are

entered into the SHA engine.

After issuing the Copy Scratchpad command, the master must provide a 3-byte

authorization pattern, which should have been obtained by an immediately preceding

Read Scratchpad command. If the authorization code matches and the target memory is

 46

not write-protected, the DS2432 will start its SHA engine to compute a 160-bit MAC that

is based on the current secret, all of the scratchpad data, the first 28 bytes of the

addressed memory page, and the DS2432's registration number (without the CRC).

Simultaneously the master computes a MAC from the same data and sends it to the

DS2432 as evidence that it is authorized to write to the EEPROM. If the MAC generated

by the DS2432 matches the MAC that the master computed, the DS2432 will set its AA

(Authorization Accepted) flag, and copy the entire scratchpad contents to the data

EEPROM. As indication for a successful copy the master will be able to read a pattern of

alternating 1’s and 0’s until it issues a Reset Pulse. A pattern of all zeros tells the master

that the copy did not take place.

Table 5.1 SHA-1 Input for Copy Scratchpad to a Data Memory Page

Table 5.2 : Legends

M0[31:24] = (SS + 0) M0[23:16] = (SS + 1) M0[15:8] =(SS + 2) M0[7:0] = (SS + 3)
M1[31:24] = (PP + 0) M1[23:16] = (PP + 1) M1[15:8] = (PP + 2) M1[7:0] = (PP + 3)
M2[31:24] = (PP + 4) M2[23:16] = (PP + 5) M2[15:8] = (PP + 6) M2[7:0] = (PP + 7)
M3[31:24] = (PP + 8) M3[23:16] = (PP + 9) M3[15:8] = (PP + 10) M3[7:0] = (PP + 11)
M4[31:24] = (PP + 12) M4[23:16] = (PP + 13) M4[15:8] = (PP + 14) M4[7:0] = (PP + 15)
M5[31:24] = (PP + 16) M5[23:16] = (PP + 17) M5[15:8] = (PP + 18) M5[7:0] = (PP + 19)
M6[31:24] = (PP + 20) M6[23:16] = (PP + 21) M6[15:8] = (PP + 22) M6[7:0] = (PP + 23)
M7[31:24] = (PP + 24) M7[23:16] = (PP + 25) M7[15:8] = (PP + 26) M7[7:0] = (PP + 27)
M8[31:24] = (SP + 0) M8[23:16] = (SP + 1) M8[15:8] = (SP + 2) M8[7:0] = (SP + 3)
M9[31:24] = (SP + 4) M9[23:16] = (SP + 5) M9[15:8] = (SP + 6) M9[7:0] = (SP + 7)
M10[31:24] = MP M10[23:16] = (RN + 0) M10[15:8] = (RN + 1) M10[7:0] = (RN + 2)
M11[31:24] = (RN + 3) M11[23:16] = (RN + 4) M11[15:8] = (RN + 5) M11[7:0] = (RN + 6)
M12[31:24] = (SS + 4) M12[23:16] = (SS + 5) M12[15:8] = (SS + 6) M12[7:0] = (SS + 7)
M13[31:24] = FFh M13[23:16] = FFh M13[15:8] = FFh M13[7:0] = 80h
M14[31:24] = 00h M14[23:16] = 00h M14[15:8] = 00h M14[7:0] = 00h
M15[31:24] = 00h M15[23:16] = 00h M15[15:8] = 01h M15[7:0] = B8h

Mt Input Buffer of SHA Engine; 0 <= t <= 15; 32-Bit Words
(SS + N) Byte N of Secret; Secret Begins at Address 80h
(PP + N) Byte N of Memory Page; Memory Pages Begin at 00h, 20h, 40h and 60h
(SP + N) Byte N of Scratchpad
MP MP[7:4] = 0000b, MP[3:0] = T8:T5
(RN + N) Byte N of Registration Number
(RP + N) Byte N of Register Page; Page Begins at 88h

RP + 8 to RP + 15 is the location of the Registration Number.

 47

Special attention is required when copying data to the register page. In order to prevent

unintentional locking of a special function register or user byte it is recommended to first

read the register page and then write it all with the intended modification to the

scratchpad.

Table 5.3 SHA-1 Input for Copy Scratchpad to the Register Page

5.2.10 Read Authenticated Page [A5h]

The Read Authenticated Page command provides the master with the data of a full or

partial memory page plus a message authentication code (MAC). The MAC allows the

master to determine whether the secret stored in the DS2432 is valid within the

application. The DS2432 computes the MAC from its secret, all the data of the selected

memory page, its registration number and a 3-byte challenge, which the master should

write to the scratchpad prior to issuing the Read Authenticated Page command. The data

input to the SHA engine as it applies to the Read Authenticated Page command is shown

in Table 5.4. After the master has issued the command code and specified a valid target

address it will receive the page data beginning at the target address through the end of the

data page, one byte FFh and the inverted CRC of the command code, target address,

transmitted page data and FFh byte. During this time the SHA engine of the DS2432

M0[31:24] = (SS + 0) M0[23:16] = (SS + 1) M0[15:8] =(SS + 2) M0[7:0] = (SS + 3)
M1[31:24] = (SS + 0) M1[23:16] = (SS + 1) M1[15:8] = (SS + 2) M1[31:24] = (SS + 0)
M2[31:24] = (SP + 4) M2[23:16] = (SP + 5) M2[15:8] = (SP + 6) M2[7:0] = (SP + 7)
M3[31:24] = (RP + 0) M3[23:16] = (RP + 1) M3[15:8] = (RP + 2) M3[7:0] = (RP + 3)
M4[31:24] = (RP + 4) M4[23:16] = (RP + 5) M4[15:8] = (RP + 6) M4[7:0] = (RP + 7)
M5[31:24] = (RP + 8) M5[23:16] = (RP + 9) M5[15:8] = (RP + 10) M5[7:0] = (RP + 11)
M6[31:24] = (RP + 12) M6[23:16] = (RP + 13) M6[15:8] = (RP + 14) M6[7:0] = (RP + 15)
M7[31:24] = FFh M7[23:16] = FFh M7[15:8] = FFh M7[7:0] = FFh
M8[31:24] = (SP + 0) M8[23:16] = (SP + 1) M8[15:8] = (SP + 2) M8[7:0] = (SP + 3)
M9[31:24] = (SP + 4) M9[23:16] = (SP + 5) M9[15:8] = (SP + 6) M9[7:0] = (SP + 7)
M10[31:24] = MP M10[23:16] = (RN + 0) M10[15:8] = (RN + 1) M10[7:0] = (RN + 2)
M11[31:24] = (RN + 3) M11[23:16] = (RN + 4) M11[15:8] = (RN + 5) M11[7:0] = (RN + 6)
M12[31:24] = (SS + 4) M12[23:16] = (SS + 5) M12[15:8] = (SS + 6) M12[7:0] = (SS + 7)
M13[31:24] = FFh M13[23:16] = FFh M13[15:8] = FFh M13[7:0] = 80h
M14[31:24] = 00h M14[23:16] = 00h M14[15:8] = 00h M14[7:0] = 00h
M15[31:24] = 00h M15[23:16] = 00h M15[15:8] = 01h M15[7:0] = B8h

 48

computes the message authentication code over the secret, all 32 data bytes of the

selected page, the device’s registration number (without the CRC) and the 3-byte

challenge. Now the master reads the 160-bit MAC, which is followed by an inverted

CRC.

Table 5.4 SHA-1 Input for Read Authenticated Page

5.2.11 Read Memory [F0h]
The read memory command may be used to read all memory except for the secret.

Attempting to read the secret will not reveal any data. After issuing the command, the

master must provide the 2-byte target address. After these two bytes, the master reads

data beginning from the target address and may continue until address 0097h. If the

master continues reading the result will be logic 1’s.

