Implementation of mobile communication architecture for Control of Data Transfer using VHDL

A Dissertation submitted towards the partial fulfillment of requirements for the award of the degree

of

Master of Engineering

in

Electronics and Communication Engineering

By

Bontha Lingaiah

Class Roll No. : 15/E&C/05

Univ. Roll no: 2809

Under the supervision and guidance of

N. S. Raghava
 Sr. Lecturer
[image: image26.png]
DEPARTMENT OF ELECTRONICS AND COMMUNICATION

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI

(Session 2005-2007)

CERTIFICATE

This is to certify that the dissertation titled “Implementation of mobile communication architecture for Control of Data Transfer using VHDL” submitted by Bontha Lingaiah, Roll No. 15/E&C/05, Univ. Roll No: 2809, towards the partial requirement for the award of Degree of Master of Engineering, in Department of Electronics & Communication Engineering, Delhi University, New Delhi, is a record of bonafide work carried out and completed under my supervision and guidance during the academic session 2005-2007. The matter contained in this thesis has not been submitted elsewhere for award of any other degree.
Prof. Asok Bhattacharya

Head of the Department
Electronics & Communication Engg.,
Delhi College Of Engineering

Delhi – 110042.

N. S. Raghava,
Sr. Lecturer
(Project guide)
Electronics & Communication Engg.
Delhi College of Engineering,
University of Delhi, Delhi

ACKNOWLEDGEMENTS

At this point, I would like to express my gratitude to the people who supported and accompanied me during the preparation of this work.

I thank Prof. Asok Bhattacharyya, Head of the Department, Department Electronics & Communication Engineering, DCE, who has given an opportunity to work for the project and has given his kind support throughout this project.
I sincerely thank my project guide, Shri. N. S. Raghava, Sr. Lecturer, Department of Electronics & Communication Engineering, Delhi College of Engineering, Delhi, for giving the constant support during the preparation of the work and supervising the thesis. He supported me with numerous ideas and discussions that helped me a lot to prepare this project.

I am very much grateful to. Dr. Muralidhar Kulkarni, Asst. Prof., Electronics & Communication Department, DCE, Delhi, for supporting me with suggestions and ideas that helped me to carry out this work at DCE laboratory and his constant encouragement.

Last but not least, I would like to thank all the faculty members who gave me constant support, without their contributions, this thesis would not be completed.

Date:

Place:
Bontha Lingaiah

Roll No.15/E&C/05

University roll no. 2809
Abstract

In this thesis work, mobile communication architecture (for Control Data Transfer) has been implemented using VHDL, a hardware description language. SS7[1,2] protocol for the support of mobile communication i.e. for Mobile Switching[1] also has been implemented.
SS7[1,2] refers to the signaling system7 architecture for performing Out Of Band Signaling in support of Public Telephone Switching Network (PSTN)[1]. Signal switching points (SSPs) are telephone switches (end offices or tandems) equipped with SS7[1,2]-capable software and terminating signaling links. They generally originate, terminate, or switch calls. Signal transfer points (STPs) are the packet switches of the SS7[1,2] network. They receive and route incoming signaling messages towards the proper destination. They also perform specialized routing functions. Signal control points (SCPs) are databases that provide information necessary for advanced call-processing capabilities.
 Mobile Switching[1] for Control of data transfer using Base Transceiver Station (BTS), the Base Station Controller (BSC), Mobile Switching Center (MSC) and Home Location Register, Voice Mail System (VMS). We have developed it for the support of 8 users at a time for the demonstration purpose. All the elements of the mobile communication including extra features such as Authentication, and GSM support have been implemented.
This thesis focuses more on the programming part rather than the hardware, but this can be easily shown on hardware, thus proving a step towards the future development of ‘Switching ICs’. We have aimed to explain every model in detail with their op codes (user defined), underlying architecture and programming.
 In this project, implementation has been done through VHDL, which simplifies designing to large extent. It converts entire bulky switching unit (consisting of routers, multiplexers, decoders, counters) to a single IC. All what we need to do is to provide right input at right pin and we have accurate results. VHDL is designed to fill a number of needs in the design process. Firstly, it allows description of the structure of a design that is how it is decomposed into sub-designs, and how those sub-designs are interconnected. Secondly, it allows the specification of the function of designs using familiar programming language forms. Thirdly, as a result, it allows a design to be simulated before being manufactured, so that designers can quickly compare alternatives and test for correctness without the delay and expense of hardware prototyping.

The language not only defines the syntax but also defines very clear simulation semantics for each language construct. Therefore, models written in this language can be verified using a VHDL simulator. It is a strongly typed language and is often verbose to write. It inherits many of its features, especially the sequential language part. The other widely used hardware description language is Verilog. Both are powerful languages that allow you to describe and simulate complex digital systems. A third HDL language is ABEL (Advanced Boolean Equation Language) which was specifically designed for Programmable Logic Devices (PLD). ABEL is less powerful than the other two languages and is less popular in industry.
The project focuses on simulation prior to fabrication. Burning these programs on FPGA (Field Programmable Gate Array) will help us to see the functional design of ICs.

Table of Contents
Certificate

 2
Acknowledgement

 3
Abstract

 4
Table of Contents

 5
1. Introduction

 8
 1.1. Introduction………………………………………………………………………...8
 1.2. Thesis organization………………………………………………………………...9
2. Overview of Project

 11
3. Mobile Communication

 12
 3.1. Introduction……………………………………………………………………….12
 3.2. Wireless networks explained……………………………………………………..12
 3.3. Base Station and handsets ……………………………………………………..…13
 3.4. 'Cellular' Radio………………………………………………………………...….13
4. Signaling System 7 (SS7)

 16
 4.1. Definition ………………………………………………………………………...16
 4.2. What is Signaling? ……………………………………………………………….16
 4.3. What is Out-of-Band Signaling? …………………………………………………17
 4.4. Why Out-of-Band Signaling? ……………………………………………………17
 4.5. Signaling Network Architecture …………………………………………………17
 4.6. The North American Signaling Architecture …………………………………….18
 4.6.1. Signal switching points (SSPs) ……………………………………………18
 4.6.2. Signal transfer points (STPs) ……………………………………………...18
 4.6.3. Signal control points (SCPs) ………………………………………………18
 4.7. Basic Signaling Architecture ……………………………………………………19
 4.8. SS7 Link Types ………………………………………………………………….21
 4.9. Basic call set up …………………………………………………………………23
 4.10. Database Query …………………………………………………………….......26
5. The Mobile Switching Network (Data Transfer Part)

 28
 5.1. Base transceiver station (BTS)…………………………………………………...29
 5.2. The switch………………………………………………………………………..30
 5.3. The base station controller……………………………………………………….31
 5.4. Home location register…………………………………………………………...31
 5.5. Voice mail system (VMS)……………………………………………………….32
 5.6. Call processing…………………………………………………………………..32
 5.7. Delivering an incoming wireless call…………………………………………….33
 5.8. Types of handoff…………………………………………………………………34
6. Introduction to VHDL

 36
 6.1. Levels of Abstraction………………………………………….. ……………...37
 6.2. Basic structure of a VHDL file ………………………………………………..38
 6.3. Lexical Elements of VHDL …………………………………………………...42
 6.4. Data Objects …………………………………………………………………...45
 6.5. Data Types …………………………………………………………………….47
 6.6. Operators ………………………………………………………………………50
 6.7. Behavioral modeling…………………………………………………………..51
 6.8. Data Flow Modeling ……………………………………..................................54
 6.9. Structural Modeling……………………………………………. ……………..55
 6.10. Logic Synthesis…………………………………………………………….....58
 6.11. Logic Optimization Techniques……………………….……………………...59

 1. Area Optimization………………………………...………………………...59

 2. Speed Optimization…..59

 3. Resource Sharing……………………………..…………………………….60
 6.12. Technology Mapping………………………………………………….............61
 6.13. Placement……………………………………………………………………...61
 6.14. Routing……………………………………………………………………….. 61
 6.15. FPGA………………………………………………………………………… 63
7. Implementation of SS7 Protocol Architecture

 65
 7.1. Features…………………………………………………………. ……………….65
 7.2. OP CODE ………………………………………………………………………..65
 7.3. Working and Implementation…………………………………………………….66
8. Implementation of Mobile switching

 68
 8.1. Features…………………………………………………………………………...68
 8.2. OP CODE………………………………………………………………………...68
 8.3. Working…………………………………………………………………………..68
 8.4. GSM Architecture for mobile switching………………………………………….69
9. Simulation Results

 71
 9.1. SS7 Signaling……………………………………………………………………..71
 9.2. Simulation results points…………….……………………………………………71
 9.3. Mobile switching………………………………………………………………………….73
 9.4. Simulation results points…………………………………………………………..73
10. Conclusions

 75
11. References

 76
Appendix A

 77
 VHDL Coding for SS7 Signaling of Mobile Switching
Appendix B

 82
 VHDL Coding for Mobile Switching
1. INTRODUCTION

1.1. Introduction:

In today’s scenario of the technology market, there are two fields in engineering that hold great demand in the industry, namely- communication and VLSI.The man of today wants to connect himself to anyone, anytime and anywhere.

We wish to agree that this has been almost guaranteed today and we have already experienced a huge development from a simple Morse code telegram to the highly sophisticated triple play broadband ISDN, or nonetheless the Satellite Communication. This might give you ways to communicate with speech, that’s no big deal; in fact the amazing part starts when real time audio, video and data can be integrated for communication. But then today there is also a second stringent demand, i.e. miniaturization. The race is on for reaching the minimum space as possible occupied by the systems.

Our project, keeping an eye wide open on the future has mixed both fields enabling us to communicate, in a digital manner, by using systems that would be integrated on an IC through programming of the IC using VHDL.

VHDL has been used for all the models:-

Landline Switching, SS7[1,2] Protocol, Mobile Switching[1]

This project focuses more on the programming part rather than the hardware, but this can be easily shown on hardware, thus proving a step towards the future development of ‘Switching ICs’. We have aimed to explain every model in detail with their op codes (user defined), underlying architecture and programming. An introduction to VHDL has also been provided to help anyone explain the programming part that follows.

Along with that, we have also provided the simulation results showing transfer of signals and data. Simulator also provides the timing information. This project is an outcome of the comprehension and utilization of many recent subjects we have studied and is in itself an original concept.
1.2. Thesis Organization:
For better understanding, we have given various chapters on the proposed approach, organized in a systematic way as explained below.
Chapter-1 Introduction: presents a brief overview of the proposed approach. Also explains the approach of the present work.

