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ABSTRACT

In this project, an implementation of intelligent controller for speed control of an induction motor (IM) using indirect vector control method has been developed and analyzed in detail. The project is complete mathematical model of field orientation control (FOC) induction motor is described and simulated in MATLAB for studies a 50 HP(37KW), cage type induction motor has been considered .The comparative  performance of PI, Fuzzy and Neural network control techniques has been  presented and analyzed in this work. 

 The present approach avoids the use of flux and speed sensor which increase the installation cost and mechanical robustness .The neural network based controller is found to be a very useful techniques to obtain a high performance speed control. The scheme consist of neural network controller, reference modal, an algorithm for changing the neural network weight in order that  speed of the derive can track performance speed.  

The indirect vector controlled induction motor derive involve decoupling of the stator current in to torque and flux producing components. This project proposed neural network controller scheme applied to a current component model of an induction motor. Neural network controller is developed with the help of neural network predictive controller based efficient speed regulation. The neural network controller is compared with PI, Fuzzy controller in terms of settling time and dynamic response at the different load condition.


This project successfully demonstrates the application of NN Predictive control in the estimation of the instantaneous magnitude of the rotor speed, current and torque and compared with other PI and Fuzzy control. Here we use 20 layer feed forward neural network of the structure neurons in the respective layers has been trained for estimation of rotor speed. The performance of the proposed NN controller is found to be excellent in comparison PI and Fuzzy based controller. The ANN based controller shows a faster response and better performance at no load or 25 N-m load torque condition.
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INTRODUCTION




                 CHAPTER I


1.1 General
An induction motor is an asynchronous AC (alternating current) motor. The least

Expensive and most widely used induction motor is the squirrel cage motor. The interest in sensor less drives of induction motor (IM) has grown significantly over the past few years due to some of their advantages, such as mechanical robustness, simple construction, and less maintenance. These applications include pumps and fans, paper and textile mills, subway and locomotive propulsions, electric and hybrid vehicles, machine tools and robotics, home appliances, heat pumps and air conditioners, rolling mills, wind generation systems, etc. So, Induction motors have been used more in the industrial variable speed drive system with the development of the vector control technology. This method requires a speed sensor such as shaft encoder for speed control.

However, a speed sensor cannot be mounted in some cases such as motor drives in a hostile environment and high-speed drives. In addition, it requires careful cabling arrangements with attention to electrical noise. Moreover, it causes to become expensive in the system price and bulky in the motor size. In other words, it has some demerits in both mechanical and economical aspects. Thus current research efforts are focused on the so called “sensor less” vector control problem, in which rotor speed measurements are not available, to reduce cost and to increase reliability.







The control and estimation of ac drives in general are considerably more complex than those of dc drives, and this complexity increases substantially if high performances are demanded. The main reasons for this complexity are the need of variable-frequency, harmonically optimum converter power supplies, the complex dynamics of ac machines, machine parameter variations, and difficulties of processing feedback signals in the presence of harmonics. The selection of drive for motor control is based on several factors such as:
· One-, two- or four-quadrant drive,
· Torque, speed, or position control in the primary or outer loop,
· Single- or multi- motor drive,
· Range of speed control Does it include zero speed and field-weakening regions, Accuracy and response time,
· Robustness with load torque and parameter variations,
· Control with speed sensor or sensor less control,
· Type of front-end converter,
· Efficiency, cost, reliability, and maintainability consideration,
· And Line power supply, harmonics, and power factor consideration.  
The performance at the high speed region is satisfactory but its performance at very low speed is poor. In many research, most of the methods are estimation of rotor flux angle and parameter tuning in field oriented vector control. 
The field orientation control, any controller is easily implemented and can approach desired system response. However, if the controlled electrical drives require high performance, i.e., steady state and dynamic tracking ability to set point changes and the ability to recover from system variations.  Then a conventional PI, fuzzy and neural controller for such drives lead to tracking and regulating performance simultaneously and then compared each other.
1.2 An Overview of Three Phase Induction Motor


The control and estimation of induction motor drive constitute a vast subject, and the technology has further advance in recent years. Induction motor drives with cage-type   machines have been the workhorses in industry for variable-speed application in a wide power range that covers from fractional horse power to multi-megawatts.

The major reason why these machines are so robust and inexpensive is that no external current is required inside the rotor to create the revolving magnetic field. An induction machine consists fundamentally of two parts: the stator (the stationary part) and the rotor (the moving part). For a three-phase induction machine (this will be used in this thesis project), three-phase sinusoidal voltages are applied to the windings of the stator. This creates a magnetic field. Because the voltages differ in phase by 1200 with respect to each other, a revolving magnetic field is created that rotates in synchronism with the changing dominant poles around the cylindrical stator.

The rotor, which, for a squirrel-cage rotor consists of copper bars in a cylindrical format ’follows’ the created revolving magnetic field. As a consequence, a voltage is induced in the rotor bars that are proportional to the relative angular speed of the magnetic field (this is referenced to the angular speed of the rotor). Because a voltage is induced, magnetic fields are created around the rotor wires. The two generated magnetic fields (in the rotor and stator) interact to generate a force that is also proportional in magnitude to the relative angular speed of the magnetic field. Torque is equal to force multiplied by the radius of the cylindrical stator. Therefore, the resultant torque applied by the rotor is proportional to the relative speed of the magnetic field with respect to the speed of the rotor.

1.3  Control Schemes for Speed Control of Three Phase Induction Motor

The different control schemes of induction motor derives are including Scalar control, vector or field orientation control, direct torque and flux control, and adaptive control etc. But induction motor control drives are broadly classified in two category i.e. scalar control and vector control.  

1.3.1 Scalar control

Scalar control as the name indicates, is due to magnitude variation of the control variable only, and disregards the coupling effect in machine. For example, the voltage of machine can be controlled to control the flux, and frequency or slip can be controlled to control the torque. However flux and torque are also function of voltage and frequency respectively. A scalar controlled drive gives somewhat inferior performance.

Scalar control is easy to implement. Scalar controlled drives have been widely used in industry, but the inherent coupling effect (both torque and flux are function of voltage or current and frequency) gives sluggish response and system is easily prone to instability because of higher order (fifth order) system effect. To make it clearer, if torque is increased by incrementing the slip (the frequency), the flux tends to decrease .it has been noted that the flux variation is also sluggish. Decreases in flux then compensated by the sluggish flux control loop feeding an additional voltage. This temporary dipping of flux reduces the torque sensitivity with slip and lengthens the response time.   However, their importance has diminished recently because of the superior performance of vector or Field orientated control (FOC) drives.  

To improve speed control performance of the scalar control method, an encoder or speed tachometer is required to feedback the rotor angle or rotor speed signal and compensate the slip frequency. However, it is expensive and destroys the mechanical robustness of the induction motor. So these are the limitation of scalar control which is overcome by Field orientated control (FOC) for induction motor drive.
1.3.2 Vector Control or Field Orientated Control(FOC)





Blaschke in 1972 has introduced the principle of field orientation to realize dc motor characteristics in an induction motor derive. For the same, he has used decoupled control of torque and flux in the motor and gives its name transvector control. In DC machine the field flux is perpendicular to the armature flux. Being orthogonal, these two fluxes produce no net interaction on one another. Adjusting the field current can therefore control the DC machine flux, and the torque can be controlled independently of flux by adjusting the armature current. An AC machine is not so simple because of the interactions between the stator and the rotor fields, whose orientations are not held at 90 degrees but vary with the operating conditions. We can obtain DC machine-like performance in holding a fixed and orthogonal orientation between the field and armature fields in an AC machine by orienting the stator current with respect to the rotor flux so as to attain independently controlled flux and torque. Such a control scheme is called flux-oriented control or vector control. Vector control is applicable to both induction and synchronous motors. 
The cage induction motor drive with vector or field oriented control offers a high level of dynamics performance and the closed-loop  control associated with this derive  provides the long term stability of the system .Induction Motor drives are used in a multitude of industrial and process control applications requiring high performances. In high-performance drive systems, the motor speed should closely follow a specified reference trajectory regardless of any load disturbances, parameter variations, and model uncertainties. In order to achieve high performance, field-oriented control of induction motor (IM) drive is employed. However, the controller design of such a system plays a crucial role in system performance. The decoupling characteristics of vector-controlled IM are adversely affected by the parameter changes in the motor. So the vector control is also known as an independent or decoupled control.
1.4  An Overview of PI, Fuzzy Logic and Neural Network Control


In this project we have used Proportional –Integral, Fuzzy logic and Neural Network controller Based speed control for vector controlled cage type induction motor. Here we have briefly discussed three controllers in this chapter.
1.4.1 Proportional – Integral (PI) control






In this project complete mathematical model of FOC induction motor is described and simulated in MATALAB for studies a 50 HP(37KW) induction motor has been considered .The performance of FOC drive with proportional plus integral (PI) controller are presented and analyzed. One common linear control strategy is proportional-integral (PI) control. The control law used for this strategy is given by




T  = Kp e + Ki ∫e dt

Its output is the updating in PI controller gains (Kp and Ki) based on a set of rules to maintain excellent control performance even in the presence of parameter variation and drive nonlinearity
The use of PI controllers for speed control of induction machine drives is characterized by an overshoot during tracking mode and a poor load disturbance rejection. This is mainly caused by the fact that the complexity of the system does not allow the gains of the PI controller to exceed a certain low value. At starting mode the high value of the error is amplified across the PI controller provoking high variations in the command torque. If the gains of the controller exceed a certain value, the variations in the command torque become too high and will destabilize the system. 
To overcome this problem we propose the use of a limiter ahead of the PI controller. This limiter causes the speed error to be maintained within the saturation limits provoking, when appropriately chosen, smooth variations in the command torque even when the PI controller gains are very high. The motor reaches the reference speed rapidly and without overshoot, step commands are tracked with almost zero steady state error and no overshoot, load disturbances are rapidly rejected and variations of some of the motor parameters are fairly well dealt with. In the next chapter we will discuss about the PI controller and designing of PI controller
1.4.2 Fuzzy Logic Control


Due to continuously developing automation systems and more demanding small Control performance requirements, conventional control methods are not always adequate. On the other hand, practical control problems are usually imprecise. The input output relations of the system may be uncertain and they can be changed by unknown external disturbances. New schemes are needed to solve such problems. One such an approach is to utilize fuzzy control.

Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965, and the industrial application of the first fuzzy controller by E.H. Mamadani in 1974, fuzzy systems have obtained a major role in engineering systems and consumer’s products in 1980s and 1990s. New applications are presented continuously. A reason for this significant role is that fuzzy computing provides a flexible and powerful alternative to contract controllers, supervisory blocks, computing units and compensation systems in different application areas. With fuzzy sets nonlinear control actions can be performed easily. The transparency of fuzzy rules and the locality of parameters are helpful in the design and maintenances of the systems. Therefore, preliminary results can be obtained within a short development period.

Fuzzy control is based on fuzzy logic, which provides an efficient method to handle   in exact information as basis reasoning. With fuzzy logic it is possible to convert knowledge, which is expressed in an uncertain form, to an exact algorithm. In fuzzy control, the controller can be represented with linguistic if-then rules. The interpretation of the controller is the fuzzy but controller is processing exact input-data and is producing exact output-data in a deterministic way.


However, fuzzy control does have some weaknesses. One is that fuzzy control is still lacking generally accepted theoretical design tools. Although preliminary results are easily, further improvements need a lot of especially when the number of inputs increases, the maintenances of the multi-dimensional rule base is time consuming. Designing and development of Fuzzy controller will explain in next chapter.
1.4.3 Neural Network Control









We introduce the multilayer perceptron neural network and describe how it can be used for function approximation. The back propagation algorithm (including its variations) is the principal procedure for training multilayer perceptrons, it is briefly described here. Care must be taken, when training perceptron networks to ensure that they do not over fit the training data and then fail to generalize well in new situations. Several techniques for improving generalization are discussed. Three neural Network control techniques are model reference adaptive control, model predictive control, and feedback linearization control. These controllers demonstrate the variety of ways in which multilayer perceptron neural networks can be used as basic building blocks. But in this project we are used model predictive control for speed regulation of induction motor. There are a number of variations of the neural network predictive controller that are based on linear model predictive controllers. The neural network predictive controller that is discussed in next chapter [34] uses a neural network model of a nonlinear plant to predict future plant performance. The controller then calculates the control input that will optimize plant performance over a specified future time horizon. The first step in model predictive control is to determine the neural network plant model (system identification). Next, the plant model is used by the controller to predict future performance. The field of neural networks covers a very broad area, so we will explain and design of NN controller in chapter IV.
1.5 Conclusion

This chapter briefly describes various control schemes that have been used for speed control of induction motor. Use of Proportional–integral control, Fuzzy logic control and neural network control for speed regulation of induction motor, their importance and advantages have been described in brief. 

Literature Review




       
 CHAPTER II



2.1 General 


This chapter intends to give a brief literature review of the work being carried out on vector control induction motor drive during last decade. A brief description of PI, fuzzy logic and neural Controller are also described. The benefits of squirrel-cage induction motors – high robustness and low maintenance - make it widely used through various industrial modem processes, with growing economical and performing demands [25]. The widely used control theory based design of PI family controllers fails to provide good results under parameter variation, nonlinearity's or load disturbance. Elaborated control methods achieve good dynamic performance. However, an essential condition for this achievement is the accurate knowledge of rotor dynamics and parameters, which, is a difficult task. In high performance applications, it is useful to automatically extract the complex relations that represent the drive behavior. The use of learning through example can be powerful tool for indirect vector control speed drives [11]. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. On the other hand, electromechanical systems usually present internal nonlinearity's and parameter deviation, which are difficult to model. 
2.2 Literature Review


Elaborated control schemes are used for speed control of induction motor drive in this project. An extensive literature study was made on the topic Vector control of induction motor and a brief  summary of different research papers are presented.
2.2.1 Scalar Control

P. Vass et al. [7] describe that scalar control method has a simple control structure and is implemented easily, and thus, within general-purpose industrial applications, it is applied broadly. To improve speed control performance of the scalar control method, an encoder or speed tachometer is required to feedback the rotor angle or rotor speed signal and compensate the slip frequency. However, it is expensive and destroys the mechanical robustness of the induction motor.
B.K Bose et al. [8] presented that cage induction motor is one of the most robust motor and widely used. There are many techniques to control the speed of the induction motor such as stator voltage control and frequency control etc. For achieving variable speed operation, the frequency control method of the cage motor is the best method among all the methods of the speed control. 
Brian Heber et al. [14] described that, there is a wide variety of applications such as machine tools, elevators; mill drives etc., where quick control over the torque of the motor is essential. Such applications are dominated by DC drives and cannot be satisfactorily operated by an induction motor drive with constant volt/hertz (V/f) scheme.

Hassan Baghgar Bostan Abad et al. [3] pointed out that DC motors are easily controllable than AC motors but they require much cost. In addition, in equal power, DC motors have higher volume and weight.
2.2.2 Vector Control
J.W finch et al. [9] describe the advantage gained from field-orientation is high, controlled transient torque production and therefore fast response to load demanded changes speed. Constant air gap machine due to a single stator winding can be first measured (direct) OK estimated (indirect) at various points around the air gap. This field strength at any angle around the gap can be represented as a sinusoidal field distribution. One way is to represent it as a Vector. The vector direction is coincident with the field axis and the vector length describes the magnitude of the field. The vector representation is important because it gives a simple method of combining separate field components: if two sinusoidal distributed fields are combined, the vector representation of the resultant field is simply the sum of the component field vectors.
Norman Mariun et al. [4] presented the idea of field oriented control. The vector control or field oriented control (FOC) theory forms the base of a advance control method for induction motor drives. With this theory induction motors can be controlled like a separately excited dc motor. This method enables the control of field and torque of the induction machine independently (decoupling) by manipulating the corresponding field oriented quantities. Over the last two decades the principle of vector control of AC machines has evolved, by means of which AC motors and induction motors in particular, can be controlled to give dynamic performance comparable to what is achievable in a separately excited DC drive.
F. Biaschke et al [10] represented that most familiar vector control methods for the induction motor, based on field orientation (FOC), use a change of coordinates to obtain closed-loop dynamics similar to those of a separately excited dc machine. Indirect FOC or observers allow FOC to be applied without special flux sensors.
Vinod kumar et al. [5] presents a hybrid system controller, incorporating fuzzy controller with vector-control method for induction motors. The vector-control method has been optimized by using fuzzy controller instead of a simple P-I controller. The presented hybrid controller combines the benefits of fuzzy logic controller and vector-control in a single system controller. High quality of the regulation process is achieved through utilization of the fuzzy logic controller, while stability of the system during transient processes and a wide range of operation are assured through application of the vector-control.
Bhim Singh et al. [12] suggested that some particular sensor (speed sensor) is relatively more costly and hence its elimination will lead to substantial reduction in the cost. Therefore, the speed sensor is replaced by a flux model and which needs the use of two additional voltage sensors. The reduction of number of voltage sensors to be used in a VCIMD system is also made. 
2.3 Review of Proportional – Integral Control
A. Miloudi, and A. Draou et al.[15] presented the use of PI controllers for speed control of induction machine drives is characterized by an overshoot during tracking mode and a poor load disturbance rejection. This is mainly caused by the fact that the complexity of the system does not allow the gains of the PI controller to exceed a certain low value. At starting mode the high value of the error is amplified across the PI controller provoking high variations in the command torque. If the gains of the controller exceed a certain value, the variations in the command torque become too high and will destabilize the system. 

 
To overcome this problem he propose the use of a limiter ahead of the PI controller. This limiter causes the speed error to be maintained within the saturation limits provoking, when appropriately chosen, smooth variations in the command torque even when the PI controller gains are very high.
2.4 Review of Intelligent Control
2.4.1 Fuzzy Logic Control
Professor L.A. Zadeh [2] of the University of California, Berkely presented in his paper outlining fuzzy theory in which he introduced the concept of fuzzy set theory and operation, fuzzy logic based controller etc. In about 1970, fuzzy logic theory began to produce result in Japan, Europe and China. Recently fuzzy logic has emerged as one of the active areas of research activity particularly in control application system, information processing, processing industries beside other applications as well.