M0[31:24] = (SS + 0) M0[23:16] = (SS + 1) M0[15:8] =(SS + 2) M0[7:0] = (SS + 3)
M1[31:24] = (PP + 0) M1[23:16] = (PP + 1) M1[15:8] = (PP + 2) M1[7:0] = (PP + 3)
M2[31:24] = (PP + 4) M2[23:16] = (PP + 5) M2[15:8] = (PP + 6) M2[7:0] = (PP + 7)
M3[31:24] = (PP + 8) M3[23:16] = (PP + 9) M3[15:8] = (PP + 10) M3[7:0] = (PP + 11)
M4[31:24] = (PP + 12) M4[23:16] = (PP + 13) M4[15:8] = (PP + 14) M4[7:0] = (PP + 15)
M5[31:24] = (PP + 16) M5[23:16] = (PP + 17) M5[15:8] = (PP + 18) M5[7:0] = (PP + 19)
M6[31:24] = (PP + 20) M6[23:16] = (PP + 21) M6[15:8] = (PP + 22) M6[7:0] = (PP + 23)
M7[31:24] = (PP + 24) M7[23:16] = (PP + 25) M7[15:8] = (PP + 26) M7[7:0] = (PP + 27)
M8[31:24] = (PP + 28) M8[23:16] = (PP + 29) M8[15:8] = (PP + 30) M8[7:0] = (PP + 31)
M9[31:24] = FFh M9[23:16] = FFh M9[15:8] = FFh M9[7:0] = FFh
M10[31:24] = MP M10[23:16] = (RN + 0) M10[15:8] = (RN + 1) M10[7:0] = (RN + 2)
M11[31:24] = (RN + 3) M11[23:16] = (RN + 4) M11[15:8] = (RN + 5) M11[7:0] = (RN + 6)
M12[31:24] = (SS + 4) M12[23:16] = (SS + 5) M12[15:8] = (SS + 6) M12[7:0] = (SS + 7)
M13[31:24] = (SP + 4) M13[23:16] = (SP + 5) M13[15:8] = (SP + 6) M13[7:0] = 80h
M14[31:24] = 00h M14[23:16] = 00h M14[15:8] = 00h M14[7:0] = 00h
M15[31:24] = 00h M15[23:16] = 00h M15[15:8] = 01h M15[7:0] = B8h

 49

Chapter 6

Source Code

6.1 3 to 8 decoder

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity demo_14_11 is
 port (C100MHz : in std_logic;
 RSTIN : in std_logic;
 IFF_OUT : out std_logic;
 dec_in_N : in std_logic_vector(7 downto 0);
 dig_out_N : out std_logic_vector(2 downto 0);
 BI : inout std_logic
);
end demo_14_11;

architecture Behavioral of demo_14_11 is

component IFF_TEST is
 Port (
 C100MHz : in STD_LOGIC;
 RSTIN : in STD_LOGIC;
 FRND_OUT : out std_logic;
 BI : inout STD_LOGIC);
end component;

signal IFF : std_logic;
signal dig_out : std_logic_vector(2 downto 0);
signal dec_in : std_logic_vector(7 downto 0);

begin

IFF_OUT <= IFF;
X1: IFF_TEST port map(C100MHz,RSTIN,IFF,BI);
dig_out_N <= not dig_out;
dec_in <= not dec_in_N;

process(dec_in, C100MHz,IFF)

 50

begin

 if(IFF = '0') then
 case dec_in is
 when "00000001" => dig_out <= "000";
 when "00000010" => dig_out <= "001";
 when "00000100" => dig_out <= "010";
 when "00001000" => dig_out <= "011";
 when "00010000" => dig_out <= "100";
 when "00100000" => dig_out <= "101";
 when "01000000" => dig_out <= "110";
 when "10000000" => dig_out <= "111";
 when others=>NULL;
 end case;
 else
 dig_out <= "111";
 end if;
 end process;

end Behavioral;

6.2 IFFTEST

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IFF_TEST is
 Port (
 C100MHz : in STD_LOGIC;
 RSTIN : in STD_LOGIC;
 FRND_OUT : out std_logic;
 BI : inout STD_LOGIC);
end IFF_TEST;

architecture Behavioral of IFF_TEST is

type q is array (0 to 11) of std_logic_vector(7 downto 0);
type rr is array (0 to 3) of std_logic_vector(7 downto 0);
--type s is array (0 to 11) of p;

-- (1byte command + 2byte address + 8byte secret + 1extra byte)
constant secret : q := (
X"0F",X"80",X"00",X"01",X"02",X"03",X"04",X"05",X"06",X"07",X"08",X"FF");

 51

-- (1byte command + 2byte address + 8byte secret)

constant page_01 : q := (
X"0F",X"00",X"00",X"11",X"12",X"13",X"14",X"15",X"16",X"17",X"18",X"FF");
constant page_02 : q := (
X"0F",X"08",X"00",X"21",X"22",X"23",X"24",X"25",X"26",X"27",X"28",X"FF");
constant page_03 : q := (
X"0F",X"10",X"00",X"31",X"32",X"33",X"34",X"35",X"36",X"37",X"38",X"FF");
constant page_04 : q := (
X"0F",X"18",X"00",X"41",X"42",X"43",X"44",X"45",X"46",X"47",X"48",X"FF");

constant RDAUTH : rr := (X"A5",X"00",X"00",X"FF");

type stat_typ is
(initial,skiprom,RXCRC,RDAUTH_cmd,RDMAC,memcmd,wrscrpad,done);--
,rdscrpad,ldfkey,sendmac,progwait,macwait,rdmem,cpyscrpad);
signal pr_stat, nx_stat : stat_typ ;
signal A,B,C,D,E : std_logic_vector(31 downto 0);
signal sflag : integer range 0 to 6 ;--std_logic_vector(2 downto 0);
signal c1, cnt,strtcnt, rdcnt,RDDATACNT : integer range 0 to 31;
signal waitcnt : integer;
signal j,mscnt : integer range 0 to 30;
signal CRCOK,cnten, RDDATACNT_EN,mscnten : std_logic;
signal CRCdata : std_logic_vector(87 downto 0);

signal CRCDATAld : std_logic;
signal CCRC : std_logic_vector(15 downto 0);
--***********
type state_type is (IDEAL, RSTPLS, PRS, WRITE_0, WRITE_1, READ);
 signal pr_state, nx_state : state_type;
 signal timer : std_logic_vector(9 downto 0);--integer range 0 to 1000;
 signal clkcnt,rxcnt : integer range 0 to 62;
 signal C1MHz,prsnt, rs,X, rxd, loaddone,r : std_logic;
 signal txsiftr : std_logic_vector(7 downto 0);
 signal rxdata : std_logic_vector(31 downto 0);
 signal flag, wr, rd : std_logic;

--**************
 signal rden, wren, start : std_logic;
 signal dbcnt : integer range 0 to 500005;

 signal txdata : std_logic_vector(7 downto 0);
 signal start1,FRND : std_logic;
 signal SRSTIN : std_logic_vector(10 downto 0);