Chapter-2 overview of the project: gives the basic concepts related to Mobile Switching[1], landline switching and advantages of them.

Chapter-3 Mobile Communication: explains the concepts of mobile communication, cellular radio, base stations and handsets. Also gives basic theory of wireless communications.

Chapter-4 Signaling System 7 (SS7):explain the basic concepts of Signaling System 7 (SS7) is an architecture for performing out-of-band signaling in support of the call-establishment, billing, routing, and information-exchange functions of the public switched telephone network (PSTN)[1].
Chapter-5 The Mobile Switching Network: gives the basic concepts related to control of data transfer using Base Transceiver Station (BTS), the Base Station Controller (BSC), Mobile Switching Center (MSC) and Home Location Register, Voice Mail System (VMS) and how to process call and concept of Delivering an Incoming Wireless Call.

Chapter-6 Introduction to VHDL: explains the basic concepts of VHSIC Hardware Description language. Also gives an overview to the language commands and how to download the code through FPGA, logic synthesis, analysis, routing placement, etc.
Chapter-7 Implementation of SS7 Protocol Architecture: presents features of SS7[1,2] protocol, architecture of SS7[1,2] protocol, op code and implementation part of SS7[1,2] protocol through VHDL.
Chapter-8 Implementation of Mobile Switching: presents features of Mobile Switching[1] protocol, architecture of mobile switching protocol, op code and implementation part of mobile switching protocol through VHDL.

Chapter-9 Simulation results: presents the simulation results using VHDL.

Chapter-10 Conclusion: concludes the approach by brief summary.
Appendix A and Appendix B: presents the code of VHDL for the implementation of SS7[1,2] protocol and Mobile Switching[1].
2. Overview of Project

Through this project we have implemented “Switching system through VHDL”, where switching system implies data transmission between two communicating entities. This transmission can be either via trunks or it can be completely wireless, technically termed as “Landline Switching” and “Mobile Switching[1]” respectively. Landline switching provides data transfer (basically voice) between two users which are fixed at their place while mobile switching provides data transfer (multimedia data) between two users which are not fixed at their location. So, basically Landline Switching is static in nature while Mobile Switching[1] is dynamic.

From industrial point of view, this project has got numerous applications and advantages. It converts existing Analog switching system to Digital switching system with following advantages:

1. Error-free, BIT Error Rate is low.

2. Increased Speed.

3. Simple and easy to use.

But it has got a limitation that its realization is costly as it has to be done through ASIC, which are very expensive, But still at present, its numerous applications outweighs its limitation and in future it will be completely eliminated as entire world is getting digitalized.

3. MOBILE COMMUNICATION

3.1. Introduction
The world is demanding more from wireless communication technologies than ever before as mere people around the world are subscribing to wireless. Add in exciting Third-Generation (3G) wireless data services and applications - such as wireless email, web, digital picture taking/sending, assisted-GPS position location applications, video and audio streaming and TV broadcasting - and wireless networks are doing much more than just a few years ago.

3.2. Wireless networks explained

 There are four types of wireless networks, classified by the amount of coverage they provide. A cell-phone network is a wide-area network (WAN) and a business or home wireless network is a local area network (LAN). A smaller network, such as one connecting a printer and a handheld computer, is a personal area network (PAN), and a network between sensors placed around the different parts of a human body is a body area network (BAN).

The communication technologies underlying these networks include: radio frequency (RF), infrared (IR), ultrasound, and electromagnetic communications. Each of these technologies has its pros and cons. IR based networks are inexpensive and mostly secure, but require line-of-sight between the transmitter and the receiver for efficient operation. In addition, they have a limited range and don't work very well in direct sunlight. Ultrasound and electromagnetic wireless networks are useful for some applications, such as determining location, but don't provide data networking, and like their IR counterparts have limited range, higher installation and maintenance costs and scale poorly.

An RF network offers several advantages. It supports the ability to send data at a faster rate, has a large range, is low maintenance, and is omni directional. An omni directional system does not require line-of-sight, so it can operate through walls. Unfortunately, the RF spectrum is a limited and regulated resource; it is therefore an expensive resource prone to congestion and interference. Also, since RF signals are not restricted to well-defined boundaries, RF transmission can be picked up by anyone within range of the transmitter, making it difficult to secure.

This is where CDMA technology fits in. CDMA consistently provides better capacity for voice and data communications than other commercial mobile technologies, allowing more subscribers to connect at any given time, and it is the common platform on which 3G technologies are built.

3.3. Base Station and handsets

A mobile phone sends and receives information (voice messages, fax, computer data, etc) by radio communication. Radio frequency signals are transmitted from the phone to the nearest base station and incoming signals (carrying the speech from the person to whom the phone user is listening) are sent from the base station to the phone at a slightly different frequency. Base stations link mobile phones to the rest of the mobile and fixed phone network.

Once the signal reaches a base station it can be transmitted to the main telephone network, either by telephone cables or by higher frequency radio links between an antenna (e.g. dish) at the base station and another at a terminal connected to the main telephone network.
3.4. 'Cellular' Radio
Each base station provides radio coverage to a geographical area known as a cell. Base stations are connected to one another by central switching centers, which track calls and transfer them as the caller moves from one cell to the next. Figure 1 below shows the cell structure of a mobile phone network. An ideal network may be envisaged as consisting of a mesh of hexagonal cells, each with a base station at its centre. The cells overlap at the edges to ensure the mobile phone users always remain within range of the base station. Without sufficient base stations in the right locations, mobile phones will not work.

The size of each cell depends on three factors. First, the local terrain; radio signals are blocked by trees, hills and buildings. Second, the frequency band in which the network operates (in general, the higher the radio frequency, the smaller the cell). Third, the capacity (i.e. number of calls) needed in any given area. Base stations are typically spaced about 0.2-0.5 km in towns and 2-5 km apart in the countryside.

If a person with a mobile phone starts to moves out of one cell and into another, the controlling network hands over communications to the adjacent base station.

[image: image2.png]
Fig. 3.1 'Cellular' Radio

Radio spectrum is a precious natural resource with many different demands upon it (for example, radio and TV broadcasting, emergency communication, navigation aids etc). Consequently the amount made available to each mobile phone operator is limited and this means base stations can only carry a limited number of calls at any one time. [image: image1.emf]
[image: image23.png]To accommodate the steadily increasing volume of users, network operators have to use the limited number of radio frequencies licensed to them to support the maximum number of mobile phone users. This is achieved by re-using any given radio frequency many times in a network and carefully controlling base station power so that signals arising in different parts of the network do not interfere with each other. This concept of frequency re-use is illustrated in figure 3.2. The cells are grouped into clusters, with the frequencies allocated to a particular cell within a cluster not being re-used until the corresponding cell in adjacent clusters. This gives a repeating pattern of cells and clusters which can be expanded to provide national coverage.

To increase the capacity of their networks, operators have to build additional base stations and thus reduce cell size. It is for this reason that one large base station cannot serve a whole town.

The concept of Mobile Switching[1] being the main focus of this project in anticipation of the future developments in this filed, this subject will be studied under two heads namely:

· The SS7[1,2] Signaling System (Establishment of a call)

· The Mobile Switching for transfer of data
4. SIGNALING SYSTEM (SS7)

4.1. Definition

Signaling System 7 (SS7)[1,2] is an architecture for performing out-of-band signaling in support of the call-establishment, billing, routing, and information-exchange functions of the public switched telephone network (PSTN)[1]. It identifies functions to be performed by a signaling-system network and a protocol to enable their performance.

4.2. What is Signaling?

Signaling refers to the exchange of information between call components required to provide and maintain service.

SS7[1,2] is a means by which elements of the telephone network exchange information. Information is conveyed in the form of messages. SS7[1,2] messages can convey information such as:

· I’m forwarding to you a call placed from 212-555-1234 to 718-555-5678. Look for it on trunk 067.

· Someone just dialed 800-555-1212. Where do I route the call?

· The called subscriber for the call on trunk 11 is busy. Release the call and play a busy tone.

· The route to XXX is congested. Please don’t send any messages to XXX unless they are of priority 2 or higher.

· I’m taking trunk 143 out of service for maintenance.

SS7[1,2] is characterized by high-speed packet data and out-of-band signaling.

4.3. What is Out-of-Band Signaling?

Out-of-band signaling is signaling that does not take place over the same path as the conversation.

4.4. Why Out-of-Band Signaling?

Out-of-band signaling has several advantages that make it more desirable than traditional in-band signaling.

· It allows for the transport of more data at higher speeds (56 kbps can carry data much faster than MF out pulsing).

· It allows for signaling at any time in the entire duration of the call, not only at the beginning.

· It enables signaling to network elements to which there is no direct trunk connection.

4.5. Signaling Network Architecture

If signaling is to be carried on a different path from the voice and data traffic it supports, then what should that path look like? The simplest design would be to allocate one of the paths between each interconnected pair of switches as the signaling link. Subject to capacity constraints, all signaling traffic between the two switches could traverse this link. This type of signaling is known as associated signaling

[image: image3.png]
Fig. 4.1 Signaling Link
Associated signaling works well as long as a switch’s only signaling requirements are between itself and other switches to which it has trunks. If call setup and management was the only application of SS7[1,2], associated signaling would meet that need simply and efficiently. In fact, much of the out-of-band signaling deployed in Europe today uses associated mode.

The North American implementers of SS7[1,2], however, wanted to design a signaling network that would enable any node to exchange signaling with any other SS7[1,2]–capable node. Clearly, associated signaling becomes much more complicated when it is used to exchange signaling between nodes which do not have a direct connection. From this need, the North American SS7[1,2] architecture was born.

4.6. The North American Signaling Architecture

The North American signaling architecture defines a completely new and separate signaling network. The network is built out of the following three essential components, interconnected by signaling links:

· Signal switching points (SSPs)—SSPs are telephone switches (end offices or tandems) equipped with SS7[1,2]-capable software and terminating signaling links. They generally originate, terminate, or switch calls.

· Signal transfer points (STPs)—STPs are the packet switches of the SS7[1,2] network. They receive and route incoming signaling messages towards the proper destination. They also perform specialized routing functions.

· Signal control points (SCPs)—SCPs are databases that provide information necessary for advanced call-processing capabilities.

 Once deployed, the availability of SS7[1,2] network is critical to call processing. Unless SSPs can exchange signaling, they cannot complete any interswitch calls. For this reason, the SS7[1,2] network is built using a highly redundant architecture. Each individual element also must meet exacting requirements for availability. Finally, protocol has been defined between interconnected elements to facilitate the routing of signaling traffic around any difficulties that may arise in the signaling network.

To enable signaling network architectures to be easily communicated and understood, a standard set of symbols was adopted for depicting SS7[1,2] networks. Figure 4.2 shows the symbols that are used to depict these three key elements of any SS7[1,2] network.
[image: image4.png]
Fig. 4.2 Signaling Network Elements

STPs and SCPs are customarily deployed in pairs. While elements of a pair are not generally co-located, they work redundantly to perform the same logical function. When drawing complex network diagrams, these pairs may be depicted as a single element for simplicity, as shown in Figure 4.3.

[image: image5.png]
Fig. 4.3 STP and SCP Pairs

4.7. Basic Signaling Architecture

Figure 4.4 shows a small example of how the basic elements of an SS7[1,2] network are deployed to form two interconnected networks.

[image: image6.png]
Fig. 4.4. Basic Signaling Architecture
The following points should be noted:

1. STPs W and X perform identical functions. They are redundant. Together, they are referred to as a mated pair of STPs. Similarly, STPs Y and Z form a mated pair.

2. Each SSP has two links (or sets of links), one to each STP of a mated pair. All SS7[1,2] signaling to the rest of the world is sent out over these links. Because the STPs of a mated pair are redundant, messages sent over either link (to either STP) will be treated equivalently.

3. The STPs of a mated pair are joined by a link (or set of links).

4. Two mated pairs of STPs are interconnected by four links (or sets of links). These links are referred to as a quad.

5. SCPs are usually (though not always) deployed in pairs. As with STPs, the SCPs of a pair are intended to function identically. Pairs of SCPs are also referred to as mated pairs of SCPs. Note that they are not directly joined by a pair of links.

6. Signaling architectures such as this, which provide indirect signaling paths between network elements, are referred to as providing quasi-associated signaling.
4.8. SS7 Link Types

SS7[1,2] signaling links are characterized according to their use in the signaling network. Virtually all links are identical in that they are 56–kbps or 64–kbps bidirectional data links that support the same lower layers of the protocol; what is different is their use within a signaling network. The defined link types are shown in Figure 4.5 and defined as follows:
[image: image7.png]
Fig. 4.5 Link Types
A Links

A links interconnect an STP and either an SSP or an SCP, which are collectively referred to as signaling end points ("A" stands for access). A links are used for the sole purpose of delivering signaling to or from the signaling end points (they could just as well be referred to as signaling beginning points). Examples of A links are 2–8, 3–7, and 5–12 in Figure 4.5.

Signaling that an SSP or SCP wishes to send to any other node is sent on either of its A links to its home STP, which, in turn, processes or routes the messages. Similarly, messages intended for an SSP or SCP will be routed to one of its home STPs, which will forward them to the addressed node over its A links.

C Links

C links are links that interconnect mated STPs. As will be seen later, they are used to enhance the reliability of the signaling network in instances where one or several links are unavailable. "C" stands for cross (7–8, 9–10, and 11–12 are C links). B links, D links, and B/D links interconnecting two mated pairs of STPs are referred to as either B links, D links, or B/D links. Regardless of their name, their function is to carry signaling messages beyond their initial point of entry to the signaling network towards their intended destination. The "B" stands for bridge and describes the quad of links interconnecting peer pairs of STPs. The "D" denotes diagonal and describes the quad of links interconnecting mated pairs of STPs at different hierarchical levels. Because there is no clear hierarchy associated with a connection between networks, interconnecting links are referred to as either B, D, or B/D links (7–11 and 7–12 are examples of B links; 8–9 and 7–10 are examples of D links; 10–13 and 9–14 are examples of interconnecting links and can be referred to as B, D, or B/D links).

E Links

While an SSP is connected to its home STP pair by a set of A links, enhanced reliability can be provided by deploying an additional set of links to a second STP pair. These links, called E (extended) links provide backup connectivity to the SS7[1,2] network in the event that the home STPs cannot be reached via the A links. While all SS7[1,2] networks include A, B/D, and C links, E links may or may not be deployed at the discretion of the network provider. The decision of whether or not to deploy E links can be made by comparing the cost of deployment with the improvement in reliability. (1–11 and 1–12 are E links.)

F Links

F (fully associated) links are links which directly connect two signaling end points. F links allow associated signaling only. Because they bypass the security features provided by an STP, F links are not generally deployed between networks. Their use within an individual network is at the discretion of the network provider. (1–2 is an F link.)

4.9. Basic call set up

Before going into much more detail, it might be helpful to look at several basic calls and the way in which they use SS7[1,2] signaling

[image: image8.png]
Fig. 4.6 Call Setup Example

In this example, a subscriber on switch A places a call to a subscriber on switch B.

· Switch A analyzes the dialed digits and determines that it needs to send the call to switch B.

· Switch A selects an idle trunk between itself and switch B and formulates an initial address message (IAM), the basic message necessary to initiate a call. The IAM is addressed to switch B. It identifies the initiating switch (switch A), the destination switch (switch B), the trunk selected, the calling and called numbers, as well as other information beyond the scope of this example.

· Switch A picks one of its A links (e.g., AW) and transmits the message over the link for routing to switch B.

· STP W receives a message, inspects its routing label, and determines that it is to be routed to switch B. It transmits the message on link BW.

· Switch B receives the message. On analyzing the message, it determines that it serves the called number and that the called number is idle.

· Switch B formulates an address complete message (ACM), which indicates that the IAM has reached its proper destination. The message identifies the recipient switch (A), the sending switch (B), and the selected trunk.

· Switch B picks one of its A links (e.g., BX) and transmits the ACM over the link for routing to switch A. At the same time, it completes the call path in the backwards direction (towards switch A), sends a ringing tone over that trunk towards switch A, and rings the line of the called subscriber.

· STP X receives the message, inspects its routing label, and determines that it is to be routed to switch A. It transmits the message on link AX.

· On receiving the ACM, switch A connects the calling subscriber line to the selected trunk in the backwards direction (so that the caller can hear the ringing sent by switch B).

· When the called subscriber picks up the phone, switch B formulates an answer message (ANM), identifying the intended recipient switch (A), the sending switch (B), and the selected trunk.

· Switch B selects the same A link it used to transmit the ACM (link BX) and sends the ANM. By this time, the trunk also must be connected to the called line in both directions (to allow conversation).

· STP X recognizes that the ANM is addressed to switch A and forwards it over link AX.

· Switch A ensures that the calling subscriber is connected to the outgoing trunk (in both directions) and that conversation can take place.

· If the calling subscriber hangs up first (following the conversation), switch A will generate a release message (REL) addressed to switch B, identifying the trunk associated with the call. It sends the message on link AW.

· STP W receives the REL, determines that it is addressed to switch B, and forwards it using link WB.

· Switch B receives the REL, disconnects the trunk from the subscriber line, returns the trunk to idle status, generates a release complete message (RLC) addressed back to switch A, and transmits it on link BX. The RLC identifies the trunk used to carry the call.

· STP X receives the RLC, determines that it is addressed to switch A, and forwards it over link AX.

· On receiving the RLC, switch-A idle the identified trunk.
4.10. Database Query

People generally are familiar with the toll-free aspect of 800 (or 888) numbers, but these numbers have significant additional capabilities made possible by the SS7[1,2] network. 800 numbers are virtual telephone numbers. Although they are used to point to real telephone numbers, they are not assigned to the subscriber line itself.

When a subscriber dials an 800 number, it is a signal to the switch to suspend the call and seek further instructions from a database. The database will provide either a real phone number to which the call should be directed, or it will identify another network (e.g., a long-distance carrier) to which the call should be routed for further processing. While the response from the database could be the same for every call (as, for example, if you have a personal 800 number), it can be made to vary based on the calling number, the time of day, the day of the week, or a number of other factors.

The following example shows how an 800 call is routed

[image: image9.png]
Fig. 4.7 Database Query Example

· A subscriber served by switch A wants to reserve a rental car at a company's nearest location. She dials the company advertised 800 number.

· When the subscriber has finished dialing, switch A recognizes that this is an 800 call and that it requires assistance to handle it properly.

· Switch A formulates an 800 query message including the calling and called number and forwards it to either of its STPs (e.g., X) over its A link to that STP (AX).

· STP X determines that the received query is an 800 query and selects a database suitable to respond to the query (e.g., M).

· STP X forwards the query to SCP M over the appropriate A link (MX). SCP M receives the query, extracts the passed information, and (based on its stored records) selects either a real telephone number or a network (or both) to which the call should be routed.

· SCP M formulates a response message with the information necessary to properly process the call, addresses it to switch A, picks an STP and an A link to use (e.g., MW), and routes the response.

· STP W receives the response message, recognizes that it is addressed to switch A, and routes it to A over AW.

Switch A receives the response and uses the information to determine where the call should be routed. It then picks a trunk to that destination, generates an IAM, and proceeds as it did in What Goes over the Signaling Link.

5. THE MOBILE SWITCHING NETWORK

(DATA TRANSFER PART)
 [image: image10.emf]
Fig. 5.1 Mobile Network Architecture
5.1. Base Transceiver Station (BTS)

[image: image11.emf] Fig. 5.2 Base Transceiver Station
Each BTS consists of an antenna, Modcell, AC and switched mode power supply.

[image: image24.png]
[image: image25.png]
Fig. 5.3 CDMA Modular Cell

The Modular Cell is the network element responsible for the operation of the air interface of a switching center to a Mobile Terminal (MT).

In the forward direction, the Modular Cell performs the following tasks in this order:

1. Channel coding

2. Modulation

3. Radio Frequency (RF) up conversion

4. RF amplification

5. Transmission of the traffic over-the-air to the MT, according to the parameters sent down from the RCS

In the reverse direction, the Modular Cell performs the following tasks in this order:

1. Receives the traffic from the MT

2. Demodulates the traffic signal

3. Decodes the traffic signal

4. Sends the traffic signal to the DCS
5.2. The Switch
[image: image12.emf]
Fig. 5.4 Switch
5.3. The Base Station Controller
[image: image13.emf]
Fig. 5.5 Base Station Controller
5.4. Home Location Register
[image: image14.emf]
Fig. 5.6 Home Location Register
5.5. Voice Mail System (VMS)

[image: image15.emf]
Fig. 5.7 Voice Mail System
5.6. Call Processing

When a cellular phone is turned on, but is yet not engaged in a call, it first scans the group of forward control channels to determine the one with the strongest signal, and then monitors that control channel until the signal drops below a usable level. At this point, it again scans the control channels in search of the strongest base station signal.

When a telephone call is placed to a mobile user, the MSC (Mobile Switching Center) dispatches the request to all base stations in the cellular system. The mobile identification number (MIN), which is the subscriber’s telephone number, is then broadcast as a paging message over all of the forward control channels throughout the cellular system. The mobile receives the paging message sent by the base station which it monitors, and responds by identifying itself over the reverse control channel. The base station relays the acknowledgement sent by the mobile and informs the MSC of the handshake. Then, the MSC instructs the base station to move the call to an unused voice channel within the cell (typically, between ten to sixty voice channels and just one control channel are used in each cell’s base station). At this point, the base station signals the mobile to change frequencies to an unused forward and reverse voice channel pair, at which point another data message (called an alert) is transmitted over the forward voice channel to instruct the mobile telephone to ring, thereby instructing the mobile user to answer the phone. All of these events occur within a few seconds and are not noticeable by the user.

Once a call is in progress, the MSC adjusts the transmitted power of the mobile and changes the channel of the mobile unit and base station in order to maintain call quality as the subscriber moves in and out of range of each base station. This is called a handoff. Special control signaling is applied to the voice channels so that the mobile unit may be controlled by the base station and the MSC while a call is in progress.
5.7. Delivering an Incoming Wireless Call
(A) HANDOFF:

When a mobile user travels from one area of coverage or cell to another cell within a call’s duration the call should be transferred to the new cell’s base station. Otherwise, the call will be dropped because the link with the current base station becomes too weak as the mobile recedes. Indeed, this ability for transference is a design matter in mobile cellular system design and is call handoff (handover).

[image: image16.emf]
Fig. 5.8 handoff
5.8. Types of Handoff (handover)

There are mainly three types of handoff (handover)

· Hard handover

· Soft handover

· Softer handover

1. Hard Handover

Hard handover means that all the old radio links in the UE are removed before the new radio links are established. Hard handover can be seamless or non-seamless. Seamless hard handover means that the handover is not perceptible to the user. In practice a handover that requires a change of the carrier frequency (inter-frequency handover) is always performed as hard handover.

 2. Soft Handover

Soft handover means that the radio links are added and removed in a way that the UE always keeps at least one radio link to the UTRAN. Soft handover is performed by means of macro diversity, which refers to the condition that several radio links are active at the same time. Normally soft handover can be used when cells operated on the same frequency are changed.

3. Softer handover

Softer handover is a special case of soft handover where the radio links that are added and removed belong to the same Node B (i.e. the site of co-located base stations from which several sector-cells are served. In softer handover, macro diversity with maximum ratio combining can be performed in the Node B, whereas generally in soft handover on the downlink, macro diversity with selection combining is applied.

6. Introduction To VHDL

VHDL is a language for describing digital electronic systems. It arose out of the United States Government’s Very High Speed Integrated Circuits (VHSIC) program, initiated in 1980. In the course of this program, it became clear that there was a need for a standard language for describing the structure and function of integrated circuits (ICs). Hence the VHSIC Hardware Description Language (VHDL) was developed, and subsequently adopted as a standard by the Institute of Electrical and Electronic Engineers (IEEE) in the US.

VHDL is designed to fill a number of needs in the design process. Firstly, it allows description of the structure of a design that is how it is decomposed into sub-designs, and how those sub-designs are interconnected. Secondly, it allows the specification of the function of designs using familiar programming language forms. Thirdly, as a result, it allows a design to be simulated before being manufactured, so that designers can quickly compare alternatives and test for correctness without the delay and expense of hardware prototyping.

The language not only defines the syntax but also defines very clear simulation semantics for each language construct. Therefore, models written in this language can be verified using a VHDL simulator. It is a strongly typed language and is often verbose to write. It inherits many of its features, especially the sequential language part. The other widely used hardware description language is Verilog. Both are powerful languages that allow you to describe and simulate complex digital systems. A third HDL language is ABEL (Advanced Boolean Equation Language) which was specifically designed for Programmable Logic Devices (PLD). ABEL is less powerful than the other two languages and is less popular in industry.

Although these languages look similar as conventional programming languages, there are some important differences. A hardware description language is inherently parallel, i.e. commands, which correspond to logic gates, are executed (computed) in parallel, as soon as a new input arrives. A HDL program mimics the behavior of a physical, usually digital, system. It also allows incorporation of timing specifications (gate delays) as well as to describe a system as an interconnection of different components.
6.1. Levels of abstraction

A digital system can be represented at different levels of abstraction. This keeps the description and design of complex systems manageable. Figure shows different levels of abstraction.

[image: image17.png]
Fig. 6.1 Levels of abstraction: Behavioral, Structural and Physical

The highest level of abstraction is the behavioral level that describes a system in terms of what it does (or how it behaves) rather than in terms of its components and interconnection between them. A behavioral description specifies the relationship between the input and output signals. This could be a Boolean expression or a more abstract description such as the Register Transfer or Algorithmic level.

VHDL allows one to describe a digital system at the structural or the behavioral level. The behavioral level can be further divided into two kinds of styles: Data flow and Algorithmic.

The dataflow representation describes how data moves through the system. This is typically done in terms of data flow between registers (Register Transfer level). The data flow model makes use of concurrent statements that are executed in parallel as soon as data arrives at the input.

On the other hand, sequential statements are executed in the sequence that they are specified. VHDL allows both concurrent and sequential signal assignments that will determine the manner in which they are executed.
6.2. Basic Structure of a VHDL file

A digital system in VHDL consists of a design entity that can contain other entities that are then considered components of the top-level entity. Each entity is modeled by an entity declaration and an architecture body. One can consider the entity declaration as the interface to the outside world that defines the input and output signals, while the architecture body contains the description of the entity and is composed of interconnected entities, processes and components, all operating concurrently, as schematically shown in Figure. In a typical design there will be many such entities connected together to perform the desired function.

[image: image18.png]
Fig. 6.2 A VHDL entity consisting of an interface (entity declaration) and a body (architectural description)

VHDL uses reserved keywords that cannot be used as signal names or identifiers. Keywords and user-defined identifiers are case insensitive. Lines with comments start with two adjacent hyphens (--) and will be ignored by the compiler. VHDL also ignores line breaks and extra spaces.

VHDL is a strongly typed language, which implies that one has always to declare the type of every object that can have a value, such as signals, constants and variables.

(a) Entity Declaration

The entity declaration defines the NAME of the entity and lists the input and output ports. The general form is as follows,

Entity NAME_OF_ENTITY is [generic generic declarations);]

Port (signal_names: mode type;

 Signal_names: mode type;

:

 Signal_names: mode type);

End [NAME_OF_ENTITY] ;

An entity always starts with the keyword entity, followed by its name and the keyword is. Next are the port declarations using the keyword port. An entity declaration always ends with the keyword end, optionally [] followed by the name of the entity.
(b) Mode:

Mode is one of the reserved words to indicate the signal direction

· In – indicates that the signal is an input.

· Out – indicates that the signal is an output of the entity whose value can only be read by other entities that use it.

· Buffer – indicates that the signal is an output of the entity whose value can be read inside the entity’s architecture.

· In out – the signal can be an input or an output.
(c) Generic:

Generic declarations are optional and determine the local constants used for timing and sizing (e.g. bus widths) the entity. A generic can have a default value. The syntax for a generic follows,

 Generic (

Constant name: type [:=value] ;

Constant name: type [:=value] ;

:

Constant name: type [:=value]);

(d) Architecture body

The architecture body specifies how the circuit operates and how it is implemented. As discussed earlier, an entity or circuit can be specified in a variety of ways, such as behavioral, structural (interconnected components), or a combination of the above.

The architecture body looks as follows,

architecture architecture name of NAME_OF_ENTITY is

-- Declarations

-- components declarations

-- signal declarations

-- constant declarations

-- function declarations

-- procedure declarations

-- type declarations

 begin

-- Statements

end architecture name;
(e) Library and Packages: library and use keywords

A library can be considered as a place where the compiler stores information about a design project. A VHDL package is a file or module that contains declarations of commonly used objects, data type, component declarations, signal, procedures and functions that can be shared among different VHDL models.

We mentioned earlier that std_logic is defined in the package ieee.std_logic_1164 in the IEEE library. In order to use the std_logic one needs to specify the library and package. This is done at the beginning of the VHDL file using the library and the use keywords as follows:

Library IEEE;

Use ieee.std_logic_1164.all;

The .all extension indicates to use the entire ieee.std_logic_1164 package.

The Xilinx Foundation Express comes with several packages.

ieee Library:

1. std_logic_1164 package: defines the standard data types

2. std_logic_arith package: provides arithmetic, conversion and comparison functions for the signed, unsigned, integer, std_ulogic,

3. std_logic and std_logic_vector types

4. std_logic_unsigned

5. Std_logic_misc package: defines supplemental types, subtypes, constants and functions for the std_logic_1164 package.
To use any of these one must include the library and use clause:

Library IEEE;

Use ieee.std_logic_1164.all;

Use ieee.std_logic_arith.all;

Use ieee.std_logic_unsigned.all;

One can add other libraries and packages.

The syntax to declare a package is as follows:

Package name_of_package is

--package declarations

End package name_of_package;

-- Package body declarations

Package body name_of_package is

Package body declarations

End package body name_of_package;

End package basic_func;

6.3. Lexical Elements of VHDL

 (a) Identifiers

Identifiers are user-defined words used to name objects in VHDL models. When choosing an identifier one needs to follow these basic rules:

· May contain only alpha-numeric characters (A to Z, a to z, 0-9) and the underscore (_) character

· The first character must be a letter and the last one cannot be an underscore.

· An identifier cannot include two consecutive underscores.

· An identifier is case insensitive (ex. And2 and AND2 or and2 refer to the same object)

· An identifier can be of any length.

Examples of valid identifiers are: X10, x_10, My_gate1.

Some invalid identifiers are: _X10, my_gate@input, gate-input.

(b) Keywords

Certain identifiers are used by the system as keywords for special use such as specific constructs. These keywords cannot be used as identifiers for signals or objects we define. We have seen several of these reserved words already such as in, out, or, and, port, map, end, etc. Extended identifiers can make use of keywords since these are considered different words (e.g. the extended identifier \end\ is allowed.

(c) Numbers

The default number representation is the decimal system. VHDL allows integer literals and real literals. Integer literals consist of whole numbers without a decimal point, while real literals always include a decimal point. Exponential notation is allowed using the letter “E” or “e”. For integer literals the exponent must always be positive. Examples are:

Integer literal: 12 10 256E3 12e+6

Real literal: 1.2 256.24 3.14E-2

The number –12 is a combination of a negation operator and an integer literal.

To express a number in a base different from the base “10”, one uses the following convention: base number#. A few examples follow.

Base 2: 2#10010# (representing the decimal number “18”)

Base 16: 16#12#

Base 8: 8#22#

Base 2: 2#11101# (representing the decimal number “29”)

Base 16: 16#1D#

Base 8: 8#35#

(d) Characters, Strings and Bit Strings

To use a character literal in a VHDL code, one puts it in a single quotation mark, as shown in the examples below:

‘a’, ‘B’, ‘,’

On the other hand, a string of characters are placed in double quotation marks as shown in the following examples:

“This is a string”,

“To use a double quotation mark inside a string, use two double quotation marks”

“This is a “”String””.”

Any printing character can be included inside a string.

A bit-string represents a sequence of bit values. In order to indicate that this is a bit string, one places the ‘B’ in front of the string: B”1001”. One can also use strings in the hexagonal or octal base by using the X or O specifiers, respectively. Some examples are:

Binary: B”1100_1001”, b”1001011”

Hexagonal: X”C9”, X”4b”

Octal: O”311”, o”113”

 6.4. Data Objects

A data object is created by an object declaration and has a value and type associated with it. An object can be a Constant, Variable, Signal or a File. Up to now we have seen signals that were used as input or output ports or internal nets. Signals can be considered wires in a schematic that can have a current value and future values, and that are a function of the signal assignment statements. On the other hand, Variables and Constants are used to model the behavior of a circuit and are used in processes, procedures and functions, similarly as they would be in a programming language. Following is a brief discussion of each class of objects.

(a) Constant

A constant can have a single value of a given type and cannot be changed during the simulation. A constant is declared as follows,

Constant list_of_name_of_constant: type [:= initial value] ;

Where the initial value is optional. Constants can be declared at the start of an architecture and can then be used anywhere within the architecture. Constants declared within a process can only be used inside that specific process. Eg.

Constant RISE_FALL_TME: Time: = 2 ns;

(b) Variable

A variable can have a single value, as with a constant, but a variable can be updated using a variable assignment statement. The variable is updated without any delay as soon as the statement is executed. Variables must be declared inside a process. The variable declaration is as follows:

Variable list_of_variable_names: type [:= initial value] ;
Eg. Variable SUM: integer range 0 to 256 :=16;

The variable SUM, in the example above, is an integer that has a range from 0 to 256 with initial value of 16 at the start of the simulation.

A variable can be updated using a variable assignment statement such as

Variable name := expression;
(c) Signal

Signals are declared with the following statement:

signal list_of_signal_names: type [:= initial value] ;

signal SUM, CARRY: std_logic;

signal CLOCK: bit;

signal DATA_BUS: bit_vector (0 to 7);

signal VALUE: integer range 0 to 100;

Signals are updated when their signal assignment statement is executed, after a certain delay, as illustrated below,

SUM <= (A xor B) after 2 ns;

It is important to understand the difference between variables and signals, particularly how it relates to when their value changes. A variable changes instantaneously when the variable assignment is executed. On the other hand, a signal changes a delay after the assignment expression is evaluated. If no delay is specified, the signal will change after a delta delay. This has important consequences for the updated values of variables and signals.

6.5. Data types
Each data object has a type associated with it. The type defines the set of values that the object can have and the set of operations that are allowed on it. In general one is not allowed to assign a value of one type to an object of another data type (e.g. assigning an integer to a bit type is not allowed). There are four classes of data types: scalar, composite, access and file types. The scalar types represent a single value and are ordered so that relational operations can be performed on them. The scalar type includes integer, real, and enumerated types of Boolean and Character.

(a) Data Types defined in the Standard Package

 VHDL has several predefined types in the standard package as shown in the table below. To use this package one has to include the following clause:

	Types defined in the Package Standard of the std Library

	Type
	Range of values
	Example

	Bit
	 ‘0’, ‘1’
	signal A: bit :=1;

	bit_vector
	an array with each element of type bit
	signal INBUS: bit_vector(7 downto 0);

	Boolean
	FALSE, TRUE
	variable TEST: Boolean :=FALSE’

	character
	any legal VHDL character (see package standard); printable characters must be placed between single quotes (e.g. ‘#’)
	variable VAL: character :=’$’;

	file_open_kind
	read_mode, write_mode, append_mode
	

	file_open_status
	open_ok, status_error, name_error, mode_error
	

	Integer
	range is implementation dependent but includes at least –(231 – 1) to +(231 – 1)
	constant CONST1: integer :=129;

	Natural
	integer starting with 0 up to the max specified in the implementation
	variable VAR1: natural :=2;

	Positive
	integer starting from 1 up the max specified in the implementation
	variable VAR2: positive :=2;

	Real
	floating point number in the range of –1.0 x 1038 to +1.0x 1038 (can be implementation dependent.
	variable VAR3: real :=+64.2E12;

	severity_level
	note, warning, error, failure
	

	String
	array of which each element is of the type character
	variable VAR4: string(1 to 12):= “@$#ABC*()_%Z”;

(b) Enumerated Types

An enumerated type consists of lists of character literals or identifiers. The enumerated type can be very handy when writing models at an abstract level. The syntax for an enumerated type is,

type type_name is (identifier list or character literal);

Eg.

type my_3values is (‘0’, ‘1’, ‘Z’);

type PC_OPER is (load, store, add, sub, div, mult, shiftl, shiftr);

(c) Composite Types: Array

Composite data objects consist of a collection of related data elements in the form of an array. Before we can use such objects one has to declare the composite type first.

 Array Type

 An array type is declared as follows:

type array_name is array (indexing scheme) of element_type;

type YOUR_WORD is array (0 to 15) of std_logic;

We can now declare objects of these data types:

signal DATA_WORD: YOUR_WORD := B“1101100101010110”;

(d) Attributes

VHDL supports 5 types of attributes. Predefined attributes are always applied to a prefix such as a signal name, variable name or a type. Attributes are used to return various types of information about a signal, variable or type. Attributes consist of a quote mark (‘) followed by the name of the attribute.

The following table gives several signal attributes:

	Attribute
	Function

	signal_name’event
	returns the Boolean value True if an event on the signal occurred, otherwise gives a False

	signal_name’active
	returns the Boolean value True there has been a transaction (assignment) on the signal, otherwise gives a False

	signal_name’transaction
	returns a signal of the type “bit” that toggles (0 to 1 or 1 to 0) every time there is a transaction on the signal.

	signal_name’last_event
	returns the time interval since the last event on the signal

	signal_name’last_active
	returns the time interval since the last transaction on the signal

	signal_name’last_value
	gives the value of the signal before the last event occurred on the signal

	signal_name’delayed(T)
	gives a signal that is the delayed version (by time T) of the original one. [T is optional, default T=0]

	signal_name’stable(T)
	returns a Boolean value, True, if no event has occurred on the signal during the interval T, otherwise returns a False. [T is optional, default T=0]

	signal_name’quiet(T)
	returns a Boolean value, True, if no transaction has occurred on the signal during the interval T, otherwise returns a False. [T is optional, default T=0]

6.6. Operators

VHDL supports different classes of operators that operate on signals, variables and constants. The different classes of operators are summarized below.

	Class
	
	
	
	
	
	

	1. Logical operators
	and
	Or
	nand
	nor
	xor
	xnor

	2. Relational operators
	=
	/=
	<
	<=
	>
	>=

	3. Shift operators
	sll
	Srl
	sla
	sra
	rol
	ror

	4.Addition operators
	+
	=
	&
	
	
	

	5. Unary operators
	+
	-
	
	
	
	

	6. Multiplying op.
	*
	/
	mod
	rem
	
	

	7. Miscellaneous op.
	**
	abs
	not
	
	
	

The order of precedence is the highest for the operators of class 7, followed by class 6 with the lowest precedence for class 1. Unless parentheses are used, the operators with the highest precedence are applied first. Operators of the same class have the same precedence and are applied from left to right in an expression.

The concatenation (&) operator is used to concatenate two vectors together to make a longer one.

6.7. Behavioral Modeling:

As discussed earlier, VHDL provides means to represent digital circuits at different levels of representation of abstraction, such as the behavioral and structural modeling. In this section we will discuss different constructs for describing the behavior of components and circuits in terms of sequential statements. The basis for sequential modeling is the process construct. As you will see, the process construct allows us to model complex digital systems, in particular sequential circuits.

(a) Process

A process statement is the main construct in behavioral modeling that allows you to use sequential statements to describe the behavior of a system over time. The syntax for a process statement is

[process_label:] process [(sensitivity_list)] [is]

[process_declarations]

begin

list of sequential statements such as:

exit statement

if statement

loop statement

next statement

null statement

wait statement

end process [process_label];

A process is declared within architecture and is a concurrent statement. However, the statements inside a process are executed sequentially. The sensitivity list is a set of signals to which the process is sensitive. Any change in the value of the signals in the sensitivity list will cause immediate execution of the process. If the sensitivity list is not specified, one has to include a wait statement to make sure that the process will halt.

Variables and constants that are used inside a process have to be defined in the process_declarations part before the keyword begin. The keyword begin signals the start of the computational part of the process. The statements are sequentially executed, similarly as a conventional software program.

It should be noted that variable assignments inside a process are executed immediately and denoted by the “:=” operator. This is in contrast to signal assignments denoted by “<=” and which changes occur after a delay. As a result, changes made to variables will be available immediately to all subsequent statements within the same process. The following example illustrates this for a Full Adder, composed of two Half Adders. This example also illustrates how one process can generate signals that will trigger other processes when events on the signals in its sensitivity list occur. We can write the Boolean expression of a Half Adder and Full Adder as follows:
(b) If Statements

The if statement executes a sequence of statements whose sequence depends on one or more conditions. The syntax is as follows:

if condition then

sequential statements

 [elsif condition then

sequential statements]

 [else

sequential statements]

end if;

Each condition is a Boolean expression. The if statement is performed by checking each condition in the order they are presented until a “true” is found. Nesting of if statements is allowed.

(c) Case statements

The case statement executes one of several sequences of statements, based on the value of a single expression. The syntax is as follows,

case expression is

when choices =>

sequential statements

when choices =>

sequential statements

-- branches are allowed

[when others => sequential statements]

end case;

The case statement evaluates the expression and compares the value to each of the choices.
(d) Loop statements

A loop statement is used to repeatedly execute a sequence of sequential statements. The syntax for a loop is as follows:

[loop_label :]iteration_scheme loop

sequential statements

[next [label] [when condition];

[exit [label] [when condition];

end loop [loop_label];

(e) While-Loop statement

The while … loop evaluates a Boolean iteration condition. When the condition is TRUE, the loop repeats, otherwise the loop is skipped and the execution will halt. The syntax for the while…loop is as follows,

[loop_label :] while condition loop

sequential statements

[next [label] [when condition];

[exit [label] [when condition];

end loop[loop_label];

The condition of the loop is tested before each iteration, including the first iteration. If it is false, the loop is terminated.

(f) For-Loop statement

The for-loop uses an integer iteration scheme that determines the number of iterations. The syntax is as follows,

 [loop_label :] for identifier in range loop

sequential statements

[next [label] [when condition];

[exit [label] [when condition];

end loop[loop_label];

6.8. Data flow Modeling

Behavioral modeling can be done with sequential statements using the process construct or with concurrent statements. The first method was described in the previous section and is useful to describe complex digital systems. In this section, we will use concurrent statements to describe behavior. This method is usually called dataflow modeling. The dataflow modeling describes a circuit in terms of its function and the flow of data through the circuit. This is different from the structural modeling that describes a circuit in terms of the interconnection of components.

Concurrent signal assignments are event triggered and executed as soon as an event on one of the signals occurs. In the remainder of the section we will describe several concurrent constructs for use in dataflow modeling.

The syntax is as follows:

Target_signal <= expression;

In which the value of the expression transferred to the target_signal. As soon as an event occurs on one of the signals, the expression will be evaluated. The type of the target_signal has to be the same as the type of the value of the expression.

The syntax for the conditional signal assignment is as follows:

Target_signal <= expression when Boolean_condition else

 expression when Boolean_condition else

:

 expression;

The target signal will receive the value of the first expression whose Boolean condition is TRUE. If no condition is found to be TRUE, the target signal will receive the value of the final expression. If more than one condition is true, the value of the first condition that is TRUE will be assigned.

6.9. Structural Modeling

A structural way of modeling describes a circuit in terms of components and its interconnection. Each component is supposed to be defined earlier (e.g. in package) and can be described as structural, a behavioral or dataflow model. At the lowest hierarchy each component is described as a behavioral model, using the basic logic operators defined in VHDL. In general structural modeling is very good to describe complex digital systems, though a set of components in a hierarchical fashion.

A structural description can best be compared to a schematic block diagram that can be described by the components and the interconnections. VHDL provides a formal way to do this by

· Declare a list of components being used

· Declare signals which define the nets that interconnect components

· Label multiple instances of the same component so that each instance is uniquely defined.

The components and signals are declared within the architecture body,

architecture architecture_name of NAME_OF_ENTITY is

-- Declarations

component declarations

signal declarations

begin

-- Statements

component instantiation and connections

:

end architecture_name;

(a) Component declaration

Before components can be instantiated they need to be declared in the architecture declaration section or in the package declaration. The component declaration consists of the component name and the interface (ports). The syntax is as follows:

component component_name [is]

[port (port_signal_names: mode type;

 port_signal_names: mode type;

:

port_signal_names: mode type);]

end component [component_name];

As mentioned earlier, the component declaration has to be done either in the architecture body or in the package declaration. If the component is declared in a package, one does not have to declare it again in the architecture body as long as one uses the library and use clause.

(b) Component Instantiation and interconnections

The component instantiation statement references a component that can be

· Previously defined at the current level of the hierarchy or

· Defined in a technology library (vendor’s library).

The syntax for the components instantiation is as follows,

instance_name : component name

 port map (port1=>signal1, port2=> signal2,… port3=>signaln);

The instance name or label can be any legal identifier and is the name of this particular instance. The component name is the name of the component declared earlier using the component declaration statement. The port name is the name of the port and signal is the name of the signal to which the specific port is connected. The above port map associates the ports to the signals through named association. An alternative method is the positional association shown below,
 Port map (signal1, signal2,…signal n);

In which the first port in the component declaration corresponds to the first signal, the second port to the second signal, etc. The signal position must be in the same order as the declared component’s ports. One can mix named and positional associations as long as one puts all positional associations before the named one.
6.10. Logic Synthesis

Fig. 6.3. Logic Synthesis

Logic synthesis software as shown in figure 6.3 is a software CAD tool that can take a VHDL program and generate a net list to realize exactly a function.
This step consists of two separate phases called LOGIC- OPTIMIZATION and TECHNOLOGY MAPPING.
6.11. Logic Optimization Techniques

The way in which VHDL program has been written influences the optimization of a circuit – some constructs synthesize into more efficient structures than others.

All logic synthesis software provides the capability to optimize a circuit for area and speed. Few tools offer power optimization also. Further a design-based optimization called resource sharing is also provided.

The following sections outline the optimization techniques:
(i) Area Optimization

Area optimization is well-studied field in digital electronics. Early techniques addressed simple matrix-based manipulation for Boolean algebra. Later developments incorporated optimizations based on don’t care conditions. The optimization may be – a general purpose one or targeted at particular structures (e.g. programmable logic arrays). Also underlying technology strongly affects the optimization.

Where area optimization is more difficult is when particular device technology is used. For example, the Xilinx FPGA operates a number of CLBs. Each CLB can compute up to five input Boolean expressions. If the expression involves six inputs then a second CLB is needed. If four inputs are needed then chip area is wasted.

(ii) Speed optimization

Some measure of speed optimization is usually achieved by area optimization, as the area optimization removes redundant circuitry and can shorten the critical path of the circuit. However, further speed optimization can be performed.

A common approach is to identify the critical path and to work on reducing that. A simple optimization might be to replace each component on the critical path with a higher rated (i.e. faster but more power- intensive equivalent) but functionally equivalent component from the library. Other optimization techniques might be to strip out strings of inverters from a design or where, for example, AND gates are slower than OR gates to attempt to replace all ANDs with ORs.

Speed optimization is usually applied after area optimization has taken place. It improves the performance, but only to a certain extent. If after speed optimization the circuit still does not meet the required specifications, then the designer must go back and restructure the VHDL code. Often this approach involves replacing a behavioural specification with a structural or dataflow one.

(iii) Resource sharing

In VHDL source code there may be substantial opportunity to reduce the complexity of a circuit by an examination of the function implemented in the code. An example to illustrate this is:

Considering the code fragment

 IF (a = 1) then

 C <= a*b;

 ELSE

C <= a*d;

 In this code there are two multiply operations. But only one of them is active at any instance. Thus it would be wasteful to implement two large multipliers, when only one is needed. By creating a single multiplier with a permanent input ‘a‘ surrounded by selector logic to select input ‘b’ if a=1 and ‘d’ otherwise would result in a smaller circuit. This is called resource sharing.
 Resource sharing would have an impact on speed (owing to extra multiplexing logic), but it is worthwhile to include it as an optimization process. The disadvantages of resource sharing include possible slower operating speed and an increase in the time taken to perform the optimization task.
6.12. Technology Mapping

After logic optimization has produced the optimized network, technology mapping transforms this network into the final circuit. This is done by selecting pieces of the network that can be implemented by one of the available circuit elements, and specifying how these are to be interconnected. The circuit is optimized to reduce a cost function that typically incorporates measures of both area and delay. Conventional approaches to technology mapping have focused on using circuit elements from a limited set of simple gates, such as a Standard Cell library. The complex logic blocks used in FPGAs presents difficulties for library-based approaches because they can each implement a large number of functions.
 6.13. Placement
The next step after technology mapping is placement of logic blocks. A number of efficient techniques have been developed, which can be easily adapted to use for FPGAs.

6.14. Routing

Routing refers to the process of interconnecting the various logic blocks of the FPGA. Some of the terms used in routing are:

· Pin – a logic block input or output.
· Connection – a pair of logic block pins that are electrically connected.
· Net – a set of logic block pins that are to be electrically connected. A net can be divided into one or more connections.
· Wire segment – a straight segment of wire that is used to form a part of a connection.
· Routing switch – a programmable switch that is used to electrically connect two wire segments. Track – a straight section of wire that spans the entire width or length of a routing channel.
· A track can be composed of a number of wire segments of various lengths.
· Routing channel: – the rectangular area that lies between two rows or two columns of logic blocks. A routing channel contains a number of tracks.

Because of the complexity involved, the solution of large routing problems as those encountered in FPGAs, usually requires a ”divide and conquer” strategy. This approach involves three steps.

1) Partition the routing resources into routing areas that are appropriate for both the device to be routed and the routing algorithm to be employed.

2) Use a global router to assign each net to a subnet of the routing areas. The global router does not choose specific wire segments and routing switches for each connection, but rather it creates a new set of routing problems.

3) Use a detailed router to select specific wire segments and routing for each connection, within the restrictions set by the global router.

The advantage of this approach is that each of the routing tools can more effectively solve a smaller part of the routing problem. More specifically, since the global router need not be concerned with allocating wire segments and routing switches, it can concentrate on more global issues, like balancing the usage of routing channels. Similarly, with the reduced number of detailed routing alternatives that are available for each connection because of the restrictions introduced by the global router, the detailed router can focus on achieving connectivity.

This strategy has been adopted for routing in FPGAs. The global router first selects routing channels for each connection. Then, within the constraints imposed by the global router, the detailed router implements each connection by choosing specific wire segments and routing switches.
6.15. FPGAs

Very Large Scale Integration (VLSI) Technology has opened the door to powerful digital circuits at low cost. It has become possible to build chips with more than a million transistors. Such chips are realized using the full-custom approach, where all parts of VLSI circuit are carefully tailored to meet a set of specific requirements. Semi-custom approaches such as standard cells and Mask-Programmed Gate Arrays (MPGAs) have provided an easier way of designing and manufacturing Application-Specific Integrated Circuits (ASICs).

Each of these techniques, however, requires extensive manufacturing effort, taking sever al months from beginning to end. This results in a high cost until large volumes are produced.

In electronics industry it is vital to reach the market in shortest possible time and also it is important that the financial risk incurred in the development of the new product be limited.

Field-Programmable Gate arrays (FPGAs) have emerged as the ultimate solution to these problems because they provide instant manufacturing and low cost prototypes.

Fig. 6.4 FPGA (Field-Programmable Gate array)
7. IMPLEMENTATION OF SS7 PROTOCOL ARCHITECTURE

7.1. Features

· Particularly used for a single user

· The status of called user can be checked

· Signaling path uses hierarchical structure

· Used for showing possibilities of connection and release

· 8 users support

· Shows routing

· Authentication by SCP

7.2. Op code

	EN
	
	
	
	
	
	
	
	
	ACM
	ANS
	RLC
	RLCA
	X
	X
	X

 Caller(4bits) Called(4bits)
Fig. 7.1 Op Code
ACM: Address Complete Message = 1 , if the called subscriber is not busy.

ANS: Answer = 1, shows that caller can communicate with the called subscriber and voice trunks may be granted.

RLC: Release Connection = 1, shows the user wants to realease the connection.

RLCA: Release Connection Acknowledgment = 1 shows that the called subscriber has acknowledged the release request and the signaling path may be fired.

7.3.Working:-

 SHAPE

Fig. 7.2 Hierarchical Architecture of the SS7[1,2] Signaling

The whole program is run just to enable a single bit called as answer message. The user who wants to communicate enables his 16th bit. The caller and called bits are used for showing the routing. The routing refers to the path that the called party will use corresponding to every SSP, STP and User, we have intermediate signals so that we can se which of these are used for establishing the signaling path.

For example if user 0 wants to form a signaling path to user 7. The routing will make output of User 0, SSP0 and STP 0 all equal to 1.Similarly for user 7 the routing will make the outputs of user 7, SSP3, STP1, all equal to 1.

i.e. STP SSP User

 1 3 7

When path has been found free, a Address complete message ACM is communicated to the caller and if the caller is willing to receive call and ACM is been transmitted an answer message ANS is also communicated over the link and hence signaling has been achieved and now voice trunks can be granted.

SCP is used for authentication;: It is a database that contains all the codes or numbers of members registered wit h it. This we are able to filter unauthorized user.

If users want to release the path, he transmits the release Message RLC and as an acknowledgement a release Acknowledge message is communicated back to the caller.

This type of signaling structure is integrated in our mobile communication model which is shown later in the simulation results.

8. Implementation of Mobile Switching Using VHDL

8.1.Features:

· 8 User support

· Integration of SS7[1,2] signaling

· Use of GSM Architecture

· SMS facility may be easily integrated

· Authentication

· Routing can be easily shown

· 6 bit data transmission

· Synchronization

· Sequential scanning

8.2.Opcode:
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	EN
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	

 CALLER
 CALLED

DATA (5 to 0)
Fig. 8.1 Opcode
8.3.Working:
The model explained uses SS7[1,2] protocol for signaling and GSM architecture for data communication.

Phase 1:

· Initially the system is reset to clean all the previous data.
· A counter is run to scan all the enable inputs of user, called caller addresses and using signaling it is checked whether the subscriber is free or not.
· SCP checks authentication.

Phase 2:

· If signaling I successful (shown by bit OP (6)) then the data is routed through bits and memory to destination.

· The hierarchical structure of mobile exchange is shown in figure.

· BTS and MSC are basically realized as memories where routing information is stored.

The data communication is successful only if the caller is ENABLED and SUBS is DISABLED.
8.4.GSM Architecture for mobile switching (Communication through SS7 Signal):

 SHAPE

Fig. 8.2 GSM Architecture
MSC: Mobile Station Controller
BSC: Base Station Controller
BTS: Base Transceiver Station
 The above GSM Architecture (MSC,BSC,BTS) already explained in chapter
9. Simulation Results

9.1. SS7 Signaling using VHDL
We implemented this project using VHDL in XILINX Software for synthesis purpose project navigator and Simulation purpose model SIM 5.4

16 bit Address
RST

 Route User

CLK

CN

 Route STP
ACK

 Counter

 Route SSP
 Fig 9.1 IC for SS7 Signaling
9.2. Simulation Results points:

1st point: call routing user 1 to user 7

 Initial assuming

 Ip address: 1000001110000000

 Rst = ‘1’& cn = ‘0’&count =’1’& ack =’0’ then run

2nd point: Rst = ‘0’& cn = ‘1’&count =’2’& ack =’0’ then run

3rd point: here Ip address act as output

 Give ack = ‘1’& count = 3 then run

 Ip address change to 1000001111100000(now caller user is communicate with called)

4th point: whenever user want to release the call give ip(4) = 1 then run

 Ip address change to 0000000000001000 (now user is free communicate with other call)

[image: image21.jpg]
Fig 9.2 simulation results of SS7 Signaling
9.3. Mobile switching using VHDL

 16-bit IP Address Counter RST (Reset)

 CN (ctrl)
 Fig 9.3 IC of Mobile switching
9.4. Simulation Results points:
1st point: data send routing user 0 to user 7

 Initial assuming

 Ip address (0): 100000111011111

 All other ip (1) to ip (7) give 0000000000000000

 Rst = ‘1’& cn = ‘0’&count =’1’ then run

2nd point: Rst = ‘0’& cn = ‘1’&count =’2’ then run

3rd point: here Ip (0) & ip (7) address act as output then run

 Whenever signaling bit ip (5) = 1 then the data is sending source to destination

[image: image22.jpg]
Fig 9.4 simulation results of Mobile switching
10. CONCLUSION

The aim of the whole project was to enable us to design ICs for the Switching System.

Presently switching systems uses multiplexers, routers, switches etc that leads to low efficiency as they are analog in nature and have a high power requirement. In contrast we have tried to make this whole system digital to increase the efficiency, lower the power requirement, and reduce the delay.

VHDL has been used to write all the programs for the ICs because of its user-friendly nature and thus modifications if required for further development shall not prove to be an obstacle.

As we know, the process of making ICs is time consuming and an expensive venture so we must be sure about the working results of the ICs in advance as we can’t accept errors later.

Thus the project focuses on simulation prior to fabrication. Burning these programs on FPGA (Field Programmable Gate Array) will help us to see the functional design of ICs. These results in addition to the systematic view generated would help us to design Application Specific (AS) ICs.

This project has also helped us to realize protocols on a chip.

This project is a significant effort towards total digitization of switching exchanges and would surely prove a boon for VLSI design industry.

11.REFERENCES

1) Yi-Bing Lin, Steven K. Devries "Supporting interconnection with the PSTN PCS Network Signaling Using SS7", IEEE Personal Communications June 1995.

2) Moore, T.; Kosloff, T.; Keller, J.; Manes, G.; Shenoi, S, “Signaling system 7 (SS7) network security”, aug. 2002 pages III-496 - III-499 vol.3.
3) Asha Mehrotra, and Leonard S. Golding, "Mobility and Security Management in the GSM System and Some Proposed Future Improvements", proceedings of the IEEE, VOL. 86, no. 7, july 1998.

4) Li zhen, Zhou Wenan, Song Junde & Hou Chunping, "consideration and research issues for the future generation of mobile communication", Proceedings of the 2002 IEEE Canadian Conference.
5) Douglas L.Perry, VHDL”, Tata Mc GrawHill, International Edition 1999.

6) XILINX INC, “XILINX Foundation Series User Reference Guide”.

7) XILINX INC, “XILINX Software Sampler Quick Start Guide .”

8) J.Bhaskar, “A VHDL Primer”, Pearson Education Asia, Third edition 1999.

9) Raj Pandya “Mobile personal communication systems and services”, Prentice Hall of India.

10) M.Morris Mano,”Digital Logic and computer Design”, Prentice Hall of India, Nov 1995.

11) Tanner Tools User Guide.

12) William I Fletcher,”An Engineering Approach to Digital Design”, Prentice Hall of India, Aug 2000.

13) “Telecommunication Switching Systems and Networks”, Thiagarajan Viswanathan.

14) Theodore s. rappaport, “Wireless communications”, second addition, Prentice Hall of India.

Appendix A

VHDL CODING FOR SS7 SIGNALING OF MOBILE SWITCHING

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

package vhdl is

 type t_op is array (0 to 7) of std_logic_vector(1 downto 0);

 type ssp is array (0 to 3) of std_logic_vector(1 downto 0);

 type stp is array (0 to 1) of std_logic_vector(1 downto 0);

 type scp is array (0 to 1) of std_logic;

end vhdl;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use work.vhdl.all;

entity ss7 is

port(ip:inout std_logic_vector(15 downto 0);

 rst:in std_logic;

 cn:in std_logic;

 akw:in std_logic;

 count:in integer;

 routeuser:out user;

 routestp:out stp);

end ss7;

architecture signalling of ss7 is

begin

process(rst,cn,ip,akw,count)

 variable en:std_logic;

variable a,b:std_logic_vector(7 downto 0);

variable c,d:std_logic_vector(3 downto 0);

variable e,f:std_logic_vector(1 downto 0);

variable op: std_logic_vector(15 downto 0);

variable checkscp:scp;

begin

op:=ip;

if(rst='1')then

for i in 0 to 7 loop

a(i):='0';

b(i):='0';

end loop;

for i in 0 to 3 loop

c(i):='0';

d(i):='0';

end loop;

for i in 0 to 1 loop

e(i):='0';

f(i):='0';

end loop;

end if;

en:=ip(15);

if(cn='1' and rst='0')then

if (en='1') then

checkscp(0):=ip(14);

assert(checkscp(0)='0')

report" scp detects the caller is not a registered member"

severity error;

case ip(14 downto 11) is

when "0000" =>

a(0):='1';

c(0):='1';

e(0):='1';

when "0001" =>

a(1):='1';

c(0):='1';

e(0):='1';

when "0010" =>

a(2):='1';

c(1):='1';

e(0):='1';

when "0011" =>

a(3):='1';

c(1):='1';

e(0):='1';

when "0100" =>

a(4):='1';

c(2):='1';

e(1):='1';

when "0101" =>

a(5):='1';

c(2):='1';

e(1):='1';

when "0110" =>

a(6):='1';

c(3):='1';

e(1):='1';

when "0111" =>

a(7):='1';

c(3):='1';

e(1):='1';

when others =>

null;

end case;

checkscp(1):=ip(10);

assert(checkscp(1)='0')

report" scp detects the called user is not a registered member"

severity error;

case ip(10 downto 7)is

when "0000" =>

b(0):='1';

d(0):='1';

f(0):='1';

when "0001" =>

b(1):='1';

d(0):='1';

f(0):='1';

when "0010" =>

b(2):='1';

d(1):='1';

f(0):='1';

when "0011" =>

b(3):='1';

d(1):='1';

f(0):='1';

when "0100" =>

b(4):='1';

d(2):='1';

f(1):='1';

when "0101" =>

b(5):='1';

d(2):='1';

f(1):='1';

when "0110" =>

b(6):='1';

d(3):='1';

f(1):='1';

when "0111" =>

b(7):='1';

d(3):='1';

f(1):='1';

when others =>

null;

end case;

else null;

end if;

for i in 0 to 7 loop

if(b(i)='1') then

x:='1';

end if;

end loop;

for i in 0 to 3 loop

if(d(i)='1')then

y:='1';

end if;

end loop;

for i in 0 to 1 loop

if(f(i)='1') then

z:='1';

end if;

end loop;

if(x='1' and z='1' and op(15)='1') then

op(6):='1';

else

op(6):='0';

end if;

if(op(4)='1') then

op:="0000000000001000" ;

end if;

if(akw='1'and op(6)='1')then

op(5):='1';

else

op(5):='0';

end if;

ip<=op;

 end if;

routeuser(0)<=b(0)& a(0);

routeuser(1)<=b(1)& a(1);

routeuser(2)<=b(2)& a(2);

routeuser(3)<=b(3)& a(3);

routeuser(4)<=b(4)& a(4);

routeuser(5)<=b(5)& a(5);

routeuser(6)<=b(6)& a(6);

routeuser(7)<=b(7)& a(7);

routessp(0)<=d(0)& c(0);

routessp(1)<=d(1)& c(1);

routessp(2)<=d(2)& c(2);

routessp(3)<=d(3)& c(3);

routestp(0)<=f(0)& e(0);

routestp(1)<=f(1)& e(1);

end process;

end signalling ;

Appendix B

 VHDL CODING FOR MOBILE SWITCHING

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_ARITH .ALL;

package vhdl is

 type t_data is array (0 to 7) of std_logic_vector(15 downto 0);

 type t_c is array (0 to 7) of std_logic;

 type bts is array (0 to 1) of std_logic_vector(5 downto 0);

 type bsc is array (0 to 3) of std_logic_vector(5 downto 0);

 type t_in is array (0 to 7) of std_logic_vector(3 downto 0);

 type ssp is array (0 to 3) of std_logic_vector(1 downto 0);

 type stp is array (0 to 1) of std_logic_vector(1 downto 0);

 type scp is array (0 to 1) of std_logic;

 type user is array (0 to 7) of std_logic_vector(1 downto 0);

 type msc is array (0 to 7) of std_logic_vector(5 downto 0);

 function btoi (x : std_logic_vector(2 downto 0))

 return integer ;

end vhdl;

package body vhdl is

function btoi (x : std_logic_vector(2 downto 0))

 return integer is

 variable u : integer;

 begin

 u :=0;

 for i in 0 to 2 loop

 if(x(i)='1')then

 u:=u+2**i;

 else

 null;

 end if;

 end loop;

 return u;

 end btoi;

end vhdl;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use work.vhdl.all;

entity main is

port(ip:inout t_data;

 c:in integer;

 rst:in std_logic;

 cn:in std_logic);

end main;

architecture mobswitch of main is

 signal routeuser:user;

 signal ms:msc;

 signal bt0,bt1,bt2,bt3:bts;

 signal bs0,bs1:bsc;

begin

process(cn,ip,rst,c)

variable check:t_c;

variable des,sou:t_in;

variable p: t_data;

variable u,o:std_logic_vector(15 downto 0);

variable a,b:std_logic_vector(7 downto 0);

variable c,d,called,caller:std_logic_vector(3 downto 0);

variable e,f:std_logic_vector(1 downto 0);

variable x,y,z,j,h:std_logic;

variable btv0,btv1,btv3,btv2:bts;

variable bsv0,bsv1:bsc;

variable msv:msc;

variable checkscp:scp;

variable int:integer;

variable g:std_logic_vector(2 downto 0);

begin

for i in 0 to 7 loop

routeuser(i)<="00";

b(i):='0';

end loop;

for i in 0 to 1 loop

bt0(i)<="000000";

bt1(i)<="000000";

bt2(i)<="000000";

bt3(i)<="000000";

e(i):='0';

f(i):='0';

end loop;

for i in 0 to 3 loop

bs0(i)<="000000" ;

bs1(i)<="000000";

c(i):='0';

d(i):='0';

end loop;

elsif(cn='1' and rst='0') then

for i in 0 to 7 loop

u:=ip(i);

sou(i):=u(14 downto 11);

des(i):=u(10 downto 7);

check(i):=u(15);

end loop;

for counter in 0 to 7 loop

u:=ip(counter);

if (u(15)='1') then

g:=u(9 downto 7);

o:=ip(int);

caller:=sou(counter);

assert(checkscp(0)='0')

report" scp detects the caller is not a registered member"

severity error;

case caller is

when "0000" =>

a(0):='1';

c(0):='1';

e(0):='1';

when "0001" =>

a(1):='1';

c(0):='1';

e(0):='1';

when "0010" =>

a(2):='1';

c(1):='1';

e(0):='1';

when "0011" =>

a(3):='1';

c(1):='1';

e(0):='1';

when "0100" =>

a(4):='1';

c(2):='1';

e(1):='1';

when "0101" =>

a(5):='1';

c(2):='1';

e(1):='1';

when "0110" =>

a(6):='1';

c(3):='1';

e(1):='1';

when "0111" =>

a(7):='1';

c(3):='1';

e(1):='1';

when others =>

null;

end case;

checkscp(1):=u(10);

assert(checkscp(1)='0')

report" scp detects the called subscriber is not a registered member"

severity error;

case called is

when "0000" =>

b(0):='1';

d(0):='1';

f(0):='1';

when "0001" =>

b(1):='1';

d(0):='1';

f(0):='1';

when "0010" =>

b(2):='1';

d(1):='1';

f(0):='1';

when "0011" =>

b(3):='1';

d(1):='1';

f(0):='1';

when "0100" =>

b(4):='1';

d(2):='1';

f(1):='1';

when "0101" =>

b(5):='1';

d(2):='1';

f(1):='1';

when "0110" =>

b(6):='1';

d(3):='1';

f(1):='1';

when "0111" =>

b(7):='1';

d(3):='1';

f(1):='1';

when others =>

null;

end case;

for i in 0 to 7 loop

if(b(i)='1') then

x:='1';

end if;

end loop;

for i in 0 to 3 loop

if(d(i)='1')then

y:='1';

end if;

end loop;

for i in 0 to 1 loop

if(f(i)='1') then

z:='1';

end if;

end loop;

if(x='1' and y='1' and z='1' and u(15)='1') then

j:='1';

else

j:='0';

end if;

if(j='1' and h='0')then

u(6):='1';

else

u(6):='0';

end if;

if(u(6)='1' and u(15)='1')then

case counter is

when 0 =>

btv0(0):= u(5 downto 0);

bsv0(0):= btv0(0);

msv(0):=bsv0(0);

when 1 =>

btv0(1):= u(5 downto 0);

msv(1):=bsv0(1);

when 2 =>

btv1(0):= u(5 downto 0);

bsv0(2):= btv1(0);

msv(2):=bsv0(2);

when 3 =>

btv1(1):= u(5 downto 0);

bsv0(3):= btv1(1);

msv(3):=bsv0(3);

when 4 =>

btv2(0):= u(5 downto 0);

bsv1(0):= btv2(0);

msv(4):=bsv1(0);

when 5 =>

btv2(1):= u(5 downto 0);

bsv1(1):= btv2(1);

msv(5):=bsv1(1);

when 6 =>

btv3(0):= u(5 downto 0);

bsv1(2):= btv3(0);

msv(6):=bsv1(2);

when 7 =>

btv3(1):= u(5 downto 0);

bsv1(3):= btv3(1);

msv(7):=bsv1(3);

when others =>

 null;

end case;

msv(int):=msv(counter);

case int is

when 0 =>

bsv0(0):=msv(0);

btv0(0):=bsv0(0);

o:='1' & u(14 downto 11) & "00000" & btv0(0);

when 1 =>

bsv0(1):=msv(1);

btv0(1):=bsv0(1);

o:='1' & u(14 downto 11) & "00000" &btv0(1);

when 2 =>

bsv0(2):=msv(2);

btv1(0):=bsv0(2);

o:='1' & u(14 downto 11) & "00000" &btv1(0);

when 3 =>

btv1(1):=bsv0(3);

o:='1' & u(14 downto 11) & "00000" &btv1(1);

when 4 =>

bsv1(0):=msv(4);

btv2(0):=bsv1(0);

o:='1' & u(14 downto 11) & "00000" &btv2(0);

when 5 =>

bsv1(1):=msv(5);

btv2(1):=bsv1(1);

o:='1' & u(14 downto 11) & "00000" &btv2(1);

when 6 =>

bsv1(2):=msv(6);

btv3(0):=bsv1(2);

o:='1' & u(14 downto 11) & "00000" &btv3(0);

when 7 =>

bsv1(3):=msv(7);

btv3(1):=bsv1(3);

when others=>

null;

end case;

ip(counter)<=u;

ip(int)<=o;

end if;

routeuser(counter)<='0'& a(counter);

routeuser(int)<=b(int) &'0';

bt0<=btv0;

bt1<=btv1;

bt2<=btv2;

bt3<=btv3;

ms<=msv;

end if;

end loop;

else null;

end if;

end process;

end mobswitch ;

U0

U1

U2

U3

U4

U5

U6

U7

Fig. 3.2 Frequency Re-use

Modcell consists of three main parts as described after:-

Radio Shelves

Amplifier Section

Filter Section

- Modcell 3

 STP 0

 STP 1

 SSP 0

 SSP 1

 SSP 2

 SSP 3

 SCP

Original Network

Logic Synthesis

Logic Optimization

Optimized Network

Technology Mapping

Optimized Circuit

 MSC

 BSC

 BSC

 BTS

 BTS

 BTS

 BTS

U0

U1

U2

U3

U4

U5

U6

U7

IC

IC

3

_72785188

_82247204