Li Zhen and Longya Xu et al. [1] propose a fuzzy reasoning-based new auto-tuning method for the speed controller in vector controlled induction motor drive system. In this method, he introduce the phase plane which shows the relation between the change in motor speed error and the motor speed error, and fuzzy control rules are added in this plane. A trajectory of the step response of motor speed is described in this plane, and then the fuzzy inference based on the max-product composition is repeatedly implemented off-line at two characteristic points defined on that trajectory , one can determine the appropriate gains of the controller from the inference conclusions.
J.-S.R.Jang et al.[13] has proposed a novel approach to the design of fuzzy controllers without resorting to domain knowledge of the plant under control. He employed the adaptive networks as building blocks and the back-propagation-type gradient method as a learning procedure to minimize the differences between the actual state and desired state at each time step.

M. Nasir Uddin et al. [8] pointed out the condition in which we use fuzzy logic controller for indirect vector control induction motor drive. The motor-control issues are traditionally handled by fixed-gain proportional-integral (PI) controllers. However, the fixed-gain controllers are very sensitive to parameter variations, load disturbances, etc. Thus, the controller parameters have to be continually adapted. The problem can be solved by several adaptive control techniques such as model reference adaptive control (MRAC) , sliding-mode control (SMC) , variable structure control (VSC) , and self-tuning PI controllers, etc. The design of all of the above controllers depends on the exact system mathematical model. However, it is often difficult to develop an accurate system mathematical model due to unknown load variation, unknown and unavoidable parameter variations due to saturation, temperature variations, and system disturbances. In order to overcome the above problems, recently, the fuzzy-logic controller (FLC) is being used for motor control.
2.4.2 Neural network Control

Back propagation (BP) neural network structure is used for estimation of vector controlled induction motor parameter such as torque, speed and flux magnitude and position, because BP network each unit receives input from preceding layer. The significance of this is that the information going into the hidden layer units reorder into an internal representation and outputs are generated by internal representation rather than by inputs. The input signals are then converted by the ANN according to the connection weights. In learning process, connection weights update in a direction to minimize error between desired outputs and NN outputs [32]. These errors are then back-propagated. This paper proposes single NN structure with hidden layers to estimate the speed. The NN Structure consist layers and uses ‘tansig’ and ‘purelin’ as activation functions and Levenberg-Marquardt algorithm is used for training data.

D. D. Neema et al. [32] pointed out the application of ANN to estimate the speed of induction motor at different load torque conditions. The ANN is an interconnection of many nonlinear computational neuron or perceptions capable of high speed nonlinear computation due to its parallel structure. The input of each individual neuron sums N weighted inputs and passes the result through an activation function, to give an output. Three common types of activation function are hard limit, threshold and sigmoid. The input weights of each neuron are adjusted during training to improve performance. Hence ANN uses a self learning process. The ANN computing differs from traditional computing.
Adel Merabet, Mohand Ouhrouche and Rung-Tien Bui et Al. [16] presents a new advanced control algorithm for speed and flux tracking of an induction motor. This algorithm called: Neural Networks Generalized Predictive Control (NNGPC) uses a combination of Artificial Neural Networks (ANN) and Generalized Predictive Control technique (GPC).It is based on the use of ANN as a nonlinear prediction model of the motor. This modeling technique is done by using the data from the system inputs/outputs information without requiring the knowledge about machine parameters. The outputs of the neural predictor are the future values of the controlled variables needed by the optimization procedure, which is achieved by minimizing a cost function with the reference control model. The reference control model is carried out from an open loop control strategy of the induction motor.
K. S. Narendra and K. Parthasarathy et Al. [17] describe that recent years artificial neural network (ANN) has gained a wide attention in control applications. The ANN provides a nonlinear modeling of motor drive system without any knowledge of predetermined model and thus makes the drive system robust to noise, parameter variations, load changes. The concept of model reference adaptive control is used in training ANN to achieve trajectory control of induction motor. Most of the ANN based adaptive control approaches use off-line system identification. Because of this separation, it is impossible to effectively cope with the system parameters that are changed dynamically during operation
A. Miloudi, Y. Miloud and  A. Draou et al.[24]  proposed that the resulting neural network is used as a numerical controller to replace the proposed original PI based controller in the indirect field oriented induction machine drive control structure illustrated by fig 2.1. 
Hu Dan et al. [34] presents a neural network predictive controller and a sliding-mode speed controller based on a new switching surface for induction motor first, this paper addresses a new variable structure control, the exponential stability is guaranteed for the speed controller. Moreover, in order to obtain high-performance and more robust, a robust neural network predictive control is utilized to predictive the uncertainty bound in the design of the sliding-mode controller, which is insensitive to uncertainties and disturbances as well. In addition, the effectiveness of the proposed control systems is verified by simulated results. In this paper, an adaptive neural network predictive approach is proposed to predictive the bound of the external load of the IP drive system. Finally, Simulated and experimental results are provided to demonstrate the effectiveness of the proposed control system.
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Fig.2.1 Block diagram of IVCIM drive
After study he carried out Simulation results show that the designed neural controller realizes a good dynamic behavior of the motor, with a rapid settling time, no overshoot, almost instantaneous rejection of load disturbance, a perfect speed tracking and it deals with parameter variations of the motor. It seems to be a high – performance robust controller. However his result should be validated experimentally.
Seyed Hossein HOSSEINI and Mohamad Reza BANAEI et al [18] presented a simple structure neural network (NN) is suggested for controlling the speed of the induction motor based on feedback linearization. The rotor flux is estimated using the simplified rotor flux observer on the rotor reference frame and the feedback linearization theory is used to decouple the rotor speed and the flux amplitude. Neural network controller is then designed on the basis of cost function which depends on the speed error and derivative of speed error. NN controller does not use motor dynamics so the speed control is independent of the complicating dynamics of the system. NN controller is robust to the bounded parameter variation and external disturbances due to suitable setting.
2.5 Conclusion
An extensive literature review the role of PI, Fuzzy Logic and Neural controller in speed control of induction Motor has been presented. Here we implement of speed control of induction motor with both Fuzzy and neural controller has been done in this project. An extensive literature review has been done for speed control of IVCIM drive using PI, Fuzzy and NN controller.
Design and Comparative Study of PI, 



Chapter III


Fuzzy and Neural network Controller

3.1 General
Intelligent control is a class of control techniques that use various AI computing approaches like neural network, Bayesian probability, fuzzy logic, machine learning, evolutionary computation and genetic algorithms.

Intelligent control can be divided in to the following major sub domain

· Neural network control

· Bayesian control

· Fuzzy logic control

· Neuro – fuzzy control

· Expert control

· Genetic control

New control techniques are created continuously as new models of intelligent behavior are created and computational methods developed to support them.

In this project we used one method of intelligent control techniques. Fuzzy logic and Neural Network controller is use here for speed regulation of tree phase induction motor. Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning that is approximate rather than precise. In contrast with "crisp logic", where binary sets have binary logic, fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not constrained to the two truth values of classic propositional logic. Furthermore, when linguistic variables are used, these degrees may be managed by specific functions.







The designing and comparative study of conventional PI controller and two intelligent controllers (fuzzy and neural).The performance of intelligent controllers are better and reliable than conventional PI controller in settling time and dynamic response. . On the other hand, practical control problems are usually imprecise
3.2 Proportional –Integral controller 






 PI controller is a one of the earliest industrial controllers. It has many advantages: Its cost is economic, simple easy to be tuned and robust. This controller has been proven to be remarkably effective in regulating a wide range of processes. It does not require an exact model and hence, it can be used for processes whose models are considerably difficult to be driven. However, in spite of the advantages of the PI controller, there remain several drawbacks. It cannot scope well in some cases such as: 

- Non-linear processes (changing in operating point). 


- Time-varying parameters. 


- Compensation of strong and rapid disturbances. 


- Supervision in multivariable control. 

PI controller is simple and linear; it can give a good performance for stable linear processes. Self-tuning and adaptive PI design approaches can overcome the operating point varying parameters. However this requires a high capacity of computations and makes the PI performance not guaranteed. PI controller consists of two terms: 


- Proportional action. 


- Integral action to eliminate the steady state error. 

3.2.1 Proportional controller 

With proportional band, the controller output is proportional to the error or a change in measurement. 



Controller output = E(t)*100/(Proportional gain)


With a proportional controller offset (deviation from set-point) is present. Increasing the controller gain will make the loop go unstable. Integral action was included in controllers to eliminate this offset.

3.2.2 Integral control

With integral action, the controller output is proportional to the amount of time the error is present. Integral action eliminates offset. 



Controller output = (1/Integral Time)*(Integral of E(t)) 

Integral action eliminates the offset. The response is somewhat oscillatory and can be stabilized some by adding derivative action. Integral action gives the controller a large gain at low frequencies that results in eliminating offset and "beating disturbances”.

