
 CERTIFICATE

This is to certify that the project entitled “ECHO SERVER” is a
bonafide work of the following students of Delhi College of
Engineering

Madan Singh 2K1/COE/O28
Ravi Kumar 2K1/COE/042
Siddharth Sahai Mathur 2KI/COE/055

This project was completed under my direct supervision and
guidance and forms a part of their Bachelor of Engineering(B.E.)
course curriculum.

They have completed their work with utmost sincerity and
diligence.

I wish them all the best for their future endeavors.

(Prof. D.R. Choudhary)
Department of Computer Engineering
Delhi College of Enginering,Delhi.

 1

ACKNOWLEGMENT

We feel honored in expressing our profound sense of gratitude and
indebtedness to Prof. D.R. Choudhary Department of Computer
Engineering ,Delhi College of Engineering for giving us other
opportunity to work on such a practical problem under his expert
guidance. He constantly guided and helped us throughout the
project. Words cannot express the support and motivation by him

Our sincere thanks to Prof. Goldie Gabrani and all the other faculty
members for their cooperation and help during the project.

 Madan Singh Ravi Kumar Siddharath Sahai Mathur
(2K1/COE/028) (2K1/COE/042) (2K1/COE/055)

 2

 ABSTRACT

Echo Service is a well known service running at port 7 for testing &
debugging purposes. Our project was to develop an Echo Server. Echo
server is a simple server which echoes sent by client back to it. Clients for
these are also presented ,but with lesser focus. The application of the echo
server suggests simplicity ,robustness & efficiency as prime requirements.
Due Simplicity of application in case of echo server is synonymous with
performance(simplicity reduces overhead) because of the simple nature of
the service & the reasons namely testing for which it is used. Hence any
extra overhead in the form of a complex algorithm or complex programming
techniques like recursion, synchronization is avoided. Though for some
special cases different approaches have been presented in brief. These are
provided at the end in the section of suggestion for improvement. Four types
of servers are there; we covered three(Connectionless-iterative ,Connection -
oriented iterative ,connection oriented Concurrent(common))while the
fourth Connectionless concurrent is rare. Except the initial servers, rest was
designed for robustness/efficiency or both. Each type fulfills different
requirements to different degrees & hence, for different versions is
developed. Echo service is mostly exploited by Ackers/malicious clients &
hence, their vulnerabilities are discussed with possible solutions are
provided for those within our scope. The first two servers developed by us
are Connection oriented Concurrent TCP server(general Process based) &
Connectionless Iterative UDP server(generally UDP servers are
iterative).The next Server was a robust multi-mode version of the
Concurrent TCP server with input validation, error checks , redundancy,
acceptable behavior at boundary conditions, etc).The fourth one is a single
process concurrent server to minimize resources based on I/O multiplexing.
Lastly, the best option for an echo server ;the threaded server was used to
reduce process forking overhead. The platform chosen was
UNIX(posix.1g)/Linux owing to the efficiency & simplicity of these systems
& the C language was used.

 3

CONTENTS

Certificate
Acknowledgement
Abstract

1. Introduction
1.1 Introduction to Echo Server(RFC Definition)
1.2 Application of Echo Server

2. Introduction to Networking
2.1 Understanding IP Networks & network layers
2.2 IP,TCP & UDP
2.3 Peers, ports, names & addresses

3. Client Server Paradigm
3.1 Client Server Design Alternatives
3.2 Connection-less server
3.3 Connection-Oriented server
3.4 Iterative server
3.5 Concurrent server
3.6 Concurrent Connection-oriented server
3.7 Iterative Connection oriented server

4. Socket interface
4.1 what do sockets do
4.2 concept of value results arguments
4.3 socket API

4.3.1 creation of socket
4.3.2 associating a socket with a connection
4.3.3 sending and accepting data over socket
4.3.4 closing a socket
4.3.5 byte ordering functions
4.3.6 preparing process for I/O

5. A concurrent TCP echo server

5.1 Echo server
5.1.1 application setup
5.1.2 connection handler
5.1.3 configuring the server socket

 4

5.1.4 binding and listening
5.1.5 socket factory

5.2 Echo client

5.2.1 Echo client(setup)
5.2.2 Creating a socket
5.2.3 Establish connection
5.2.4 Send/receive data
5.2.5 Security issue with TCP port and services

5.3 An Iterative UDP echo server in c
 5.3.1 Server setup
 5.3.2 Creating, configures and bind the server socket
 5.3.3 The receive/send loop
 5.3.4 A UDP echo client in c
 5.3.5 Security issues with UDP port and services
5.4 Robustness principles

6. A concurrent TCP echo server

6.1 Echo server(coding)
6.1.1 Main function
6.1.2 str_echo functions
6.1.3 How it works
6.1.4 Features

 6.2 Echo client

 7. Single process concurrent TCP server

 8. Echo server with threads

8.1 Basic thread functions
8.2 Code for Echo server with threads
8.3 Thread specific data

 9. Choice of OS
 9.1 Comparison of Linux and Windows sockets

 10. Suggestions for improvement and other design alternatives

 BIBLIOGRAPHY

 5

Ec Network Working Group J. Postel
Request for Comments: 862
ISI
 May
1983

Echo Protocol
This RFC specifies a standard for the ARPA Internet
community. Hosts on the ARPA Internet that choose to
implement an Echo Protocol are expected to adopt and
implement this standard.
A very useful debugging and measurement tool is an echo
service. An echo service simply sends back to the
originating source any data it receives.
TCP Based Echo Service
One echo service is defined as a connection based
application on TCP. A server listens for TCP connections
on TCP port 7. Once a connection is established any data
received is sent back. This continues until the calling user
terminates the connection.
UDP Based Echo Service
Another echo service is defined as a datagram based
application on UDP. A server listens for UDP datagrams on
UDP port 7. When a datagram is received, the data from it
is sent back in an answering datagram.

 6

!.2 APPLICATIONS OF ECHO SERVER

The Echo service returns whatever it receives. It is called through
port 7. With TCP, it simply returns whatever data comes down the
connection, whereas UDP returns an identical datagram (except for
the source and destination addresses). The echoes continue until
the port connection is broken or no datagrams are received.

The Echo service provides very good diagnostics about the proper
functioning of the network and the protocols themselves. The
reliability of transmissions can be tested this way, too. Turnaround
time from sending to receiving the echo provides useful
measurements of response times and latency within the network.
Thus, the echo server has the following applications:

1) Testing the functionality of Transport layer.

2) Diagnosis of Networks & protocols.

3) Provides visual & easily understandable broad feedback of
 Latency & response times within the network.

4) Can be used for testing of an independently developed client
 Module independent of its corresponding server. By this method
 The client’s responses to the server under various test cases fed
 To it by the driver can be monitored by sending them to the
 Client echo application which sends them to echo server which
 Sends it back to the acceptance testing program on the host.

 7

2.1 Understanding IP networks and network layers
What is a network?
 (APPLICATION PROGRAMMER’S VIEW)
What we usually call a computer network is composed of a number of
network layers,. Each of these network layers provides a different
restriction and/or guarantee about the data at that layer. The
protocols at each network layer generally have their own packet
formats, headers, and layout. The seven traditional layers of a
network are divided into two groups: upper layers and lower layers.
The sockets interface provides a uniform
API to the lower layers of a network, and allows you to implement
upper layers within your sockets application. Further, application data
formats may themselves constitute further layers; for example, SOAP
is built on top of XML, and ebXML may itself utilize SOAP.

 8

2.2 IP, TCP, and UDP

As the last panel indicated, when you program a sockets application,
you have a choice to make between using TCP and using UDP. Each
has its own benefits and disadvantages.
TCP is a stream protocol, while UDP is a datagram protocol. In other
words, TCP establishes a continuous open connection between a
client and a server, over which bytes may be written (and correct
order guaranteed) for the life of the connection. However, bytes
written over TCP have no built-in structure, so higher-level protocols
are required to delimit any data records and fields within the
transmitted bytestream.
UDP, on the other hand, does not require a connection to be
established between client and server; it simply transmits a message
between addresses. A nice feature of UDP is that its packets are self-
delimiting; that is, each datagram indicates exactly where it begins
and ends A possible disadvantage of UDP, however, is that it
provides no guarantee that packets will arrive in order, or even at all.
Higher-level protocols built on top of UDP may, of course, provide
handshaking and acknowledgments.
A useful analogy for understanding the difference between TCP and
UDP is the difference between a telephone call and posted letters.
The telephone call is not active until the caller "rings" the receiver and
the receiver picks up. The telephone channel remains alive as long
as the parties stay on the call, but they are free to say as much or as
little as they wish to during the call. All remarks from either party
occur in temporal order. On the other hand, when you send a letter,
the post office starts delivery without any assurance the recipient
exists, nor any strong guarantee about how long delivery will take.
The recipient may receive various letters in a different order than they
were sent, and the sender may receive mail interspersed in time with
those she sends. Unlike with the postal service (ideally, anyway),
undeliverable mail always goes to the dead letter office, and is not
returned to sender.

 9

2.3 Peers, ports, names, and addresses

Beyond the protocol, TCP or UDP, there are two things a peer (a
client or server) needs to know about the machine it communicates
with: an IP address and a port. An IP address is a 32-bit data value,
usually represented for humans in "dotted quad" notation, such as
64.41.64.172. A port is a 16-bit data value, usually simply
represented as a number less than 65536, most often one in the tens
or hundreds range. An IP address gets a packet to a machine; a port
lets the machine decide which process/service (if any) to direct it to.
That is a slight simplification, but the idea is correct. Mostly a name is
given instead of a number ;to find the particular host for that name
Domain Name Server is queried , but sometimes local lookups are
used first (often via the contents of /etc/hosts).

 10

3. Client-Server Paradigm

The Client-Server paradigm is the most prevalent model for distr
computing protocols. It is the basis of all distributed computing
paradigms at a higher level of abstraction. It is service-oriented, and
employs a request-response protocol. A server process, running on a
server host, provides access to a service. A client process, running on a
client host, accesses the service via the server

ibuted

process. The interaction of
e process proceeds according to a protocol. th

.1 Client-Server Design Alternatives3

Types of Servers

A server can be:

Connectionless

Connection-Oriented

 Iterative Concurrent

iterative
connectionless

concurrent
Connectionless

iterative
connection
-oriented

concurrent
connection-

oriented

3.2 Connectionless Server

 11

A connectionless server accepts one request at a time from any client,
processes the request, and sends the response to the requestor.

a request

a response

Connectionless Server

Clients

Generally it is iterative.

3.3 Connection-Oriented Client-Server
applications

A client-server application can be either connection-oriented or connectionless.
In a connection-oriented client-server application:

The server is passive: it listens and waits for connection requests from clients,
and accepts one connection at a time. A client issues a connection request, and
waits for its connection to be accepted. Once a server accepts a connection, it
waits for a request from the client.
When a client is connected to the server, it issues a request and waits for the
response. When a server receives a request, it processes the request and sends
a response, then wait for the next request, if any. The client receives the
request and processes it. If there are further requests, the process repeats itself
until the protocol is consummated.

 12

server host

service

server process

A client process at the head of the connection queue

the server connection queue

A client process that is connected to the server

3.4 Iterative (or sequential) Server

An unthreaded connection-oriented server is said to be an iterative
server. Handles one request at a time Client waits for all previous
requests to be processed Unacceptable to user if long request blocks
short request

3.5 Concurrent Server

A connection-oriented server can be threaded so that it can service
multiple clients concurrently. Such a server is said to be a
concurrent server. Can handle multiple requests at a time by creating
new thread of control to handle each request.
 Introducing concurrency into a server arises from the need to provide
faster response time to multiple clients. Concurrency improves response
time, if forming a response requires significant I/Other processing time
varies dramatically among requests, the server executes on a computer
with multiple processors. Concurrency may have significant overhead
cost associated with it.