 52

 signal rxdata_out : std_logic_vector(31 downto 0);
 signal crcok_out,start_out,rstout,digest_vld_out,prsnt_out: std_logic;

component CRC is
 Port (clk, rst : in STD_LOGIC;
 CRCDATAld : in std_logic;
 datain : in std_logic_vector(87 downto 0);
 CRC_out : out std_logic_vector(15 downto 0));
end component;

component MAC is
 port(
 clk : in std_logic;
 reset : in std_logic;
 m0i,m1i,m2i,m3i,m4i,m5i,m6i,m7i,m8i,m13i,m10i,m11i,m12i : in
std_logic_vector(31 downto 0);
 message_vld : in std_logic;
 digest : out std_logic_vector(159 downto 0);
 digest_vld : out std_logic);
end component;

 signal m0,m1,m2,m3,m4,m5,m6,m7,m8,m13,m10,m11,m12 : std_logic_vector(31
downto 0);
 signal message_vld, digest_vld, MACRST : std_logic;
 signal digest,RXMAC : std_logic_vector(159 downto 0);
 signal ldtsten : std_logic;
begin

rstout <= rst ;
start_out <= start;
prsnt_out <= prsnt;

crcok_out <= not CRCOK;
digest_vld_out <= not digest_vld;
FRND_OUT <= not FRND;

inst_mac: MAC port map

 (C1MHz,MACRST,m0,m1,m2,m3,m4,m5,m6,m7,m8,m13,m10,m11,m12,messag
e_vld,digest,digest_vld);

inst_CRC : CRC port map
 (clk => C1MHz,
 rst => rst,

 53

 CRCDATAld => CRCDATAld,
 datain => CRCdata,
 CRC_out => CCRC);

process(C100MHz)
begin
if(C100MHz'event and C100MHz = '1')then
 SRSTIN <= RSTIN & SRSTIN(10 downto 1);
 if(SRSTIN(10) = '1' and SRSTIN(0) = '0') then
 RST <= '0';
 else
 RST <= '1';
 end if;
end if;
end process;

--*************************

-- generate 1MHz clock from 50MHz system clock
process(RST,C100MHz)
 begin
 if(RST = '0') then
 clkcnt <= 0;
 C1MHz <= '0';
 elsif(C100MHz'event and C100MHz = '1') then
 if(clkcnt = 49) then
 C1MHz <= not C1MHz;
 clkcnt <= 0;
 else
 clkcnt <= clkcnt + 1;
 end if;
 end if;
end process;

--***

process(rst,C1MHz,rden)
begin
 if(rst = '0') then
 rxcnt <= 0;
 r <= '0';
 elsif(rden = '0') then

 54

 r <= '1';
 rxcnt <= 0;
 rd <= '0';
 elsif(C1MHz'event and C1MHz = '1') then
 if(rd = '0' and timer = 25) then
 rxcnt <= rxcnt + 1;
 end if;
 if (rxcnt > 23 and rd = '0' and RDDATACNT = 8) then
 rd <= '1';
 elsif (rxcnt <= 31 and rd = '0') then
 rd <= '0';
 else
 rd <= '1';
 end if;
 end if;
end process;

 rxdata_out <= rxdata and A and B and C and D and E;-- and digest(159 downto 128)
and digest(127 downto 96) and digest(95 downto 64) and digest(63 downto 32) and
digest(31 downto 0);--

--
 wr <= NOT(flag or txsiftr(7) or txsiftr(6) or txsiftr(5) or txsiftr(4) or txsiftr(3)
 or txsiftr(2) or txsiftr(1));

process(RST,C1MHz)
begin
 if(RST = '0') then
 rxdata <= (others => '0');
 flag <= '0';
 txsiftr <= (others => '0');
 elsif(C1MHz'event and C1MHz = '1') then
 if(rd = '0' and timer = 25) then
 rxdata <= RXd & rxdata(31 downto 1);
 end if;

 if(wren = '0') then
 flag <= '1';
 txsiftr <= txdata;
 elsif(wr = '0' and timer = 10) then
 txsiftr <= flag & txsiftr(7 downto 1) ;
 flag <= '0';
 end if;

 end if;
end process;

 55

--**
-- process
process(rst,C1MHz)
begin
 if(rst = '0') then
 pr_state <= IDEAL;
 elsif(C1MHz'event and C1MHz = '1') then
 pr_state <= nx_state;
 end if;
end process;

process(pr_state,timer,start,rs,rd,txsiftr,wr)
begin
 case pr_state is
 when IDEAL =>
 if start = '0' then
 nx_state <= RSTPLS;
 elsif rs = '1' then
 nx_state <= PRS;
 elsif rd = '0' then
 nx_state <= READ;
 elsif(txsiftr(0) = '1' and wr = '0')then
 nx_state <= WRITE_1;
 elsif(txsiftr(0) = '0' and wr = '0')then
 nx_state <= WRITE_0;
 else
 nx_state <= IDEAL;
 end if;

 when RSTPLS =>
 if timer < 540 then -- rst pulse is 480 < Trst > 640
 nx_state <= RSTPLS;
 else
 nx_state <= IDEAL;
 end if;

 when PRS =>
 if(timer < 100) then -- should be > [15us(Tpdh) + 60us (Tpdl) +
5us(Trec)]
 nx_state <= PRS;
 else
 nx_state <= IDEAL;
 end if;

 56

 when WRITE_0 => -- should be > Tslot(65us)
 if(timer <= 75) then
 nx_state <= WRITE_0 ;
 else
 nx_state <= IDEAL;
 end if;

 when WRITE_1 => -- should be > Tslot(65us)
 if(timer <= 75) then
 nx_state <= WRITE_1;
 else
 nx_state <= IDEAL;
 end if;

 when READ => -- should be >
Tslot(65us)
 if(timer <= 75) then
 nx_state <= READ ;
 else
 nx_state <= IDEAL;
 end if;

 end case;
end process;

process(C1MHz,RST)
begin
 if(RST = '0') then
 timer <= (others => '0');
 BI <= 'Z';
 rs <= '0';
 rxd <= '0';
 prsnt <= '1';
 elsif(C1MHz'event and C1MHz = '1') then

 case pr_state is

 when IDEAL =>
 BI <= 'Z';
 timer <= (others => '0');
 prsnt <= '1';

 when RSTPLS =>
 BI <= '0';

 57

 rs <= '1'; -- to indicate that next state is
 timer <= timer + 1;

 when PRS =>
 if (timer >= 65 and timer < 70) then
 prsnt <= BI;
 end if;
 rs <= '0';
 timer <= timer + 1;

 when WRITE_0 =>
 if (timer < 65) then -- Twol should be (>60us and <
120us)
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 timer <= timer + 1;

 when WRITE_1 =>
 -- Tw1l should be (> 1us and < 15us) -- should not exceed
Trl(5us)
 if timer < 2 then
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 timer <= timer + 1;

 when READ =>
 if (timer <= 5) then -- Trl (> 5us and < 15us) *should use
min
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 if(timer > 8 and timer < 12)then --Tmsr (> Trl and < 15us)
 rxd <= BI;
 end if;
 timer <= timer + 1;
 end case;
 end if;
end process;

--**

 58

process(C1MHz,rst)
 begin
 if rst = '0' then
 pr_stat <= initial;
 elsif(C1MHz'event and C1MHz = '1') then
 pr_stat <= nx_stat;
 end if;
end process;

process(pr_stat,prsnt,cnt,wr,c1,j,rd,rdcnt,waitcnt,RDDATACNT,pr_state,CRCOK)
begin
 case pr_stat is

 when initial =>
 if prsnt = '0' then
 nx_stat <= skiprom;
 else
 nx_stat <= initial;
 end if;

 when skiprom =>
 if(cnt > 5 and wr = '1') then
 nx_stat <= memcmd;
 else
 nx_stat <= skiprom;
 end if;

 when memcmd =>
 if(c1 = 1)then -- or C1=4 or c1=8 or c1=12 or c1=16)then
 nx_stat <= wrscrpad; -- write
 elsif(c1 = 2)then --or c1=5 or c1=9 or c1=13 or c1=17) then
 nx_stat <= RDAUTH_cmd; --rdscrpad; -- read
 elsif(c1 = 3) then
 nx_stat <= RDMAC; --ldfkey;

 else
 nx_stat <= memcmd;
 end if;

 when wrscrpad =>
 if (j > 11 and wr = '1') then -- if CRC\ = calculated CRC
 nx_stat <= RXCRC;
 else
 nx_stat <= wrscrpad;
 end if;

