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ABSTRACT

The digital video processing technology has been boomed for many years. Today, when people chat with their friends through a visual telephone or when people enjoy the movie broadcasting through Internet or the digital music such as mp3, the convenience that the digital video industry brings to us cannot be forgotten. All of these should attribute to the enhancement on mass storage media or streaming video/audio services which has influenced our daily life deeply.                                     

In digital video communication systems it is important that a video to be compressed, because of storing capacities as well as bit-rate constraints. The video processing is done using Sum of Absolute Differences and with the image processing block set. We first calculate motion vectors between successive frames and use them to reduce redundant information. Then we divide each frame into sub matrices and apply the discrete cosine transform to each sub matrix. Finally, apply a quantization technique to achieve further compression. The Decoder subsystem performs the inverse process to recover the original video.

In this project we developed object tracking for real time video which, demonstrates the motion compensated video processing by using sum of absolute differences. First we have taken an object as reference object or image then the next successive object is compared with the reference object or image. Each time the successive object is compared with the reference object and produces an absolute difference, then the summation of all these differences shows its sum of absolute difference. This difference shows the change in the two images. Finally by using negative threshold we shows the change in the motion of sum of absolute differences in the object image. A simulink model is also developed for object tracking for real time video.

CHAPTER 1

INTRODUCTION

In day to day life, there has been an increasing interest in image tracking and activity recognition systems; due to the large amount of applications there those features can be used. Standard algorithms are not practical to employ for image tracking due to the computational cost that arises from the high number of degrees of freedom of moving objects and from the ambiguity of the images obtained from a single camera. Constraints in the configuration of the moving objects can be used to reduce its complexity. The constraints can be deduced from demonstration, based on different activities. An image tracking system is developed using this kind of constraints and then evaluated. The fact that the constraints are based on activities allows, while doing the tracking, the inference of the activity the object is performing.
Image tracking and activity recognition are receiving increasing attention among computer scientists due to the wide spectrum of applications where they can be used, ranging from athletic performance analysis to video surveillance. By image tracking we refer to the ability of a computer to recover the position and orientation of the object from a sequence of images. There have been several different approaches to allow computers to derive automatically the kinematics pose and activity from image sequences. 
Video tracking is the process of locating a moving object (or several ones) in time using a camera. An algorithm analyses the video frames and outputs the location of moving targets within the video frame. The main difficulty in video tracking is to associate target locations in consecutive video frames, especially when the objects are moving fast relative to the frame rate. Here, video tracking systems usually employ a motion model which describes how the image of the target might change for different possible motions of the object to track. The role of the tracking algorithm is to analyze the video frames in order to estimate the motion parameters. These parameters characterize the location of the target.

This video processing is done using SAD technique and with the image processing block set. We first calculate motion vectors between successive frames and use them to reduce redundant information. Then we divide each frame into sub matrices and apply the discrete cosine transform to each sub matrix. Finally, apply a quantization technique to achieve further compression. The Decoder subsystem performs the inverse process to recover the original video.

In this project we developed object tracking for real time video which, demonstrates the motion compensated video processing by using sum of absolute differences. A simulink model is also developed for object tracking for real time video.

CHAPTER 2
TRACKING
2.1 Introduction to Tracking

There has been an increasing interest in image tracking and activity recognition systems due to the large amount of applications there those features can be used. Constraints in the configuration of the moving objects can be used to reduce its complexity. The constraints can be deduced from demonstration, based on different activities. An image tracking system is developed using this kind of constraints and then evaluated. The fact that the constraints are based on activities allows, while doing the tracking, the inference of the activity the object is performing.

Image tracking and activity recognition are receiving increasing attention among computer scientists due to the wide spectrum of applications where they can be used, ranging from athletic performance analysis to video surveillance. By image tracking we refer to the ability of a computer to recover the position and orientation of the object from a sequence of images. There have been several different approaches to allow computers to derive automatically the kinematics pose and activity from image sequences. 
Video tracking is the process of locating a moving object in time using a camera. An algorithm analyses the video frames and outputs the location of moving targets within the video frame. The main difficulty in video tracking is to associate target locations in consecutive video frames, especially when the objects are moving fast relative to the frame rate. Here, video tracking systems usually employ a motion model which describes how the image of the target might change for different possible motions of the object to track. The role of the tracking algorithm is to analyze the video frames in order to estimate the motion parameters. These parameters characterize the location of the target.

2.2 Components of Visual Tracking System
Target Representation and Localization is mostly a bottom-up process. Typically the computational complexity for these algorithms is low. The following are some common Target Representation and Localization algorithms:

· Blob tracking: Segmentation of object interior (for example blob detection, block-based correlation or optical flow).

· Kernel-based tracking (Mean-shift tracking): An iterative localization procedure based on the maximization of a similarity measure.

· Contour tracking: Detection of object boundary (e.g. active contours or Condensation algorithm).

· Visual feature matching: Registration

2.3 Tracking: Possible Issues and Applications

One approach to reduce the problem space and to make the problem computationally tractable is to provide constraints on the positions of the object. Constraints can be based on temporal information, camera configuration, or any combination of these. Camera configuration constraints are usually expressed by making assumptions on the relative positioning of the subject with respect to the camera. 
Temporal constraints refer to the fact that an object can only move up to a certain speed, therefore given a certain configuration, the object can only reach a subset of all the possible configurations in the next time step. There are certain constraints in tracking the object motion, for example Joint angles constraints are the constraints that deal with the restrictions on the configurations of the human body due to its nature or to any other fact (i.e. activity performed, domain of the application, etc.). The set of constraints that produce the most accurate tracking is the one that describes better the action performed. Activity recognition systems are based on the concept of human tracking. These can be employed in numerous applications, ranging from robotics, computer animation, and video surveillance, etc. to video indexing and even athletics. 
2.4 Optimization Methods for Tracking
Most human motion and pose estimation approaches propose some sort of optimization method, direct or probabilistic, to optimize the pose (and/or body model) subject to the image features observed. This section will give an non-exhaustive overview of the methods employed.

2.4.1 Direct Optimization

Direct optimization methods often formulate a continuous objective function F(Xt, It), where Xt is the pose of the body at time t and It is the corresponding observed image, and then optimize it using some standard optimization technique. Since F(Xt, It) is highly non-linear and non-convex there is almost never a guarantee that a global optimum can be reached. However, by iteratively linearizing F(Xt, It) and following the gradient with respect to the parameters a local optimum can be reached. If a good estimate from the previous time step is available, and the pose changes slowly over time, then initializing the search with the previous pose often leads to a reasonable solution.
2.4.2 Probabilistic Inference

It is often convenient and natural to formulate tracking and pose estimation as probabilistic inference. A probabilistic framework has two advantages over the direct optimization methods:

· It can encode the confidence of any given articulated interpretation of the image.
· It allows one to maintain multi-modal predictions both spatially and over time. Multi-modality arises naturally in human motion estimation, since the body in different postures can look very similar (if not identical) in the image. 

The number of valid interpretations of the images depend significantly on the features used, imaging conditions and the temporal history. By maintaining a multi-modal pose hypothesis over time, approaches can often benefit by resolving the ambiguities as more information becomes available.