 13

server host

service

concurrent server
 process

A client process at the head of the connection queue

the server connection queue

A client process whose connection has been accepted

A client process whose connection has been accepted

the main thread accepts connections

a child thread processes
the protocol for a
client process

3.6 Concurrent, Connection-Oriented Server

A connection-oriented server services one client at a time.
If the duration of each client session is significant, then the latency or
turnaround time of a client request becomes unacceptable if the number
of concurrent client processes is large. To improve the latency, a server
process spawns a child process or child thread to process the protocol for
each client. Such a server is termed a concurrent server, compared to an
iterative server. A concurrent server uses its main thread to accept
connections, and spawns a child thread to process the protocol for each
client. Clients queue for connection, then are served concurrently. The
concurrency reduces latency significantly

server host

service

concurrent server
 process

A client process at the head of the connection queue

the server connection queue

A client process whose connection has been accepted

 14
A client process whose connection has been accepted

the main thread accepts connections

a child thread processes
the protocol for a
client process

Connection-oriented servers use a connection as the basic paradigm for
communication. They allow a client to establish a connection to a server,
communicate over that connection, and then discard it after finishing.
In most cases, the connection between clients and a server handles more
than a single request, thus:

 Connection-oriented protocols implement concurrency among
 Connections rather than individual requests.

3.7 Iterative connection oriented

Here the server processes one connection after another &only a
single process is used to serve clients

 15

4 SOCKET INTERFACE

4.1 What do sockets do?

While the sockets interface theoretically allows access to protocol
families other than IP, in practice, every network layer you use in your
sockets application will use IP. For this tutorial we only look at IPv4;
in the future IPv6 will become important also, but the principles are
the same. At the transport layer, sockets support two specific
protocols: TCP (transmission control protocol) and UDP (user
datagram protocol).
Sockets cannot be used to access lower (or higher) network layers;
for example, a socket application does not know whether it is running
over Ethernet, token ring, or a dial-up connection. Nor does the
socket's pseudo-layer know anything about higher-level protocols like
NFS, HTTP, FTP, and the like (except in the sense that you might
yourself write a sockets application that implements those higher-
level protocols).
At times, the sockets interface is not your best choice for a network
programming API.
Specifically, many excellent libraries exist (in various languages) to
use higher-level protocols directly, without your having to worry about
the details of sockets; the libraries handle those details for you. While
there is nothing wrong with writing you own SSH client, for example,
there is no need to do so simply to let an application transfer data
securely. Lower-level layers than those addressed by sockets fall
pretty much in the domain of device driver programming.

A socket is formally defined as an endpoint for communication between an
application program, and the underlying network protocols. This odd

 16

collection of words simply means that the program reads information from a
socket in order to read from the network, writes information to it in order to
write to the network, and sets sockets options in order to control protocol
options. From the programmer's point of view, the socket is identical to the
network. Just like a file descriptor is the endpoint of disk operations.

In this section we begin with socket address structure; this structure can be
passes in two directions:

1. From process to kernel.
2. and from kernel to process

We have used address conversation function. One problem with address
conversation function is that they are dependant on the types of address
being converted: IPv4 or IPv6

A socket server needs to be able to listen on a specific port, accept
connections and read and write data from the socket. A high performance
and scaleable socket server should use asynchronous socket IO and IO
completion ports. Since we're using IO completion ports we need to
maintain a pool of threads to service the IO completion packets

Types of sockets

In general, 3 types of sockets exist on most UNIX systems:

1. Stream sockets,

2. Datagram sockets and

3. Raw sockets.

Stream sockets are used for stream connections, i.e. connections that exist
for a long duration. TCP connections use stream sockets.

Datagram sockets are used for short-term connections that transfer a single
packet across the network before terminating. The UDP protocol uses such
sockets, due to its connection-less nature.

 17

Raw sockets are used to access low-level protocols directly, bypassing the
higher protocols. They are the means for a programmer to use the IP
protocol, or the physical layer of the network, directly. Raw sockets can
therefore be used to implement new protocols on top of the low-level
protocols. Naturally, they are out of our scope.

4.2 Concept of Value results arguments:
When a socket address structure is passed to any socket function it is always
passed by reference that is a pointer to structure is passed. The length of
structure is also passed as an argument. But the way in which the length is
passed depends on which direction the structure is being passed.

1. Three functions , bind , connect , and sendto , passes a socket
address structure from the process of kernel. One argument of
these three functions is the pointer to the socket address
structure and another argument is the integer size of the
structure.

2. Four functions accept, recvfrom, getsockname, and
getpeername, pass a socket address structure from kernel to the
process, the reverse direction from previous scenario. Two of
the arguments to these four functions are the pointer to socket
address structure along with a pointer to an integer containing
the size of the structure

 18

4.3 SOCKET API

4.3.1Creating sockets
Creation of sockets is done using the socket() system call. This system
call is defined as follows:

 int socket(int address_family, int socket_type,
int proto_family);

As an example, suppose that we want to write a TCP application. This
application needs at least one socket in order to communicate across the
Internet, so it will contain a call such as this:

 int s; /* descriptor of socket */

 /* Internet address family, Stream socket */

 19

 s = socket(AF_INET, SOCK_STREAM, 0);
 if (s < 0) {
 perror("socket: allocation failed");
 }

4.3.2 Associating a socket with a connection
After a socket is created, it still needs to be told between which two end
points it will communicate. It needs to be bound to a connection. There are
two steps to this binding. The first is binding the socket to a local address.
The second is binding it to a remote (foreign) address.

Binding to a local address could be done either explicitly, using the bind()
system call, or implicitly, when a connecting is established. Binding to the
remote address is done only when a connection is established. To bind a
socket to a local address, we use the bind() system call, which is defined
as follows:

 int bind(int socket, struct sockaddr *address,
int addrlen);

Note the usage of a different type of structure, namely struct
sockaddr, than the one we used earlier (struct sockaddr_in). Why
is the sudden change? This is due to the generality of the socket interface:
sockets could be used as endpoints for connections using different types of
address families. Each address family needs different information, so they
use different structures to form their addresses. Therefore, a generic socket
address type, struct sockaddr, is defined in the system, and for each address
family, a different variation of this structure is used. For those who know,
this means that struct sockaddr_in, for example, is an overlay of
struct sockaddr (i.e. it uses the same memory space, just divides it differently
into fields).

the bind assign a local protocol aaddress to asocket with ainternet protocol
the protocol address is the combination of either a 32 bit IP v4 address or
128 bit IPv6 address along with 16 bit TCP or UDP port no.

#include<sys/socket.h>

 20

int bind (int sockfd,const struct sockaddr *myaddr, socklen_t_addr_addrlen);

retuerns o if ok -1 on error

the second argument is a pointer a protocol specific address and the third
argument is the size of address structure. With TCP calling bind let us
specify a port no. an IP address , both or neither.

There are 4 possible variations of address binding that might be used when
binding a socket in the Internet address family.

The first is binding the socket to a specific address, i.e. a specific IP number
and a specific port. This is done when we know exactly where we want to
receive messages. Actually this form is not used in simple servers, since
usually these servers wish to accept connections to the machine, no matter
which IP interface it came from.

The second form is binding the socket to a specific IP number, but letting the
system choose an unused port number. This could be done when we don't
need to use a well-known port.

The third form is binding the socket to a wild-card address called
INADDR_ANY (by assigning it to the sockaddr_in variable), and to a
specific port number. This is used in servers that are supposed to accept
packets sent to this port on the local host, regardless of through which
physical network interface the packet has arrived (remember that a host
might have more than one IP address).

The last form is letting the system bind the socket to any local IP address
and to pick a port number by itself. This is done by not using the bind()
system call on the socket. The system will make the local bind when a
connection through the socket is established, i.e. along with the remote
address binding. This form of binding is usually used by clients, which care
only about the remote address (where they connect to) and don't need any
specific local port or local IP address. However, there are exceptions here
too.

 21

4.3.3 Sending and receiving data over a
socket

After a connection is established (We will explain that when talking about
Client and Server writing), There are several ways to send information over
the socket. We will only describe one method for reading and one for
writing.

The read() system call

The most common way of reading data from a socket is using the read()
system call, which is defined like this:

int read(int socket, char *buffer, int buflen);

• socket - The socket from which we want to read.
• buffer - The buffer into which the system will write the data bytes.
• buflen - Size of the buffer, in bytes (actually, how much data we want

to read).

The read system call returns one of the following values:

• 0 - The connection was closed by the remote host.
• -1 - The read system call was interrupted, or failed for some reason.
• n - The read system call put 'n' bytes into the buffer we supplied it

with.

The write() system call

The most common way of writing data to a socket is using the write()
system call, which is defined like this:

int write(int socket, char *buffer, int buflen);

• socket - The socket into which we want to write.
• buffer - The buffer from which the system will read the data bytes.
• buflen - Size of the buffer, in bytes (actually, how much data we want

to write).

 22

The write system call returns one of the following values:

• 0 - The connection was closed by the remote host.
• -1 - The write system call was interrupted, or failed for some reason.
• n - The write system call wrote 'n' bytes into the socket.

4.3.4 Closing a socket.

When we want to abort a connection, or to close a socket that is no longer
needed, we can use the close() system call. it is defined simply as:

int close(int socket);

• socket - The socket that we wish to close. If it is associated with an
open connection, the connection will be closed.

4.3.5 BYTE ORDENING FUNCTIONS

There are two ways to store the two bytes in memory: with the low order
byte at the starting address known as litlte- endian byte order, or with the
high-order byte at the starting address, known as big-endian byte order.

 23

inet_aton_ inet_addr, and inet _ntoa FUNTIONS

1.inet_aton, inet_ntoa, and inet_addr convert an IPv4 address from a dotted-
decimal string (e.g., “206 .168 .112 . 96”) to its 32-bit network byte ordered
binary value.
2. the newer functions, inet_pton and innet_ntop, handle both IPv4
andIPv6 addresses.
#include<inet.h>
int inet_aton(const char *strptr , stuct in_addr *addrptr);

 24

 returns: 1 if string was valid, 0 on error
in_addr_t inet_addr(const char *strpt);
 returns: 32-bit binary network byte ordered IPv4 address
;inaddr_none if error
char *inet_ntoa(struct in_addr inaddr)
 returns:pointer to dotted-decimal string

EXPLAINATION: inet_aton, converts the c character
string pointed to by strptr into its 32-bit binary network
Byte ordered value , which is stored through the pointer addrptr. if
successful, 1 is returned; other wise, 0 is returned.
Inet_addr does the same conversion, returning the 32-bit binary network
byte ordered value as the return value.
The inet_ntoa function converts a 32-bit binary network byte ordered IPv4
address in to its corresponding dotted decimal string.

Inet_pton and inet_ntop function:
These two functions are new with IPv6 and work with both IPv4 IPv6.
#include<arpa/inet.h>
int inet_poton(int family, const char *strptr, void *addrptr);
return:1 if ok; input not valid presentation format., -1on error
const char *inet_ntop(int family , const void *addrptr ,char *strptr,size_t
len);
returns:pointer to result if ok, null on error

Explanation:
the inet_pton function tries to tries to convert the string pointed to by strptr.
Storing the binary result through the pointer addrptr . If successful , the
return value is 1,if 0 is returned then not valid.
Inet_ntop does the reverse conversion ,from numeric to presentation.

Sock_ntop and related functions:
A basic problem with inet_ntop is that it requires the caller to pass a pointer
to a binary address. this address is normally contain in a socket address

 25

structure, repairing the caller to know the format of the structure and the
address family .That is, to use it, we must write code of the form
Struct sockaddr_in addr;
Inet_ntop(AF_INET, &addr.sin_addr,str,sizeof(str));
For IPv4, or
 Struct sockaddr_in6 addr6;
Inet_ntop(AF_INET6, &addr6.sin6_addr, str, sizeof(str));
For IPv6

4.3.6 Preparing process for I/O

To perform I/O, the first thing a process must do is call the socket function,
specifying the type of communication protocol desired (TCP IPv4,UDP
using IPv6,unix domain stream protocol)
The family specifies the protocol family and is one of the constants. The
socket type is one of the constants . normally the protocol argument to the
socket function is set to 0 except for raw circuit.

Family Description
AF_INET
AF_INET6
AF_LOCAL
AF_ROUTE
AF_KEY

IPV4 PROTOCOLS
IPV6 PROTOCOLS
UNIX DOMAIN PROTOCOLS
ROUTING SOCKETS
KEY SOCKETS

1)Connect function

The connect function is used by tcp client to establish a connection with a
tcp server

#include<sys/socket.h>

int connect (int sockfd, const struct sockaddr *servaddr, socklen_t addrlen);
return 0 if ok ,-1 on error

 26

sockfd is a socket descriptor that was returned by the socket function.
The second and third arguments are pointer to socket address structure and
its size.
The socket address structure must contain the IP address and port no. of the
server
The client does not have to call bind before calling connect
TCP socket ,the connect function initiates TCP three way handshake . the
function retunes only when the connection is established or an error occurs.

2)bind: As already described in a previous section.

3)listen function

listen function is called only by the TCP server and it performs two actions
1. when asocket is created by socket function, it is assumed to be an active
socket, that is ,a client socket that will issue a connect.
The listen function converts an unconnected socket into a passive socket,
indicating that a kernel should accept an incoming connection requests
direct to the socket.

2.the second argument to these function specifies the maximum no. of
connection that kernel should queue for the socket

#include<sys/socket.h>
int listen(int sockfd, int backlog);

returns 0 if ok ,-1 on error
these function is normally called after both the socket and the bind function
and must be called before calling the accept function
accept function

 27

4)accept function is called by TCP server to return the next complete
connection from the front of the completed connection queue.

If the completed connection queue is empty the process is put to sleep

#include<sys/socket.h>

int accept (int sockfd,struct sockaddr *cliaddr,socklen_t *addrlen);

returns negative descriptor if ok ,-1 on error

the cliaddr and addrlen argument are used to return the protocol address of
connected peer process. Addrlen is a value-result argument before the call,
we set the integer pointed by *addrlen to the size of socket address pointed
to by cliaddr and on return these integer value contains the actual no. of
bytes stored by kernel in the socket address structure.

5)fork and exec functions
this function is only way in UNIX to create a new process.

#include<unistd.h>
pid_t fork(void);

fork is that it is called once but it returns twice. It returns in calling process
with a return that is the process ID of the newly created.
It also return s once in child, with return value of 0 hence the return value
tells the process whether it is parent or child.

 28

5. A Concurrent TCP echo server

5.1 ECHO SERVER
A socket server is more complicated than a client, mostly because a
server usually needs to be able to handle multiple client requests.
Basically, there are two aspects to a server: handling each
established connection, and listening for connections to establish.
In our example, and in most cases, you can split the handling of a
particular connection into support function, which looks quite a bit like
how a TCP client application does. We name that function
HandleClient().
Listening for new connections is a bit different from client code. The
trick is that the socket you initially create and bind to an address and
port is not the actually connected socket. This initial socket acts more
like a socket factory, producing new connected sockets as needed.
This arrangement has an advantage in enabling fork'd, threaded, or
asynchronously dispatched handlers (using select());Our echo
server starts out with pretty much the same few #includes as the
client did, and defines some constants and an error-handling function:
The BUFFSIZE constant limits the data sent per loop. The
MAXPENDING constant limits the number of connections that will be
queued at a time (only one will be serviced at a time in our simple
server). The Die() function is the same as in our client.

5.1.1 Application setup

#include <stdio.h>

 #include <sys/socket.h>
> #include <arpa/inet.h

#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>

 29

#define MAXPENDING 5 /* Max connection requests */

oid Die(char *mess) { perror(mess); exit(1); }

) {
SIZE];

 0) {
e("Failed to receive initial bytes from client");

k for more incoming data in loop */

eceived) {
e("Failed to send bytes to client");

{
e("Failed to receive additional bytes from client");

se(sock);

v[]) {

in echoserver, echoclient;

derr, "USAGE: echoserver <port>\n");
it(1);

rversock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) <

e("Failed to create socket");

 Construct the server sockaddr_in structure */

#define BUFFSIZE 32
v

void HandleClient(int sock
char buffer[BUFF
int received = -1;
/* Receive message */
if ((received = recv(sock, buffer, BUFFSIZE, 0)) <
Di
}
/* Send bytes and chec
while (received > 0) {
/* Send back received data */
if (send(sock, buffer, received, 0) != r
Di
}
/* Check for more data */
if ((received = recv(sock, buffer, BUFFSIZE, 0)) < 0)
Di
}
}
clo
}

int main(int argc, char *arg
int serversock, clientsock;
struct sockaddr_
if (argc != 2) {
fprintf(st
ex
}
/* Create the TCP socket */
if ((se
0) {
Di
}
/*

 30

memset(&echoserver, 0, sizeof(echoserver)); /* Clear struct */

oming addr */
choserver.sin_port = htons(atoi(argv[1])); /* server port */

sockaddr *) &echoserver,

e("Failed to bind the server socket");

 0) {
e("Failed to listen on server socket");

 cancelled */

hoclient);
 connection */

struct sockaddr *) &echoclient,

e("Failed to accept client connection");

 %s\n",
dr));

andleClient(clientsock);

echoserver.sin_family = AF_INET; /* Internet/IP */
echoserver.sin_addr.s_addr = htonl(INADDR_ANY); /* Inc
e

/* Bind the server socket */
if (bind(serversock, (struct
sizeof(echoserver)) < 0) {
Di
}
/* Listen on the server socket */
if (listen(serversock, MAXPENDING) <
Di
}

/* Run until
while (1) {
unsigned int clientlen = sizeof(ec
/* Wait for client
if ((clientsock =
accept(serversock, (
&clientlen)) < 0) {
Di
}
fprintf(stdout, "Client connected:
inet_ntoa(echoclient.sin_ad
H

}
}

5.1.2 Connection handler
The handler for echo connections is straightforward. All it does is

and

receive any initial bytes
available, then cycles through sending back data and receiving more
data. For short echo strings (particularly if less than BUFFSIZE)
typical connections, only one pass through the while loop will
occur. But the underlying sockets interface (and TCP/IP) does not
make any guarantees about how the bytestream will be split between

 31

calls to recv().The socket that is passed in to the handler functio
one that already connected to the requesting client. Once we are
done with echoing all the data, we should close this socket; the
parent server soc

n is

ket stays around to spawn new children, like the
ne just closed. o

5.1.3 Configuring the server socket
As outlined before, creating a socket has a bit different purpose for
server than for a client. Creating the socket has the same syntax i
did in the client, but the structure echo server is set up with
information about the server itself, rather than about the pee
to connect to. You usually want to use the special constant
INADDR_ANY to enable receipt of client requests on any IP address
the server supplies; in principle, such as in a m

a
t

r it wants

ulti-hosting server, you
ould specify a particular IP address instead.

te

atforms, but it is still wise to use them
r cross-platform compatibility.

c

Notice that both IP address and port are converted to network by
order for the sockaddr_in structure. The reverse functions to
return to native byte order are ntohs() and ntohl(). These
functions are no-ops on some pl
fo

5.1.4 Binding and Listening
Whereas the client application connect()'d to a server's IP address
and port, the server bind()s to its own address and port: Once the
server socket is bound, it is ready to listen(). As with most soc
functions, both bind() and listen() return -1 if they have a
problem. Once a server socket is listening, it is ready to ac
client connec

ket

cept()
tions, acting as a factory for sockets on each

onnection. c

 5.1.5 Socket factory
Creating new sockets for client connections is the crux of a server.
The function accept() does two important things: it returns a
socket pointer for the new socket; and it populates the sockaddr_i
structure pointed to, in our case, by echoclient. We can see the
populated structure in with the call that

n

echoclient fprintf()

 32

accesses the client IP address. The client socket pointer is passed to
andleClient().

.2 ECHO CLIENT

H

5

.2.1 A TCP echo client (client setup)

5

h>
>

include <netinet/in.h>
define BUFFSIZE 32

 }

 which limits the amount
 loop through multiple passes, if

 function is

t

#include <stdio.h>
#include <sys/socket.
#include <arpa/inet.h
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#
#
void Die(char *mess) { perror(mess); exit(1);

 A particular buffer size is allocated,
of data echoed at each pass (but we
needed). A small error also defined.

5.2.2 Creating the socke
call decide the type of socket:

d IPPROTO_TCP go

 *argv[]) {

echolen;

The arguments to the socket()

just means it uses IP PF_INET

(which you always will); SOCK_STREAM an
together for a TCP socket.
int main(int argc, char
int sock;
struct sockaddr_in echoserver;
char buffer[BUFFSIZE];

int unsigned

 33

int received = 0;

> <word>

, which is similar to a file
andle; specifically, if the

if (argc != 4) {
fprintf(stderr, "USAGE: TCPecho <server_ip
<port>\n");
ex

it(1);

}
/* Create the TCP socket */
if ((sock = socket(PF_INET, SOCK_STREAM,
IPPROTO_TCP)) < 0) {
Die("Failed to create socket");
 }

The value returned is a socket handle
h
socket creation fails, it will return -1 rather than a positive-numbered
handle.

5.2.3 Establish connection

Now that we have created a socket handle, we need to establish a
connection with the server.
A connection requires a sockaddr structure that describes the
server. Specifically, we need to
specify the server and port to connect to using
echoserver.sin_addr.s_addr and

ET.
 server sockaddr_in structure */

f(echoserver)); /*

* Internet/IP */
(argv[1]); /*

addr *) &echoserver,

echoserver.sin_port. The fact that we are using an IP address
is specified with
echoserver.sin_family, but this will always be set to AF_IN
/* Construct the
memset(&echoserver, 0, sizeo
Clear struct */
echoserver.sin_family = AF_INET; /
echoserver.sin_addr.s_addr = inet_addr
IP address */
echoserver.sin_port = htons(atoi(argv[3])); /*
server port */
/* Establish connection */
if (connect(sock,
(struct sock

 34

sizeof(echoserver)) < 0) {
ie("Failed to connect with server");

ata

D
}
As with creating the socket, the attempt to establish a connection will
return -1 if the attempt
fails. Otherwise, the socket is now ready to accept sending and
receiving data.

5.2.4 Send/Receive d

 ready to send and

g is the

of bytes successfully sent.
 to the server */

en) {

out, "Received: ");
 {

bytes

ull terminated
tring */

Now that the connection is established, we are
receive data. A call to
send() takes as arguments the socket handle itself, the string to
send, the length of the sent
string (for verification), and a flag argument. Normally the fla
default value 0. The return
value of the send() call is the number
/* Send the word
echolen = strlen(argv[2]);
if (send(sock, argv[2], echolen, 0) != echol

e("Mismatch in number of sent bytes"); Di
}
/* Receive the word back from the server */
fprintf(std
while (received < echolen)
int = 0;
if ((bytes = recv(sock, buffer, BUFFSIZE-1, 0)) <
1) {
Die("Failed to receive bytes from server");
}
received += bytes;
buffer[bytes] = '\0'; /* Assure n
s
fprintf(stdout, buffer);
}
The rcv() call is not guaranteed to get everything in-transit on a
particular call; it simply blocks until it gets something. Therefore, we
loop until we have gotten back as many bytes as were sent, writing

 35

each partial string as we get it. Obviously, a different protocol might
decide when to terminate receiving bytes in a different manner
(perhaps a delimiter within the bytestream).

ices

5.2.5 Security Issues with TCP Ports and Serv

 only send 1024
packets to your computer with the SYN bit set ... One second of packets

.
ons

The SYN-Flood can easily be turned into a DDoS by using distributed hosts

ve.
or example, "on a TCP connection ... (to ‘chargen' TCP port#19) ... it will
pit out a continual stream of garbage characters until the connection is
losed. As we know the syn packet is used in the 3-way handshake. The syn
ooding attack is based on an incomplete handshake. That is the attacker
ost will send a flood of syn packet but will not respond with an ACK

TCP attacks differ in that TCP is not a stateless protocol and requires a
TWHS (three way hand shake) before initiating service. This does not make
TCP ports immune to DoS attacks. In fact the TWHS is itself a major target
of cr/hacker DoS attack attempts.

A SYN-Flood and the ACK-Flood DoS takes advantage of the TWHS to
perform a DoS on a host. The normal process of SYN followed by RST or
ACK is interrupted and the victim is left with an open port awaiting
communication that never materializes. The process is repeated until the
total number of simultaneous sessions is open (in theory 1024) and the
system is hung. "... in order to completely deny services to a given port on
your computer until the next system reboot, the attacker need

results in a system reboot - that's a big advantage for the attacker ... (but) ..
many systems run out of internal space to store the incomplete connecti
before the second passes and crash on their own."

to bounce off packets so that the forensic log examination points to these
hosts. A compromised web server can also be used so that infected systems
participate after visiting the site, and so continue the attack.

Other TCP attacks include attacks against TCP services such as TELNET
using combinations of TCP and ICMP forgery to create a "man-in-the-
middle" situation that allows a cr/hacker to see (and route) TELNET
packets.

Versions of UDP attacks also exist for TCP but are more difficult to initiate
(because of the TWHS). However, once initiated, they can be very effecti
F
s
c
fl
h

 36

packet. The TCP/IP stack will wait a certain amount of time before dropping
e connection, a syn flooding attack will therefore keep the syn_received

onnection queue of the target machine filled.
th
c

 37

5.3 An ITERATIVE UDP echo server in C

5.3.1Server setup
Even more than with TCP applications, UDP clients and servers are
quite similar to each other.
In essence, each consists mainly of some sendto() and
recvfrom() calls mixed together.
The main difference for a server is simply that it usually puts its main

et’s start out with the
ions and usage message

s and

be used to verify transmission sizes, and, of

nt argc, char *argv[]) {
 sock;

truct sockaddr_in echoserver;

ver socket

body in an indefinite loop to keep serving. L
usual includes and error function: Declarat
Again, not much is new in the UDP echo server's declaration

d a socket structure for the server and client, usage message. We nee
a few variables that will
course, the buffer to read and write the message.
int main(i
int
s
struct sockaddr_in echoclient;
char buffer[BUFFSIZE];
unsigned int echolen, clientlen, serverlen;
int received = 0;
if (argc != 2) {
fprintf(stderr, "USAGE: %s <port>\n", argv[0]);
exit(1);
 }

5.3.2 Create, configure, and bind the ser

 and server comes in the
d to bind the socket on the server side. We saw this already with

ory for an ad hoc socket that is configured in

et(PF_INET, SOCK_DGRAM,

}

The first real difference between UDP client
nee
the Python example, and the situation is the same here. The server
socket is not the actual socket the message is transmitted over;
rather, it acts as a fact
the recvfrom() call we will see soon.

/* Create the UDP socket */
if ((sock = sock
IPPROTO_UDP)) < 0) {
Die("Failed to create socket");

 38

/* Construct the server sockaddr_in structure */
memset(&echoserver, 0, sizeof(echoserver)); /*

server.sin

tons(at i(argv[1])); /*

* Bind the socket */
);
dr *) &echoserver,

he

Clear struct */
echo _family = AF_INET; /* Internet/IP */
echoserver.sin_addr.s_addr = htonl(INADDR_ANY); /*
Any IP address */
echoserver.sin_port = h o
server port */
/
serverlen = sizeof(echoserver
f (bind(sock, (struct sockadi

serverlen) < 0) {
Die("Failed to bind server socket");
}
The echoserver structure is configured a bit differently. In order
to allow connection on any IP address the server hosts, we use t
special constant
INADDR_ANY for the member .s_addr.

5.3.3 The receive/send loop

The heavy lifting -- such as it is -- in the UDP sever is its main loop.
Basically, we perpetually
wait to receive a message in a recvfrom() call. When this

pens, the echoclient hap
structure is populated with relevant members for the connecting

 Run until cancelled */

/*
cl
if ((received = recvfrom(sock, buffer, BUFFSIZE, 0,

socket. We then use that
structure in the subsequent sendto() call.
/*
while (1) {

 Receive a message from the client */
ientlen = sizeof(echoclient);

(struct sockaddr *) &echoclient,
&clientlen)) < 0) {

e("Failed to receive message"); Di
}
fprintf(stderr,

 39

"Client connected: %s\n",
inet_ntoa(echoclient.sin_addr));

1”

ock, buffer, received, 0,
ddr *) &echoclient,

thing at a time, which might be a
any clients (probably not for this

ething more complicated might introduce

if(htonl(cliaddr.sin_addr)==inet_addr(“127.0.0.
))
{printf(“rogue client:shutting down client”);
exit(1);}

/* Send the message back to client */

if (sendto(s
(struct socka
sizeof(echoclient)) != received) {
Die("Mismatch in number of echo'd bytes");
}
}
}
This arrangement does only one
problem for a server handling m
simple echo server, but som
poor latencies).

5.3.4 A UDP echo client in C

Client setup
The first few lines of our UDP client are identical to those for the TCP
client. Mostly we just use some includes for socket functions, or other
basic I/O functions.

#include <stdio.h>
#include <sys/socket.h>
#include <arpa/inet.h>

include <string.h>

void Die(char *mess) { perror(mess); exit(1); }

#include <stdlib.h>
#
#include <unistd.h>
#include <netinet/in.h>
#define BUFFSIZE 255

 40

There is not too much to the setup. It is worth noticing that the buffer

ze we allocate is much larger than it was in the TCP version (but
ill finite in size). TCP can loop through the pending data, sending a

this UDP version, we
e entire message, which
aller than 255, but not any

also defined.

age message
) function, we allocate two

n structures, a few integers to hold string sizes,
ther int for the socket handle, and a buffer to hold the returned

tring. After that, we check that the command-line arguments look

nt received = 0;

]);

ram a

terrible idea to check that the
oks like a

orgetfully pass in a named address, you
ng error: "Mismatch in

ber of sent bytes: No route to host". Any named address

si
st
bit more over an open socket on each loop. For
want a buffer that is large enough to hold th
we send in a single datagram (it can be sm
larger). A small error function is

Declarations and us

At the very start of the main(
sockaddr_i
ano
s
mostly correct.

int main(int argc, char *argv[]) {
int sock;
struct sockaddr_in echoserver;
struct sockaddr_in echoclient;
char buffer[BUFFSIZE];
unsigned int echolen, clientlen;
i
if (argc != 4) {
printf(stderr, "USAGE: %s <server_ip> <word> f

<port>\n", argv[0
exit(1);
}

For this C client, you must use a dotted-quad IP address. If you
wanted to do a lookup in the C client, you would need to prog
DNS function.In fact, it would not be a
IP address passed in as the server IP address really lo
dotted-quad address. If you f
will probably receive the somewhat misleadi
num

 41

amounts to the same thing as an unused or reserved IP address
(which a simple patter

n check could not rule out, of course).

et and configure the server structure

 socket() call decide the type of socket:

* Create the UDP socket */
f ((sock = socket(PF_INET, SOCK_DGRAM,

e("Failed to create socket");

 structure */
f(echoserver)); /*

* Internet/IP */
ddr(argv[1]); /*

oserver.sin_port = htons(atoi(argv[3])); /*

l
ndle. Support functions

Create the sock

he arguments to theT
PF_INET just means it uses IP (which you always will);
SOCK_DGRAM and IPPROTO_UDP go together for a UDP socket. In
preparation for sending the message to echo, we populate the
intended server's structure using command-line arguments.

/
i
IPPROTO_UDP)) < 0) {
Di
}
/* Construct the server sockaddr_in
memset(&echoserver, 0, sizeo
Clear struct */
echoserver.sin_family = AF_INET; /
echoserver.sin_addr.s_addr = inet_a
IP address */
e
s
ch
erver port */

The value returned in the call to socket() is a socket handle and is
similar to a file handle; specifically, if the socket creation fails, it wil
return -1 rather than a positive numbered ha
inet_addr() and htons() (and atoi()) are used to convert the
string arguments into appropriate data structures.

Send the message to the server
.

/* Send the word to the server */
echolen = strlen(argv[2]);
if (sendto(sock, argv[2], echolen, 0,

ruct sockaddr *) &echoserver, (st

 42

sizeof(echoserver)) != echolen) {
Die("Mismatch in number of sent bytes");

t it also occurs for valid-looking but unreachable IP

 the server
 back works pretty much the same way as it did in

o client. The only real change is a substitute call to
cvfrom() for the TCP call to recv().

e word back from the server */

sizeof(echoclient);
0,

f (echoserver.sin_addr.s_addr !=
choclient.sin_addr.s_addr) {

}

The error checking in this call usually establishes that a route to the
server exists. This is the message raised if a named address is used
by mistake, bu
addresses.
Receive the message back from
Receiving the data
the TCP ech
re

/* Receive th
fprintf(stdout, "Received: ");
clientlen =
if ((received = recvfrom(sock, buffer, BUFFSIZE,
(struct sockaddr *) &echoclient,
&clientlen)) != echolen) {
Die("Mismatch in number of received bytes");
}
/* Check that client and server are using same
socket */
i
e
Die("Received a packet from an unexpected server");
}
buffer[received] = '\0'; /* Assure null-terminated
string */
fprintf(stdout, buffer);
fprintf(stdout, "\n");
close(sock);
exit(0);
}

The structure echoserver had been configured with an ad hoc port
during the call to
sendto(); in turn, the echoclient structure gets similarly filled in
with the call to

 43

recvfrom(). This lets us compare the two addresses -- if some
other server or port sends a datagram while we are waiting to receive
the echo. We guard at least minimally against stray datagrams that
do not interest us (we might have checked the .sin_port members
also, to be completely certain).At the end of the process, we print out
the datagram that came back, and close the socket.

t. If
 the

 the service
e

. The

ess

.

 echo

he

serve to " ... dominate lower speed
communications media, denying communications. But, if we want to be
more certain of this, we might add something else to the packet. For

5.3.5 Security Issues with UDP Ports and Services
Any port can be attacked as a DoS by simply sending a packet to that por
there is no service attached to that port, then the packet is ignored and
DoS attack fails. If there is a service attached to that port, then
must deal with the packet, even if it is malformed or incorrect. The servic
will deal with the incoming packet as a high priority (interrupt) event
success of the DoS attack is dependent on how effectively the service deals
with the inbound packet.

As a rule, any UDP port that sends a response to a packet is subject to a DoS
attack (and therefore to a DDoS attack). Since the UDP service is a statel
response, it can simply be flooded with packets, forcing a DoS as the system
struggles to keep up with these high priority service interrupts

Echo - UDP port #7 is a typical example of a DoS and DDoS attack point.
"UDP Port #7 is normally the echo service. The function of this service is to
transmit whatever data was sent to it back to the source. The echo port is
typically available as a service since many networks (and firewalls) use
response for system management and performance monitoring. As well, "t
Harvest Web server sometimes used port #7 to determine whether or not to
update a cached web file. This means that any server that provides Web
caching has to make UDP port #7 available for this service to work properly.

A simple attack would be to forge a packet from system A, port #7 to system
B, port#7. B would process the packet and send it back to A, who would
return it to B. The two machines would engage in a high priority packet
passing 'ping pong' game, using resources normally assigned to user
processing. This can also

 44

example, if we set the 'type of service' field to 'Network Control, Low de
High Throughput, High Reliability' by setting the value to all 1's, we will
force these packets to override other packets in the path between the two
victims." [18] If the packet was to be sent between 2 systems configured as a
cluster, the short communica

lay,

tions channel between the 2 devices would
serve to disable the entire cluster (which was set up as a cluster in the first

ck
se

cript (available for download on the
Internet) that demonstrates them as attacks. A "fraggle" is an attack by

and
d packet is broadcast to the 'chargen' port

hese hosts see the

rvice, which

ly

rticle on UDP viruses,[19] Dr. Frederick Cohen suggests several

quote of the day' (UDP port
t#37), 'whois' (UDP port#43)

 a UDP port can become a DDoS attack.
is must be true if the definition of DDoS is multiple distributed attackers,

ed virus through to infection from 'bad' html

example the header

place to ensure high reliability in the event of node failure).

A more sophisticated version of this attack is known as a "fraggle" atta
(this is similar to a smurf -- discussed later under ICMP ping issues). The
attacks are named after the hacker s

originated by a broadcast message and takes adavantage of the 'echo'
'chargen' UDP services. A forge
(UDP port#19) of all hosts receiving the broadcast. T
spoofed return IP address of the victim; everyone responds with a packet of
random data, flooding the victim. A "fraggle amplifier" is any host that has
the echo service available. The forged message is sent to this se
then acts to broadcast it to all hosts on their net, increasing the 'range' of the
attack. Since many web servers sit outside of firewalls (in order to secure
process requests) and since many have the echo service enabled, this attack
is particularly effective.

In his a
"other UDP services that are likely to provide environments for protocol
viruses ... " including 'systat' (UDP port #11), '
#17), 'chargen' (UDP port#19), 'time' (UDP por
and 'who' (UDP port#513).

Remember that any DoS attack at
Th
because distributed hosts can be spoofed into participating by various
vectors -- from a programm
after visiting an infected web site.

It is simple to get UDP services (echo, time,
daytime, chargen) to
loop, due to trivial IP-spoofing.
that causes the network to become useless. In the

 45

claim that the packet came from 127.0.0.1
(loopback) and the target
is the echo port at system.we.attack. As far as
system.we.attack knows
is 127.0.0.1 system.we.attack and the loop has been

tablish.

 Packet type:UDP
 from UDP port 7
 to UDP port 7

ote that the name system.we.attack looks like a
NS-name, but the
arget should always be represented by the IP-

t put loopback
. Therefore,

tack will only affect that machine
s

Again,
d in

frame IP
service

 legitimate programs, and TCP
d of UDP

y incorporating
hout redundancy ,i.e., robustnes

es
Ex:

 from-IP=127.0.0.1
 to-IP=system.we.attack

N
D
t
number.A great deal of systems don'
on the wire, and simply emulate it
this at
in some cases. It's much better to use the addres
of a different machine on the same network.

ult services should be disablethe defa
inetd.conf. Other than some hacks for main
stacks that don't support ICMP, the echo
isn't used by many
echo should be used instea

Hence, loopback should be avoided b
Fault Tolerance wit s by

 client IP address.

including checks for the

 46

5.4 Robustness Principles
Client
- Nothing user does/types should make program crash
- Must perform complete checking for user errors
 Server
- Nothing a client does should cause server to
 malfunction
- Possibly malicious clients
 Things to Worry About
- Error return codes by system calls
- String overflows
- Malformed messages
- Memory/resource leaks
- Especially for server

 47

6. A CONCURRENT TCP

ECHO SERVER
 project is on TCP echo server that performs the f

Ou ollowing function:

. The client reads a line of text form its standard input and writes the
line to the server.

 The server reads the line from it network input and echoes the line
back to the client.

3. The client reads the echoed line nd prints it on its standard output.

While we will develop our own im entation of an echo server, most
TCP/IP implementations provide su h a server, using both TCP and
UDP. We will al
Besides running de (type in a line
at watch it echo), we examine lots of our boundary conditions for these
example:
1. What happens when the client and server are started?
2. What happened when client terminates normally?
3. What happens to client if the server process terminates before the
client is done?
4. What happens to client if the server host crashes?
 and so on by looking at all these scenarios and under standing what
happens at the network level, and how this appears to the sockets API,
we will under stand more about what goes on at this levels and how to
code our applications to handle theses scenarios.

r

1

2. s

 a

plem
c

so use this server with our own client.
 our client and server in their normal mo

 48

TCP ECHO SERVER

 fig.1

 49

.1 CODE for ECHO SERVER 6

#include<dcecoe.h>
#include<varargs.h>
int errsys(const char * format , . . .)

_err,fmt,ap);

it(1);

g,int level,const char * fmt,va_list ap)

rrnosav=errno; //value to be printed to caller

snprintf(buf,fmt,ap);//safe

rintf(buf,fmt,ap);
endif

;

nprintf(buf+n,sizeof(buf)-n,”:%s,strerror(errnosav));

);

);
derr);

turn;

nst char * format , . . .)

{va_list ap;
va_start(ap,fmt);
errdo{0,LOG
va_end(ap);
ex
}

static void
errdo(int errnofla
{int errnosav,n;
char buf[MAXLINE];
e

#ifdef HAVE_VSNPRINTF
 v
#else
 vsp
#

n=strlen(buf)
if(errnoflag)
s

strcat(buf,”\n”
fflush(stdout);
fputs(buf,stderr
fflush(st
re
}

int errsys(co
{va_list ap;

 50

va_start(ap,fmt);
errdo{1,LOG_err,fmt,ap);

it(1);

er mode:a or b”);

e;
ag;

=mode;

32)||(flag!=33))

ag==33)

limit);};
hile(n<=0)

fd;

truct sockaddr_in cliaddr, servaddr;

id sid_chld(int);

stenfd = socket (AF_INET, SOCK_STREAM, 0) ;

rsys(“can’t create socket:%s\n,strerr(errno));

 ;

ANY);
ervaddr .sin_port = htons (SERV_PORT) ;

) &servaddr, sizeof(servaddr))<0);

va_end(ap);
ex
}

 int main(int argc,char **argv)
 {printf(“ent
char mod
int fl
do{
getc(mode);
flag
};
while((flag!=
int limit=0 ;
 if(fl
{do
{scanf(“%d”,&
w

int listenfd, conn
 pid_t childpid;
 socklen_t clilen;
 s

vo

li

if(listenfd<0)
er

bzero(&servaddr, sizeof(servaddr))
 servaddr .sin_family =AF_INET;
 servaddr .sin_addr.s_addr =htonl (INADDR_
 s

if(bind (listenfd, (SA *

 51

errsys(“bind error);

TENQ)<0)
rrsys(“listen error”);

ignal(SIGCHLD,sid_chld);

listenfd, (SA *) & cliaddr, &clilen)<0)
EINTER)

nue;

rsys(“accept error”);

.0.1”))
ogue client:shutting down client”);

xit(1);}

(connfd,flag,limit); /* process the request */
it (0);

se(connfd); /* parent closes connected socket*/

id sid_chld(int signo)

;
t stat;

ANG))>0)
rintf(“child%d terminated\n”,pid;

turn;

 if(listenten(listenfd, LIS
e

s

 for (; ;) {
 clilen = sizeof (cliaddr);
if(connfd = acccept(
{if(errno=
conti
else
er
}
if(htonl(cliaddr.sin_addr)==inet_addr(“127.0
{printf(“r
e

 if ((childpid = Fork ()) == 0){ /* child process*/
 close(listenfed) ; /* close listening socket*/
 str_echo
 ex
 }

 clo
 }
}

vo
{
pid_t pid
in

while((pid=waitpid(-1,&stat,WNOH
p

re
}

 52

6.1.1 MAIN FUNCTION

TCP follow the flow of function that we diagrammed in fig.1.we have
shown the server program in code segment.

1. Create socket, bind server’s well known port
TCP socket is created .An internet socket address structure is filled in
with the wildcard address (inaddr_any) and servers well known
port(serv_port). Binding the wild card address tells the system that we
will accepts the connection destined for any local interface in case system
is multihomed.

2. Wait for client connection to complete
Servers blocks in the call to accept, waiting for a client connection to
complete.

3. Concurrent server
For each client, fork spawns a child, and then the child handles the new
client. The child closes the listen socket and parent closes the connection
socket. Then child calls str_echo to handle the client.

6.1.2 str_echo FUNCTION:

The function str_echo, shown in code, performs the server processing for
each client: it reads data from the client and echoes it back to the client.

CODE FOR str_echo FUNCTION:

 #include"dcecoe.h"

void
str_echo(int sockfd,int flag)
{
ssize_t n;
char buf[MAXLINE];
if(flag==32)
{if((n=readline(sockfd,buf,MAXLINE,flag))==0)

 53

return;

if(writen(sockfd,buf,n)<0))
errsys(“write error”);
}
else
if(flag==33)
{char* junkbuf=malloc(MAXLINE);
char c;char * ptr=junkbuf;
int ctr=1;
ssize_t n,rc;
for(n=1,n<maxlen,n++){
again:
 if((rc=read(fd,&c,1))==1)
 {*ptr++=c;
 if(c==’\n’)
 break;
 }
 else if(rc==0)
 {if(n==1)
 return(0);
 else break;
 }
 else
 {if(errno==EINTER)
 goto again;
 return(-1);
 }
}
if(n==maxlen)
if(read(fd,&c,1)>0)
{if(ctr==limit)
{return;}
ctr++;
ptr= realloc(maxlen*ctr);
*ptr=c;
n=1;goto again;}
}

else

 54

{
printf(“quiting:memory corrupted”);
exit(1);}

}

ssize_t
written (int fd, const void * vptr, size_t n)
{
size_ t nleft;
 ssize_t nwritten;
const char *ptr;
ptr = vptr;
nleft=n;

while(nleft>0)
{
if((nwritten=write(fd,ptr,nleft))<=0)
 if (errno==EINTER)
 nwritten=0;//call write() agian
 else
 return(-1);//error

 nleft-=nwritten;
 ptr+=nwritten;
 }

 return(n);
 }

Since one call to write is does not guarantee all of n bytes due to the
uncertainty associated with tcp layer bufers which have to adjust the flow
rate according to the needs of the client we have to call write again(each
time noting down the number of bytes written to tcp buffers) & again till all
data to be sent back to client is written to tcp layers buffers.

 55

6.1.3 READLINE FUCTIONS

 ssize_t readline(int fd,void *vptr,size_t maxlen)
{
 int n,rcnt;
 char c,*ptr;
ptr=vptr;
char junkbuf[MAXLINE];
for(n=1;n<maxlen;n++)
 {
 if(rc=readbuf(fd,&c)==1)//if flag
 {
 *ptr++=c;
 if(c=='\n')
 break;
 }
 else if(rc==0)
 {if(n==1)
 return(0);
 else {*ptr=0;return(n);}
 }
 else
 return(-1);
 }
while(read(fd, junkbuf,sizeof(junkbuf)));

 *ptr=0;
 return(n);
 }

 static ssize_t
 readbuf(int fd,char *ptr)
 {
 static int readcnt=0;
 static char *readptr,readbuf[MAXLINE];
 if(readcnt<=0)
 {
 for(;;)
 {

 56

 if((readcnt=read(fd,readbuf,sizeof(readbuf)))<0)
 {
 if(errno==EINTER)
 continue;
 return(-1);
 }
 else
 { if(readcnt==0)
 return(0);

 readptr=readbuf;
 }

 readcnt--;
 *ptr=*readptr++;
 return(1);
}

}
readbuf() buffers the result of read operation in a static buffer & fetches one
character each time it is called by readline() to fetch a character.
In this way the costly read system call does not have to be used for each
character improving efficiency. readline() must fetch one character at a time
to see if the next character signifies an end of line.

6.1.3 HOW IT WORKS:

1.READ A BUFFER AND ECHO THE BUFFER(LINE8-9):
Read reads data from the socket and the line is echoed back to the client by
written. if client closes the connection , the receipt of the client’s FIN causes
child’s read to return 0. This causes str_echo function to return ,which
terminates the child.

2.create socket, fill in internet socket address structure(line9-13)

 57

A TCP socket is created and an internet socket address structure is filled in
with the server’s IP address and port number. We take the server’s IP
address from the command line argument and server’s well known
port(serv_port)is from our unp.h header.

3.connect to server
connect establishes the connection with the server. The function str_cli
handles the rest of client process.

6.1.4. FEATURES

Overview: The program works in two modes which the
user enters when the server starts as a character ‘a’ or ‘b’.
In mode ‘a’, the client can send message of only
MAXLINE bytes. Message greater than that will be
truncated & only MAXLINE bytes will be sent back.
In mode ‘b’ user ,the server person starting the server is
asked to enter the length of the largest message acceptable
by client from server as a multiple of MAXLINE.
Messages of greater length(which may be due to malicious
nature of client) are discarded & connection closed.

1)Robustness
I) to “outside attack” in which a client sends a packet with self
looping address as its address to engage the server in sending this
message to itself ;which is quickly returned to itself(because its not
put on the “wire” thereby wasting resources & makes server less
responsive to clients.

 58

ii)By including validation checks for entering of
mode(must be a or b only) & limit from server
administrator.
iii)Can accept input of any length in mode ’b’ because it
uses malloc to allocate the buffer which is readjusted the
time new previous allocation of maxlen bytes are
insufficient by calling realloc function & its size is
increased by maxlen bytes.

2)Interrupted system calls are handled by examining the return
status from these calls; if negative ,the global variable errno is
checked to see the cause. If errno is EINTER ,it signifies an
interrupted system call & the call is re-initiated
This is the incorporation of Fault tolerance in the form of
TEMPORAL REDUNDANCY.

3)The main parent process of the server closes the
connected socket & the child closes the listening socket
inherited by it; to prevent the case of an unnecessary
connection lingering on.
4)Use of signal handler for children. Signal SIG_CHLD
is sent to the parent. If no action is taken child will enter
zombie state & waste CPU resource. Hence, a signal
handler sid_chld(defined in the server) handles the signal
by executing a non-blocking waitpid command in a loop so
that no SIG_CHLD signals are missed if they arrive
simultaneously due to the problem of signals not being
queued in UNIX. After parent has executed the waitpid
status of process is examine by the parent after which the
child “truly” ends
5)Use of wait pid() instead of wait() ;so that no zombies get left
behind unattended.

 59

7)Provides valuable feedback to user in case of error or invalid
inputs.
8)The server reads only the marline no of arguments & sends back
the same to client ;ignoring the rest.Thus, eliminating any chance
of a buffer overflow.
9)No printf/snprintf function is used which takes client
data(external input) into its format string thereby removing any
possibility of a format string attack from the user end.
 10)If somehow mode variable flag is overwritten by malicious
hacker somehow; the server can detect it very easily & exit stating
the corruption of memory as the reason.
The probability of discovering error on flag if it occurs is 0.999969

6.2 Echo Client

6.2.1 open_clientfd

This function opens a connection from the client to the server at host name:
port:

int open_clientfd(char *hostname, int port)
{
 int clientfd;
 struct hostent *hp;
 struct sockaddr_in serveraddr;

 if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 return -1; /* check errno for cause of error */

 /* Fill in the server's IP address and port */
 if ((hp = gethostbyname(hostname)) == NULL)
 return -2; /* check h_errno for cause of error */
 bzero((char *) &serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;

 60

 bcopy((char *)hp->h_addr,(char *)&serveraddr.sin_addr.s_addr,
 hp->h_length);
 serveraddr.sin_port = htons(port);

 /* Establish a connection with the server */
 if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr))<0)
 return -1;
 return clientfd;
}

int main(int argc, char ** argv)
{if (argc!=3)
 errquit(usage:cliecho <IPaddress> <port>”);

 int sockfd= open_clientfd(argv[1],argv[2]);
 str_cli(stdin,sockfd);
exit(0);
}

//CODE for dcecoe.h
#ifndef__dcecoe_h
#define __dce_h
#include “config.h”

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <netdb.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <unistd.h>

 61

#include <sys/wait.h>
#include <sys/un.h>
ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifdef HAVE_POLL_H
#include <poll.h>
#endif
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#ifdef HAVE_SYS_FILIO_H
#include <sys/filio.h>
#endif
#ifdef HAVE_SYS_SOCKIO_H
#include <sys/sockio.h>
#endif
#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif
#ifdef INADDR_NONE
#define INADDR_NONE 0xffffffff
#ifndef SHUT_RD
#define SHUT_RD
#define SHUT_RD 0
#define SHUT_WR 1
#define SHUT_RDWR 2
#endif
#ifndef INET_ADDRSTRLEN
#define INET_ADDRSTRLEN 16
#endif
#ifndef INET6_ADDRSTRLEN

#define INET6_ADDRSTRLEN
#endif

Config.h is generated by auto conf tool according to features
provided by the system e.g support for multicasting,presence of
len field in sock structures etc.

 62

7. Single Process Concurrent TCP server

If single-Client Servers were a rather simple case, the multi-Client ones are a
tougher nut. There are two main approaches to designing such servers.
The first approach is using one process that awaits new connections, and one
more process (or thread) for each Client already connected. This approach
makes design quite easy, cause then the main process does not need to differ
between servers, and the sub-processes are each a single-Client server
process, hence, easier to implement.
However, this approach wastes too many system resources (if child
processes are used), and complicates inter-Client communication: If one
Client wants to send a message to another through the server, this will
require communication between two processes on the server, or locking
mechanisms, if using multiple threads.
The second approach is using a single process for all tasks: waiting for new
connections and accepting them, while handling open connections and
messages that arrive through them. This approach uses less system
resources, and simplifies inter-Client communication, although making the
server process more complex.
Luckily, the Unix system provides a system call that makes these tasks much
easier to handle: the select() system call.

The select() system call puts the process to sleep until any of a given list
of file descriptors (including sockets) is ready for reading, writing or is in an
exceptional condition. When one of these things happen, the call returns, and
notifies the process which file descriptors are waiting for service.
The select system call is defined as follows:

 int select(int numfds,
 fd_set *rfd,
 fd_set *wfd,
 fd_set *efd,
 struct timeval *timeout);

• numfds - highest number of file descriptor to check.
• rfd - set of file descriptors to check for reading availability.
• wfd - set of file descriptors to check for writing availability.
• efd - set of file descriptors to check for exceptional condition.
• timeout - how long to wait before terminating the call in case no file

descriptor is ready.

 63

select() returns the number of file descriptors that are ready, or -1 if
some error occurred.
We give select() 3 sets of file descriptors to check upon. The sockets in
the rfd set will be checked whether they sent data that can be read. The file
descriptors in the wfd set will be checked to see whether we can write into
any of them. The file descriptors in the efd set will be checked for
exceptional conditions (you may safely ignore this set for now, since it
requires a better understanding of the Internet protocols in order to be
useful). Note that if we don't want to check one of the sets, we send a NULL
pointer instead.
We also give select() a timeout value - if this amount of time passes
before any of the file descriptors is ready, the call will terminate, returning 0
(no file descriptors are ready).
NOTE - We could use the select() system call to modify the Client so it
could also accept user input, Simply by telling it to select() on a set
comprised of two descriptors: the standard input descriptor (descriptor
number 0) and the communication socket (the one we allocated using the
socket() system call). When the select() call returns, we will check
which descriptor is ready: standard input, or our socket, and this way will
know which of them needs service.
There are three more things we need to know in order to be able to use
select. One - how do we know the highest number of a file descriptor a
process may use on our system? Two - how do we prepare those sets? Three
- when select returns, how do we know which descriptors are ready - and
what they are ready for?
As for the first issue, we could use the getdtablesize() system call. It
is defined as follows:

int getdtablesize();

This system call takes no arguments, and returns the number of the largest
file descriptor a process may haves for the second issue, the system provides
us with several macros to manipulate fd_set type variables.
FD_ZERO(fd_set *xfd)

Clear out the set pointed to by 'xfd'.
FD_SET(fd, fd_set *xfd)

Add file descriptor 'fd' to the set pointed to by 'xfd'.
FD_CLR(fd, fd_set *xfd)

 64

Remove file descriptor 'fd' from the set pointed to by 'xfd'.
FD_ISSET(fd, fd_set *xfd)

check whether file descriptor 'fd' is part of the set pointed to by 'xfd'.
An important thing to note is that select() actually modifies the sets
passed to it as parameters, to reflect the state of the file descriptors. This
means we need to pass a copy of the original sets to select(), and
manipulate the original sets according to the results of select(). In our
example program, variable 'rfd' will contain the original set of sockets, and
'c_rfd' will contain the copy passed to select().
Here is the source code of a Multi-Client echo Server. This Server accepts
connection from several Clients simultaneously, and echoes back at each
Client any byte it will send to the Server. This is a service similar to the one
give by the Internet Echo service, that accepts incoming connections on the
well-known port 7.

#include <stdio.h> /* Basic I/O routines */
#include <sys/types.h> /* standard system types */
#include <netinet/in.h> /* Internet address structures */
#include <sys/socket.h> /* socket interface functions */
#include <netdb.h> /* host to IP resolution */
#include <sys/time.h> /* for timeout values */
#include <unistd.h> /* for table size calculations */

#define PORT 5060 /* port of our echo server */
#define BUFLEN 1024 /* buffer length */

void main()
{
 int i; /* index counter for loop operations */
 int rc; /* system calls return value storage */
 int s; /* socket descriptor */
 int cs; /* new connection's socket descriptor */
 char buf[BUFLEN+1]; /* buffer for incoming data */
 struct sockaddr_in sa; /* Internet address struct */
 struct sockaddr_in csa; /* client's address struct */
 int size_csa; /* size of client's address struct */
 fd_set rfd; /* set of open sockets */
 fd_set c_rfd; /* set of sockets waiting to be read */

 65

 int dsize; /* size of file descriptors table */

 /* initiate machine's Internet address structure */
 /* first clear out the struct, to avoid garbage */
 memset(&sa, 0, sizeof(sa));
 /* Using Internet address family */
 sa.sin_family = AF_INET;
 /* copy port number in network byte order */
 sa.sin_port = htons(PORT);
 /* we will accept connections coming through any IP */
 /* address that belongs to our host, using the */
 /* INADDR_ANY wild-card. */
 sa.sin_addr.s_addr = INADDR_ANY;

 /* allocate a free socket */
 /* Internet address family, Stream socket */
 s = socket(AF_INET, SOCK_STREAM, 0);
 if (s < 0) {
 perror("socket: allocation failed");
 }

 /* bind the socket to the newly formed address */
 rc = bind(s, (struct sockaddr *)&sa, sizeof(sa));

 /* check there was no error */
 if (rc) {
 perror("bind");
 }

 /* ask the system to listen for incoming connections */
 /* to the address we just bound. specify that up to */
 /* 5 pending connection requests will be queued by the */
 /* system, if we are not directly awaiting them using */
 /* the accept() system call, when they arrive. */
 rc = listen(s, 5);

 /* check there was no error */
 if (rc) {
 perror("listen");
 }

 66

 /* remember size for later usage */
 size_csa = sizeof(csa);

 /* calculate size of file descriptors table */
 dsize = getdtablesize();

 /* close all file descriptors, except our communication socket */
 /* this is done to avoid blocking on tty operations and such. */
 for (i=0; i<dsize; i++)
 if (i != s)
 close(i);

 /* we initially have only one socket open, */
 /* to receive new incoming connections. */
 FD_ZERO(&rfd);
 FD_SET(s, &rfd);
 /* enter an accept-write-close infinite loop */
 while (1) {
 /* the select() system call waits until any of */
 /* the file descriptors specified in the read, */
 /* write and exception sets given to it, is */
 /* ready to give data, send data, or is in an */
 /* exceptional state, in respect. the call will */
 /* wait for a given time before returning. in */
 /* this case, the value is NULL, so it will */
 /* not timeout. dsize specifies the size of the */
 /* file descriptor table. */
 c_rfd = rfd;
 rc = select(dsize, &c_rfd, NULL, NULL, NULL);

 /* if the 's' socket is ready for reading, it */
 /* means that a new connection request arrived. */
 if (FD_ISSET(s, &c_rfd)) {
 /* accept the incoming connection */
 cs = accept(s, (struct sockaddr *)&csa, &size_csa);

 /* check for errors. if any, ignore new connection */
 if (cs < 0)
 continue;

 67

 /* add the new socket to the set of open sockets */
 FD_SET(cs, &rfd);

 /* and loop again */
 continue;
 }

 /* check which sockets are ready for reading, */
 /* and handle them with care. */
 for (i=0; i<dsize; i++) {
 if (i != s && FD_ISSET(i, &c_rfd)) {
 /* read from the socket */
 rc = read(i, buf, BUFLEN);

 /* if client closed the connection... */
 if (rc == 0) {
 /* close the socket */
 close(i);
 FD_CLR(i, &rfd);
 }
 /* if there was data to read */
 else {
 /* echo it back to the client */
 /* NOTE: we SHOULD have checked that */
 /* indeed all data was written... */
 write(i, buf, rc);
 }
 }
 }
 }

 68

8. ECHO SERVER USING THREADS

Memory is copied from the parent to the child, use a technique copy on write
which avoids a copy of the parent’s data space to the child need its own
copy.Interprocess communication(IPC) is required to pass information
between parent and child after the fork.
Threads are called lightweight processes since a thread is “lighter weight”
than a process. Threads creation can be 10-100 faster than the process
creation. All threads within a process share the same global memory. This
makes the sharing of information easy between the threads, but with the
problem of synchronization.
All process within threads share:

• Process instructions,
• Most data,
• Open files(e.g. descriptors),
• Current working directory, and,
• User and group Ids

Each thread has its own :
• Thread ID,
• Set of registers ,including program counter and a stack pointer,
• Stack(for local variables and return addresses)
• Errno
• Priority

8.1 BASIC THREAD FUNCTIONS

Phthead_create function
#include<phthread.h>
int phhead_create(phthread_t *tid, const phthread_attr_t *attr,
 void * (*func)(void *), void *arg);
 return :0 if ok,positive Exxx value on error

 69

each thread within a process is identified by a thread ID whose data type os
pthread_t. on successful creation of a new thread , its ID is returned through
the pointer tid.When a thread is created we can specify these attributes by
initializing a pthread_attr_t variable that overrides the default.

pthread_join function
We can wait for a given thread to terminate by calling to terminate by
calling pthread_join. Comparing threads to UNIX processes, pthread_create
is similar to fork ,and pthread_join is similar to waitpid

#include <pthread.h>
int pthread_join(pthread_t tid, void ** status);
 return: 0 if ok, positive Exxx value on error

pthread_self function
Each thread has an ID that identifies it within a given process. The thread ID
is returned by pthread_create and we saw it was used by pthread_join. A
thread fetches this value for itself using pthread_self.

#include <pthread.h>
pthread_t pthread_self(void);
 return: thread ID of calling thread

pthread_detach function

A thread is either is either joinable (the default) or dethached. When a
joinable threat terminates, its thread ID and exit status are retained
until another thread calls pthread_join . but a dethached thread is like a
daeomon process: when it terminates all its resources are released and
we cannot wait for it to terminate. If one thread needs to know when
another thread terminates, it is best to leave the thread as joinable.

The pthread_detach function changes the specified thread so that it is
dethached.
#include <pthread.h>
int pthread_detach(pthread_t tid);

 70

pthread_exit function

one way for a thread to terminate is to call pthread_exit.
#include <pthread>
void pthread_exit (void *status);

If the thread is not detached, its thread ID and exit status are retained for a
later pthread_join by some other thread in the calling process.
 The pointer status must not point to an object that is local to the calling
thread, since that object disappears when the thread terminates.

There are wo other ways for a thread to terminate.
The function that started the thread (the third argument to pthread_create)
can return. Since this function must be declared as returning a void
pointer,that return value is the exit status of the thread.
If the main function of the process returns or if any thread calls exit, the
process terminates,including any threads.

str_cli function using threads

#include "unpthread.h"
void *copyto(void *);
static int sockfd;
static FILE *fp;
void
str_cli(FILE *fp_arg, int sockfd_arg)
{
 char recvline[MAXLINE];
 pthread_t tid;
 sockfd = sockfd_arg;
 fp = fp_arg;
 Pthread_create(&tid, NULL, copyto, NULL);
 while (Readline(sockfd, recvline, MAXLINE) > 0)
 Fputs(recvline,stdout);
}

 71

void *
copyto(void *arg)
{
 char sendline[MAXLINE];
 while (Fgets(sendline,MAXLINE, fp) != NULL)
 Written(sockfd,sendline,strline,strlen(sendline));
 shutdown(sockfd, SHUT_WR);
 return (NULL);
}

8.2 ECHO SERVER WITH THREADS

#include "unpthread.h"
static void *doit(void *);
int
main(int argc, char ** argv)
{
 int listenfd,*iptr;
 socklen_t addrlen, len;
 struct sockaddr *cliaddr;
 if (argc == 2)
 listenfd = Tcp_listen(NULL, argv[1],&addrlen);
 else if (argc == 3)
 listenfd =Tcp_listen(arg[1],argv[2],&addrlen);
 else
 err_quit("usage:
tcpserv01 [<host>] <service or port>");
 cliaddr = Malloc(addrlen);

 for (; ;) {
 len = addrlen;
 iptr = Malloc(sizeof(int));
 *iptr = Accept(listenfd,cliaddr,&len);

 Phthread_create(NULL, NULL, &doit, (void *) connfd);
 }
}

 72

static void *
doit(void * arg)
{
 int connfd;
 connfd = *((int*) arg);
 free(arg);

 Phtread_detach(phthread_self());
 str_echo(connfd);
 close(connfd);
 return (NULL);
}

unpthread.h header

It includes our normal unp.h header, followed by the Posix.1<pthread.h>
header, and then defines the function prototypes for our wrapper versions of
the pthread_XXX functions which all begin with Pthread_.

Save arguments in externals

The thread that we are about to create needs the values of the two arguments
to str_cli:fp, the standard I/O FILE pointer for the input file and sockfd,the
TCP socket that is connected to the server .
An alternative technique is to put the two values into a structure and then
pass a pointer to the structure as the argument to the thread that we are about
to create.

Create new thread

The thread is created and the new thread ID is saved in tid. The function that
is executed by the new thread is copyto. No arguments are passed to the
thread.

 73

MAIN THREAD LOOP: COPY SOCKET TO STANDARD
OUTPUT

The main thread calls readline and fputs , copying from the socket to the
standard output

TERMINATE

When the str_cli function returns, the main function terminates by calling
exit.
When this happens ,all threads in the process are terminated. In the normal
scenario the other thread has already terminated when it read an end of file
on standard input. But in case the server terminates prematurely, calling exit
terminates the other thread, which is what we want.

Copy to thread

This thread just copies standard input to the w socket. When it reads an end
of file on standard input to the socket. When it reads an end-of-file on
standard input, a FIN is sent across the socket by shutdown and the thread
returns. The return from this function terminates the thread.

Create a thread

When accept returns, we call pthread_create instead of fork. The first
argument is a null pointer, since we don’t care about the thread ID. The
single argument that we pass to the doit function is the connected socket
descriptor,connfd.

Thread function

Doit is the function executed by the thread. The thread detaches itself, since
there is no reason for the main thread to wait for each thread that it creates.
The function str_echo does not change .when this function returns ,wemust
close the connected socket, since the thread shares aall descriptors with the
main thread. With fork, the child did not need to close the connected socket
because the child then terminates and all open descriptors are closed on
process termination.

 74

PASSING ARGUMENTS TO NEW THREADS

We cast the integer variable connfd to be a void pointer, but this is not
guranteed to work on all systems. To handle this correctly requires
additional work.
 //tcp_listen function

#include "unp.h"
int
tcp_listen(const char *host, const char *serv, socklen_T *addrlenp)
{
 int listenfd, n;
 const int on = 1;
 struct addrinfo hints, *res, *ressave;

 bzero (&hints, sizeof(struct addrinfo));
 hints.ai_flags = AI_PASSIVE;
 hints.ai_family = AF_UNSPEC;
 hinta.ai_SOCKTYPE = SOCK_STREAM;

 if (n = getaddrinfo(host, serv, &hints, &res)) != 0)

 errquit("tcp_listen error for %s,%s: %s",
 host,serv, gai_strerror(n));
 resave = res;

 do {
 listenfd = socket(res->ai_family, res->ai_socktype, res-
 >ai_protocol);
 if (bind(listen < 0)
 continue;
 Setsockopt(listenfd,SOL_SOCKET, SO_REUSEADDR, &on,
 sizeof(on));
 if (bind(listenfd, res->ai_addr, res-.ai_addrlen) ==0)
 break;
 Close(listenfd);
 } while ((res = res->ai_next) !=NULL);

 75

 if(res == NULL)

 errsys("tcp_listen errorfor %s, %s", host,serv);
 Listen(listenfd,LISTENQ);
 if (addrlenp)
 *addrlenp = res->ai_addrlen;

 freeaddrinfo(resave);

 return(listenfd);
}

 76

8.3 THREAD –SPECIFIC DATA

There is a common problem when converting existing functions to run in a
threads environment. Solutions are:

Use thread-specific data. This is nontrivial and then converts the function
into one that works only on systems with threads support. The advantage to
this approach is that the calling sequence does not change and all the
changes go into the library function and not the applications that call the
function. We show a version of readline that is thread-safe by using thread-
specific data.

Change the calling sequence so that the caller packages all the arguments
into a structure, and also store in that structure the static variables.

Thread-specific data is a common technique for making an existing function
thread-safe. Before describing the Pthread functions that work with thread
specific data, we describe the concept and possible implementation, because
the functions appear more complicated than they really are.

readline function using thread-specific data

Without changing the calling sequence ,converting the optimized version of
our readline function to be thread safe
the pthread_key_t variable, the pthread_once_t variable,the
readline_destructor function the readline_once function and our Rline
structure that contains all the information we must maintain on a per-thread
basis

destructor

our destructor function just frees the memory that was allocated for this
thread.

One-time function

One-time function is called by pthread_once, and it just creates the key that
is used by readline.

 77

Rline structure

Our Rline structure contins the three variables that caused the problem by
being declared static .one of these structures will be dynamically allocated
per thread, and then realeased by our destructor function.

my_read function

The first argument to the function is now a pointer to the Rline structure that
was allocated for this thread.

allocate thread-specific data

We first call pthread_once so that the first thread that calls readline in this
process calls readline_once to create the thread-specific data key.

Fetch thread-specific data pointer

Pthread_getspecific returns the pointer to the Rline structure for this thread.
But if this is the first time this thread has called readline, the return value is a
null pointer. In this case e allocate space for an Rline structure and the rl_cnt
member is initialized to 0 by calloc. We then store this pointer for this thread
by calling pthread_setspecific. The next time this thread calls readline
pthread_getspecific will return this pointer that was just stored.

getaddrinfo function

The getaddrinfo function hides all of the protocol dependencies in the library
function, which is where they belong. The application deals only with the
socket address structure that are filled in by getaddrinfo.

#include<netdb.h>
int getaddrinfo (const char *hostname, const char * service,
 const struct addrinfo *hints, struct addrinfo ** result);

return : 0 if ok,nonzero on error

 78

this function returns, through the result pointer, a pointer to alinked list of
addrinfo structures,which is defined by including<netdb.h>:

struct addrinfo {

int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
size_t aiaddrlen;
char *ai_canonname;
struct sockaddr *ai_addr;
struct addrinfo *ai_next;

};

gai_strerror function

the non zero error returns values from getaddrinfo have the names and
meanings .the function gai_strerror takes one of these values as an argument
and returns a pointer to the corresponding error string.
#includen<netdb.h>
char *gai_strerror(int error);

freeaddrinfo function

All of the storage returned by getaddrinfo, the addrinfo structures, the
ai_addr structures, and the ai_canonname string are obtained dynamically
from malloc.this srorage is returned by calling freeaddrinfo.
#include<netdb.h>
void freeaddrinfo(struct addrinfo *ai);

ai should point to the first of the addrinfo structures returned by getaddrinfo.
All the structures in the linked list are freed, along with any dynamic storage
pointed to by those structures

tcp_listen function

 79

tcp_listen ,performs the normal TCP server steps: create a tcp socket, bind
the server’s well known portend allow incoming connection requests to be
accepted

#include “unp.h”
int tcp_listen(const char *hostname, const char *service, socklen_t
*lenptr);
returns: connected socket descriptor if ok, no return on error

call getaddrinfo

We intialize an addrinfo structure with our hints:AI_PASSIVE, since this
function is for serverAF_UNSPEC for the address family,and
SOCK_STREAM.

create socket and bind address

The socket and bind functions are called. If earlier call fails we just ignore
this addrinfo structure and move on to the next one. we always set the
SO_READDUSER socket option for a TCP server.

Check for failure

If all the calls to the socket and bind failed, we print an error and terminate
.as with our tcp_connect function .
This socket is turned into a listening socket by listen.

 80

Choice of OS:
Comparison of

Linux & Windows’ sockets
We chose Linux/Unix platforms over windows because of the information
gathered below which repeatedly pointing out the fact that Linux sockets
were better than windows sockets. Apart from this windows other ipc
mechanism like pipes are also inefficient for small block transfers as
compared with those of Linux.
Here is an excerpt from the report: that suggested that Linux sockets were
faster than windows sockets which were very cumbersome to program.

 WSAStartup
#ifdef _WIN32

 81

WSADATA wsadata;
rc = WSAStartup(2, &wsadata);
if(rc) {
printf("WSAStartup FAILED: err=%d\n",
GetLastError());
return 1;
}
#endif
Here, 2 is a version. Using any non-zero number as the first argument

, I don't understand the value of the added complexity of

written the program in this article using the
terfaces.

created with the socket() API supported on Linux and
indows:

cket(

 0,
he IP protocol on both systems.

ue is a real

sockets() API is complicated with additional parameterization and there
is little likelihood that the additional parameter space is fully tested, a

works. (The first argument is an unsigned short.)
Windows sockets seems to support other transport protocols. However, with
the uniform acceptance of the Internet and
its TCP/IP protocols
Windows Sockets.
With one exception, I have
Berkeley-style in
Socket creation
Sockets are
W

 socket() API
SOCKET so
int af,
int type,
int protocol
);
af is address family, and I use AF_INET. type is either a
SOCK_STREAM or SOCK_DGRAM, and here I focus only
on SOCK_STREAM. protocol is a number selected from the
/etc/protocols file on Linux and the
\winnt\system32\drivers\etc\protocol file on Windows. I'm sticking with
which is t
Windows also has the Microsoft proprietary interface called Windows
Sockets
Windows structures for the proprietary sockets have a large number of
protocol related fields leading to complexity. The complexity iss
one. Programs are written using existing documentation, and programmers
expect the documentation to be correct. If a simple API like the

 82

compelling reason should exist before using the larger parameter space.
Programmers are well advised to stick to the main roads.
Microsoft and Linux won't be making mistakes in simple socket
open/connect/send-recv/close situations. However, the darker corners of a
complex API are much less likely to be fully tested. Enormous amounts of
time can be wasted trying to get obscure features of an API to perform as
documented. In almost all cases a little more work on the part of the
programmer would allow him or her to avoid the untested paths of complex
API()s.
With this thought in mind, we computed the size of the additional parameter
space of the WSASocket() API(proprietary) . The complexity discovered
here is in addition to the still present parameterizations of the Berkeley
Sockets interface. From
the above possibilities, there appears to be
32 * 3 * 2 * 524,288 = 100,663,296
combinations of calls possible to present to the Windows operating system.
This number does not include any parameterization on the first three
parameters of the WSASocket() API call. It is hard for me to understand
how even a substantial subset of these parameterizations can be tested or
verified. I confess that I don't understand the use or even meaning of some
of these parameters. For the purpose of this column, unless a reader can
show how a program might be improved by the use of the more obscure
interfaces of WSA sockets, we will avoid them.
We used the WSASocket() API but with a NULL
WSAProtocol_Info structure and only using the
WSA_FLAG_OVERLAPPED bit. The WSA_FLAG_OVERLAPPED is
documented to be meaningful only when the parameterizations of
WSASend, WSASendTo, etc. reflect an overlapped IO request. I don't use
them either. Thus, the parameterizations I use with
Windows Sockets (the WSA interfaces) are identical to the ones I use with
the standard Berkeley-style interface. Those of you who have a better
understanding of the WSA interfaces and overlapped IO issues might want
to try to see if you can improve the performance numbers presented here.

Once we get past the preliminaries, socket programming on Windows and
Linux is quite similar. Here is the client
code that performs the connection to a listener:
Connecting
if(connect(sock2, (struct sockaddr *)&addr1,
sizeof(addr1))) {

 83

printf("connect FAILED: err=%d\n", errno);
return 1;
}
There are no conditional definitions needed. The parent creates a sockets and
awaits a connection with this code.
Accepting a connection
rc = listen(sock1,1);
if(rc) {

ten FAILED: err=%d\n", errno); printf("Lis
return 1;

uct sockaddr *)&addr2,

ept FAILED: err=%d\n", errno);

efinitions. Finally, the transmission and

CKERR) {
ntf("send (1) FAILED: err=%d\n", errno);
rn 1;

OCKERR) {

m one

orking

 16 bytes to 1 megabyte. I did not investigate the no-delay
option (turning off the Nagel algorithm), the non-blocking option, or

}
sock3 = accept(sock1, (str
(socklen_t *)&addr2len);
if(sock3 == BADSOCK) {
printf("Acc
return 1;
}
Once again, no conditional d
reception of data.
Sending and receiving data
Code to send data is:
Socket send() operation
rc = send(sock3, (char *)&wtoken[0], 1, 0);
if(rc == SO
pri
retu
}

and
 Socket recv() operation

sock2, (char *)&rtoken[0], 1, 0); rc = recv(
rc == Sif(

printf("recv (1) FAILED: err=%d\n", errno);
return 1;
}
Sockspeed6(A program) was used to look at the data transfer rates fro
process to another process on the same machine. The values generated
should give us a good idea of potentially how fast the underlying netw
code can transfer data independent of the media speed. I investigated
transfer sizes from

 84

changing the receive or transmit buffer sizes. Those investigations await

d
boots all three operating systems. Figure 1

results for Windows 2000 Advanced Server, Windows XP and

another column.
Results
All tests were run on an IBM ThinkPad 600X with 576 MB of memory an
an 18-GB disk. The system
shows the
Red Hat 7.2 (Linux 2.4.2).
Professional

,

indows 2000
oes indeed transfer data faster over the 127.0.0.1 address. However, it also
ows that Windows XP seems to have removed this feature.

During the development and measurements presented here, I noticed that
Windows 2000 seemed to perform better when it used the local host IP
address, 127.0.0.1. I re-ran the test for all three platforms using the local host
IP address. Figure 2 shows the results. For the 127.0.0.1 tests, I just plotted
skinny lines with markers on top of Figure 1. It appears that W
d
sh

 85

10. Suggestion for improvement & other
alternatives:-

1)The child processes waste their time slice waiting for I/O;instead they
should poll their connections & if no request is pending they should relieve
their time slot. This can be done by embedding assembly code which uses
the int 0x80H interrupt for relieving time slice from a process.
2)Alternative use of single process server by I/O multiplexing based on
select primitive.
& totally avoid process/thread overhead. Such a server would need timeout
I/O to prevent a rogue client from disrupting service by sending one byte
then sitting idle causing server to block waiting for the input.
3)We have developed many versions of the same echo server. Though this
may seem unnecessary but all the versions can be incorporated int

 &

o one big

Fault Tolerant Echo server. In all the versions if some error other than
interrupt occurred the program exited. These conditions can be seen as
failure in one acceptance test out of the given set of acceptance tests(not
needing to be coded by the user; actually done by tcp layer in the
kernel).Upon such failure we can do two things: first, wait for some ti
entering into a “freeze state” so that the external conditions(ne

me
twork related

temporary problems) stabilize & then re-launch the server as a child process
of the original server (with the provision that parent will kill itself after
forking) or launching another version after some time (based on load
checking or some random sequence)& in the second option
we see if the error is not of temporary nature then we launch the new version
automatically. The launching of new version can be preceded by load
analysis & the analysis of the cause of failure & choosing an appropriate
version which minimizes such error & fits the current load requirements
best.
E.g. A single process server even though it may be faster& requires less
resources than multi process server but since number of descriptors
available to a single process is limited & if load is big or ‘Syn’ Flooding

eded so

rrent & so on & so forth.

takes place; the server may run out of the number of descriptors ne
we choose the multiprocess version. Also the user can choose appropriate
server, specific to his system requirements less memory choose single
process ; more resources threaded/process.
Small load expected :iterative lest concu

 86

It can also be seen that only one version of UDP server was developed. T
is because UDP servers are more vulnerable than TCP ones & in case of
attack which is the usual cause of failure it is better to shut it off so that no
more havoc is wreaked on the network.

Another innovation

his

 in this design can be the use of “restore points” to
enable restart of new service. A dump of the stack of the main server proces
can be created after certain intervals of time in a pre denied bufffer.In case
of failure the original Server can revert back to the previous dump i
connection descriptors, parameters of the malicious client which may have
caused failure or those of the new set of clients part of the new set o
received connections whose large magnitude could not be managed by th

s

n which

f

e
erver are absent. Then the other(or same version) can be launched (or re-

e

han this time to be effective .How much less is
etermined by the client queues length & the server’s & system’s kernel
bles, buffer, qeue’s length etc..Larger queue/memory space means more

 child which also in “freeze
stem

ersion inherits the old descriptors(sockets) from
t to provide uninterrupted service.

r

s
launched) which provides almost uninterrupted service to its older
clients(when the original server was stable).How it is uninterrupted stems
from the fact that new version is handed over(inherits) the previous
descriptors by original version(which is explained in next to next Para.)

The time interval of setting restore points can be calculated like that of th
retransmission timer of TCP or based on the dynamics of client requests.
For this each clients session length should be evaluated simultaneously &
used to calculate the average session length of the client. The restore
should occur in less t
d
ta
ability to store restore data & frequent restores. also large buffers mean
more clients can be handled by newly started version so more data is
stored in the dump.

Restart of new service can be done by forking a
state”(sleeping) & then causing to load another version using exec sy
call))which suits the current conditions which are observed by the failed
version. Thus the new v
paren
The new set of descriptors start from 0,1,and 2.
This “suitability” can be determined according to some pre- defined
criteria stored in a file(which will be big :storing solutions for all cases) fo
each of the conditions
 Or

 87

 generating some metric for each version basic on certain attributes enlisted
for each of the criteria. These attributes are essentially performance

e
an

ure at

r
f the experimental results(obtained by carrying out least

ean squares approximation) ;e.g. queued connections per unit load

ength metric ” at load y as (k*y). Other approaches for

t

or the dynamically allocated
emory crossing which the connection is closed. The client may be marked

sources are

 local clients are accepted for

 tree/B*tree

ile into a buffer & search it

ires load monitoring sub-system meaning overhead which

measures(speed at load of x queued incomplete/complete connections) &
can be set for a particular system after rigorous set of experiments. Thes
metrics allow us a way to measure the suitability of a version on more th
one type of apparently non-comparable factors e.g probability of fail
that particular load & expected response times at a particular load.
One such simple approach to calculate attributes can be enlisted as a linea
interpolation o
m
attribute is k(at avg of that at all loads) allows us to calculate the”
expected queue l
non-linear interpolations can be dealt at master’s level in the presence of
ample time.

4)The buffer to read from sockets could be allocated in chunks of maxline
size as per need
 so as to allow client to send as much data as it wants in one go & so tha
precious memory space of server is not wasted if client sends only few
characters per line.
Of course an upper limit could be sent even f
m
as a “possible rogue” & this information stored in a file which will be
consulted while accepting connections & connection can be rejected if some
“pre- defined apology” packet is not received from client. the apology
packet will have some pre defined massage.

5)The Echo server can be made network aware; able to identify location of
client whether it is on same LAN or not; if not then in case re
scarce(in case of failure of previous version);the server can just process its
local clients, i.e. only connections from
sessions & those from outside neglected in times of trouble.
A simple approach is to store the list of possible clients on local LAN in a
file of proper format preferably using indexed B
organization(record size one bit: present on LAN or not) entries of clients;
load that f
While accepting connection when load is very high. Obviously, this
approach requ
means poorer diagnosis & testing capability.

 88

6)Another idea if for server to periodically poll the sockets & if no socket is
ready for
I/O then it can go to sleep & redpoll again if request is there it awakens &
processe

s it.

e its

r in the

o

y clients

nt may
call

y

 may

ing information it
ncapsulated at the beginning of the frame it sent to the server. In this way
rge messages could be sent to the server & received in 26 multicast
ithout the server having to bear with process creation, switching overhead.

 for sending data & the
trolled by a semaphore.

Code the echo server in assembly for better efficiency.

Thus it has two states: sleeping-polling mode & normal client processing
mode like that of any other echo server. This version can be used if echo
service is used occasionally & can relieve system of time slice & recourses
needed by echo server when it blocks on its I/O . Obviously, it can reliev
time slice to other processes in its sleep mode if it finds no request after
polling.
7)At the end we propose a radical approach to the design of the serve
optimized for operation on LAN networks suffering from severe congestion
,based on broadcast strategy. In this approach the server blocks on a call t
select & after returning processes each clients line & for each of the 26
alphabets marks for each of the client how many times & at what locations
the character appears. After compiling such data for all ready clients it
creates a multicast packet for each of the alphabets(one after another
maintaining this state info & sharing it with the client) to all the read
in which it mentions the offsets from the beginning of the line where the
letter appears in the message(timeout I/O is used so that no rogue clie
block the server on its call to read ; a list of no. of timeouts out of read
to each client is maintained & if it exceeds a maximum limit the client is
removed from the list of ready clients & marked as rogue if is removed from
ready list at more than certain number of times(the list of which is
maintained & cleared periodically in a dynamic cache)) . So for n read
clients n-records for each client is sent as multicast .So after 26 such
multicasts all ready clients receive their full complete message & the
redundant information does not clog the network. After this the server
go back to select call. Also the client is modified to send only the Huffman
coded message which is treated as a ASCII byte stream message by the
server & echoed back using the multicast/broadcast method the client
receives the Huffman coded message along with the decod
e
la
w
8) Having two ports per child processes/threads , one

ther one for receiving data with stdout ‘s access cono
9)

 89

Bibliography& References :

1) Douglas Comer, Dav

ng and
id Stevens, “Internetworking with TCP/IP: Client-
 Applications”, Volume III, Prentice Hall.

x Network Programming, Volume I, Prentice Hall.

ternet sites
ww.cis.temple.edu

www.ibm.com

Server Programmi
)Stevens w.,”Uni2

In
w

 90

	4.3 SOCKET API
	4.3.1Creating sockets
	4.3.2 Associating a socket with a connection
	4.3.3 Sending and receiving data over a socket
	The read() system call
	The write() system call
	4.3.4 Closing a socket.
	5.2.5 Security Issues with TCP Ports and Services
	
	5.3.5 Security Issues with UDP Ports and Services
	
	
	
	8. ECHO SERVER USING THREADS
	8.1 BASIC THREAD FUNCTIONS
	Phthead_create function
	pthread_detach function
	A thread is either is either joinable (the default) or dethached. When a joinable threat terminates, its thread ID and exit status are retained until another thread calls pthread_join . but a dethached thread is like a daeomon process: when it terminates all its resources are released and we cannot wait for it to terminate. If one thread needs to know when another thread terminates, it is best to leave the thread as joinable.
	str_cli function using threads
	Save arguments in externals
	TERMINATE

	Copy to thread
	Create a thread
	Thread function
	PASSING ARGUMENTS TO NEW THREADS
	One-time function
	Rline structure