 59

 -- if rxdata = X"AAAAAAAA" at ldcnt = 3 then keydn '1'
 when RXCRC =>
 if(CRCOK = '1' and pr_state = ideal)then
 nx_stat <= initial;
 else
 nx_stat <= RXCRC;
 end if;

 when RDAUTH_cmd =>
 if(RDDATACNT > 8 and pr_state = ideal)then
 nx_stat <= memcmd; --MACWAIT;
 else
 nx_stat <= RDAUTH_cmd;
 end if;

 when RDMAC =>
 if(RDDATACNT > 6) then
 nx_stat <= done;
 else
 nx_stat <= RDMAC;
 end if;
 when done =>
 nx_stat <= done;

 end case;
end process;

process(wr,rst)
begin
 if rst = '0' then
 j <= 1;
 elsif(wr'event and wr = '1') then
 if(cnten = '1') then
 j <= j + 1;
 else
 j <= 1;
 end if;
end process;

process(rst,RDDATACNT_EN,rd)
begin
 if(rst = '0' or RDDATACNT_EN = '0') then
 RDDATACNT <= 0;

 60

 elsif(rd'event and rd = '1') then
 RDDATACNT <= RDDATACNT + 1;
 end if;
end process;

process(C1MHz,RST)
begin
 if(RST = '0') then
 m0 <= secret(3) & secret(4) & secret(5) & secret(6);
 m12 <= secret(7) & secret(8) & secret(9) & secret(10);
 m1 <= (others => '0');
 m2 <= (others => '0');
 m3 <= (others => '0');
 m4 <= (others => '0');
 m5 <= (others => '0');
 m6 <= (others => '0');
 m7 <= (others => '0');
 m8 <= (others => '0');
 m13 <= (others => '0');
 m10 <= (others => '0');
 m11 <= (others => '0');
 A <= (others => '0') ;
 b <= (others => '0') ;
 c <= (others => '0') ;
 d <= (others => '0') ;
 e <= (others => '0') ;
 message_vld <= '0';
 MACRST <= '1';
 elsif(C1MHz'event and C1MHz = '1') then
 MACRST <= '0';
 m1 <= page_01(3) & page_01(4) & page_01(5) & page_01(6);

 m2 <= page_01(7) & page_01(8) & page_01(9) & page_01(10);

 m3 <= page_02(3) & page_02(4) & page_02(5) & page_02(6);
 m4 <= page_02(7) & page_02(8) & page_02(9) & page_02(10);
 m5 <= page_03(3) & page_03(4) & page_03(5) & page_03(6);
 m6 <= page_03(7) & page_03(8) & page_03(9) & page_03(10);
 m7 <= page_04(3) & page_04(4) & page_04(5) & page_04(6);
 m8 <= page_04(7) & page_04(8) & page_04(9) & page_04(10);
 m10 <= X"40" & X"33" & X"6D" & X"1F";
 m11 <= X"25" & X"01" & X"00" & X"00";
 m13 <= page_01(7) & page_01(8) & page_01(9) & X"80";

 if(digest_vld <= '1') then
 A <= digest(159 downto 128);

 61

 B <= digest(127 downto 96);
 C <= digest(95 downto 64);
 D <= digest(63 downto 32);
 E <= digest(31 downto 0);
 end if;

 if(pr_stat = wrscrpad) then
 message_vld <= '1';
 end if;

 end if;

 end process;

end Behavioral;

6.3 LOADTEST

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;
use UNISIM.VComponents.all;

entity single_mod is
 Port (
 C100MHz : in STD_LOGIC;
 RSTIN : in STD_LOGIC;
 push3 : in std_logic;
 rxdata_out : out std_logic_vector(31 downto 0);
 lddone,crcok_out,start_out,rstout,keydn_out,
 digest_vld_out,prsnt_out : out std_logic;
 BI : inout STD_LOGIC);

end single_mod;

architecture Behavioral of single_mod is

--************
type q is array (0 to 11) of std_logic_vector(7 downto 0);
type rr is array (0 to 3) of std_logic_vector(7 downto 0);
--type s is array (0 to 11) of p;

-- (1byte command + 2byte address + 8byte secret + 1extra byte)

 62

constant secret : q := (
X"0F",X"80",X"00",X"01",X"02",X"03",X"04",X"05",X"06",X"07",X"08",X"FF");

-- (1byte command + 2byte address + 8byte secret)

constant page_01 : q := (
X"0F",X"00",X"00",X"11",X"12",X"13",X"14",X"15",X"16",X"17",X"18",X"FF");
constant page_02 : q := (
X"0F",X"08",X"00",X"21",X"22",X"23",X"24",X"25",X"26",X"27",X"28",X"FF");
constant page_03 : q := (
X"0F",X"10",X"00",X"31",X"32",X"33",X"34",X"35",X"36",X"37",X"38",X"FF");
constant page_04 : q := (
X"0F",X"18",X"00",X"41",X"42",X"43",X"44",X"45",X"46",X"47",X"48",X"FF");

constant rdmemadd : rr := (X"F0",X"00",X"00",X"FF");

type stat_typ is
(initial,skiprom,RXCRC,memcmd,wrscrpad,rdscrpad,ldfkey,sendmac,progwait,macwait,r
dmem,cpyscrpad);
signal pr_stat, nx_stat : stat_typ ;
signal A,B,C,D,E : std_logic_vector(31 downto 0);
signal sflag : integer range 0 to 6 ;--std_logic_vector(2 downto 0);
signal c1, cnt,strtcnt, rdcnt,rdmemcnt,i : integer range 0 to 62;
signal waitcnt : integer;
signal j,mscnt : integer range 0 to 30;
signal CRCOK,cnten, rdmemcnten,mscnten : std_logic;
signal CRCdata : std_logic_vector(87 downto 0);

signal CRCDATAld : std_logic;
signal CCRC : std_logic_vector(15 downto 0);
--***********
type state_type is (IDEAL, RSTPLS, PRS, WRITE_0, WRITE_1, READ);
 signal pr_state, nx_state : state_type;
 signal timer : std_logic_vector(9 downto 0);--integer range 0 to 1000;
 signal clkcnt,rxcnt : integer range 0 to 100;
 signal C1MHz,prsnt, rs,X, rxd, loaddone,r : std_logic;
 signal txsiftr : std_logic_vector(7 downto 0);
 signal rxdata : std_logic_vector(31 downto 0);
 signal flag, wr, rd : std_logic;

--**************
 signal rden, wren, start : std_logic;
 signal Lpush2, Dpush2,pusx : std_logic;
 signal Lpush3, Dpush3,RST : std_logic;
 signal dbcnt : integer range 0 to 500005;
 signal txdata : std_logic_vector(7 downto 0);

 63

 signal keydn,start1 : std_logic;
 signal SRSTIN : std_logic_vector(10 downto 0);

--***************
component CRC is
 Port (clk, rst : in STD_LOGIC;
 CRCDATAld : in std_logic;
 datain : in std_logic_vector(87 downto 0);
 CRC_out : out std_logic_vector(15 downto 0));
end component;

component sha_256 is
 port(
 clk : in std_logic;
 reset : in std_logic;
 m0i,m1i,m2i,m3i,m4i,m5i,m6i,m7i,m8i,m9i,m10i,m11i,m12i : in
std_logic_vector(31 downto 0);
 message_vld : in std_logic;
 digest : out std_logic_vector(159 downto 0);
 digest_vld : out std_logic);
end component;

 signal m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12 : std_logic_vector(31
downto 0);
 signal message_vld, digest_vld, MACRST : std_logic;
 signal digest : std_logic_vector(159 downto 0);
 signal ldtsten : std_logic;
begin

rstout <= rst;
start_out <= start;
prsnt_out <= prsnt;
lddone <= not loaddone;
crcok_out <= not CRCOK;
digest_vld_out <= not digest_vld;
keydn_out <= not keydn;

inst_mac: sha_256 port map

 (C1MHz,MACRST,m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,message
_vld,digest,digest_vld);

inst_CRC : CRC port map
 (clk => C1MHz,
 rst => rst,
 CRCDATAld => CRCDATAld,

 64

 datain => CRCdata,
 CRC_out => CCRC);

process(C100MHz)
begin
if(C100MHz'event and C100MHz = '1')then
 SRSTIN <= RSTIN & SRSTIN(10 downto 1);
 if(SRSTIN(10) = '1' and SRSTIN(0) = '0') then
 RST <= '0';
 else
 RST <= '1';
 end if;
end if;
end process;