Let us assume that the pose of the body, Xt , at time t is generated by a dynamic process. In general, for articulated motion estimation we are interested in the joint posterior distribution p( X0,X1, ...Xt / I0, I1, ..., It ), where Ii  is a (possibly multi-ocular) sequence of image observations over time i [image: image4.png]


 [0, ..., t]. Since dealing with the joint distribution over many high-dimensional variables is hard approximations are often made that only infer the marginal of the joint. The marginal equations are significantly simplified my introducing Markov assumption over the hidden states. The 1-st order Markov assumption4 states that pose, Xt, at time t depends only on the pose at t.
1. This model is also known as Hidden Markov Model (HMM) and will be discussed at length in the next chapter.
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Using first Bayes’ rule from above Eq and then assuming the independence of observations, in particular, that It is conditionally independent of [I0, ..., It.1] given Xt, we can re-write the above expression as follows, 
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Since the observation, It, at time t is assumed conditionally independent of all hidden states (past or future) given the state, Xt at time t, we can further simplify above Eqs.. Then using conditional probability rules (Eq. 2.7), re-arranging terms (Eq. 2.8) and applying Bayes’ rule again to the right-most term is obtain the final recursive expression for Baysian filtering ,

[image: image10.wmf](

)

(

)

(

)

(

)

(

)

(

)

ò

-

-

-

-

-

-

-

=

1

1

1

1

0

1

1

1

1

0

1

1

0

,.....,

,

,

.

|

,.....,

,

,

|

,......,

,

|

t

X

t

t

t

t

t

t

t

t

t

t

t

t

time

at

Posterior

t

t

dX

I

I

I

p

I

p

X

X

p

X

X

I

I

I

p

X

X

I

p

I

I

I

X

p

4

4

4

3

4

4

4

2

1


  
[image: image11.wmf](

)

(

)

(

)

(

)

(

)

ò

-

-

-

-

-

-

=

1

1

1

1

0

1

1

1

1

0

,.....,

,

,

|

,.....,

,

|

t

X

t

t

t

t

t

t

t

t

t

dX

I

I

I

p

I

p

X

X

p

X

I

I

I

p

X

I

p



[image: image12.wmf](

)

(

)

(

)

(

)

(

)

(

)

ò

-

-

-

-

-

-

-

=

1

1

1

1

0

1

1

1

1

1

0

,.....,

,

|

|

,.....,

,

|

t

X

t

t

t

t

t

t

t

t

t

t

dX

I

I

I

p

I

p

X

p

X

X

p

X

I

I

I

p

X

I

p



[image: image13.wmf](

)

(

)

(

)

(

)

(

)

(

)

ò

-

-

-

-

-

-

-

=

1

1

1

1

0

1

1

1

1

0

1

,.....,

,

|

,.....,

,

|

|

t

X

t

t

t

t

t

t

t

t

t

t

dX

I

I

I

p

X

p

X

I

I

I

p

X

X

p

I

p

X

I

p



[image: image14.wmf](

)

(

)

(

)

(

)

ò

-

-

-

-

-

=

1

1

1

1

0

1

1

,.....,

,

|

|

|

t

X

t

t

t

t

t

t

t

t

dX

I

I

I

X

p

X

X

p

I

p

X

I

p



[image: image15.wmf](

)

(

)

(

)

ò

-

-

-

-

-

=

1

1

1

1

0

1

1

,.....,

,

|

|

|

1

t

X

t

t

t

t

t

t

t

dX

I

I

I

X

p

X

X

p

X

I

p

Z



[image: image16.wmf](

)

(

)

(

)

ò

-

-

-

-

-

-

=

1

1

1

1

1

0

1

Pr

1

,....,

,

|

|

|

1

t

X

t

t

time

at

Posterior

t

t

ior

Temporal

t

t

Likelihood

t

t

dX

I

I

I

X

p

X

X

p

X

I

p

Z

4

4

4

3

4

4

4

2

1

4

3

4

2

1

4

3

4

2

1


where Z is a normalizing constant. The integral portion of the above equation is referred to as the prediction and the term before the integral, p(It | Xt), as the likelihood. Furthermore, the first term in the integral, is also known as the temporal that defines the dynamics or the state evolution process. It is worth noting that the above recursion terminates at p(X0|I0) = p(X0), where it is assumed that the distribution over the initial starting pose X0 is known. In the case of the pose estimation p(X0|I0) 6= p(X0) and itself needs to be inferred.

If the likelihood is Gaussian, p(It|Xt) = N(It ;AoXt,_o), the initial distribution, p(X0), is Gaussian and temporal prior is linear with normally distributed noise, p(Xt|Xt.1) = N(Xt;AdXt.1,_d), the integral in above Eq. can be dealt with analytically. This model is commonly called the Kalman Filter and has been used successfully for articulated tracking in some cases. While the Kalman filter provides a probabilistic solution to tracking, this model is only capable of dealing with uni-modal Gaussian predictions of the posterior. Hence, most state of the art probabilistic methods tend to avoid Kalman Filtering in favour of other models that make weaker assumptions on dynamics and observations (e.g. particle filtering). It is worth mentioning that there is significant evidence that the posterior over pose is indeed non-Gaussian and is hard to model using simple parametric distributions. This arises due to non-linear dynamics of the human body and an often non-Gaussian observation model. For example, when a leg hits the ground during the walking cycle, the result is an inelastic collision between the foot and the ground plane that is highly non-linear
In such cases a common solution is to approximate the integral using numerical (e.g. Monte Carlo) integration. This leads to a family of methods that are commonly known as Partical Filters. Particle filters will be covered in more detail in chapter 4. Particle filters have been extensively used for both rigid and articulated object tracking. Unlike the Kalman Filter, Particle Filters are able to deal with complex and multimodal posterior distributions. Particle Filters tend to represent the posterior at time t using a weighted set of N samples (particles) [image: image18.png]


where sti   is an i-th sample and wti is the corresponding weight, such that [image: image20.png]


. The most notable disadvantage of these methods is that they require sampling in high-dimensional spaces to represent the posterior. Since the number of samples required grows exponentially with the dimensionality, methods rely on some heuristic function that designates the most plausible portion of the space to sample. Consequently, the efficiency of particle filters is greatly effected by the choice of this function.
2.5 Image
An image may be defined as a set of pixels. Mathematically it is defined as a 2-D function f(x, y), where x and y are spatial coordinates, and the amplitude of at any coordinates (x, y) is called the intensity or grey level of the image at that point. When x, y and the amplitude values of f are all finite, discrete quantities (e.g. 0 or 1 for a black and white image), we call the image a digital image.

2.6 Video
Video is the motion of image in a frame with respect to time by using the property of persistence of vision. It is required that more than 15 frames are to be moved per second(fps).For the smoother appearance 30 fps is necessary. 

2.7 Visual Perception

[image: image21]
Figure 2.1 : Visual Perception
The human eye consists of    

                                              Cones – to perceive color .

                                              Rods –  to perceive brightness

   .

Color defined as a mix of RGB.R for Red ,G for Green and B for Blue.

2.8 Video Generation

 
[image: image22]
Figure 2.2 : Video Generation
As said that an image is a set of pixels so for the generation of a video the scanning of the each and every pixel is necessary .So video is generated by scanning the pixels and each pixel represented by a value or set of values. The pixels are scanned as shown in the above figure. The scanning starts from the right most pixel to the left most pixel in the first row and then comes back to the next row and then start from the right most pixel towards the end of the row and so on. Once after the scanning entire image then it again returns back to the starting point as shown.

For the best results interlaced scanning is employed in which the image is divided in to two fields, even field and odd field. 

2.9 Video Processing
Video processing is a very important phenomenon now a days. Many processing methods are widely used either in television systems, video post production or even in common life. Despite the fact that professional hardware video processing solutions exist, software video processing is very popular mainly because of the great flexibility it offers.

By transforming a signal the energy is separated into sub bands, by describing each sub band with different precisions, higher precision within high energy sub bands and less precision in low energy sub bands, the signal can be compressed. The most common transform used is the DCT (Discrete Cosine Transform) which has excellent in energy compaction which means that the energy of the matrix is concentrated to a small region of the transformed matrix. 

Here in this project the video processing is done using  SAD techniques and with the Video and image Processing Blockset . We first calculate motion vectors between successive frames and uses them to reduce redundant information. Then we divide each frame into sub matrices and applies the discrete cosine transform to each sub-matrix. Finally, apply a quantization technique to achieve further compression. The Decoder subsystem performs the inverse process to recover the original video.

CHAPTER 3
MOTION COMPENSATED VIDEO PROCESSING 
3.1 Overview
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Figure 3.1 : Block Diagram of Motion Compensated Video Processing
Block based motion compensation uses blocks from a past frame to construct a replica of the current frame. The past frame is a frame that has already been transmitted to the receiver. For each block in the current frame a matching block is found in the past frame and if suitable, its motion vector is substituted for the block during transmission. Depending on the search threshold some blocks will be transmitted in their entirety rather than substituted by motion vectors. The problem of finding the most suitable block in the past frame is known as the block matching problem. Block based motion compensated video compression takes place in a number of distinct stages. The flow chart above illustrates how the output from the earlier processes form the input to later processes. Consequently choices made at early stages can have an impact of the effectiveness of later stages. To fully understand the issues involved with this type of video compression it is necessary to examine each of the stages in detail. 