The PI controller output U in s-domain is given by the following equation:
           U(s) = K (1+ 1/Tis + Tds/ (1+Tds/N)) E(s) ..                          …   3.1
3.3 Fuzzy Logic and Fuzzy Logic Controller 


Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965, and the industrial application of the first fuzzy controller by E.H. Mamadani in 1974, fuzzy systems have obtained a major role in engineering systems and consumer’s products in 1980s and 1990s. New applications are presented continuously.


A reason for this significant role is that fuzzy computing provides a flexible and powerful alternative to contract controllers, supervisory blocks, computing units and compensation systems in different application areas. With fuzzy sets very nonlinear control actions can be formed easily. The transparency of fuzzy rules and the locality of parameters are helpful in the design and maintenances of the systems. Therefore, preliminary results can be obtained within a short development period. The main advantage of FLCs is their ability to incorporate experience, intuition and heuristics into the system instead of relying on mathematical models. This makes them more effective in applications where existing models are ill defined and not reliable enough. FLs approach to control problems mimics how a person would make decisions, only much faster. FL incorporates simple rule based IF X AND Y THEN Z approach to solving a control problem rather than attempting to model a system mathematically. 

The FL model is empirically-based relying on an operators experience rather than their technical understanding of the problem. FL was conceived as a better method for sorting and handling data but has proven to be an excellent choice for many control system applications since it mimics human control logic.. It can be built into anything from small hand-held products to large computerized process control systems. It uses an imprecise but very descriptive language to deal with input data more like a human operator. It is very robust and forgiving of operator and data input and often works when first implemented with little or no tuning.


There is a unique membership function associated with each input parameter. The membership functions associate a weighting factor with values of each input and the effective rules. The weighting factors determine the degree of influence or the degree of membership (DOM) each active rule has. The inputs are combined logically using the AND operator to produce output response values for all expected inputs.  The logical product of each rule is inferred to arrive at a combined magnitude for each output membership function. This can be done by max-min, max-dot, averaging, RSS or other methods. Once inferred, the magnitudes are mapped into their respective output membership functions. The final result is taken as the crisp output. Tuning the system amounts to “tweaking” the rules and membership function definition parameters to achieve acceptable system response.

Fuzzy logic provides a completely different, unorthodox way to approach a control problem. This method focuses on what the system should do rather than trying to understand how it works. One can concentrate on solving the problem rather than trying to model the system mathematically. This almost invariably leads to quicker, cheaper solutions. Once understood, this technology is not difficult to apply and the results are usually quite surprising and pleasing.

However, fuzzy control does have some weaknesses. One is that fuzzy control is still lacking generally accepted theoretical design tools. Although preliminary results are easily, further improvements need a lot of especially when the number of inputs increases, the maintenances of the multi-dimensional rule base is time consuming.
3.3.1 Fuzzy Logic Controllers
Fuzzy logic [22] is a very powerful method of reasoning when mathematical formulations are infeasible and input data are imprecise. These above problems are encounter in many control applications in which we know, how the system is behaving but find it difficult to express the derived behavior in terms of mathematical model are in analytical formula. In this case fuzzy logic is a powerful tool for designing the control system accurately. Fuzzy logic application mainly to control is being studied [23] throughout the world by control engineers. The result of these studies has shown that fuzzy logic is indeed a powerful control tool, when it comes to control system or process. Some studies have also shown that fuzzy logic performs better when compared to conventional control PI.

There are specific components characteristic of a fuzzy controller to support a design procedure. In the block diagram shown in fig.3.1, the controller is between a pre-processing block and a post-processing block.
[image: image3.emf]



Fig 3.1
Block diagram of fuzzy logic controller
3.3.2 Pre-processing


The inputs are most often hard or crisps measurements from some measuring equipment, rather than linguistic. A pre-processor, conditions the measurements before they enter the controller. Examples of pre-processing are

· Quantisation in connection with sampling or rounding to integers;  

· normalisation or scaling onto a particular, standard range;  

· filtering in order to remove noise;

· averaging to obtain long term or short term tendencies;

· a combination of several measurements to obtain key indicators; and

· Differentiation and integration or their discrete equivalences.

A quantizer is necessary to convert the incoming values in order to find the best level in a discrete universe.

3.3.3 Fuzzification
The first block inside the controller is fuzzification, which converts each piece of input data to degrees of membership by a lookup in one or several membership functions. The fuzzification block thus matches the input data with the conditions of the rules to determine how well the condition of each rule matches input instance. There is a degree of membership for each linguistic term that applies to that input variable.
3.3.4 Rule Base

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These if-then rule statements are used to formulate the conditional statements that comprise fuzzy logic.











A single fuzzy if-then rule assumes the form


if x is A then y is B
Where A and B are linguistic values defined by fuzzy sets on the ranges (universes of discourse) X and Y, respectively. The if-part of the rule “x is A” is called the antecedent or premise, while the then-part of the rule “y is B” is called the consequent or conclusion.
3.3.5 Membership Function (MF)


The membership function is the graphical representation of the magnitude of participation of each input. It associates a weighting with each of the input that are processed, define functional overlap between the inputs, and ultimately determines the output response. The rules use the input membership values as weighting factors to determine their influence on fuzzy output sets of the final output conclusion. Once the functions are inferred, scaled, and combined, they are defuzzified into a crisp output which drives the system. There are different memberships functions associated with each input and output response. Some features to note are: 

-SHAPE- triangular is common but bell, trapezoidal, have sine and exponential have been used. More complex functions are possible but require greater computing to implement.









--
-HEIGHT-or magnitude is usually normalized to one.


-WIDTH- base of the function.


-CENTER-center of the membership function shape .


-OVERLAP-typically about 50% of width but can be less.



The degree of membership (DOM) is determined by plugging the selected input parameter into the horizontal axis and projecting vertically to the upper boundary of the membership function(s).








The choice of shape depends on the individual application. In fuzzy control applications, Gaussian or bell-shaped functions and S-functions are not normally used. Functions such as Γ- function, L-function and Λ-function are far more common.
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Fig. (3.2) Types of membership functions: (a) Γ- function; (b) S-function; (c) L-function;

(d) Λ-function;(e) Gaussian function; (f) Π-function
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3.3.6 Inference Engine


There are two type of approaches employed in the design of the inference engine of a FLC.

· Composition based inference.

· Individual rule based inference.


In composition based inference, the fuzzy max-min composition operator is employed. The rule base matrix represents the fuzzy relation matrix, R. R is then composed with e first and then the resulting fuzzy relation is composed with δe.

The basic function of second type inference is to compute the overall value of the control output variable based on individual contribution of each rule in the rule base. Each such individual contribution represents the value of control output variable as computed by single rule. The output of the fuzzification module, representing the current crisp value of the process state variables, is matched to each rule antecedent and a degree of match for each rule is established. Based on this degree of match, the value of control output variable in the rule antecedent is modified. i.e., the clipped fuzzy set representing fuzzy value of the control output variable is determined. The set of all clipped fuzzy sets represents the overall fuzzy output.

3.3.7 Defuzzification 

The function of defuzzification module (DM) is as follows.

· Performs the so called defuzzification which converts the set of modified control output values into a single point-wise value.

· Performs an output demoralization which maps the point-wise value of the control output into on its physical domain. This step is not needed if non normalized fuzzy sets are used. 









There are several defuzzification methods:
· Centre of gravity(COG),
· Centre of gravity for singletons(COGS),
· Bisector of Area(BOA),
· Mean of Maxima(MOM),
· Left most maxima (LM) and right most maxima (RM).
3.3.8 Post Processing


Output scaling is also relevant. In case the output is defined on a standard universe this must be scaled to engineering unit. The post processing block often contains an output gain that can be tuned, and sometimes also an integrator.
3.4 MATLAB Fuzzy Logic Toolbox 






The Fuzzy Logic Toolbox allows us to do several things, but the most important thing it allow to create and edit fuzzy inference systems. One can create these systems using graphical tools or command-line functions, or one can generate them automatically using either clustering Fuzzy techniques. There are five primary GUI tools for building, editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox:
· The Fuzzy Inference System or FIS Editor. 
· The Membership Function Editor.
· The Rule Editor. 
· The Rule Viewer. 
· The Surface Viewer.
3.4.1 FIS Editor









The FIS Editor handles the high-level issues for the system: How many inputs and output variables? What are their names? The Fuzzy Logic Toolbox doesn't limit the number of inputs. However, the number of inputs may be limited by the available memory of your machine If the number of inputs is too large, or the number of membership functions is too big, then it may also be difficult to analyze the FIS using the other GUI tools.



[image: image25.emf]Double click open input 

variable icon to open the 

Membership Function Editor.

Double click on the 

system diagram to open 

the Rule Editor

Double click 

on the icon 

for the output 

variable to 

open the 

Membership 

Function 

Editor.

The edit field 

is used to 

name and edit 

the names of 

the input and 

output 

variable.

The name of 

the system is 

displayed 

here. It can be 

changed using 

one of the 

Save as….. 

Menu option

These pop-up 

menus are used 

to adjust the 

fuzzy inference 

functions, such 

as the 

defuzzification 

method.

This status line describes the most 

recent operation.