--*************************
process(C1MHZ, RST)
begin
 if RST = '0' then
 start <= '1';
 ldtsten <= '1';
 elsif(C1MHZ'event and C1MHZ = '1') then
 Lpush3 <= push3;
 Dpush3 <= Lpush3;

 if((Lpush3 = '1' and Dpush3 = '0') and (dbcnt < 2 or dbcnt > 500000)) then
 ldtsten <= '0';
 else
 ldtsten <= '1';
 end if;

 if(ldtsten = '0' or start1 = '0') then
 start <= '0';
 else
 start <= '1';
 end if;

 end if;
 end process;

--Counter satrts counting after the chipselect switch is pressed and released
--Switch press is '0',release is '1'

 65

process(C1MHZ,ldtsten,RST)
begin

 if(RST = '0') then
 dbcnt <= 0;
 X <= '0';
 elsif(ldtsten = '0') then
 dbcnt <= 0;
 X <= '1';
 elsif(C1MHZ'event and C1MHZ = '1') then
 if(ldtsten = '1' and X = '1')then
 if(dbcnt <= 500002) then
 dbcnt <= dbcnt + 1;
 end if;
 end if;
 end if;
end process;
--***

-- generate 1MHz clock from 50MHz system clock
process(RST,C100MHz)
 begin
 if(RST = '0') then
 clkcnt <= 0;
 C1MHz <= '0';
 elsif(C100MHz'event and C100MHz = '1') then
 if(clkcnt = 49) then
 C1MHz <= not C1MHz;
 clkcnt <= 0;
 else
 clkcnt <= clkcnt + 1;
 end if;
 end if;
end process;

--***

process(rst,C1MHz,rden)
begin
 if(rst = '0') then
 rxcnt <= 0;
 r <= '0';
 elsif(rden = '0') then
 r <= '1';

 66

 rxcnt <= 0;
 rd <= '0';
 elsif(C1MHz'event and C1MHz = '1') then
 if(rd = '0' and timer = 25) then
 rxcnt <= rxcnt + 1;
 end if;
 if (rxcnt <= 31 and rd = '0') then
 rd <= '0';
 else
 rd <= '1';
 end if;
 end if;
end process;

 rxdata_out <= rxdata and A and B and C and D and E;

--
 wr <= NOT(flag or txsiftr(7) or txsiftr(6) or txsiftr(5) or txsiftr(4) or txsiftr(3)
 or txsiftr(2) or txsiftr(1));

process(RST,C1MHz)
begin
 if(RST = '0') then
 rxdata <= (others => '0');
 flag <= '0';
 txsiftr <= (others => '0');
 elsif(C1MHz'event and C1MHz = '1') then
 if(rd = '0' and timer = 25) then
 rxdata <= RXd & rxdata(31 downto 1);
 end if;

 if(wren = '0') then
 flag <= '1';
 txsiftr <= txdata;
 elsif(wr = '0' and timer = 10) then
 txsiftr <= flag & txsiftr(7 downto 1) ;
 flag <= '0';
 end if;

 end if;
end process;

--**
-- process
process(rst,C1MHz)
begin

 67

 if(rst = '0') then
 pr_state <= IDEAL;
 elsif(C1MHz'event and C1MHz = '1') then
 pr_state <= nx_state;
 end if;
end process;

process(pr_state,timer,start,rs,rd,txsiftr,wr)
begin
 case pr_state is
 when IDEAL =>
 if start = '0' then
 nx_state <= RSTPLS;
 elsif rs = '1' then
 nx_state <= PRS;
 elsif rd = '0' then
 nx_state <= READ;
 elsif(txsiftr(0) = '1' and wr = '0')then
 nx_state <= WRITE_1;
 elsif(txsiftr(0) = '0' and wr = '0')then
 nx_state <= WRITE_0;
 else
 nx_state <= IDEAL;
 end if;

 when RSTPLS =>
 if timer < 540 then -- rst pulse is 480 < Trst > 640
 nx_state <= RSTPLS;
 else
 nx_state <= IDEAL;
 end if;

 when PRS =>
 if(timer < 100) then -- should be > [15us(Tpdh) + 60us (Tpdl) +
5us(Trec)]
 nx_state <= PRS;
 else
 nx_state <= IDEAL;
 end if;

 when WRITE_0 => -- should be > Tslot(65us)
 if(timer <= 75) then
 nx_state <= WRITE_0 ;
 else

 68

 nx_state <= IDEAL;
 end if;

 when WRITE_1 => -- should be > Tslot(65us)
 if(timer <= 75) then
 nx_state <= WRITE_1;
 else
 nx_state <= IDEAL;
 end if;

 when READ => -- should be >
Tslot(65us)
 if(timer <= 75) then
 nx_state <= READ ;
 else
 nx_state <= IDEAL;
 end if;

 end case;
end process;

process(C1MHz,RST)
begin
 if(RST = '0') then
 timer <= (others => '0');
 BI <= 'Z';
 rs <= '0';
 rxd <= '0';
 prsnt <= '1';
 elsif(C1MHz'event and C1MHz = '1') then

 case pr_state is

 when IDEAL =>
 BI <= 'Z';
 timer <= (others => '0');
 prsnt <= '1';

 when RSTPLS =>
 BI <= '0';
 rs <= '1'; -- to indicate that next state is
 timer <= timer + 1;

 when PRS =>
 if (timer >= 65 and timer < 70) then

 69

 prsnt <= BI;
 end if;
 rs <= '0';
 timer <= timer + 1;

 when WRITE_0 =>
 if (timer < 65) then -- Twol should be (>60us and <
120us)
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 timer <= timer + 1;

 when WRITE_1 =>
 -- Tw1l should be (> 1us and < 15us) -- should not exceed
Trl(5us)
 if timer < 2 then
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 timer <= timer + 1;

 when READ =>
 if (timer <= 5) then -- Trl (> 5us and < 15us) *should use
min
 BI <= '0';
 else
 BI <= 'Z';
 end if;
 if(timer > 8 and timer < 12)then --Tmsr (> Trl and < 15us)
 rxd <= BI;
 end if;
 timer <= timer + 1;

-- others =>
-- BI <= 'Z';
-- timer <= 0;
 end case;
 end if;
end process;

--**

process(C1MHz,rst)