These stages can be described as:

· Frame Segmentation 

· Search Threshold 

· Block Matching 

· Motion Vector Correction

· Vector Coding 

· Prediction Error Coding 

3.2 Frame Segmentation
The current frame of video to be compressed is divided into equal sized non-overlapping rectangular blocks. Ideally the frame dimensions are multiples of the block size and square blocks are most common. Chan et al. used rectangular blocks of 16 x 8 pixels, claiming that blocks of this shape exploit the fact that motion within video sequences is more often in the horizontal direction than the vertical.


Block size affects the performance of compression techniques. The larger the block size, the fewer the number of blocks, and hence fewer motion vectors need to be transmitted. However, borders of moving objects do not normally coincide with the borders of blocks and so larger blocks require more correction data to be transmitted. Small blocks result in a greater number of motion vectors, but each matching block is more likely to closely match its target and so less correction data is required. Lallaret found that if the block size is too small then the compression system would be very sensitive to noise. Thus block size represents a trade off between minimizing the number of motion vectors and maximizing the quality of the matching blocks. The relationship between block size, video quality, and compression ratio has been the subject of much research and is well understood.


For architectural reasons block sizes of integer powers of 2 are preferred and so block sizes of 8 and 16 pixels predominate. Both the MPEG and H.261 video compression standards use blocks of 16x16 pixels.

3.3 Search Threshold

If the difference between the target block and the candidate block at the same position in the past frame is below some threshold then it is assumed that no motion has taken place and a zero vector is returned. Thus the expense of a search is avoided. Most video codes employ a threshold in order to determine if the computational effort of a search is warranted.

3.4 Block Matching

Block matching is the most time consuming part of the encoding process. During block matching each target block of the current frame is compared with a past frame in order to find a matching block. When the receiver reconstructs the current frame this matching block is used as a substitute for the block from the current frame. 


Block matching takes place only on the luminance component of frames. The colour components of the blocks are included when coding the frame but they are not usually used when evaluating the appropriateness of potential substitutes or candidate blocks.
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Figure 3.2: Corresponding blocks from a current and past frame, and the search area in the past frame.

The search can be carried out on the entire past frame, but is usually restricted to a smaller search area centred on the position of the target block in the current frame (see above figure). This practice e places an upper limit, known as the maximum displacement, on how far objects can move between frames, if they are to be coded effectively. The maximum displacement is specified as the maximum number of pixels in the horizontal and vertical directions that a candidate block can be from the position of the target block in the original frame.

The quality of the match can often be improved by interpolating pixels in the search area, effectively increasing the resolution within the search area by allowing hypothetical candidate blocks with fractional displacements.


The search area need not be square. Because motion is more likely in the horizontal direction than vertical, rectangular search areas are popular. The CLM460x MPEG video encoder, for example, uses displacements of -106 to +99.5 pixels in the horizontal direction, and -58 to +51.5 pixels in the vertical. The half pixel accuracy is the result of the matching including interpolated pixels. The cheaper CLM4500, on the other hand, uses ±48 pixels in the horizontal direction, and ±24 in the vertical, again with half pixel accuracy. If the block size is b and the maximum displacements in the horizontal and vertical directions are dx and dy respectively, then the search area will be of size (2dx + b)(2dy + b). Excluding sub-pixel accuracy it will contain (2dx + 1)(2dy+1) distinct, but overlapping, candidate blocks. Clearly the larger the allowable displacement the greater the probability of finding a good match. The number of candidate blocks in the search area, however, increases quadratic ally as the displacement increases, which can result in a large number of candidate blocks being compared to the target block. Considering every candidate block in the search area as a potential match is known as an Exhaustive Search, Brute Force Search, or Full Search

3.5 Matching Criteria

In order for the compressed frame to look like the original, the substitute block must be as similar as possible to the one it replaces. Thus a matching criterion, or distortion function, is used to quantify the similarity between the target block and candidate blocks. If, due to a large search area, many candidate blocks are considered, then the matching criteria will be evaluated many times. Thus the choice of the matching criteria has an impact on the success of the compression. If the matching criterion results in bad matches then the quality of the compression will be adversely affected. Fortunately a number of matching criteria are suitable for use in video  compression.

3.6 Sub-Optimal Block Matching Algorithms

The exhaustive search is computationally very intensive and requires the distortion function (matching criteria) to be evaluated many times for each target block to be matched. Considerable research has gone into developing block-matching algorithms that find suitable matches for target blocks but require fewer evaluations. Such algorithms test only some of the candidate blocks from the search area and choose a match from this subset of blocks. Hence they are known as sub-optimal algorithms. Because they do not examine all of the candidate blocks, the choice of matching block might not be as good as that chosen by an exhaustive search. The quality-cost trade-off is usually worthwhile however.


3.7 Motion Vector Correction 
Once the best substitute, or matching block, has been found for the target block, a motion vector is calculated. The motion vector describes the location of the matching block from the past frame with reference to the position of the target block in the current frame.


Motion vectors, irrespective of how they are determined, might not correspond to the actual motion in the scene. This may be due to noise, weaknesses in the matching algorithm, or local minima. The property that is exploited in spatially dependent algorithms can be utilized after the vectors have been calculated in an attempt to correct them. Smoothing techniques can be applied to the motion vectors that can detect erratic vectors and suggest alternatives. The alternative motion vectors can be used in place of those motion vectors. 

Smoothing motion vectors, however, can add considerable complexity to a video compression algorithm and should only be used where the benefits outweigh these costs. If frames are going to be interpolated by the receiver then motion vector correction is likely to be worthwhile. Smoothing can also reduce the amount of data required to transmit the motion vector information, because this information is subsequently compressed and smooth vectors can be compressed more efficiently.

Vector smoothing causes problems of its own. Smoothing can cause small objects to be coded badly because their motion vectors might be considered erroneous when they are in fact correct. Smoothing such motion vectors can adversely affect the quality of the compressed video. The averaging schemes blurred sharp discontinuities in video sequences. Because these discontinuities might be the result of object boundaries they should be preserved. To overcome this, a technique is used which reconsidered every motion vector that did not concur with its immediate neighbours to the left.

3.8 Vector Coding

Once determined, motion vectors must be assigned bit sequences to represent them. Because so much of the compressed data will consist of motion vectors, the efficiency with which they are coded has a great impact on the compression ratio. In fact up to 40% of the bits transmitted by a codec might be taken up with motion vector data. Fortunately, the high correlation between motion vectors and their non-uniform distribution makes them suitable for further compression. This compression must be lossless.


Efficient coding of motion vectors is a subject of research in its own right and many authors have offered suggestions on which techniques work best. Any one of the lossless general-purpose compression algorithms are suitable for coding vectors. The algorithms are Arithmetic, Adaptive Huffman, and Lewpel-Ziv Coding. They found that the arithmetic and Huffman techniques performed best and that adaptive techniques using short term statistics performed better than those using long term statistics. The ISO/IEC video compression standard known as MPEG specifies variable length codes to be used for motion vectors. The zero vectors, for example, have a short code, because it is the most frequently occurring.
We tested two methods of coding motion vectors. The first was a predictive method where a prediction of the motion vector was calculated based on its predecessors in the same row and column. The prediction errors were then Huffman coded. The second technique grouped the motion vectors into blocks. If all the vectors in a block were the same, then only one was transmitted. Blocks that did not contain a homogenous set of vectors were labeled and the vectors described as per as their first method.

3.9 Prediction Error Coding

Although the battery of techniques described thus far can code video very successfully, they rarely generate perfect replicas of the original frames. Thus the difference between a predicted frame and the original uncompressed frame might be coded. Generally this is applied on a block-by-block basis and only where portions of the coded frame are significantly different from the original. Transform coding is most frequently used to achieve this and completely lossless coding is rarely a goal.

3.10 Interframe Compression Techniques    

Interframe compression is compression applied to a sequence of video frames, rather than a single video. In general, relatively little changes from one video frame to the next. Interframe compression exploits the similarities between successive frames, known as temporal redundancy; to reduce the volume of data required to describe the sequence.      

There are several interframe compression techniques, of various degrees of complexity, most of which attempt to more efficiently describe the sequence by reusing parts of frames the receiver already has, in order to construct new frames.