                                                                                       

                                            Fig 3.3 FIS Editor
3.4.2 Membership Function Editor
          The Membership Function Editor (MF) is used to define the shapes of all the membership functions associated with each variable. Fig. 3.4 shows the user interface of the MF Editor. At the upper left, the FIS variables whose MF’s can be set are shown. Each setting includes a selection of the MF type and the number of MF’s of each variable. At the lower right there are controls that permit you to change the name, and parameter of each MF, once you have selected it, The MF’s of the current variables, which are being edited, are displayed in the graph. At lower left, information about the current variable is given. In the next field, the range and display range of the current plot of the variable under consideration can be changed.
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                                           Fig 3.4 Membership Function Editor
3.4.3 Rule Editor

           The Rule Editor is for editing the list of rules that defines the behavior of the system. The logical connectives of rules, AND, OR, and NOT can be selected by buttons. The rule can be changed, deleted, or added, as desire.
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                                           Fig 3.5 Rule editor tool box
3.4.4 Rule Viewer


Fig.3.6 shows the GUI window rule viewer. The Rule Viewer displays a roadmap of the whole fuzzy inference process. It’s based on the fuzzy inference diagram, each rule is a row of plots, and each column is a variable. The first two columns of plots show the membership functions referenced by the antecedent, or the if-part of each rule. The third column of plots shows the membership functions referenced by the consequent, or the then-part of each rule.
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                                                         Fig 3.6 Rule viewer

3.4.5 Surface Viewer

         After fuzzy algorithm has been developed, the surface viewer is shown in fig 3.6 permits us to view the mapping relation between input variables and output variables, as shown in figure. The plot may be three dimensional, as shown, or two dimensional. For a large number of input/output variables, the variables for the surface viewer can be selected. Again, by closely examining the Surface Viewer, the algorithm can be iterated.       
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                                            Fig 3.7 Surface viewer
















                                                                               3.5 Neural Network (NN) and NN controller


 Artificial neurons were first proposed in 1943 by Warren McCulloch, a neurophysiologist, and Walter Pitts, an MIT logician .Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the network function is determined largely by the connections between elements. We can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements. Commonly neural networks are adjusted, or trained, so that a particular input leads to a specific target output is shown below. Thus, the network is adjusted, based on a comparison of the output and the target, until the network output matches the target. Typically many such input/target pairs are needed to train a network.
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3.8 Block Diagram of neural network controller 

Neural networks have been trained to perform complex functions in various fields, including pattern recognition, identification, classification, and speech, vision, and control systems. Today neural networks can be trained to solve problems that are difficult for conventional computers or human beings. Throughout the toolbox emphasis is placed on neural network paradigms that build up to or are themselves used in engineering, financial, and other practical applications.

3.5.1 NN Controller

Multilayer neural networks have been applied successfully in the identification and control of dynamic systems. Rather than attempt to survey the many ways in which multilayer networks have been used in control systems, we will concentrate on three typical neural network controllers: 


- Model predictive control



- NARMA-L2 control and 


- Model reference control.

These controllers are representative of the variety of common ways in which multilayer networks are used in control systems. As with most neural controllers, they are based on standard linear control architectures.

There are typically two steps involved when using neural networks for control: system identification and control design. In the system identification stage, we develop a neural network model of the plant that we want to control. In the control design stage, we use the neural network plant model to design (or train) the controller. We will only use neural network predictive controller in this project. The system identification stage is identical. The control design stage however is different for each an architecture.
3.5.2 NN Predictive Control

There are a number of variations of the neural network predictive controller that are based on linear model predictive controllers. The neural network predictive controller that is discussed in this paper (based in part on Reference 21) uses a neural network model of a nonlinear plant to predict future plant performance. The controller then calculates the control input that will optimize plant performance over a specified future time horizon.
 
-The first step in model predictive control is to determine the neural network 
plant model (system identification). 

-Next, the plant model is used by the controller to predict future performance.

-The next section describes the system identification process. 

-This is followed by a description of the optimization process and an application of predictive control
3.5.3 System Identification

The first stage of model predictive control (as well as the other two control architectures discussed in this paper) is to train a neural network to represent the forward dynamics of the plant. The prediction error between the plant output and the neural network output is used as the neural network training signal. The process is represented by Figure 3.7
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Fig. 3.9

The neural network plant model uses previous inputs and previous plant outputs to predict future values of the plant output. The structure of the neural network plant model is given in the following figure. 
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Fig. 3.10

This network can be trained offline in batch mode, using data collected from the operation of the plant. You can use any of the training algorithms discussed in Back propagation, for network training. 

3.5.4 Predictive Control
`


The model predictive control method is based on the receding horizon technique. The neural network model predicts the plant response over a specified time horizon. The predictions are used by a numerical optimization program to determine the control signal that minimizes the following performance criterion over the specified horizon.  


  










 

     N2


J=∑ yrk + j– ymk + j2   +   ∑u'k + j – 1– u'k + j – 22


     j = N1 
Where N1, N2, and Nu and define the horizons over which the tracking error and the control increments are evaluated. The u' variable is the tentative control signal, yr is the desired response, and ym is the network model response. The p value determines the contribution that the sum of the squares of the control increments has on the performance index. 


The following block diagram illustrates the model predictive control process. The controller consists of the neural network plant model and the optimization block. The optimization block determines the values of u' that minimize J, and then the optimal u is input to the plant. The controller block is implemented in Simulink, as described in the following section
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Fig. 3.11
3.6  MATLAB Neural Network Toolbox


This section demonstrates how the NN Predictive Controller block is used. The first step is to copy the NN Predictive Controller block from Neural Network Toolbox block set to your model window. See your Simulink documentation if you are not sure how to do this. This step is skipped in the following demonstration. To run project follow these steps:
1.   Start MATLAB. 
2. Open the model by in the MATLAB Command Window.  This command starts Simulink and creates the following model window. The NN Predictive Controller block is already in the model. 
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Fig. 3.12 Neural network prdective control toolbox
3. Double-click the NN Predictive Controller block. This brings up the following window for designing the model predictive controller. This window enables you to change the controller horizons N2 and Nu. (N1 is fixed at 1.) The weighting parameter p, described earlier, is also defined in this window. The parameter is used to control the optimization. It determines how much reduction in performance is required for a successful optimization step. You can select which linear minimization routine is used by the optimization algorithm, and you can decide how many iterations of the optimization algorithm are performed at each sample time. The linear minimization routines are slight modifications of those discussed in Back propagation. 
4. Select Plant Identification. This opens the following window. You must develop the neural network plant model before you can use the controller. The plant model predicts future plant outputs. The optimization algorithm uses these predictions to determine the control inputs that optimize future performance. The plant model neural network has one hidden layer, as shown earlier. You select the size of that layer, the number of delayed inputs and delayed outputs, and the training function in this window. You can select any of the training functions described in Backpropagation, to train the neural network plant model. 
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Fig. 3.13, Plant Identification toolbox

5. Select the Generate Training Data button. The program generates training data by applying a series of random step inputs to the Simulink plant model. The potential training data is then displayed in a figure similar to the following


[image: image38.png]=lolx]

Plant Input
150
100
50
0
0 100 200 300 400 500 600

time (5)
Plant Output

200

Acoept Data Reject Data

300 400 500 600
time (s)

Simulation concluded,
Please Accept or Reject Data to continue.




















Fig. 3.14 Plant input output data toolbox

6. Select Accept Data, and then select Train Network from the Plant Identification window. Plant model training begins. The training proceeds according to the training algorithm (trainlm in this case) we selected. This is a straightforward application of batch training, as described in Backpropagation. After the training is complete, the response of the resulting plant model is displayed, as in the following figure. (There are also separate plots for validation and testing data, if they exist.)
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 Fig. 3.15 Training data for NN predictive control
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Fig 3.15(a) NN reference model 
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   Fig. 3.16 Testing data for NN predictive control
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Fig. 3.17 Validation data for NN predictive control


We can then continue training with the same data set by selecting Train Network again, we can Erase Generated Data and generate a new data set, or you can accept the current plant model and begin simulating the closed loop system. For this demonstration, begin the simulation, as shown in the following steps.
7. Select OK in the Plant Identification window. This loads the trained neural network plant model into the NN Predictive Controller block. 
8. Select OK in the Neural Network Predictive Control window. This loads the controller parameters into the NN Predictive Controller block. 
9. Return to the Simulink model and start the simulation by choosing the Start command from the Simulation menu. As the simulation runs, the plant output and the reference signal are displayed.
3.7 Conclusion

In this chapter we have been comparatively study and designing of conventional PI controller and two intelligent controllers (Fuzzy and Neural network controller) of indirect vector control of induction motor drive. In this chapter designing of controller for speed control loop is very complex because of high computation burden .A conventional P-I controller, fuzzy logic and Neural Network based indirect vector control are design. The mathematical model, Operation and performance are obtained through simulation in next two chapters. 
Mathematical Modeling and MATLAB Simulation of

Chapter IV

Indirect Vector Controlled Induction Motor Drive 


4.1 General




The vector controlled induction motor drives play an important role in steel, paper and cement factories. Indirect vector control is such a drive technique which is widely being employed in all the industry to improve the efficiency of process. In this chapter principle of vector control, mathematical model of indirect vector control induction motor drive is described in detail. A PI, Fuzzy Logic and Neural Network controller is employed for speed control in the indirect vector control induction motor drive. The simulation has been done using these controllers in MATLAB Simulink. 

4.2 Description of Indirect Vector or Field-oriented Control Induction Motor Drive


A DC machine has traditionally been a superior choice for torque control. The commutator of the DC machine holds a fixed, orthogonal spatial angle between the field flux and the armature MMF, allowing for the torque and flux to be controlled in a decoupled manner. Induction machines, via FOC, can emulate this control method. FOC control is a software algorithm that utilizes the position of the rotor combined with two-phase currents to generate a means of instantaneously controlling the torque and flux. Field-orientated controllers require control of both magnitude and phase of the AC quantities and are, therefore, also referred to as .vector controllers.. FOC produces controlled results that have a better dynamic response to torque variations in a wider speed range compared to other scalar methods. Also, FO control can induce a high torque at zero speed.

A block diagram of IVICIM drive is shown in fig.4.1.The induction motor is fed by a current- regulator. The motor drives a mechanical load characterized by inertia J, friction coefficient B, and load torque TL. The speed control loop uses a fuzzy logic and neural network controller instead of a simple proportional-integral controller to produce the quadrature axis current reference iq* which controls the motor torque. The motor flux is controlled by the direct-axis current reference id*. Block d-q to abc is used to convert id* and iq* into current references ia*, ib*, and ic* for the current regulator. 
4.2.1 Inverter
Three-Phase IGBT Inverter The inverter consists essentially of six power switches that can be metal-oxide semiconductor field-effect transistors (MOSFET), gate turnoff thyristors (GTO), or insulated gate bipolar transistors (IGBT), depending on the drive power capacity and the inverter switching frequency (Hz). The preceding figure shows a simplified diagram of a three-phase IGBT inverter.





The inverter converts the DC link voltage into an adjustable three-phase AC voltage. Different control schemes can be used to control the inverter output voltage and frequency. One of the most utilized schemes is pulse width modulation (PWM) in which a three-phase variable sinusoidal voltage waveforms is obtained by modulating the on and off times of the power switches. 
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Fig.4.1 Block diagram of Vector controlled induction motor drive speed control


4.2.2 Hysteresis Current Controller.

A hysteresis current controller is used, where the motor current tracks the reference current within a hysteresis band. The controller generates the sinusoidal reference current of desired magnitude and frequency that is compared with the actual motor line current. If the current exceeds the upper limit of the hysteresis band, the upper switch of the inverter arm is turned off and the lower switch is turned on. As a result, the current starts to decay. If the current crosses the lower limit of the hysteresis band, the lower switch of the inverter arm is turned off and the upper switch is turned on. As a result, the current gets back into the hysteresis band. Hence, the actual current is forced to track the reference current within the hysteresis band. 
3.2.3 d-q to abc Transformation

Consider a symmetrical three-phase induction machine with stationary as-bs-cs axes at 2π/3 angle apart. To transform the three-phase stationary reference frame (as-bs-cs) variable into two-phase stationary reference frame (ds-qs) variables and then transform these to synchronously rotating reference frame(de-qe).and following transformation equations are used.
[image: image45.png]Vs cosf sinf
’v,,] = [cos (6—120%) sin (6—120%) 1] vz,
esl  lcos (6+1209) sin (6+120°) 1.







(4.1)
The corresponding inverse relation is [image: image47.png],[cos6 cos (6—-120%) cos (6 +120°)
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(4.2)
Where voss is added as the zero sequence component, which may or may not be present. We have considered voltage as the variable. The current and flux linkage can be transformed by similar equations. Here θ is the angle of the orthogonal set α-β-0 with respect to any arbitrary reference .if the   α-β-0 axes are stationary and the α axis is aligned with the stator a-axis, then θ = 0 at all times, thus 
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(4.3)

If the orthogonal set of reference rotates at the synchronous speed ω1, its angular position at any instant is given by
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(4.4)

The orthogonal set is then referred to as d- q- 0 axes. The three-phase rotor variables, transformed to the synchronously rotating frame, are
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  (4.5)
It should be noted that the difference [image: image55.png]


 is the relative speed between the synchronously rotating reference frame and the frame attached to the rotor. This difference is also the slip frequency, [image: image57.png]=



, which is the frequency of rotor.
4.2.4 θe Calculation Block

The rotor flux position θe required for coordinates transformation is generated from the rotor speed ωm and slip frequency ωsl.  
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   (4.6)
The slip frequency is calculated from the stator reference current iqs* and the motor parameters.  
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   (4.7)
4.2.5 Ids Calculation Block

The stator direct-axis current reference ids* is obtained from rotor flux reference input |ψr|*
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4.2.6 Iqs Calculation Block
The stator quadrature-axis current reference iqs* is calculated from torque reference Te* as  
[image: image65.png]T 100 | g
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Where Lr is the rotor inductance, Lm is the mutual inductance, and | ψr|est is the estimated rotor flux linkage.
4.3 Mathematical Model of Induction Motor

The d-q model of an induction motor in synchronously rotating de-qe frame using fig.3.2 is as follows. We can write the following circuit equations.
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Where [image: image71.png]
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are q-axis and d-axis stator flux linkages, respectively .when these equation are converted to [image: image75.png]


 frame the following equation can be written as.
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(4.12)
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(4.13)

Where all the variables are in the rotating form. The last term in equation (4.7) and (4.8) can be defined as speed emf due to rotation of the axis, when ωe =0, the equation revert to stationary form. Note that the flux linkage in the de and qe axes induce emf in the qe and de axes, respectively with π/2 lead angle. If the rotor is not moving, that is, ωr=0 the rotor equation for a double fed wound rotor machine will be similar to equation (4.7)-(4.8).
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Where all the variables and parameters are refer to stator. Since the rotor actually moves at speed ωr, the d-q axes fixed on the rotor move at speed [image: image85.png]


 relative to the synchronously  rotating frame. Therefore, in de-qe frame, the rotor equations should be modified as 
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Fig 4.2 de-qe equivalent circuit of induction machine

Fig.4.2 shows the de-qe equivalent circuit that satisfy the equation (4.12)-(4.13) and (4.16) – (4.17). A special advantage of the de-qe dynamic model of the machine is that all the sinusoidal variables in stationary frame appear as dc quantities in synchronous frame.

The flux linkage expression in term of can be written from figure as follows 4.2
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Combining the above expressions with equations (4.12)-(4.13) and (4.16) – (4.17) the electrical transient model in terms of voltage and currents can be given in the matrix form as 
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(4.24)

Where S is the Laplace operator. For a singly- fed machine, such a cage motor, vqr=vdr=0  

If the speed [image: image107.png]


 is considered constant, the electrical dynamics of the machine are given by fourth order linear system. Then knowing the inputs [image: image109.png]
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 the current iqs, ids ,iqr and idr can be solved from equation (4.24) if the machine is fed by a current source iqs, ids, and [image: image115.png]


 are independent then the dependent variable  [image: image117.png]
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, iqr and idr can solved from equation 4.24
The speed [image: image121.png]


 in equation 4.24 can not normally be treated as a constant. It can be related to torque as











Te = TL + J[image: image123.png]


 = TL +2/P J[image: image125.png]&



                                                    ( 4.25)
TL  =load torque, J = rotor Inertia, and wm mechanical speed.
4.4 Modeling of Indirect Vector  Control Induction Motor
Fig.3.6 explains the fundamental principle of indirect vector control with the help of phasor diagram. The machine phase terminal currents ia,ib, and ic are converted to idss and iqss components by 3ϕ/2ϕ transformation. There are then converted to synchronously rotating frame by the unit vector with component cos θe and sinθe before applying them to the de-qe machine model as shown. The controller makes two stage of inverse transformation, as shown so that control current ids*, iqs* correspond to machine current ids, iqs, respectively. In addition the unit vector assures correct alignment of ids current with the flux vector ψr and iqs perpendicular to it ,as shown in fig. 4.3. The ds-qs axes are fixed on the stator, but the dr-qr  axies , which are fixed on rotor , are moving at speed ωr as shown. Synchronously rotating axes de-qe is rotating ahead of the dr-qr axes by the positive slip angle θsl corresponding to slip frequency ωsl. since the rotor pole is directed on the de axis and ωe = ωr+ωsl ,we can write
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Note that rotor pole position is not absolute. But is slipping with respect to the rotor at frequency ωsl. The phasor diagram suggest that for decoupling control, the stator flux component of current ids should be aligned on the de axis ,and the torque component of current iqs should be on the qe axis ,as shown in fig. 4.3





For decoupling control, we can now make the derivation of control equation of indirect vector control with the help of de-qe equivalent circuits as shown in fig.4.2. The rotor equation can be written as
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The rotor flux linkage equation can be given as
[image: image133.png]Y, = Li,+ L, i,










               (4.29)    
       [image: image135.png]Yu, = Loig, + L, i,










    (4.30)




  [image: image136.png]9.
(Synchronous)

» A
(Stationary)






Fig 4.3 Phasor diagram of indirect vector control
From the above, we can write 
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The rotor currents in equation (4.16) and (4.17) ,which are inaccessible, can be eliminated with the help of equation (3.20) and(3.21) as
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Where   [image: image146.png]W, =w,—w,



     has been substituted.

For decoupling control, it is desirable that
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That is 
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So that the total rotor flux [image: image152.png]&



is directed on de axis 

Substituting the above equation (4.20) and (4.21) ,we get 
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Where [image: image158.png]


has been substituted 

if rotor flux [image: image160.png]&



= constant ,which is usually the case ,then from equation –
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In other words, the rotor flux is directly proportional to current ids in steady state.
4.5 MATLAB Model of Indirect Vector Control IM Drive

Fig.4.7 shows the MATLAB model of the indirect vector control induction motor drive. In comprises of a three phase IM 50 hp, 460 V, 60 Hz, 1440 r.p.m driven by a three phase PWM inverter block. A hysteresis current controller is used to control the PWM inverter, according to the difference in actual and estimated motor line current. The details of the other subsystem are as follows.
4.5.1 Hysteresis Current Regulator



The current regulator, which consists of three hysteresis controllers, is built with Simulink blocks. The motor actual currents are provided by the measurement output of the Asynchronous Machine block. The actual motor currents and reference current are compared in hysteresis type relay.
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Fig.  4.4
4.5.2 Universal Bridge

[image: image164.png]







Fig. 4.5 Universal Bridge block



The Universal Bridge block implements a universal three-phase power converter that consists of up to six power switches connected in a bridge configuration. The type of power switch and converter configuration is selectable from the dialog box. Power Electronic device and Port configuration options are selected as IGBT/Diode and ABC as output terminals respectively. The DC link input voltage is represented by a 780 V DC voltage source .Set the Snubber capacitance Cs to inf to get a resistive snubber.
4.5.3 Flux Calculation Block


The rotor flux is calculated by the flux calculation block. Id 
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Fig. 4.6 Flux Calculation Block
Lr = Ll'r +Lm = 0.8 +34.7= 35.5 mH

Lm = 34.7 mH

Tr = Lr / Rr = 0.1557 sec

Rr =  0.228 Ω
Phir = Lm *Id  / (1 +Tr .s)
4.5.4 Theta Calculation Block

The rotor flux position (θe) is calculated by the Theta Calculation Block.
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Fig 4.7 Theta Calculation block

4.5.5 d-q to abc Transformation Blocks

The conversions between abc and dq reference frames are executed by the  dq0_to_abc Transformation blocks. Function f(u) calculated from equation (3.1).



Fig 4.8  d-q to abc transformation blocks

4.5.6 abc to d-q Transformation Blocks

The conversions between abc and dq reference frames are executed by the  abc _to_ dq Transformation blocks. Function f(u) calculated from equation (3.2).
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Fig. 4.9 abc to d-q Transformation Blocks
4.6 MATLAB Simulation of IVCIM based on PI controller

We have simulated in matlab by use of Prposional-Intrigral controller based model as shown in figure. The reference speed 120 and feedback is given to summer, output of summer error given to PI controller which change the in output for better result  [image: image168.png]=
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Fig 4.10 Matlab Simulink block diagram of indirect vector control using P-I controller
4.7 MATLAB Simulation IVCIM using Fuzzy Logic controller

 We have simulated in matlab by use of Fuzzy Logic controller based model as shown in figure. Fuzzy logic controller block is uses which have two input Error and rate of change in error and one output.   
[image: image169.png]flux calculation

e e
-
L
- sfreer]
-
e 1ae 1o
Ref Speed Wi | N
==}
asioe
o Machines —
7 paAsc Messurement stator aament
igs calculation| Universal Bridge Demux
= S— o

- o L — oo - -

e . N — =
N Famioge b . L [ — A N

e — bl T .

Rate change Emor Cfp———=c LSD@
it
S0He /460 V.00 He —
e Calaien =
ool ]










Fig 4.11
Matlab Simulink block diagram of indirect vector control using Fuzzy Logic controller

4.8 MATLAB Simulation IVCIM based on Neural Network Predictive controller

 In this Matlab simulation NN controller is different from the PI and Fuzzy controller. NN controller take two input one is reference input and another input plant or IM speed output.
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Fig 4.12
Matlab Simulink block diagram of indirect vector control using Neural Network controller

4.9 Conclusion

In this chapter a complete mathematical model of indirect vector control induction motor drive explain in detail. Matlab model of indirect vector control induction motor with PI, fuzzy Logic and neural network controller developed and also calculation of flux ,theta ,direct and quadrature axis stator current, voltage,  and 2/3 transformation and 3/2 transformation calculation to be calculated.
 Results and Discussion



  

       CHAPTER V

5.1 Simulation Results 



I have studies the performance of IVCIM using PI, Fuzzy and Neural controllers. Simulation has been performed on MATLAB R2007a on Intel i3-330M Processor 2.13 GHz. Window 7 Home basic (64-bit) Laptop.


Forty Independent runs were carried out each for PI, Fuzzy and neural controller. The speed, currents and torque were recorded for each controller at 25 N-m loads and no load. 
5.2 Performance of Indirect Vector Control IM Using P-I Control


Fig.5.1 shows the performance characteristic of a 50 hp, 460 V, 60 Hz IM, operating at no load with a PI speed controller. The reference speed is 120 rad/sec. It is observed that motor pick up the speed 125 red/sec at t = 0.752 sec and also it draw high starting current 445.5 amps. Motor current reach a value of 25.14 Amp at t= 0.752 sec. and motor torque settle at value of 13 N-m after t=0.752 sec As shown in figure 5.1 at the starting mode the high value error is amplified across the PI controller provoking high variations in the motor torque. If the gains of the controller exceed a certain value, the variations in the motor torque become too high and will destabilize the system.

Induction Motor current (Iabc), motor Torque (Te) and time (t) are shown in fig5.1, 5.2, 5.3, 5.4
PI control results:
Case-I Results at Initial starting value at time t= 15.7 m sec. for no load.

Motor current (Iabc) = 444.51 amps 


Torque (Te) =  80.3 N-m

Case-II Results at no load for speed reach 120 red/sec at time t=0.751sec

Motor current (Iabc) = 25.14 amps 


Torque (Te) =  13 N-m

-
Case-III Results after applying 25N-m load torque at time t=2.2 sec.

Motor current (Iabc) = 38.12 amps 


Torque (Te) =  27 N-m
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Fig 5.1 performance of indirect vector control induction motor (IVCIM) using P-I control 


at no load with reference speed 120 rad/sec
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Fig 5.2 performance of indirect vector control (IVC) using P-I control 



at no load with reference speed 120 rad/sec
Fig.5.3 shows the performance characteristic of IVCIM drive, when a sudden change in load torque from 0 to 25 N/m is added at t =2.2 sec, It is observed from the waveforms that motor speed is reduced to 118.7 red/sec., the motor torque rise slowly from 13 N-m to 27 N-m and also current rise from 25.14 amp to 38.12amp.
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       Fig. 5.3 Response of IVC with PI control at load torque =25N-m ,at time  t=2.2 sec
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      Fig. 5.4 Response of IVCIM with PI control at load torque =25 N-m ,at time  t=2.2 sec

5.3 Performance of Indirect Vector Control IM Using Fuzzy Control

Fig.5.5 shows the performance characteristic of a 50 hp, 460 V, 60 Hz IM, operating at no load with a fuzzy logic speed controller. The reference speed is 120 rad/sec. It is observed that motor pick up the speed 125 red/sec at t = 0.31 sec and also motor draw low starting current compare to PI speed controller 
Fuzzy control results:

Case-I Results at Initial starting value at time t= 15.7 m sec for no load

Motor current (Iabc) = 950.21 amps 


Torque (Te) =  14.3 N-m

Case-II Results at no load for speed reach 120 red/sec at time t=0.251sec

Motor current (Iabc) = 25.24 amps 


Torque (Te) =  13 N-m

.Case-III Results after applying 25N-m load torque at time t=2.2 sec.

Motor current (Iabc) = 31.12 amps 


Torque (Te) =  40 N-m
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Fig 5.5 performance of indirect vector control induction motor (IVCIM) using 


Fuzzy logic control at no load with reference speed 120 red/sec
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 Fig 5.6 performance of IVCIM using Fuzzy logic control 






at no load with speed 120 red/sec
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5.7 Response of IVCIM with Fuzzy logic control at load torque =25N-m, 






at time  t=2.2 sec

[image: image178.png]OO00AGAGAA000000OAGANAGAAAONANGANAANAONNNL
%.1 2.‘15 22 2.‘25 23 235 24 2.115 25
- ‘ ‘ ‘ : ‘
S o0
:: _50 L L L L L L L
21 215 22 225 23 235 24 245 25

NY

Time (sec.)




    Fig 5.8 Performance of IVCIM with Fuzzy logic control at 25 N-m




 loads with reference speed 120 rad/sec.
Fig.5.6 shows the performance characteristic of motor, when a sudden change in load from 0 to 25 N-m is apply at t = 2.2 sec. But the speed is near about decrease 119.5 red/sec.
5.4 Performance of Indirect Vector Control IM Using Neural Network predictive Control
I have used neural network predictive control for speed control of IVCIM. Simulink plant model is used which shown in fig 3.15(a). First identification of plant has been performed by use N N toolbox. After identification training data was generated which was accepted depending on comparison of plant output and plant input? Network was trained using this data to obtained optimum value of weight and biases using trainlm function (Levenberg Markquardt back propagation).weight and biases values were applied to NN Predictive controller. I have used 20 hidden layers, 8000 training sample and 200 epochs. The network has converged after 12 epochs when the sum squared error is 3.23681e-005 was obtained at learning rate of 0.05. Then simulation of IVCIM was performed using NN Predictive controller and results were recorded for motor current, speed and torque. 


. The reference speed is 120 rad/sec, t is observed that motor pick up the reference speed at t =2.1 sec and it draw a low starting current 307.5 amp then the PI and fuzzy control. The Motor torque is also good then the PI and Fuzzy control which is 80.3 N-m and 14.3 N-m.
Neural Network predictive control results:

Case-I Results at Initial starting value at time t= 15.0 m sec for no load.

Motor current (Iabc) = 307.371 amps 


Torque (Te) =  20.7 N/m

Case-II Results at no load for speed reach 120 red/sec at time t=2.0sec

Motor current (Iabc) = 21.24 amps 


Torque (Te) =  20 N/m

.Case-III Results after applying 25N-m load torque at time t=2.2 sec.

Motor current (Iabc) = 22.12 amps 

Torque (Te) =   21 N/m
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Fig 5.9 Performance of IVCIM with Neural Network 




control at no loads with reference speed 120 rad/sec.
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Fig 5.10 Neural Network control Response of IVCIM at no load with speed 120 red/sec
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Fig 5. 11 Neural Network control Response of IVCIM with Appling load torque =25N-m, 





at time  t=2.2 sec
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Fig 5.12 Neural Network control Response of IVCIM with Appling load torque =25N-m, 





at time  t=2.1 sec  to 3 sec


 The performance of NN control has been compared with the dynamic loading conditions at different values of torques. Fig. 5.12 shows the performance for aload torque variation of 0N-m to 25 N-m as against the previous values of no-load. It was observed that at 25N-m load torque average estimated value of speed decrease from 119.5 rad/sec (at no-load condition) to 114 rad/sec, after 0.2 sec. it gains the reference speed as fig.5.10. 
5.5 Discussion

In the final conclusion carried out by the result that in order to verify the effectiveness of the proposed method, various load torque values have been considered for testing of proposed PI, fuzzy and NN control schemes. Speed reference is set at the value of 120 r/s. The project successfully demonstrates the application of NN control in the estimation of the instantaneous magnitude of the rotor speed, current and torque.
I have compared PI, Fuzzy and NN controller for speed control of IVCIM drive in terms speed, motor current and torque.
1. PI control for speed control of IVCIM. Waveform show that IVCIM pick up 120 rps at t= 0.752, it draw a high starting current Iabc = 444.51 amp and also high torque 80.3 N-m, which is high variation in the motor torque will destabilize the system. It has more oscillatory current and torque, and motor takes more time to settle down at desired speed.
2. Fuzzy controller has shown better performance than PI controller for motor current and speed. At starting instant the current and torque is high but after reach desired speed these are less oscillatory than PI controllers. After Appling 25N-m load at t=2.2 sec change in current and torque are small rises in fuzzy controller than the PI controller as shown in fig 5.4 and 5.8 respectively

3. Neural network controller have shown a better performance than PI and Fuzzy controllers since motor current at starting is 307.371 amp as compared to PI and fuzzy control. At reaching desired speed 120rps IM speed take more time than PI and Fuzzy controller, but motor current and torque stabilized slowly not sudden change as shown in fig. 5.1, 5.5 and 5.9 for each controller. Applying Load torque 25 N-m at time 2.2 sec  NN control  speed decrease from 119.5 r/s  to 114 r/s, but it regain speed at time 2.4 sec as shown in fig 5.10 . 

Hence the above discussion concludes that performance of the NN Predictive controller is found to be excellent in comparison PI and Fuzzy based controller.
Conclusion and Future Scope of Work 


           Chapter VI


6.1 Conclusion
This project has successfully demonstrated and a properly designed PI, Fuzzy logic and Neural Network predictive controller. We have study and compared three controllers for speed control of indirect vector control induction motor drive. At given result and their data of induction motor current, motor torque, and speed at no load and 25 N-m load performances are better with the NN controller Based on simulation results verification, the following conclusions are made.

· The NN predictive controller is more robust than the PI and fuzzy logic controller when load disturbances occurred.

· The NN predictive controller performance when certain motor parameters (i.e. current and motor torque) were increased by a factor was still quite good and far better than the PI and fuzzy logic controller’s performance when the same parameters.

· NN predictive controller base makes the superior to PI and fuzzy logic control techniques. 

· Required numerous trials and constant retuning to get reasonable performance.

Neural Network means for synthesizing a controller from engineering experiences that can be more robust, have better performance, and reduce cycle times due to the multilayer feed forward network. This thesis has integrated a Neural Network with the popular indirect vector control (IVC) or field control induction motor technique with promising results. 

6.2 Future Scope of Work
1. With the help of other controller NARAMA-L2, Model Reference Control induction motor drives (VCIMDs) can be better control and compared these three NN controller performances.
2. To further develop a intelligent controller for better performance.
3. Study can be performed redial basis NN and recurrent NN etc. for speed control.
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List of Symbols

Symbols are generally defined locally. All symbol are used in this report are listed below for proper identification. 

	Symbols
	Description

	      ds-qs
	Stationary rotating reference frame direct or quadrature axis

	      de-qe
	Synchronously rotating reference frame direct or quadrature axis
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	rotor flux linkage
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	stator flux linkage
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	air gap flux
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	qe-axis stator flux linkage
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	qe-axis rotor flux linkage
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	de-axis stator flux linkage
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	de-axis rotor flux linkage
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	de-axis air gap flux linkage
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	qe-axis air gap flux linkage
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	q-axis stator flux linkages
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	d-axis stator flux linkages
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	qe-axis stator current
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	qe-axis rotor current
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	de-axis rotor current
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	de-axis stator current
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	qe-axis stator current
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	Magnetizing inductance
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	Stator leakage inductance
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	Rotor leakage inductance
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	qe -axis stator voltage 
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	de -axis stator voltage     
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	qe-axis rotor voltage
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	de-axis rotor voltage
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	Stator resistance
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	Rotor resistance
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	Stator inductance
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	Rotor inductance
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	Stator or line frequency
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	Rotor electrical speed
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	Slip frequency

	          s
	Laplace operator

	           p
	Number of pole
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	Angle of synchronously rotating frame 
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	Rotor angle
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	Slip angle 
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	qs-axis stator voltage
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	ds-axis stator voltage
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	qs-axis stator current 
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	ds-axis stator current

	          Ks
	Slip gain

	         Q
	Reactive power

	          Q*
	Reactive power reference
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	Estimated slip gain

	          Kf
	Weighting factor

	         ΔKs
	Incremental slip gain

	ia*, ib*, and ic*
	Stator current reference

	       iqs*
	Stator quadrature-axis reference current

	       ids*
	Stator direct-axis reference current

	     | ψr|*
	Sotor flux reference input

	       Te*
	Torque reference

	    | ψr|est
	Estimated rotor flux linkage
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Double click open input variable icon to open the Membership Function Editor.


Double click on the system diagram to open the Rule Editor


Double click on the icon for the output variable to open the Membership Function Editor.



The edit field is used to name and edit the names of the input and output variable.


The name of the system is displayed here. It can be changed using one of the Save as….. Menu option


These pop-up menus are used to adjust the fuzzy inference functions, such as the defuzzification method.


This status line describes the most recent operation.
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Each column of  plots (yellow) shows how the input variable is used in the rules. The input values are shown here at the top


This column of the plots (blue) shows how the output variable is used in the rules.


Each rows of plots represents one rule(here there are 3). Click on a rule to display it in the status bar.


Slide this line to change your input values, and generate a new output response.


This edit field allows you to set the input explicitly.


The button right plot shows how the output of each rule is combined to make an aggregate output and then defuzzified.


This line provides a defuzzified value.


This status line describes the most recent operation. 
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This plot shows the output surface for any output of the system versus any one or two inputs to the system


This pop-up menu lets you specify the displayed output variables


Push this button when you are ready to calculate and plot


This  pop-up menus let you specify the one or two displayed input variables


This edit field lets you set the input explicitly for inputs not specified in the surface plot 


These edit fields let you determine how densely to grid the input space.


This status line describes the most recent operation.
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This status line describes most recent operation.


This edit field lets you set the display range of the current plot.


This edit field lets you set the display range of the current variable.


These text fields display the name and type of the current variable.


This is the “Variable palette” area. Click on a variable here to make it current and edit its membership function.


This graph field display all the membership Functions of the current variable.


Click on a line to select it and you can change any of its attributes, including name ,type and numerical parameter. Drag your mouse to move or change the shape of the selected membership function.  


This edit field lets you change the name of current membership function.


This pop-up menu lets you change the type of the current membership function.


This edit field lets you change the numerical parameters for the current membership function.
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