 70

 begin
 if rst = '0' then
 pr_stat <= initial;
 elsif(C1MHz'event and C1MHz = '1') then
 pr_stat <= nx_stat;
 end if;
end process;

process(pr_stat,prsnt,cnt,wr,c1,j,keydn,digest_vld,rd,rdcnt,waitcnt,rdmemcnt,pr_state,CR
COK,mscnt,pusx)
begin
 case pr_stat is

 when initial =>
 if prsnt = '0' then
 nx_stat <= skiprom;
 else
 nx_stat <= initial;
 end if;

 when skiprom =>
 if(cnt > 5 and wr = '1') then
 nx_stat <= memcmd;
 else
 nx_stat <= skiprom;
 end if;

 when memcmd =>
-- if(i = 10) then
 if(c1=0 or C1=4 or c1=8 or c1=12 or c1=16)then
 nx_stat <= wrscrpad; -- write secret
 elsif(c1=1 or c1=5 or c1=9 or c1=13 or c1=17) then
 nx_stat <= rdscrpad; -- read
 elsif(c1 = 2) then
 nx_stat <= ldfkey;
 elsif(c1 = 3 or c1=7 or c1=11 or c1=15) then
 nx_stat <= rdmem;
 elsif(c1=6 or c1=10 or c1=14 or c1=18) then
 nx_stat <= cpyscrpad;
 else
 nx_stat <= memcmd;
 end if;
 when wrscrpad =>
 if (j = 12 and wr = '1') then -- if CRC\ = calculated CRC
 nx_stat <= RXCRC;

 71

 else
 nx_stat <= wrscrpad;
 end if;

 -- if rxdata = X"AAAAAAAA" at ldcnt = 3 then keydn '1'
 when RXCRC =>
 if((CRCOK = '1' or keydn = '1') and pr_state = ideal)then

 nx_stat <= initial;
 else
 nx_stat <= RXCRC;
 end if;

 when rdscrpad =>
 if(rdcnt > 27 and rd = '1' and pr_state = ideal) then
 nx_stat <= initial;
 else
 nx_stat <= rdscrpad;
 end if;

 when ldfkey =>
 if(j = 5) then
 nx_stat <= progwait;
 else
 nx_stat <= ldfkey;
 end if;

 when progwait =>
 if(waitcnt = 10003) then
 nx_stat <= RXCRC;
 else
 nx_stat <= progwait;
 end if;

 when rdmem =>
 if(rdmemcnt = 8 and pr_state = ideal)then
 nx_stat <= initial;
 else
 nx_stat <= rdmem;
 end if;

 when cpyscrpad =>
 if(j > 4) then
 nx_stat <= macwait;
 else

 72

 nx_stat <= cpyscrpad;
 end if;

 when macwait =>
 if(waitcnt > 2125)then
 nx_stat <= sendmac;
 else
 nx_stat <= macwait;
 end if;
 when sendmac =>
 if(mscnt = 20) then
 nx_stat <= progwait;
 else
 nx_stat <= sendmac;
 end if;

 end case;
end process;

process(wr,rst)
begin
 if rst = '0' then
 j <= 1;
 mscnt <= 0;
 elsif(wr'event and wr = '1') then
 if(cnten = '1') then
 j <= j + 1;
 else
 j <= 1;
 end if;
 if(mscnten = '1')then
 mscnt <= mscnt + 1;
 else
 mscnt <= 0;
 end if;
 end if;
end process;

process(rst,rd)
begin
 if rst = '0' then
 rdmemcnt <= 0;
 elsif(rd'event and rd = '1') then
 if(rdmemcnten = '1') then

 73

 rdmemcnt <= rdmemcnt + 1;
 else
 rdmemcnt <= 0;
 end if;
 end if;
end process;

process(C1MHz,RST)
begin
 if(RST = '0') then
 m0 <= secret(3) & secret(4) & secret(5) & secret(6);
 m12 <= secret(7) & secret(8) & secret(9) & secret(10);
 m1 <= (others => '0');
 m2 <= (others => '0');
 m3 <= (others => '0');
 m4 <= (others => '0');
 m5 <= (others => '0');
 m6 <= (others => '0');
 m7 <= (others => '0');
 m8 <= (others => '0');
 m9 <= (others => '0');
 m10 <= (others => '0');
 m11 <= (others => '0');
 A <= (others => '0') ;
 b <= (others => '0') ;
 c <= (others => '0') ;
 d <= (others => '0') ;
 e <= (others => '0') ;
 message_vld <= '0';
 MACRST <= '1';
 elsif(C1MHz'event and C1MHz = '1') then
 if(rd = '1' and pr_stat = rdmem) then
 if(rdmemcnt = 1) then
 m1 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23
downto 16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 2) then
 m2 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23
downto 16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 3) then
 m3 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23
downto 16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 4) then
 m4 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23
downto 16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 5) then

 74

 m5 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23
downto 16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 6) then
 m6 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23 downto
16) & rxdata(31 downto 24);
 elsif(rdmemcnt = 7) then
 m7 <= rxdata(7 downto 0) & rxdata(15 downto 8) & rxdata(23 downto
16) & rxdata(31 downto 24);
 end if;
 end if;

 if(c1 = 4 and pr_stat = initial) then
 m8 <= page_01(3) & page_01(4) & page_01(5) & page_01(6);
 m9 <= page_01(7) & page_01(8) & page_01(9) & page_01(10);
 m10 <= X"00" & X"33" & X"6D" & X"1F";
 m11 <= X"25" & X"01" & X"00" & X"00";
 elsif(c1 = 8 and pr_stat = initial) then
 m8 <= page_02(3) & page_02(4) & page_02(5) & page_02(6);
 m9 <= page_02(7) & page_02(8) & page_02(9) & page_02(10);
 m10 <= X"02" & X"33" & X"6D" & X"1F";
 m11 <= X"25" & X"01" & X"00" & X"00";
 elsif(c1 = 12 and pr_stat = initial) then
 m8 <= page_03(3) & page_03(4) & page_03(5) & page_03(6);
 m9 <= page_03(7) & page_03(8) & page_03(9) & page_03(10);
 m10 <= X"04" & X"33" & X"6D" & X"1F";
 m11 <= X"25" & X"01" & X"00" & X"00";
 elsif(c1 = 16 and pr_stat = initial) then
 m8 <= page_04(3) & page_04(4) & page_04(5) & page_04(6);
 m9 <= page_04(7) & page_04(8) & page_04(9) & page_04(10);
 m10 <= X"06" & X"33" & X"6D" & X"1F";
 m11 <= X"25" & X"01" & X"00" & X"00";
 end if;

 if(digest_vld <= '1') then
 A <= digest(159 downto 128);
 B <= digest(127 downto 96);
 C <= digest(95 downto 64);
 D <= digest(63 downto 32);
 E <= digest(31 downto 0);
 end if;

 if(pr_stat = rdscrpad) then
 message_vld <= '1';
 end if;

 if(pr_stat = progwait) then

 75

 MACRST <= '1';
 message_vld <= '0';
 else
 MACRST <= '0';
 end if;

 end if;

 end process;

end Behavioral;

6.4 Secure Hash Algorithm

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity MAC is

port(

 clk : in std_logic;

 reset : in std_logic;

 m0i,m1i,m2i,m3i,m4i,m5i,m6i,m7i,m8i,m13i,m10i,m11i,m12i : in

std_logic_vector(31 downto 0);

 message_vld : in std_logic;

 digest : out std_logic_vector(159 downto 0);

 digest_vld : out std_logic

);

end MAC;

architecture behavioral of MAC is

signal run_hash : std_logic;

signal w0,w1,w2,w3,w4,w5,w6, w7, w8, w9, w10,w11,

 w12,w13,w14,w15,w, wi : std_logic_vector (31 downto 0);

 76

signal a, b, c, d, e, Kt, temp : std_logic_vector (31 downto 0);

signal count : std_logic_vector (4 downto 0);

signal stage : std_logic_vector (1 downto 0);

type sha_state_type is (setup, calc, done);

signal sha_state : sha_state_type;

signal m0,m1,m2,m3,m4,m5,m6,m7,m8,m13,m10,m11,m12 : std_logic_vector(31

downto 0);

-- appended a 1, then zeroes result 80

constant m9 : std_logic_vector(31 downto 0) := X"FFFFFFFF";

constant m14 : std_logic_vector(31 downto 0) := X"00000000";

constant m15 : std_logic_vector(31 downto 0) := X"000001B8";