3.11 Sub-sampling

Sub-sampling can also be applied to video as an interframe compression technique, by transmitting only some of the frames. Sub-sampled digital video might, for example, contain only every second frame. Either the viewer’s brain or the decoder would be required to interpolate the missing frames at the receiving end.

3.12 Difference Coding

Difference coding, or conditional replenishment, is a very simple interframe compression process during which each frame of a sequence is compared with its predecessor and only pixels that have changed are updated. In this way only a fraction of the number of pixel values is transmitted. The videos below are successive frames from the table tennis sequence and illustrates how, frequently, very little changes from one frame to the next.
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Figure 3.3 : Consecutive frames from the Table Tennis sequence.


If the coding is required to be lossless then every changed pixel must be updated. There is an overhead associated with indicating which pixels are to be updated, and if the number of pixels to be updated is large, then this overhead can adversely affect compression. Two modifications can alleviate this problem somewhat, but at the cost of introducing some loss. 
(1) The intensity of many pixels will change only slightly and when coding is allowed to be lossy, only pixels that change significantly need be updated. Thus, not every changed pixel will be updated. 
(2) Difference coding need not operate only at the pixel level, but at the block level. 

3.13 Block Based Difference Coding

If the frames are divided into non-overlapping blocks and each block is compared with its counterpart in the previous frame, then only blocks that change significantly need be updated. If, for example, only those blocks of the Table Tennis frame that contain the ball, lower arm and bat were updated, the resulting video might be an acceptable substitute for the original.


Updating whole blocks of pixels at once reduces the overhead required to specify where updates take place. The 160x120 pixels in the Table Tennis frame can be split into 300 8x8 pixel blocks. Significantly fewer bits are required to address one of 300 blocks than one of 19200 individual pixels. If pixels are updated in blocks, however, some pixels will be updated unnecessarily, especially if large blocks are used. Also, in parts of the video where updated blocks border parts of the video that have not been updated, discontinuities might be visible and this problem is worse when larger blocks are used. Clearly the choice of block size must be an informed one so as to achieve the best balance between video quality and compression.


Block Based Difference Coding can be further improved upon by compensating for the motion between frames. Difference Coding, no matter how sophisticated, is almost useless where there is a lot of motion. Only objects that remain stationary within the video can be effectively coded. If there is a lot of motion or indeed if the camera itself is moving, then very few pixels will remain unchanged. Even a very slow pan of a still scene will have too many changes to allow difference coding to be effective, even though much of the video content remains from frame to frame. To solve this problem it is necessary to compensate in some way for object motion.


3.14 Block Based Motion Compensation

Block based motion compensation, like other interframe compression techniques, produces an approximation of a frame by reusing data contained in the frame’s predecessor. This is completed in three stages

[image: image27.png]




 INCLUDEPICTURE "http://newmediarepublic.com/dvideo/compression/dv074.gif" \* MERGEFORMATINET [image: image28.png]



Figure 3.4 : Past Frame - Current frame to be coded


First, the frame to be approximated, the current frame, is divided into uniform non overlapping blocks, as illustrated below (left). Then each block in the current frame is compared to areas of similar size from the preceding or past frame in order to find an area that is similar. A block from the current frame for which a similar area is sought is known as a target block. 
The location of the similar or matching block in the past frame might be different from the location of the target block in the current frame. The relative difference in locations is known as the Motion vector. If the target block and matching block are found at the same location in their respective frames then the motion vector that describes their difference is known as a Zero vector. The illustration below shows the motion vectors that describe where blocks in the current frame (below left) can be found in past frame (above left).
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Figure 3.5 : Motion Vectors Indicating Changed Blocks

Current frame to be coded divided into blocks. Motion vectors indicating where changed blocks in the current frame have come from. Unchanged blocks are marked by dots.

Finally, when coding each block of the predicted frame, the motion vector detailing the position (in the past frame) of the target block’s match is encoded in place of the target block itself. Because fewer bits are required to code a motion vector than to code actual blocks, compression is achieved.


During decompression, the decoder uses the motion vectors to find the matching blocks in the past frame (which it has already received) and copies the matching blocks from the past frame into the appropriate positions in the approximation of the current frame, thus reconstructing the video. In the example used above, a perfect replica of the coded video can be reconstructed after decompression. In general this is not possible with block based motion compensation and thus the technique is lossy.

The effectiveness of compression techniques that use block based motion compensation depends on the extent to which the following assumptions hold.

· Objects move in a plane that is parallel to the camera plane. Thus the effects of zoom and object rotation is not considered, although tracking in the plane parallel to object motion is. 

· Illumination is spatially and temporally uniform. That is, the level of lighting is constant throughout the video and does not change over time. 

· Occlusion of one object by another, and uncovered background are not considered. 

Bidirectional motion compensation uses matching blocks from both a past frame and a future frame to code the current frame. A future frame is a frame that is displayed after the current frame. Considering the chess board example, suppose that a player is fortunate enough to have a once lost queen replace a pawn on the board. If the queen does not appear on the board before the current move then no block containing the queen can be copied from the previous state of play and used to describe the current state. After the next move, however, the queen might be on the board. If in addition to the state of play immediately before the current move, the state of play immediately following is also available to the receiver, then the current video of the chess board can be reproduced by taking blocks from both the past and future frames.

Bidirectional compression is much more successful than compression that uses only a single past frame, because information that is not to be found in the past frame might be found in the future frame. This allows more blocks to be replaced by motion vectors. Bi-directional motion compensation, however, requires that frames be encoded and transmitted in a different order from which they will be displayed.                                                      

You can use video compression to reduce the size of a video before you transmit it. The compressed video retains many of the original video's features but requires less bandwidth. In this topic, we use the DCT and Selector blocks to compress an intensity video.
CHAPTER 4
SAD (SUM OF ABSOLUTE DIFFERENCES)
4.1 INTRODUCTION
Sum Absolute Difference (SAD) is an operation frequently used by a number of algorithms for digital motion estimation. For such operation, we propose a single vector instruction that can be performed (in hardware) on an entire block of data in parallel .We investigate possible implementations for such an instruction. Assuming a machine cycle comparable to the cycle of a two cycle multiply, we show that for a block of 16x1 or 16x16, the SAD operation can be performed in 3 or 4 machine cycles respectively. The proposed implementation operates as follows: first we determine in parallel which of the operands is the smallest in a pair of operands .Second we compute the absolute value of the difference of each pairs by subtracting the smallest value from the largest and finally we compute the accumulation. The operations associated with the second and the third step are performed in parallel resulting in a multiply (accumulate) type of operation. 
In block-based motion estimation, that is motion estimation performed on a set of pixels, every frame is divided into blocks of equal size and for each block in the current frame a search is performed in the reference frame to find the block resembling the current block the most. Because a search performed over the whole reference frame for each block in the current frame is computational intensive and movements in video sequences are usually small, the search is limited to a search area. After finding the best match for the current block, the motion vector (i.e. the displacement relative to the current block) is stored together with the differences between the two blocks. In determining which block in the searching area of the reference frame is the best match with the current frame, a best match method is employed. The best match is usually established with the use of the sum of absolute differences (SAD).

SAD operation is usually considered for 16x16 pixels (pels) blocks and because the search area could involve a high number of blocks, performing the SAD operation could be time-consuming if traditional methods are used for its computation. Here we implement a new instruction that is capable of producing the direct SAD operation. Furthermore we also show that the implemented instruction is scalable, depending on the constraints of the technology considered for the design. This is shown by considering a 16x1 sub-block element and an entire 16x16 element and showing that the implementation will require 3 machine cycles for a 16x1 sub-block and 4 cycles for a 16x16 block. The 16x16 block performance is achieved by using hardware proportional in size to a 16x1 sub-block unit, that is we achieve a 4 cycle 16x16 block SAD using approximately 16 times the area of the 16x1 SAD.
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Figure 4.1 : Main Computation in the Sum of Absolute Differences (SAD) Kernel
As shown in this figure, the main set of computations in the SAD kernel includes subtraction, followed by computing the absolute, and, finally, accumulating with previous results.

4.2 Computing the Sum of Absolute Difference
The general algorithm computing the Sum Absolute Difference of two blocks is depicted in equation given below is 
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Where (x,y) is the position of the current block and (r,s) denotes the motion vector, i.e. the displacement of the current block (A) relative to the block in the

reference frame (B). The x and y are multiples of 16 for MPEG1 and the values of r and s are determined by the algorithm. 
A direct approach in computation the SAD consists of the following steps:

1. Compute (Ai-Bi) for all 16x16 pixels in the two blocks A and B.

2. Determine which Ai-Bi are less that zero and produce in that case Bi-Ai as the absolute value, else produce Ai-Bi.

3. Perform the accumulate operation to all 16x16 absolute values.

In order to speed up the computation, we perform a multiplicity of operations in a single operation. In the case of the computation of the SAD we want to eliminate the absolute-difference operations. Generally, it is not possible to eliminate these operations, because of the inability to take an absolute operation out of a summation.
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The solution to the problem is as follows. By determining the smallest of both operands and subtracting it from a constant, it becomes possible to eliminate the absolute operations. This subtraction is a trivial operation, if the constant is chosen correctly. To achieve our goal, we first briefly describe an unit capable of computing the SAD of 16x1 pels in parallel, where each pel (pixel) is represented in 8 bits (in unsigned binary notation).
STEP 1 : 

Determine the smaller of two operands. 

This is done by inverting one of the operands, and computing the carry-out which would arise from the addition of both operands.

STEP 2 : 

Invert the smallest operand and pass both operands to an adder tree.

The smallest operand is inverted, which means that its value changes to 
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 .Both the inverted smallest and the largest values are passed to the adder-tree, which corrects for this constant   (
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The above two steps can be carried out in parallel for 16 pels. The result is 32 8-bit values, on which the following steps are applied.

Addition of a correction term 

The correction term is added to account for the 
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 ’s introduced by the inverting of the smallest value. If the number of pels on which the unit is operating is a power of 2, the correction term is equal to that number, as the sum of the 
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 adds up to one “simple eliminatable bit”. If the number of pels the unit operrates on is not a power of two, we also have to account for the additional  
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Reduce the 33 rows to 2

The resulting 32 rows passed to the adder tree and the correction-term is 33 rows, are reduced to 2 rows by using a counter scheme.

Reduce the 2 rows to 1 (accumulation) 

In this final step, a full summation of the two remaining rows is performed. The total sum of all constants, which has to be discarded, is the carry out of this addition.
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Figure 4.2   Graphical Representation of the First Two Steps in Computing The Sum Absolute Difference (SAD).
STEP 3 :
Adding a correction term: 

In order to parallelize the computation of the SAD, the two previous steps are performed on 
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 rows, the result of step 1 and 2, are positioned into a matrix which is then reduced (summed) using some well known counter-scheme and discussed in steps 4 and 5.
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this can also be written as


[image: image48.wmf]å

-

-

-

+

-

=

1

0

|

|

2

*

m

i

i

i

n

B

A

m

m

Sum


 H , H

STEP 4 :
Matrix reduction

In step 4, we reduce the matrix of 
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bits to 2 rows.This matrix reduction can be done in several ways. We could use for example Lim counters, 6-2 counters, or a tree of Carry-Save-Adders (CSA).

STEP 5 :
Final reduction: 

The last step is the final reduction of the matrix. This is done using a fast carry-look-ahead scheme.
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Figure 4.3 : Graphical Representation of a 16 x 1 Unit

Above figure shows a graphical representation of a 16x1 unit,  that is a unit operation on 16 couples of elements producing a single output value. The top half shows 16 times steps 1 and 2 in parallel, and steps 4 and 5 are depicted in the bottom half. Step 3 is represented by the addition term at the left (16). The concept can be expanded to an array capable of computing the SAD of 16x16 pel blocks. In this case, the 2 rows going into the 2-to-1 reduction should go into another 32-to-2 reduction unit, together with the 30 rows of the 15 other units. The result of this 32-to-2 reduction is then reduced by a 2-to-1 final adder. This saves both the execution time and the area of 15 2-to-1 reduction units. 

4.3 LITERATURE SURVEY
4.3.1 A Sum of Absolute Differences Implementation in FPGA Hardware:
In this paper author Stephen Wong, Stamatis Vassiliadis, and Sorin Cotofana propose a new hardware unit that performs a 16 X 1 SAD operation. The hardware unit is intended to augment a general-purpose core. Further they show that the 16 X 1 SAD

Implementation used can be easily extended to perform the 16 X 1 SAD operation, which is commonly used in many multimedia standards, including MPEG-1 and field programmable gate arrays (FPGAs), because it provides increased flexibility, sufficient performance, and faster design times. We performed simulations to validate the functionality of the 16 X1 SAD implementation using the MAX+ plus II software from Altera and synthesis is using the FPGA express software from synopsis. Targeting the Alteras FLEX20KE family , synthesis of our 16 X 1 SAD unit produced the following results for area and clock frequency 1699 look-up tables (LUTs) and 197 MHz ,respectively.
In video coding, similarities between video frames can be exploited to achieve higher compression ratios. However, moving objects within a video scene diminish the compression efficiency of the straightforward approach that only considers pels1 located at the same position in the video frames. In order to achieve higher compression efficiency, motion estimation was introduced in an attempt to accurately capture such movements. It is performed for every macroblock , i.e., an array of 16X1 SAD 16 pels, in the to be encoded frame by finding its ‘best’ match in a reference frame. The most commonly used metric is the “sum of absolute differences” (SAD), which adds up the absolute differences between corresponding elements in the macro blocks. The SAD operation is very time-consuming due to the complex nature of the absolute operation and the subsequent multitude of additions. In The Sum Absolute-Difference Motion Estimation Accelerator by , S. Vassiliadis, E. Hakkennes,  S. Wong, and G. Pechanek a parallel hardware implementation was proposed to speed up the SAD computation process. This paper describes this parallel hardware implementation of the SAD operation in field-programmable gate arrays (FPGAs).
Traditionally, the design of embedded multimedia processors were very much similar to the design of microcontrollers. This meant that for each targeted set of multimedia applications, an embedded multimedia processor needed to be designed in specialized hardware (commonly referred to as Application Specific Integrated Circuits (ASICs)). In the early nineties, we were witnessing a shift in the embedded processor design approach fuelled by the need for faster time-to-market times. This resulted in the design of embedded processors utilizing programmable processor cores augmented with specialized hardware units implemented in ASICs. Consequently, time-critical tasks were implemented in specialized hardware units while other tasks were implemented in software to be run on the programmable processor core S. Rathnam and G. Slavenburg . An Architectural Overview of the Programmable Multimedia Processor. This approach allowed a programmable processor core to be re-used for different sets of applications and only the augmented units need to be designed for specific application areas. Currently, we are witnessing a new trend in embedded processor design that is again quickly reshaping the embedded processor design. Instead of implementing the time critical tasks in ASICs , these tasks are to be implemented in field-programmable gate arrays (FPGA) structures or comparative technologies. The reasons for and the benefits of such an approach include the following:

Increased flexibility: The functionality of the embedded processor can be quickly changed without requiring another roll-out of the embedded processor itself and design faults can be quickly rectified. It also allows for quick adaptation of new (possibly unforeseen) developments.
Sufficient performance: The performance of FPGAs has increased tremendously and is quickly approaching that of ASICs . This seems to be mainly due to the faster adaptation of new technological advancements by FPGAs than by ASICs.
Faster design times: Faster design times are achieved by re-using intellectual property (IP) cores or by slightly modifying them. More importantly, high-level design languages (such as VHDL) can be used in the design process and thereby speeding it up significantly. The mentioned advantages and enabling FPGA have

even resulted in that programmable processor cores are under consideration to be implemented in the same FPGA structure, e.g., Nios from Altera and MicroBlaze from  Xilinx .

In this paper, they  have developed a VHDL model for a functional unit that is able to perform the 16 X 1 SAD operation as introduced in S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The Sum-Absolute-Difference Motion Estimation Accelerator . It is to be implemented in field-programmable gate arrays (FPGAs) and it is intended to augment a general-purpose processor core. As shown later in this paper, the proposed hardware unit can be easily extended to perform the 16 X 16 SAD operation. We performed simulations to validate its functionality using the MAX+plus II (version 9.23 BASELINE) software from Altera and synthesis using the FPGA Express (version 3.4) software from Synopsis. When our 16 X 1 SAD unit was synthesized on the FLEX20KE family of Altera, we obtained the following results for area and clock frequency: 1699 LUTs and 197 MHz, respectively.
4.3.2 Sum of Absolute Differences

Digital video compression entails the utilization of many coding techniques with the ultimate goal to reduce the size of the digital representation of a video sequence. The same techniques used to compress digital pictures, e.g., in the JPEG picture standard, can be applied to single video frames. Such techniques exploit the fact that colours in photographic images tend to only gradually change when traversed from one side to another. In the video coding case, the fact that subsequent video frames do not differ much can be similarly exploited in order to increase compression efficiency.

All coding techniques can be categorized into two main categories, namely lossy and lossless techniques. Lossy coding techniques remove pel information that the human eye is unable to perceive using coding techniques such as the discrete cosine transform and quantization. The information that has been removed in most cases cannot be exactly regained, but it usually can only be approximated. On the other hand, lossless coding techniques do not remove any information. Instead, it exploits redundancies, i.e., similarities, between pels found in and between video frames which results in the representation of pel information using fewer bits. A lossless coding technique is predictive coding which predicts current pel(s) using reference pel(s) and then store the difference(s) between the prediction and the current pel(s). Assuming redundancy between pels, the differences are usually small and can be coded using less bits than the coding of the original pels. Predictive coding can use pels from the same video frame as reference pels (intra-coding) or pels from other video frames (intercoding).

Inter-frame predictive coding can contribute to the overall compression efficiency, because consecutive video frames are usually similar, i.e., they do not differ much. In this sense, the reference pels can be found in a reference frame located at the same position as the current pels in the current to be coded frame. This approach can also be used to capture scene changes by choosing the reference frames in the near future of the current (to be encoded) frame instead from its past. However, such a straightforward approach has one major drawback. Objects in a video scene tend to move around resulting in poor compression performance of the straightforward inter-frame predictive coding method, because pels located at the same location in consecutive frames are now quite different.
Motion estimation has been introduced in an attempt to capture the motion of objects within a video scene. I.e., find the best match between the pel (s) in the current frame and the pel (s) in the reference frame. To this end, a search area within the reference frame must be traversed in order to find the best match. After finding the best match, the difference (s) between the pels must be coded together with the difference between the locations (motion vector). Motion estimation can be performed for single pels in the current frame, but it is rarely used, because the coding of motion vectors for single pels reverses the gains of predictive coding. Therefore, block-based motion estimation is the most commonly used form in which a search is performed in the reference frame for a block of pels in the current frame. Two key issues are associated with motion estimation in general, namely the size of the search area and which metric to use for determining the ‘best match’. The first issue is an interesting one, because a limited search area reduces the possibility of finding a ‘best match’ and an exceedingly large search area results in many unnecessary computations. In order to reduce the number of computations, many search area traversing methods have been proposed in literature. The second issue relates to finding a metric that will guarantee a good coding performance. Two of such metrics are the mean square error (MSE) and the mean absolute difference (MAD). Considering that block-based motion estimation is most commonly used in multimedia standards such as MPEG.
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with 0 ≤ x; y < framesize

with (r, s) being the motion vector

with A(x,y) being a current frame pel at (x, y)

with B(x,y) being a reference frame pel at (x, y)
Due to the square operation on the differences, this operation is less commonly used. Instead, the MAD is used more often and it is calculated as follows:
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with 0 ≤ x ; y < framesize

with (r, s) being the motion vector

with A(x,y) being a current frame pel at (x, y)

with B(x,y) being a reference frame pel at (x, y)
The vector (x, y) denotes the location of the to be encoded macroblock in the current frame. Both x and y are multiples of 16 due to the blocksize is 16 X 16. The (motion) vector2 (r, s) denotes the location of the macroblock to be used as a prediction in the reference block relative to the location of the to be coded macroblock in the current frame. Due to the computational simplicity of the MAD, it is being used more often than the MSE. The MAD can be rewritten to:
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The division by 256 in (binary) computer arithmetic is translated into an easy shifting the final SAD result by 8 bits. Therefore, we are focusing solely on the SAD in the remainder of this paper. All the absolute operations of the SAD operation can be performed serially, per column in parallel, per row in parallel, or all 256 operations in parallel. While it is possible to perform all the operations.
Serially, this approach is time-consuming and not efficient performance-wise. Performing the operations per row or per column in parallel are exactly the same with the only difference being the indexing of the pels. Considering that the completely parallel approach is a simple extension of the per-row or per-column approaches, we focus in this paper on the 16 X 1 SAD that processes all the pels in a row in parallel. An additional advantage of the per row parallel approach is because the pel data is stored in consecutive locations in the main memory. This alleviates the need for special reordering hardware. The complete SAD operation can be rewritten to:
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with the SAD16j being defined as:
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with 0 ≤ x; y < framesize

with (r, s) being the motion vector

with A(x,y) being a current frame pel at (x, y)

with B(x,y) being a reference frame pel at (x,y)
In the remainder of this paper, all data units Ai and Bi are considered to be unsigned 8 bits numbers. Subtraction of two unsigned numbers (e.g., A- B) is performed by adding A with a bit inverted B (
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. Assuming that B ≤ A, the resulting carry (2n) of the addition can be ignored. The SAD16j operation can be performed in three steps: 

Compute (Ai – Bi) for all 16 X 1 pel locations.
Determine which (Ai ¡ Bi)’s are negative, i.e., when no carry was generated and compute (Bi-Ai) instead if this was the case.

Add all 16 absolute values together. 

This approach requires one addition in the first step and an occasional second addition in the second step. In S. Vassiliadis, E. Hakkennes, S. Wong, and G. Pechanek. The Sum-Absolute-Difference Motion Estimation Accelerator.  another approach was introduced to parallelize and speedup the SAD16 operation without the uncertainty of the second step. Its approach is briefly highlighted below:

 Determine the smallest of the two operands.

 Invert the smallest operand.
 Pass both operands to an adder tree.

 Add a correction term to the adder tree.

 Reduce the 33 addition terms to 2.

 Add the remaining two terms using an adder.
4.3.3 Tracking Multiple People for Video Surveillance
In this paper, they propose a new correlation-based matching technique for feature-based tracking. Our method was compared with two existing matching techniques, namely the normalized Euclidean distance and histogram-based matching. Experimental results on real-images suggest that our correlation-based approach is more accurate and efficient than the other two approaches.
Automatic visual surveillance in dynamic scenes (both in indoor and outdoor environment) has recently got a considerable interest to researchers Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual surveillance of object motion and behaviors”, Systems. Technology has reached a stage where mounting video camera is cheap causing a widespread deployment of cameras in public and private areas Xu, L.; Landabaso, J. L.; Lei, B.; “Segmentation and tracking of multiple moving objects for intelligent video analysis”. Finding available human resources to sit and watch the imagery is too expensive for most organizations to afford the cost of human operators  Collins, R. T.;Lipton, A. J.; Kanade, T.; Fujiyoshi, H. Duggins, D.; Tsin, Y.; Tolliver, D.; Enomoto, N. and Hasegawa, O.; “A system for video surveillance and monitoring”,. Moreover, surveillance by operators is error prone due to fatigue, negligence and lack of ubiquitous surveillance. Therefore, it is important to develop an accurate and efficient automatic video analysis system for monitoring human activity that will create enormous business opportunities. It will allow us to detect unusual events in the scene and warrant the attention of security officers to take preventive actions  Xu, L.; Landabaso, J. L.; Lei, B.; “Segmentation and tracking of multiple moving objects for intelligent video analysis”. The purpose of visual surveillance is not to replace human eyes with camera, but to accomplish the entire surveillance task as automatic as possible   Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual surveillance of object motion and behaviors”, Systems,. Other applications of automatic video  surveillance include preventing theft at parking and shopping areas Xu, L.; Landabaso, J. L.; Lei, B.; “Segmentation and tracking of multiple moving objects for intelligent video analysis” , detecting robbery in bank and secured places Collins, R. T.;Lipton, A. J.; Kanade, T.; Fujiyoshi, H.Duggins, D.; Tsin, Y.; Tolliver, D.; Enomoto, N. and Hasegawa, O.; “A system for video surveillance and monitoring” , detecting camouflage Collins, R. T.;Lipton, A. J.; Kanade, T.; Fujiyoshi, H. Duggins, D.; Tsin, Y.; Tolliver, D.; Enomoto, N. and Hasegawa, O.; “A system for video surveillance and monitoring”,  etc. The automatic video surveillance system has two major components, they are detecting moving objects and tracking them in sequence of video images. The accuracy of these components largely affects the accuracy of overall surveillance system. Detecting moving regions in the scene and separating them from background image is a challenging problem. In the real world, some of the challenges associated with foreground object segmentation are illumination changes, shadows, camouflage in color, dynamic background and foreground aperture Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B.; “Wallflower: principles and practice of background maintenance”, . Foreground object segmentation can be done by three basic approaches: frame differencing, background subtraction and optical flow. Frame differencing technique does not require any knowledge about background and is very adaptive to dynamic environments Collins, R. T.;Lipton, A. J.; Kanade, T.; Fujiyoshi, H.; Duggins, D.; Tsin, Y.; Tolliver, D.; Enomoto, N. and Hasegawa, O.; “A system for video surveillance and monitoring”, , but suffers from the problem of foreground aperture due to homogeneous color of moving object. Background subtraction can extract all moving pixels, but it requires perfect background modeling. It is extremely sensitive to scene changes due to lighting and movement of background object. Optical flow is the most robust technique to detect all moving objects, even in the presence of camera motion, but it is computationally expensive and cannot be used for real-time systems. Tracking multiple moving people in cluttered video sequences is another challenging problem in the area of automated video surveillance. It is the building block of understanding high-level events and complex actions such as detection of walking, running, dancing, stalking etc. The problem of tracking can be stated as determining the appearance and location of a particular object in the sequence of frames. The challenges associated with tracking are similarity of people in shape, color and size, proximity of other people and occlusion by other people or background component. Tracking also requires proper management of appearance or disappearance of objects (which changes total number of objects being tracked). Object tracking methods can be divided into 4 groups Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual surveillance of object motion and behaviors”, Systems , they are:

1. Region-based tracking

2. Active-contour-based tracking

3. Feature-based tracking

4. Model-based tracking

In region-based approach , tracking is performed based on the variation of the image regions in motion. This approach does not require computation of image blobs and feature extraction, but it suffers from computational complexity, as it matches a window with all candidate windows in the next frame. Moreover it cannot reliably handle occlusion between objects Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual surveillance of object motion and behaviors”, Systems. In addition, it fails to a match an object when it moves beyond a region. In contrast to region-based tracking, objects are more simply described in active contourbased tracking . Here, bounding contours are used to represent object’s outline, which are updated dynamically in successive frames Hu, W.; Tan, T.; Wang, L.; Maybank, S.; “A survey on visual surveillance of object motion and behaviors”, Systems. 
This approach is too sensitive to initialization and limited to tracking precision. Model-based approach Karaulova, I. A.; Hall, P. M.; Marshall, A. D.; “A hierarchical model of dynamics for tracking people with a single video camera,”  requires developing a 2D or 3D model of human and tracking components of model. This is a robust approach for tracking and performs well under occlusion, but requires high computational cost. In feature-based tracking Polana, R.; Nelson, R.; “Low level recognition of human motion , features of image blobs are extracted for matching in sequence of frames. In this method, several features of blobs are used in feature-vector for matching, such as size, position, velocity, ratio of major axis of best-fit ellipse Xu, L.; Landabaso, J. L.; Lei, B.; “Segmentation and tracking of multiple moving objects for intelligent video  analysis”, orientation, coordinates of bounding box etc. The feature-vectors can be compared by several techniques such as Euclidean distance    Xu, L.; Landabaso, J. L.; Lei, B.; “Segmentation and tracking of multiple moving objects for intelligent video analysis” and correlation-based approach Haritaoglu, I.; Harwood, D.; Davis, L. S.; “Hydra: multiple people detection and tracking using silhouettes”. The histogram of RGB color components of image blobs can also be used as feature and those histograms are compared for matching Comaniciu, D.; Ramesh, V.; Meer, P.; “Real-time tracking of non-rigid objects using mean shift”. In this paper, we propose a new method for matching features of blobs in conjunction with a tracking system. Our system is briefly as follows: the background is modeled by statistical method and updated continuously.
Foreground object segmentation is performed by background subtraction and K-means clustering. We used HSV color space to minimize cast shadows. After finding legitimate blobs, features are extracted and compared with features of blobs in the previous frame using Pearson correlation-based approach. Best matched blob is identified by considering maximum correlation coefficient.
CHAPTER 5
SIMULINK MODELS FOR VIDEO PROCESSING 
5.1 Introduction To Simulink
Simulink is a graphical extension to MATLAB for modeling and simulation of systems. In Simulink, systems are drawn on screen as block diagrams. Many elements of block diagrams are available, such as transfer functions, summing junctions, etc., as well as virtual input and output devices such as function generators and oscilloscopes. Simulink is integrated with MATLAB and data can be easily transferred between the programs. In these tutorials, we will apply Simulink to the examples from the MATLAB tutorials to model the systems, build controllers, and simulate the systems. Simulink is supported on UNIX, Macintosh, and Windows environments; and is included in the student version of MATLAB for personal computers. 

Simulink is started from the MATLAB command prompt by entering the following command: simulink

5.2 Basic Elements
There are two major classes of items in Simulink: blocks and lines. Blocks are used to generate, modify, combine, output, and display signals. Lines are used to transfer signals from one block to another. 
5.2.1 Blocks
There are several general classes of blocks: 

· Sources: Used to generate various signals 

· Sinks: Used to output or display signals 

· Discrete: Linear, discrete-time system elements (transfer functions, state-space models, etc.) 

· Linear: Linear, continuous-time system elements and connections (summing junctions, gains, etc.) 

· Nonlinear: Nonlinear operators (arbitrary functions, saturation, delay, etc.) 

· Connections: Multiplex, Demultiplex, System Macros, etc. 

Blocks have zero to several input terminals and zero to several output terminals. Unused input terminals are indicated by a small open triangle. Unused output terminals are indicated by a small triangular point. The block shown below has an unused input terminal on the left and an unused output terminal on the right. 


[image: image59.png]T

-

Tanstar Fen




5.2.2 Lines

Lines transmit signals in the direction indicated by the arrow. Lines must always transmit signals from the output terminal of one block to the input terminal of another block. On exception to this is a line can tap off of another line, splitting the signal to each of two destination blocks, as shown below (click the figure to download the model file called split.mdl). Lines can never inject a signal into another line; lines must be combined through the use of a block such as a summing junction. 

A signal can be either a scalar signal or a vector signal. For Single-Input, Single-Output systems, scalar signals are generally used. For Multi-Input, Multi-Output systems, vector signals are often used, consisting of two or more scalar signals. The lines used to transmit scalar and vector signals are identical. The type of signal carried by a line is determined by the blocks on either end of the line. 

5.3 Design and Simulate Video and Image Processing Systems
The Video and Image Processing Blockset extends Simulink® with a rich, customizable framework for the rapid design, simulation, implementation, and verification of video and image processing algorithms and systems. It includes basic primitives and advanced algorithms for designing embedded imaging systems in a wide range of applications in aerospace and defense, automotive, commu​nications, consumer electronics, education, and medical electronics industries. 

Built-in block libraries provide two-dimen​sional (2-D) filters, conversions, geometric transformations, morphological operations, 2-D transforms, motion estimation tech​niques, and input/output (I/O) capabilities. The blockset supports floating- and fixed-point data types for modeling, simulation, and C-code generation. It provides analysis and statistical functions to enable rapid optimization and debugging of your models. These functions include video displays, scopes, and other techniques for visualizing image and video data and validating simu​lation results.Tracking
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Figure 5.1 Estimate the Motion Vectors in Each Frame of the Video Sequence

5.4 Modeling and Simulating Video and Imaging Systems

The Video and Image Processing Blockset extends Simulink with a specialized library for designing the behavior of your imaging system. The Simulink environment provides tools for hierarchical modeling, data management, and subsystem customization that make it easy to create concise, accurate representations, regard​less of your system’s complexity.
All blocks in the Video and Image Processing Blockset support double-precision and single-precision floating-point data types. Most also support integer and fixed-point data types. (Fixed-point support requires Simulink® Fixed Point, available separately.) 

Simulink and the Video and Image Processing Blockset enable you to run fast simulations for real-time embedded video, vision, and imaging systems. You can create executable specifications for communicating the system to downstream design teams and to provide a golden reference for verification throughout the design process.

5.4.1 Multimedia I/O, Video Viewer and Display Blocks
The Video and Image Processing Blockset can import multimedia files, such as AVI, MPEG, WMA, or any file type supported by Windows Media (Windows platform only). Video viewer and display blocks enable you to view the status of the video stream in real time throughout the model. You can start, stop, pause, and step through simulations one frame at a time. These time-saving features enable rapid design and debugging of your video and imaging system models.
5.4.2 The Video and Image Processing Block Set Lets You
1. Send live video data to a video output device, monitor, or camera connected to the system

2. View the video signal on your PC or work​station screen

3. Write the input to an array in the MATLAB® workspace

4. Display RGB or intensity video streams or images

5. Write video frames to a multimedia file to analyze and share results 

6. Use the MPlay GUI to easily view video signals in Simulink models and to view video from files or the MATLAB workspace
5.5 SIMULINK model for motion detection using sum of absolute differences (SAD)
5.5.1 Model
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Figure 5.2 : Model for Motion Detection
5.5.2 Intensity (Sub Model)
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Figure 5.3 : Intensity Sub-Model for Motion Detection

5.6 Delay

The Delay block delays a discrete-time input by the number of samples or frames specified in the Delay units and Delay parameters. The Delay value must be an integer value greater than or equal to zero. Also, when you enter a value of zero for the Delay parameter, any initial conditions you might have entered have no effect on the output.

The Delay block allows you to set the initial conditions of the signal that is being delayed. The initial conditions must be numeric. Select the Show additional parameters check box in order to specify the initial conditions.

5.7 Sample-Based Operation

When the input is a sample-based M-by-N matrix, where  and ,the block treats each of the M*N matrix elements as an independent channel.  When the input is a sample-based scalar, the Delay parameter can be a scalar integer by which to equally delay all channels. When the input is a sample-based vector, the Delay parameter can be a scalar integer by which to equally delay all channels, or a vector whose length is equal to the number of channels. When the input is a sample-based M-by-N matrix, where M>1 and N>1, then the Delay parameter can be a scalar integer by which to equally delay all channels or an M-by-N matrix of nonnegative integers that specify the number of sample intervals to delay each channel of the input. There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be the same or different along each channel.

5.8 Frame-Based Operation

When the input is a frame-based M-by-N matrix, the block treats each of the N columns as an independent channel, and delays each channel as specified by the Delay parameter.

When the input is frame based, the Delay parameter can be a scalar integer by which to equally delay all channels or a vector whose length is equal to the number of channels.

There are four different choices for initial conditions. The initial conditions can be the same or different for each channel. They can also be constant or varying along each channel.

5.9 Data Type Conversion Block

The Data Type Conversion block converts an input signal of any Simulink data type to the data type and scaling specified by the block's Output data type mode, Output data type, and/or Output scaling parameters. The input can be any real- or complex-valued signal. If the input is real, the output is real. If the input is complex, the output is complex.

This block requires that you specify the data type and/or scaling for the conversion. If you want to inherit this information from an input signal, you should use the Data Type Conversion Inherited block.

The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is problematic since it is not representable by the data type. In this case, the behavior of the block is controlled by the Saturate on integer overflow check box. If checked, the absolute value of the data type saturates to the most positive representable value. If not checked, the absolute value of the most negative value represented by the data type has no effect.

5.10 Motion Threshold

5.10.1 Constant

The DSP Constant block generates a signal whose value remains constant throughout the simulation. The Constant value parameter specifies the constant to output, and can be any valid MATLAB expression that evaluates to a scalar, vector, or matrix.

When Sample mode is set to Continuous, the output is a continuous-time signal. When Sample mode is set to Discrete, the Sample time parameter is visible, and the signal has the discrete output period specified by the Sample time parameter.

You can set the output signal to Frame-based, Sample-based, or Sample-based (interpret vectors as 1-D) with the Output parameter.

5.11 Simulink Model for Surveillance Recording Based on Motion Detection
5.11.1 MODEL
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Figure 5.4 : Model for Surveillance Recording Based on Motion Detection.
5.11.2 Matrix Viewer

The Matrix Viewer block displays an M-by-N matrix input by mapping the matrix element values to a specified range of colors. The display is updated as each new input is received. This block treats a length M 1-D vector input as an M-by-1 matrix.

5.12 Sample and Hold block

The Sample and Hold block acquires the input at the signal port whenever it receives a trigger event at the trigger port (marked by). The block then holds the output at the acquired input value until the next triggering event occurs. When the acquired input is frame based, the output is frame based; otherwise, the output is sample based.

The trigger input must be a sample-based scalar with sample rate equal to the input frame rate at the signal port. You specify the trigger event in the Trigger type pop-up menu. Rising edge triggers the block to acquire the signal input when the trigger input rises from a negative value or zero to a positive value.

Falling edge triggers the block to acquire the signal input when the trigger input falls from a positive value or zero to a negative value. Either edge triggers the block to acquire the signal input when the trigger input either rises from a negative value or zero to a positive value or falls from a positive value or zero to a negative value. 

You specify the block's output prior to the first trigger event using the Initial condition parameter. When the acquired input is an M-by-N matrix, the Initial condition can be an M-by-N matrix, or a scalar to be repeated across all elements of the matrix. When the input is a length-M 1-D vector, the Initial condition can be a length-M row or column vector, or a scalar to be repeated across all elements of the vector. 

If you select the Latch (buffer) input check box, the block outputs the value of the input from the previous time step until the next triggering event occurs. 

5.13 Simulink Model for Object Tracking
5.13.1 Motion Detection

Motion detection is a key feature for a video surveillance system and can be used to alarm video/audio recording and transmission. However, reliable motion detection techniques should avoid the false alarms. A realistic motion detection technique should tolerate the optical noise reproduced by camera and only respond to the movement in the region of interest (ROI). To measure movement in video scenes, motion detection can use the sum of absolute difference (SAD) and correlation.

Sometimes, the color information can also enhance the performance of motion detection. Many smart video surveillance systems currently in market support this feature.
5.13.2 MODEL 
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Figure 5.5 : Simulink Model For Object Tracking
CHAPTER 6
RESULTS
6.1 Result of Object Tracking for Real Time Video
6.1.1 In Surveillance Systems :
The object images from Figure 6.1 to 6.4 are captured when there is a motion. These images will be shown in the form of Video Queue.
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6.1.2 In Motion Tracking :

All these figures are captured when there is a change in motion  and results were shown to the changes  that occurred in object motion. Initially frame 1 explains the captured image , frame 2 explains the black and white characteristics of frame 1, frame  3 explains the greyscale information of frame 1, frame 4 shows the negative of the frame 1 and frame 5 shows the objects motion  which is tracked.
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CHAPTER 7
CONCLUSION AND FUTURE SCOPE
To conclude, this dissertation gives us the detailed knowledge of key issues in the field of Object Tracking named “ Implementation of Object Tracking for Real time Video”. We introduced the theory and literature survey behind Object Tracking and discuss  the basic concepts of object tracking, properties and performance of object tracking ,  in various fields of its applications i.e. image tracking by keeping camera constant or camera in motion and object constant or object in motion. We identified some factors which are not performing to its potential. These factors includes faster movements , single object among multiple object etc., and the noise effect and issues of implementing them is crucial for proper functionality. We have discussed and reserved some for our discussion for latter pursuits and we hope to carry that in our next work.
In this dissertation we focused our attention on the object  tracking for real time video. We used  Sum of Absolute Differences and designed it for object tracking for real time video to detect the motion of object in different views. Our aim is to track the motion of an object and improve the performance of object tracking. Here after discussion and the result we got , we can conclude that the Sum of Absolute Differences technique is easier and can be implemented easily and economical compare to the standard algorithms which are used for object tracking.

To support my work, I have simulated the entire work on MATLAB 7.8 At this stage my work should be considered as a preliminary as it has plenty of scope for future investigation and analysis. Major work can be carry in the field of tracking.
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