-- 64-bit representation of the length of the string

constant Ka : std_logic_vector(31 downto 0)

 := "01100111010001010010001100000001"; --X"67452301";

constant Kb : std_logic_vector(31 downto 0)

 := "11101111110011011010101110001001"; --X"efcdab89";

constant Kc : std_logic_vector(31 downto 0)

 := "10011000101110101101110011111110"; --X"98badcfe";

constant Kd : std_logic_vector(31 downto 0)

 := "00010000001100100101010001110110"; --X"10325476";

constant Ke : std_logic_vector(31 downto 0)

 := "11000011110100101110000111110000"; --X"c3d2e1f0";

constant Kt0 : std_logic_vector(31 downto 0)

 := "01011010100000100111100110011001"; --X"5a827999";

constant Kt20 : std_logic_vector(31 downto 0)

 := "01101110110110011110101110100001"; --X"6ed9eba1";

constant Kt40 : std_logic_vector(31 downto 0)

 := "10001111000110111011110011011100"; --X"8f1bbcdc";

constant Kt60 : std_logic_vector(31 downto 0)

 77

 := "11001010011000101100000111010110"; --X"ca62c1d6";

begin

start_signal : process (clk, reset)

begin

if (reset = '1') then

 m0 <= (others => '0');

 m1 <= (others => '0');

 m2 <= (others => '0');

 m3 <= (others => '0');

 m4 <= (others => '0');

 m5 <= (others => '0');

 m6 <= (others => '0');

 m7 <= (others => '0');

 m8 <= (others => '0');

 m13 <= (others => '0');

 m10 <= (others => '0');

 m11 <= (others => '0');

 m12 <= (others => '0');

 run_hash <= '0';

 elsif (clk'event and clk = '1') then

 if (message_vld = '1') then

 m0 <= m0i;

 m1 <= m1i;

 m2 <= m2i;

 m3 <= m3i;

 m4 <= m4i;

 m5 <= m5i;

 m6 <= m6i;

 m7 <= m7i;

 78

 m8 <= m8i;

 m13 <= m13i;

 m10 <= m10i;

 m11 <= m11i;

 m12 <= m12i;

 run_hash <= '1';

 end if;

 end if;

end process;

wi <= w13 XOR w8 XOR w2 XOR w0;

---******

HASH : process (clk, reset)

begin

if (reset = '1') then

 a <= Ka; b <= Kb; c <= Kc; d <= Kd; e <= Ke;

 w0 <= (others => '0');

 w1 <= (others => '0');

 w2 <= (others => '0');

 w3 <= (others => '0');

 w4 <= (others => '0');

 w5 <= (others => '0');

 w6 <= (others => '0');

 w7 <= (others => '0');

 w8 <= (others => '0');

 w13 <= (others => '0');

 w10 <= (others => '0');

 w11 <= (others => '0');

 79

 w12 <= (others => '0');

 w9 <= m9;

 w14 <= m14; w15 <= m15;

 w <= (others => '0');

 Kt <= Kt0;

 temp <= (others => '0');

 count <= "00000";

 stage <= "00";

 sha_state <= setup;

 digest <= (others => '0');

 digest_vld <= '0';

elsif(clk'event and clk = '1') then

if (run_hash = '1') then

case sha_state is

 when setup =>

 if (count < "10000" and stage = "00") then

 case count is

 when "00000" => w <= m0; w0 <= m0; w1 <= m1; w2 <= m2; w3 <=

m3; w4 <= m4; w5 <= m5; w6 <= m6; w7 <= m7;

 w8 <= m8; w13 <= m13;

w10 <= m10; w11 <= m11; w12 <= m12;

 when "00001" => w <= w1;

 when "00010" => w <= w2;

 when "00011" => w <= w3;

 when "00100" => w <= w4;

 when "00101" => w <= w5;

 80

 when "00110" => w <= w6;

 when "00111" => w <= w7;

 when "01000" => w <= w8;

 when "01001" => w <= w9;

 when "01010" => w <= w10;

 when "01011" => w <= w11;

 when "01100" => w <= w12;

 when "01101" => w <= w13;

 when "01110" => w <= w14;

 when "01111" => w <= w15;

 when others => w <= (others => '1') ;

 end case;

 else

 sha_state <= calc;

 when calc =>

 e <= d;

 d <= c;

 c <= b(1 downto 0) & b(31 downto 2);

 b <= a;

 case stage is

 when "00" =>

 a <= (a(26 downto 0) & a(31 downto 27)) +

 ((b and c) or ((not b) and d)) +

 (e + w(31 downto 0) + Kt); if

(count = "10011") then

 stage <= "01";

 end if;

 sha_state <= setup;

 when "01" =>

 81

 a <= (a(26 downto 0) & a(31 downto 27)) +

 (b xor c xor d) +

 (e + w(31 downto 0) + Kt);

 if (count = "10011") then

 stage <= "10";

 end if;

 sha_state <= setup;

 when "10" =>

 a <= (a(26 downto 0) & a(31 downto 27)) +

 ((b and c) or (b and d) or (c and d)) +

 (e + w(31 downto 0) + Kt);

 if (count = "10011") then

 stage <= "11";

 end if;

 sha_state <= setup;

 when "11" =>

 a <= (a(26 downto 0) & a(31 downto 27)) +

 (b xor c xor d) +

 (e + w(31 downto 0) + Kt);

 if (count = "10011") then

 sha_state <= done;

 else

 sha_state <= setup;

 end if;

 when others =>

 a <= (others => '1');

 end case;

 if (count > "01111" or stage > "00") then

 w0 <= w1; w1 <= w2; w2 <= w3; w3 <= w4; w4 <= w5;

 w5 <= w6; w6 <= w7; w7 <= w8; w8 <= w9; w9 <= w10;

 w10 <= w11; w11 <= w12; w12 <= w13;

 82

 w13 <= w14; w14 <= w15;

 w15 <= wi(30 downto 0) & wi(31);

 end if;

 when done =>

 digest <= a & b & c & d & e;

 digest_vld <= '1';

end case;

end if;

end if;

end process;

end behavioral;

6.5 CRC Generation

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity CRC is
 Port (clk,rst : in STD_LOGIC;
 CRCDATAld : in std_logic;
 datain : in std_logic_vector(87 downto 0);
 CRC_out : out std_logic_vector(15 downto 0));
end CRC;

architecture Behavioral of CRC is
 signal CRC : std_logic_vector(15 downto 0);
 signal data : std_logic_vector(87 downto 0);
 signal cnt : integer;
 signal P : std_logic;
begin

 P <= CRC(0) xor data(0);
process(clk,CRCDATAld,rst)
 begin
 if(CRCDATAld = '1' or rst = '0') then
 data <= datain;
 cnt <= 0;
 CRC <= (others => '0');

 83

 elsif(clk'event and clk = '1') then
 if cnt < 88 then
 CRC(15) <= P;
 CRC(14) <= CRC(15);
 CRC(13) <= CRC(14) xor p;
 CRC(12 downto 1) <= CRC(13 downto 2);
 CRC(0) <= CRC(1) xor P;

 data <= '0' & data (87 downto 1);
 cnt <= cnt + 1;
 else
 CRC_out <= not CRC;
 end if;
 end if;
 end process;

end Behavioral;

 84

Chapter 7

Results

On chip Verification and real time debugging of the Virtex II Pro is done using

ChipScope Pro 8.1i Embedded Design tool. Fgure 7.2 shows the obtained results for the

LOADTEST design. Table 7.1 shows the values for the various 1-wire signaling.

Pr_state[1:3] Value

Ideal 000

Rstpls 001

Prs 011

Write-0 111

Write-1 110

Read 010

Table7.1 1-wire signaling

Table 7.2 shows the values for the various states during the execution of the

LOADTEST.

Pr_stat[1:4] Values

Initial 0000

Skiprom 0001

Rxcrc 1100

Memcmd 0011

Wrscrpad 0010

Rdscrpad 0110

 85

Ldfkey 0111

Sendmac 1110

Progwait 1101

Macwait 1111

Rdmem 0101

Cpyscrpad 0100

Table 7.2 Execution states of LOADTEST

Figure 7.2 Shows the results obtained for the LOADTEST design. The ‘loaddone’ signal

indicates that the secret key has been written correctly into the DS2432. While reading

the page data from the DS2432 ‘CRCOK’ is activated if data is read correctly from the

DS2432. Signal ‘rxdata’ contains the data received from the DS2432. During the

verification of the LOADTEST is found that all the signal are generated properly as

expected. And results confirms the design. The count ‘c1’ corresponds to the different

processes in the LOADTEST design.

Table shows the various states of the execution process of the IFFTEST.

Pr_stat[1:3] Values

Initial 000

Skiprom 001

Rxcrc 101

Rdauth_cmd 110

Rdmac 111

Memcmd 011

Wrscrpad 010

Done 100

Table 7.3 Execution states of IFFTEST

 86

Figure 7.3 shows the various waveforms for the IFFTEST design. ‘FRND’ is activated

only when the secret key stored in the DS2432 matches with that stored in the FPGA.

Figure 7.1 shows the results associated with the 3 to 8 decoder. It is shown that the 3 to 8

decoder is activated only when ‘FRND’ is activated. Tests have been performed by

changing the key stored in the FPGA. It is seen that the user application is remains

deactivated. It is activated only when the keys of FPGA and DS2432 matches. So, the

IFFTEST is verified and it is performing according to the design. The signal ‘c1’

corresponds to the different processes of the IFFTEST design.

 87

Figure 7.1: 3 to 8 decoder

 88

Figure 7.2 (a): Execution of LOADTEST

 89

Figure 7.2 (b): Execution of LOADTEST

 90

Figure 7.2 (c): Execution of LOADTEST

 91

Figure 7.2 (d): Execution of LOADTEST

 92

Figure 7.2 (e): Execution of LOADTEST

 93

Figure 7.2 (f): Execution of LOADTEST

 94

Figure 7.2 (g): Execution of LOADTEST

 95

Figure 7.2 (h): Execution of LOADTEST

 96

Figure 7.2 (i): Execution of LOADTEST

 97

Figure 7.2 (j): Execution of LOADTEST

 98

Figure 7.3 (a): Execution of IFFTEST

 99

Figure 7.3 (b): Execution of IFFTEST

 100

Figure 7.3 (c): Execution of IFFTEST

 101

Figure 7.3 (d): Execution of IFFTEST

 102

Figure 7.3 (e): Execution of IFFTEST

 103

Figure 7.3 (f): Execution of IFFTEST

 104

Figure 7.3 (g): Execution of IFFTEST

 105

Figure 7.3 (h): Execution of IFFTEST

 106

Figure 7.3 (i): Execution of IFFTEST

 107

Figure 7.3 (j): Execution of IFFTEST

 108

Chapter 8

Conclusion

This thesis has presented the Identification Friend or Foe method as the framework for

creating a secure authentication system for the embedded system applications. It is shown

that the Identification Friend or Foe method behaves like a secure wrapper around the

user design and protects it from the leakage of the algorithm details of the device. The

IFF concept is challenge and response based authentication scheme that protects the

Intellectual Property from cloning threat. This scheme is capable of securing a variety of

embedded applications.

As the IFF test takes up a little space in the FPGA so application can be designed

complex. The DS2432 is a Low Pin Count Device so it can be accommodated on the

board very conveniently. The prediction of the algorithms and data interfaces will be

very difficult when the embedded application will be paired with the IFF scheme. The

embedded applications, which are under the scrutiny of competitive and hostile entities,

will be well protected when paired with the IFF Scheme. This Scheme can used with

other advanced block cipher algorithms and is capable to keep up with new security

threats and for use in more advanced FPGA architecture.

This work has been implemented using Virtex-II Pro and DS2432 for the use with the

embedded applications. Further research will continue to replace SHA-1 algorithm to find

better method of securing the embedded applications. The strength of IFF Scheme and its

ability to adapt other new encryption algorithms gives it a bright future and a wide

variety of applications.

 109

Bibliography

[1] Dai Zibin Zhou Ning, “FPGA Implementation of SHA-1 Algorithm”, Institute of

Electronic Technology, Information Engineering University Zhengzhou, P.R China

[2] Aamer Nadeem, Dr M. Younus Javed, “Encryption Algorithms”, National University

of Sciences and Technology Rawalpindi, Pakistan.

[3] T Morkel 1, JHP Eloff 2, “ Encryption Techniques: A Timeline Approach”,

Information and Computer Security Architecture (ICSA) Research Group

[4] “Different types of Encryption”, https://www.wikipedia.org/wiki

[5] “Secure Hash Standard”, National Institute of Standards and Technology, Federal

Information Processing Standards Publication 180-1, Secure Hash Standard, 1995

 [6] Maxim/Dallas Semiconductor Corporation, Dallas, Texas, “Why are 1-Wire SHA-1

Devices Secure”, Application Note 1098:, http://www.maxim-ic.com/an1098, Jun 07,

2002

[7] Catalin Baetoniu and Shalin Sheth , “FPGA IFF Copy Protection Using Dallas

Semiconductor/Maxim DS2432 Secure EEPROMs”, XAPP780 (v1.0) August 17, 2005

[8] Maxim/Dallas Semiconductor Corporation, Dallas, Texas, “DS2432 1K-Bit Protected

1-Wire EEPROM with SHA-1 Engine”, http://www.maxim-ic.com (Datasheet)

[9] Jonathan Peter Graf, ”A Key Management Architecture for Securing Off-Chip Data

Transfers on an FPGA”, M.S. Thesis, Virginia Polytechnic Institute and State University,

June 18, 2004

[10] “ Embedded System going Forward “, Maxim/Dallas Semiconductor Corporation,

Dallas, Texas, Enginering Journal, Vol. 59, pp 10-13.

 110

List of Figures

Fig 1.1. Security Vulnerability at two difference interfaces 2

Fig 2.1. Evolution of Encryption Techniques 6

Fig 3.1 Secure Hash Algorithm 12

Fig. 3.2 Identification Friend And Foe 16

Fig. 4.1 Initialization Procedure: Reset and Presence Pulse 19

Fig. 4.2 Write One Time Slot 20

Fig. 4.3 Write-Zero Time Slot 20

Fig. 4.4 Read-Data Time Slot 21

Fig. 4.5 LOADTEST Instantiation Block Diagram 22

Fig. 4.6 Load Test Flow diagram 22

Fig. 4.7 IFFTEST instantiation Block Diagram 27

Fig. 4.8 IFF Test Flow diagram 28

Fig. 4.9 CRC-8 Hardware Description and Polynomial 30

Fig. 4.10 CRC-16 Hardware Description and Polynomial 30

Fig. 5.1 DS2432 Secure EEPROM Connectivity to XILINX FPGA 33

Fig 5.2 Memory and SHA Function Flow Chart 37

Fig 6.1 3 to 8 Decoder 87

Fig 6.2 Execution of LOADTEST 88

Fig 6.3 Execution of IFFTEST 98

 111

List of Tables

Table 5.1 SHA-1 Input for Copy Scratchpad to a Data Memory Page 46

Table 5.2 : Legends 46

Table 5.3 SHA-1 Input for Copy Scratchpad to the Register Page 47

Table 5.4 SHA-1 Input for Read Authenticated Page 48

Table7.1 1-wire signaling 84

Table 7.2 Execution states of LOADTEST 85

Table 7.3 Execution states of IFFTEST

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf

