
IMPLEMENTATION AND COMPARISON OF IMAGE
COMPRESSION TECHNIQUES

 A MAJOR THESIS SUBMITTED
TOWARDS THE PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

MASTER OF ENGINEERING
IN

ELECTRONICS & COMMUNICATION

Submitted By:-
 RASHMI GUPTA

ENROLL NO. : 7/E&C/2003
UNIVERSITY ROLL NO. : 3109

 Under the guidance of
Mrs. RAJESHWARI PANDEY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

DELHI COLLEGE OF ENGINEERING
UNIVESITY OF DELHI

DELHI-110042
2005

 1

CERTIFICATE

This is to certify that the thesis entitled “Implementation and Comparison of

Image Compression Techniques” being submitted by Rashmi Gupta for the

degree of Master of Engineering in Electronics & Communication in the

Department of Electronics & Communication, Delhi College of Engineering,

University of Delhi , is a record of bonafide work carried out by her under

my supervision & guidance. The matter contained in this thesis has not been

submitted elsewhere for award of any other degree .

 (Mrs. Rajeshwari Pandey) (Prof. A. Bhattacharya)
 Lecturer Head of Department
 Deptt. of Electronics & Communication Deptt. of Electronics &
communication
 Delhi College of Engineering Delhi College of Engineering
 Delhi-110042 Delhi-110042

 2

ACKNOWLEDGEMENT

I express my sincere gratitude towards Mrs. Rajeshwari Pandey, my project guide ,

for giving me an opportunity to work under her, for being a constant source of

guidance and encouragement, and for her immense patience.

I am also thankful to Head, Prof. A. Bhattacharya, for his encouragement and kind co-

operation throughout the thesis period.

I express my deep sense of gratitude to my friends for their sincere co-operation and

continued encouragement.

Last but not least, I am grateful to my mother in law, husband Dr. Anil Gupta and my

dear son Master Ashutosh Gupta for whose love and sacrifice for me I have no

words.

 (Rashmi Gupta)

07/E&C/2003

 Roll No.3108

 3

 ABSTRACT

In this thesis, a comparative study between transforms used for the compression

of still images i.e. Discrete cosine transform (DCT), Karhunen Loeve

Transform (KLT) and Discrete wavelet transform (DWT) is

presented. MATLAB software is used to generate image compression

results for algorithms using DCT, KLT and DWT.

The Karhunen Loeve Transform (KLT) is optimal transform , as it packs most of

the energy into a fewer number of frequency domain elements and it completely

de-correlates its elements but it is theoretical concept & practically very difficult

to implement as its basis functions are data dependent.

In terms of complexity involved, DCT achieves the fastest

computational performance due to fast algorithms.

Wavelet Transform has superior performance than other transforms

in terms of peak signal to noise ratio & image quality. DWT

provides higher compression ratio due to the wavelet transform

multi-resolution capability which allows it to analyze signal at

various scale and resolutions.

 4

CONTENTS

Chapter 1. Introduction …………………………………………………………….1

 1.1Gray & Color image compression………………………………………..2

 1.1.1Gray image compression………………………………..…………2

 1.1.2Color image compression…………………………………….........2

 1.2Approach to thesis …………………………………………………........2

 1.3Outline of thesis ……………………………………………………....….3

Chapter 2. Overview of Image Compression & JPEG standard……………...4

 2.1 Introduction to Image Compression…………………………….4

2.1.1 Need of Compression…………………………………….....….5

2.1.2 Classification of compression techniques………………………6

2.1.3 Image Compression Characteristics…………………………….7

2.2 Introduction of JPEG Standard ……….…………………………….…9

2.2.1 JPEG Architecture …………………………………………….10

2.2.2 Major parts of JPEG…………………………………………….11

Chapter 3. Karhunen Loeve Transform (KLT) …………………………………12

 3.1 K.L Transform of Images …………………………………………...…12

 3.2 Properties of KLT ……………………………………………………..14

 3.3 Drawbacks of KLT ……………………………………………………14

3.4 Algorithm of KLT ………………….……………………………….14

Chapter 4. Discrete Cosine Transform (DCT) …………………………………..16

 4.1 The 2-D Discrete Cosine Transform ……………………………….....17

 4.2. The 2-D Inverse Discrete Cosine Transform……...…………..18

 4.3 The 64 (8 x 8) DCT basis functions……………………… …….....19

 4.4 Properties of DCT …………………………………………….20

Chapter 5. Wavelet Transform ..……………………………………….……...21

 5

 5.1 Continuous Wavelet Transform ……………………………….……..25

 5.2 Discrete Wavelet Transform …………………………………..…….28

 5.2.1 One-Stage Filtering: Approximations and Details ……………...29

 5.2.2 Multiple-Level Decomposition …………………………………30

 5.2.3 Wavelet Reconstruction …………………………………….......31

 5.2.4 Reconstruction Filters ………………………………………......31

 5.2.5 Reconstructing Approximations and Details ……………....…...32

 5.2.6 Multi-step Decomposition and Reconstruction ………………...33

 5.2.7 Two Dimensional Discrete Wavelet Transform …………..........34

 5.2.8 Two Dimensional Inverse Discrete Wavelet Transform….....….36

Chapter 6. Simulation Results ……………………………………………….......37

 6.1 Visual results for gray image ..……………...……………………......38

 6.1.1 SNR performance …………….………….……………………47

 6.1.2 Simulation time performance ………………………….……...48

 6.2 Visual results for color image ..…………………………….………...49

 6.2.1 SNR performance ……………………………………..……….55

 6.2.2 Simulation time performance …………………………..……...56

Chapter 7 Conclusions & Scope for future work ……………………..………...57

REFRENCES ……………………………………………………………………...58

APPENDIX ………………………………………………………………………...60

 6

CHAPTER 1
INTRODUCTION

Digital images are used in many diverse applications, including multimedia

technology, digital photography, Internet viewing, image archiving and medical

imaging. With the advance development in Internet and multimedia technologies, the

amount of information handled by computers has grown exponentially over the past

decades. This information require large amount of storage space and transmission

bandwidth.

 One of possible solution to this problem is to compress the information so that the

storage space and transmission time can be reduced. Hence in order to transmit and

store digital images, the images must be compressed, otherwise each image would

require a huge amount of memory. Different Transform methods of image

compression are Discrete Wavelet Transform (DWT), Discrete Cosine Transform

(DCT), Karhunen Loeve Transform (KLT) , Discrete Fourier Transform (DFT),

Discrete Sine Transform (DST) , Hadamard Transform, Harr Transform, Slant

Transform & Singular value decomposition transform.

The energy compaction property of the DCT, KLT and DWT is well suited for image

compression since, as in most images, the energy is concentrated in the low to middle

frequencies, and the human eye is more sensitive to the low frequencies.

The optimal transform is the KLT as it packs most of the energy into a fewer no. of

frequency domain elements but it is theoretical concept & practically very difficult to

implement because its basis functions are image dependent so this complicates the

digital implementation.

The Discrete Cosine Transform (DCT) was introduced by Ahmed in 1974. DCT is a

approximation of the optimal Karhunen Love transform (KLT) with large correlation

coefficient. It has satisfactory performance in terms of energy compaction capability,

and many fast DCT algorithms with efficient hardware and software while also

having image independent basis functions.

DWT based coders have outperformed DCT coders both in terms of image quality

and higher PSNR. The most important reason why wavelet transformation is so

 7

powerful is its Multi-Resolution Analysis (MRA) capability, which allows it to

analyze signal at various scale and resolution.

In terms of complexities involved in implementing DCT and DWT, DCT achieves the

fastest computational performance due to fast algorithms.

1.1 GRAYSCALE AND COLOR IMAGE COMPRESSION

1.1.1. GRAYSCALE IMAGE COMPRESSION

A digital grayscale image is typically represented by 8 bits per pixel (bpp) in its

uncompressed form. Each pixel has a value ranging from 0 (black) to 255 (white).

Transform methods are applied directly to a two dimensional image by first operating

on the rows, and then on the columns. Transforms that can be implemented in this

way are called separable.

1.1.2 COLOR IMAGE COMPRESSION

A digital color image is stored as a three-dimensional array and uses 24 bits to

represent each pixel in its uncompressed form. Each pixel contains a value

representing a red ®, green (G), and blue (B) component scaled between 0 and 255–

this format is known as the RGB format. The PSNR is measured for each compressed

component just as for grayscale images. The three output components are reassembled

to form a reconstructed 24-bit color image (image out).

1.2 APPROACH TO THESIS :

1. Study & Evaluation of Image Compression Techniques using Discrete

Wavelet Transform, Discrete Cosine Tranform and Karhunen- Loeve

Transform.

2. Implementation of Image Compression techniques for gray images using

MATLAB software.

3. Implementation of Image Compression techniques for color images using

MATLAB software.

4. Comparison of obtained results in terms of compression ratio, peak signal to

noise ratio, human visual system & complexity involved using MATLAB

software.

 8

1.3 OUTLINE OF THE THESIS

The remaining chapters of this work are organized as follows:

Chapter 2 briefly discusses fundamentals of image compression & summary of JPEG

standard. Chapter 3 discusses summary of image compression technique using

Karhunen Loeve Transform and its algorithm. Chapter 4 discusses summary of image

compression technique using Discrete Cosine Transform and its algorithm. Chapter 5

discusses summary of image compression technique using Discrete Wavelet

Transform and its algorithm.

Chapter 6 presents the simulation results of above mentioned compression techniques

& comparison based on compression ratio, human visual system, peak signal to noise

ratio & complexity involved.

Chapter 7 presents the conclusions of the thesis along with suggestions for future

work in this area.

 9

CHAPTER 2
OVERVIEW OF IMAGE COMPRESSION & JPEG STANDARD

2.1 INTRODUCTION OF IMAGE COMPRESSION

Reducing the amount of data to reproduce images or video is called compression and

it saves

• Storage space

• Increase access speed

• A way to achieve digital motion video on personal computer.

Compression is concerned with minimizing the no. of bits required to represent an

image. Perhaps the simplest and most dramatic form of data compression is the

sampling of band limited images where an infinite number of pixels per unit area is

reduced to one sample without any loss of information.

A common characteristic of most images is that the neighbouring pixels are correlated

and therefore contain redundant information. The foremost task then is to find less

correlated representation of the image. Two fundamental components of compression

are redundancy and irrelevancy reduction.

Redundancy reduction aims at removing duplication from the signal source

(image/video). Irrelevancy reduction omits parts of the signal that will not be

noticed by the signal receiver, namely the Human Visual System (HVS). In general,

three types of redundancy can be identified.

• Spatial redundancy which is due correlation between neighbouring pixel values.

• Spectral Redundancy which is due to correlation between different color planes

or spectral bands.

• Temporal Redundancy which is due to correlation between adjacent frames in a

sequence of images (in video applications).

Image compression researches aims to reduce the number of bits required to represent

an image by removing these redundancies. Only spatial redundancy and spectral

redundancy are removed in still images.

 10

2.1.1 NEED OF COMPRESSION

The example given below clearly illustrate the need for very high storage space, large

transmission bandwidth and long transmission time for uncompressed image, audio

and video data.

Multimedia

data

Size/ Duration Bits/Pixel Uncompressed

Size

Transmission

B.W

Transmission

Time

A page of

text

11”x8.5” Varying

resolution

4-8KB 32-64 Kb/page 1.1-2.2 sec

Telephone

quality

10sec. 8bps 80KB 64Kb/sec 22.2 sec

Grayscale

image

512 x 512 8bpp 262KB 2.1 Mb/image 1 min 13 sec

Color

image

512 x 512 24bpp 786KB 6.29Mb/image 3min 39 sec

Medical

image

2048 x 2048 12bpp 5.16MB 4.13Mb/image 23 min 54

sec

SHD

Image

2048 x 2048 24bpp 12.58MB 1000Mb/image 58 min 15

sec

Full-

motion

Video

640x480,1min

(30frames/sec)

24bpp 1.66GB 221 Mb/sec 5 days 8hrs.

Table 2.1: Multimedia data types with uncompressed storage space, transmission

bandwidth and transmission time required. The prefix kilo-denotes a factor of 1000

rather than 1024.

At the present state of technology, the only solution is to compress multimedia data

before its storage and transmission, and decompress it at the receiver for playback.

For example, with a compression ratio of 32:1, the space, bandwidth and the

transmission time requirements can be reduced by a factor of 32, with acceptable

quality.

 11

2.1.2 CLASSIFICATION OF COMPRESSION TECHNIQUES

2.1.2.1 LOSSLESS VS. LOSSY COMPRESSION:

LOSSLESS: In lossless compression schemes, the reconstructed image after

compression is numerically identical to the original image. However lossless

compression can only achieve a modest amount of compression.

Common lossless compressors include pkzip, winzip, bzip1 and bzip2. These are able

to reconstruct an exact duplicate of the original input file after it has been compressed.

LOSSY: An image reconstructed following lossy compression contains degradation

relative to the original image. Often this is because the compression scheme

completely discards the redundant information. However, lossy schemes are capable

of achieving much higher compression. Under normal viewing conditions, no visible

loss is perceived (visually lossless).

Common lossy compressors include JPEG, MPEG, MP3 etc. These formats generally

work by reproducing a file that can be quite different to the original at bit level, while

being indistinguishable to the human ear or eye for most particular purposes.

2.1.2.1 PREDICTIVE VS.TRANSFORM CODING :

PREDICTIVE CODING: In predictive coding, information already sent or available

is used to predict future values, and the difference is coded. Since this is done in the

image or spatial domain, it is relatively simple to implement and is readily adapted to

local image characteristics. Differential Pulse Code Modulation is one particular

example of predictive coding.

TRANSFORM CODING: Transform coding first transforms the image from its

spatial domain representation to a different type of representation using the some well

known transform and then codes the transformed value (coefficients). This method

provides greater data compression compared to predictive methods, although at the

expense of greater computation.

In transform coding, a reversible, linear transform (such as F.T.) is used to map the

image into a set of transform coefficients.

The goal of transformation process is to de-correlate the pixels of each sub image, or

to pack as much information as possible into the smallest number of coefficients.

 12

2.1.3 IMAGE COMPRESSION CHARACTERISTICS

There are three main characteristics by which image-compression algorithms can be

judged: compression ratio, compression speed, and image quality. These

characteristics can be used to determine the suitability of a given compression

algorithm to our application.

 2.1.3.1 COMPRESSION RATIO

Compression performance is often specified by giving the ratio of input data to output

data for compression process. This basic measure for the performance of a

compression algorithm is compression ratio.

 imageoriginalofsize
imagecompressedofsizeimageoriginalofsizeRC −

=..

This ratio gives an indication of how much compression is achieved for a particular

image.

The compression ratio achieved usually indicates the picture quality. Higher the

compression ratio, the poorer the quality of the resulting image. The trade off between

compression ratio and picture quality is an important one to consider when

compressing images.

Furthermore, some compression schemes produce compression ratios that are highly

dependent on the image content. This aspect of compression is called data

dependency. Using an algorithm with a high degree of data dependency, an image of

crowd at a football game (which contains a lot of detail) may produce a very small

compression ratio, whereas an image of a blue sky (which consists mostly of constant

colors and intensities) may produce a very high compression ratio.

A much better way to specify the amount of compression is to determine the number

of bits per displayed pixel needed in the compressed bit stream.

2.1.3.2 IMAGE QUALITY

Image quality describes the fidelity with which an image-compression scheme

recreates the source image data. Compression scheme can be characterized as being

either lossy or lossless. Lossless schemes preserve all of the original data. Lossy

compression does not preserve the data precisely. Image data is lost, and it cannot be

recovered after compression. Most lossy scheme try to compress the data as much as

 13

possible, without decreasing the image quality in a noticeable way. Some scheme may

be either lossy or lossless, depending upon the quality level desired by the user.

Higher compression ratio may produce lower picture quality. Quality and compression

can also vary according to source image characteristics and scene content. One

measure for the quality of the picture is number of bits per pixel in a compressed

image (BPP) which is defined as the total number of bits in the compressed image

divided by the number of pixels.

 pixelsofno
imagecompressedinbitsofnumberbpp

.
=

 According to this measure, four different picture qualities are defined.

(bits / pixel) Picture quality

0.12-0.5 Moderate to good quality

0.5-0.75 Good to very good quality

0.75-1.0 Excellent quality

1.5-2.0 Undistinguishable from the original

2.1.3.3 COMPRESSION SPEED

Compression time and decompression time are defined as the amount of the time

required to compress and decompress a picture, respectively. Their value depends on

the following considerations:

• The complexity of the compression algorithm

• The efficiency of the software or hardware implementation of the algorithm

• The speed of the utilized processor or auxiliary hardware

2.1.3.4 PSNR

Peak signal-to-noise ratio (PSNR) is the standard method for comparing a compressed

image with the original image. It is not a direct measure of the perceptual visual

quality, i.e. the way the image looks to human eye. However, PSNR can be used as an

indicator of image quality.

 14

∑ ∑

= =

−
= M

m

N

n
nmYnmX

MXN

MAXPSNR

1

2

1

2

)),(),((1
log10

where M and N are width and height of image. X is the original image data and Y is

the compressed image data. MAX is the max. value that a pixel can have, 255.

PSNR is measured in decibels (dB).

2.2 INTRODUCTION OF JPEG STANDARD

JPEG stands for Joint Photographic Experts Groups is a standard image compression

mechanism. There was no adequate standard for compressing 24-bit per pixel color

data, committee came up with algorithm for compressing color or grayscale images

depicting real world scenes (like photographs). JPEG handles only still images but

there is a related standard called MPEG for motion pictures.

JPEG is “lossy,” meaning that the decompressed image is not exactly same as the one

started with. (There are lossless image compression algorithms, but JPEG achieves

much greater compression than is possible with lossless methods). JPEG is designed

to exploit known limitations of the human eye, notably the fact that small color

changes are perceived less accurately than small changes in brightness. Thus, JPEG is

intended for compressing images that will be looked at by humans. If images are

planed to machine-analyze, the small errors introduced by JPEG may be problem,

even if they are invisible to our eyes.

A useful property of JPEG is that adjusting compression parameters can vary the

degree of lossiness. This means that the image-maker can trade off file size against

output image quality. Extremely small files can make if little poor quality is

acceptable.

JPEG images have become a default standard for a variety of mediums, mainly the

internet and other applications where it is necessary to have images of high quality,

but low data size. The advantages of this include low transmission times for Internet

web browsing and the development of useful digital cameras that can store a number

of images on a relatively low amount of on-board memory.

 15

2.2.1 JPEG ARCHITECHURE

In the JPEG image compression the input image is divided into 8-by-8 or 16-by-16

blocks, and the two-dimensional DCT is computed for each block. The DCT

coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG

file reader) decodes the quantized DCT coefficients, computes the inverse two-

dimensional DCT of each block, and then puts the blocks back together into a single

image. For typical images, many of the DCT coefficients have values close to zero;

these coefficients can be discarded without seriously affecting the quality of the

reconstructed image.

ENCODER

DECODER

Source image
data

Compressed
Image Data

Reconstructed
Image Data

 Figure 2.1 : Block Diagram of Image Compression

Color space
conversion

Downsampling Quantization2-D
DCT

DPCM

RLC

ENTROPY
CODING DATA

Quantiz.
Tables

Coding
Tables

DC

AC

………………………………………… …

…
…

…
…

…
…

..

 ….…....

 ..….

 Figure 2.2 : Block Diagram of JPEG Encoder

2.2.2 MAJOR PARTS OF JPEG ENCODER

 16

• Color space Conversion and Down-sampling

• DCT (Discrete Cosine Transformation)

• Quantization

• Zigzag Scan

• DPCM on DC component & RLE on AC Components

• Entropy Encoding (Huffman Encoding & Arithmetic Encoding)

 17

CHAPTER 3
THE KARHUNEN-LOEVE TRANSFORM (KLT)

Originated from the series expansions for random processes developed by Karhunen

and Loeve in 1947 and 1949 based on the work of Hoteling in 1933 (the discrete

version of the KL transform). Also known as Hoteling transform or method of

principal component. It packs the maximum energy in first few samples. It minimizes

the mean square error for any truncated series expansion. Error vanishes in case there

is no truncation. The idea is to transform a signal into a set of uncorrelated

coefficients.

Karhunen Loeve Transform provides the orthogonal basis along which the

coefficients are uncorrelated.

3.1 K.L TRANSFORM OF IMAGES

An N x N image is represented by a two dimensional random sequence v (m,n). It can

be represented by matrix of order N x N. Alternatively, a given N x N image can be

viewed as an N2 x 1 column vector v. Now just as one dimensional signal can be

represented by an orthogonal series of basis function, an image can also be generated

by unitary matrices.

A general orthogonal series expansion for an N x N image v (m, n) is given as,

General form:

∑ ∑
−

=

−

=

=
1

0

1

0
),,,(),(),(

N

k

N

l
nmlklkunmv ψ

where m, n = 0,1,2………., N-1

And the kernel ψ(k, l, m, n) is given by the orthonormalized eigenvectors of the
correlation matrix, i.e. it satisfies

 λiψi = Rψi i= 0, ... , N2 – 1

R is the (N 2 x N 2) autocorrelation matrix of image and iψ are (N 2 x 1) eigen
vectors. So R matrix of the image mapped into an (N 2 x 1) vector and ψi is the ith
column of ψ

If R is separable, i.e.,

 18

 R= R1⊗ R2

then the KL kernel is also separable, i.e.,

ψ (k, l ; m, n) = ψ1(m, k) ψ2(n, l)

or

ψ =ψ1⊗ ψ2

ψ is called the eigen matrix of R.

The elements u (k ,l) are called the transform coefficients.

∑ ∑
−

=

−

=

=
1

0

1

0
),,,(),(),(

N

m

N

n
nmlknmvlku ψ

where k ,l =0, 1 ,2,….,N-1

For images, the eigen matrix of auto-correlation matrix R can be obtained using

the separable property of auto correlation matrix R. In which we separate the N 3

x N 3 matrix into three N x N matrix and then find the eigen matrix of each. After

that by taking the kronecker product of these eigen matrix we get the eigen

matrix of auto correlation matrix R.

Advantages of separability

Reduce the computational complexity from O(N 6) to O(N 3)

Recall that an N x N eigen value problem requires O(N 3) computations

 3.2 PROPERTIES OF THE KL TRANSFORM

 19

1. Decorrelation:

 The KL transform coefficients are uncorrelated and have zero mean, i.e.,

 E [v (k ,l)] = 0 for all k ,l

2. It minimizes the mean square error for any truncated series expansion. Error
vanishes in case there is no truncation.

3. Among all unitary transformations, KL packs the maximum average energy in the

 first few samples of v.

3.3 DRAWBACKS

1. Unlike other transforms, the KL is image dependent.

2. It is practically very difficult to implement.

 3. It is computationally very intensive.

3.4 ALGORITHM FOR K-L TRANSFORM

1) Input Image

2) Resize the image of size 256*256

3) Image into column matrix (b)

4) Find mean (m) of b

5) Find zero mean image i.e.

 c = b-m

6) Find autocorrelation of zero mean image.

7) Find eigen values and eigen vectors

8) Multiplication of zero mean image with eigen vectors (g)

9) Input the value of threshold

10) If eigen value =< threshold value

 g(i) = 0

 otherwise

 g(i) = original value

11) Displaying the no. of compressed coefficients

 20

12) Recovery of the compressed image

13) Computing the compression ratio

14) Computing the PSNR of image

15) Computing the simulation time of image

16) Plotting of original image,

17) Plotting of KLT & Reconstructed image

18) Plotting of SNR with respect to compression ratio

19) Plotting of Simulation time with respect to compression ratio

 21

CHAPTER 4
DISCRETE COSINE TRANSFORM (DCT)

Discrete cosine transform (DCT) is a technique for converting signal into elementary

frequency components. It is widely used in image compression.

The DCT has the property that most of the visually significant information about the

image is concentrated in just a few coefficients of the DCT. For this reason, the DCT

is often used in image compression applications. The DCT is the heart of the

international standard lossy image compression algorithm known as JPEG. (The name

comes from the working group that developed the standard: the Joint Photographic

Experts Group).

The DCT is a lossless and reversible mathematical transformation that converts a

spatial amplitude representation of data into a spatial frequency representation. One of

the advantages of the DCT is its energy compaction property i.e. the signal energy is

concentrated on a few components while most other components are zero or

negligible small. The DCT was first introduced in 1974 and since it has been used in

many applications such as filtering, transmultiplexers, speech coding, image coding

(still frame, video and image storage), pattern recognition, image enhancement. The

DCT is widely used in image compression applications, especially in lossy image

compression, MPEG moving image compression, and the H.261 and H.263 video-

telephony coding schemes. The energy compaction property of the DCT is well suited

for image compression as in the most images, the energy is concentrated in the low

frequencies, and the human eye is more sensitive to the low frequencies.

In the JPEG image compression algorithm, the input image is divided into 8-by-8 or

16-by-16 blocks, and the two-dimensional DCT is computed for each block. The DCT

coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG

file reader) decodes the quantized DCT coefficients, computes the inverse two-

dimensional DCT of each block, and then puts the blocks back together into a single

image. For typical images, many of the DCT coefficients have values close to zero;

these coefficients can be discarded without seriously affecting the quality of the

reconstructed image.

4.1 THE 2-D DISCRETE COSINE TRANSFORM (DCT)

 22

The discrete cosine transform (DCT) is closely related to the discrete Fourier

transform. It is a separable, linear transformation; that is, the two-dimensional

transform is equivalent to a one-dimensional DCT performed along a single

dimension followed by a one-dimensional DCT in the other dimension. The definition

of the two-dimensional DCT for an input image A and output image B is

N
qn

M
pmAB

M

m

N

n
mnqppq 2

)12(cos
2

)12(cos
1

0

1

0

++
= ∑ ∑

−

=

−

=

ππαα

 where 0 ≤ p ≤ M-1
 0 ≤ q ≤ N-1

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

M

M
pα 11

0
−≤≤

=
Mp

p

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

N

N
qα 11

0
−≤≤

=
Mq

q

M = Number of rows in the input data set

N = Number of columns in the input data set

m = Row index in the time domain 0 ≤ m ≤ M-1

n = Column index in the time domain 0 ≤ n ≤ N-1

Amn = Time domain data

p = Row index in the frequency domain

q = Column index in the frequency domain

Bpq = Frequency domain coefficients

The values Bpq are called the DCT coefficients of A. (Matrix indices in MATLAB

always start at 1 rather than 0; therefore, the MATLAB matrix elements A(1,1) and

B(1,1) correspond to the mathematical quantities A(0,0) and B(0,0) respectively.

4.2 THE 2-D INVERSE DISCRETE COSINE TRANSFORM (IDCT)

 23

IDCT2 computes the two dimensional inverse discrete cosine transform using

N
qn

M
pmBA

M

p

N

q
pqqpmn 2

)12(cos
2

)12(cos
1

0

1

0

++
= ∑∑

−

=

−

=

ππαα

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

M

M
pα 11

0
−≤≤

=
Mp

p

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

N

N
qα 11

0
−≤≤

=
Mq

q

M = Number of rows in the input data set

N = Number of columns in the input data set

m = Row index in the time domain 0 ≤ m ≤ M-1

n = Column index in the time domain 0 ≤ n ≤ N-1

Amn = Time domain data

p = Row index in the frequency domain

q = Column index in the frequency domain

Bpq = Frequency domain coefficients

The inverse DCT equation can be interpreted as that any M x N matrix, A can be

written as a sum of MN functions of the form

N
qn

M
pm

qp 2
)12(cos

2
)12(cos ++ ππαα

These functions are called the basis functions of the DCT. The DCT coefficients Bpq,

then, can be regarded as the weights applied to each basis function.

Horizontal frequencies increase from left to right, and vertical frequencies increase

from top to bottom. The constant-valued basis function at the upper left is often called

the DC basis function, and the corresponding DCT coefficient B (0,0) is often called

the DC coefficient.

 24

4.3 THE 64 (8 X 8) DCT BASIS FUNCTIONS

As in the one-dimensional case, each element B(p,q) of the transform is the inner

product of the input and a basis function, but in this case, the basis functions are nxm

matrices. Each two-dimensional basis matrix is the outer product of two of the one-

dimensional basis vectors. Each basis matrix can be thought of as an image. For n = m

= 8, the 64 basis images in the array are shown in figure 4.1.

Figure 4.1: The 8X8 Array of Basis Images For The 2D Discrete Cosine

Transform

Each basis matrix is characterized by a horizontal and a vertical spatial frequency.

The matrices shown here are arranged left to right and bottom to top in order of

increasing frequencies.

 25

Why DCT not FFT? -- DCT is like FFT, but can approximate linear signals well with

few coefficients.

4.4 PROPERTIES OF DCT

1. The cosine transform is real.

2. It is a fast transform.

3. It is very close to the KL transform.

4. It has excellent energy compaction for highly correlated data.

 26

CHAPTER 5
WAVELET TRANSFORM

Fourier analysis breaks down a signal into constituent sinusoids of different

frequencies. Fourier analysis is as a mathematical technique for transforming our view

of the signal from time-based to frequency-based.

For many signals, fourier analysis is extremely useful because the signal’s frequency

content is of great importance. Fourier analysis has a serious drawback. In

transforming to the frequency domain, time information is lost. When looking at a

fourier transform of a signal, it is impossible to tell when a particular event took

place.

If the signal properties do not change much over time is called a stationary signal.

However, most interesting signals contain numerous non-stationary or transitory

characteristics: drift, trends, abrupt changes, and beginnings and ends of events. These

characteristics are often the most important part of the signal, and Fourier analysis is

not suited to detect them.

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier

transform to analyze only a small section of the signal at a time—a technique called

windowing the signal, called the Short-Time Fourier Transform (STFT), maps a

signal into a two-dimensional function of time and frequency.

 27

The STFT represents a sort of compromise between the time and frequency based

views of a signal. It provides some information about both when and at what

frequencies a signal event occurs. However, this information can be obtained with

limited precision, and that precision is determined by the size of the window.

While the STFT compromise between time and frequency information can be useful,

the drawback is that once a particular size for the time window is choosed, that

window is the same for all frequencies. Many signals require a more flexible

approach—one where the window size can vary to determine more accurately either

time or frequency.

Wavelet analysis represents the next logical step: a windowing technique with

variable-sized regions. Wavelet analysis allows the use of long time intervals where

we want more precise low-frequency information, and shorter regions where we want

high-frequency information.

The time-based, frequency-based, and STFT views of a signal:

Wavelet analysis does not use a time-frequency region, but rather a time-scale region.

One major advantage of wavelets is the ability to perform local analysis that is, to

analyze a localized area of a larger signal. Consider a sinusoidal signal with a small

discontinuity one so tiny as to be barely visible. Such a signal easily could be

generated in the real world, perhaps by a power fluctuation or a noisy switch.

 28

A plot of the Fourier coefficients (as provided by the fft command) of this signal

shows a flat spectrum with two peaks representing a single frequency. However, a

plot of wavelet coefficients clearly shows the exact location in time of the

discontinuity. Wavelet analysis can often compress or de-noise a signal without

appreciable degradation.

A wavelet is a waveform of effectively limited duration that has an average value of

zero. The basis functions of the wavelet transform are known as wavelets. There are a

variety of different wavelet functions to suit the needs of different applications. In

general, a wavelet is a small wave that has finite energy concentrated in time. It is this

characteristic about a wavelet that gives it the ability to analyze any time-varying

signals.

Comparing wavelets with sine waves, which are the basis of Fourier analysis,

sinusoids do not have limited duration. They extend from minus to plus infinity. And

where sinusoids are smooth and predictable, wavelets tend to be irregular and

asymmetric.

 29

Fourier analysis consists of breaking up a signal into sine waves of various

frequencies. Similarly, wavelet analysis is the breaking up of a signal into shifted and

scaled versions of the original (or mother) wavelet.

From pictures of wavelets it is observed that signals with sharp changes can be better

analyzed with an irregular wavelet than with a smooth sinusoid, just as some foods

are better handled with a fork than a spoon.

There are two types of wavelet transform. They are the continuous wavelet transform

(CWT) and discrete wavelet transform (DWT). The main idea about the wavelet

transform is the same in both of these transforms. However, they differ in the way the

transformation is being carried out. In CWT, an analyzing window is shifted along the

time domain to pick up the information about the signal. This process is difficult to

implement and the information that has been picked up may overlap and result in

redundancy. In still Image Compression using Wavelet Transform DWT, signals are

analyzed in discrete steps through a series of filters. This method is realizable in a

computer and has the advantage of extracting non-overlapping information about the

signal.

To take a wavelet transform, a wavelet base function is first selected and then each

possible scaling and translation of that wavelet is correlated with the function to be

transformed. The correlation values thus obtained are the coefficients of the wavelet

transform. The equation for scaling and translation of the wavelet function is

)(1
, a

bt
ba a

−= ψψ

where)(tψ is the original, or “mother” wavelet, a is the scale factor, and b is the

transform factor.

 30

5.1 THE CONTINOUS WAVELET TRANSFORM

Mathematically, the process of fourier analysis is represented by the Fourier

transform:

 ∫
−∞

∞

−= dtetfwF jat)()(

which is the sum over all time of the signal f(t) multiplied by a complex
exponential.

 (Complex exponential can be broken down into real and imaginary sinusoidal

components).

The results of the transform are the fourier coefficients, which when multiplied by a

sinusoid of frequency, yield the constituent sinusoidal components of the original

signal. Graphically, the process looks like:

Similarly, the continuous wavelet transform (CWT) is defined as the sum over all

time of the signal multiplied by scaled, shifted versions of the wavelet function :

∫
∞

∞−

= dttpositionscaletfpositionscaleC),,()(),(ψ The result of the CWT are many

wavelet coefficients C, which are a function of scale and position.

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the

constituent wavelets of the original signal:

Scaling

Wavelet analysis produces a time-scale view of a signal. Scaling a wavelet simply

means stretching (or compressing) it.

The smaller the scale factor, the more “compressed” the wavelet.

 31

For a sinusoid the scale factor is related (inversely) to the radian frequency. Similarly,

with wavelet analysis, the scale is related to the frequency of the signal.

Shifting

Shifting a wavelet simply means delaying its onset. Mathematically, delaying a

function by k is represented by f(t-k) :

 Five Easy Steps to a Continuous Wavelet Transform

The continuous wavelet transform is the sum over all time of the signal multiplied by

scaled, shifted versions of the wavelet. This process produces wavelet coefficients

that are a function of scale and position. In fact, there are the five steps for creating a

CWT:

1 A wavelet is taken and compared it to a section at the start of the original signal.

2 A number C is calculated that represents how closely the wavelet is correlated with

this section of the signal. The higher C is, the more the similarity. If the signal energy

and the wavelet energy are equal to one, C may be interpreted as a correlation

coefficient.

The results will depend on the shape of the wavelet choose.

 32

3 The wavelet is shifted to the right and steps 1 and 2 are repeated until the whole

signal is covered.

4 The wavelet is scaled (stretched) and steps 1 through 3 are repeated.

5 Steps 1 through 4 are repeated for all scales.

Now there are coefficients produced at different scales by different sections of the

signal. The coefficients constitute the results of a regression of the original signal

performed on the wavelets.

The plot of coefficients is made where the x-axis represents position along the signal

(time), the y-axis represents scale, and the color at each x-y point represents the

magnitude of the wavelet coefficient C.

These coefficient plots resemble a bumpy surface.

The continuous wavelet transform coefficient plots are the time-scale view of the

signal. It is a different view of signal data than the time-frequency fourier view, but it

is not unrelated.

 33

Scale and Frequency

The scales in the coefficients plot (shown as y-axis labels) run from 1 to 31. The

higher scales correspond to the most “stretched” wavelets. The more stretched the

wavelet, the longer the portion of the signal with which it is being compared, and thus

the coarser the signal features being measured by the wavelet coefficients.

Thus, there is a relation between wavelet scales and frequency as

•low scale ⇒compressed wavelet ⇒ rapidly changing details ⇒high frequency .

•high scale⇒stretched wavelet⇒slowly changing coarse features⇒low

frequency .

5.2 THE DISCRETE WAVELET TRANSFORM

Calculating wavelet coefficients at every possible scale is a very large amount of

work. Scales and positions are selected based on powers of two called dyadic scales

and positions. This analysis will be much more efficient and accurate. Such analysis is

obtained from the discrete wavelet transform (DWT). An efficient way to implement

this scheme using filters was developed in 1988 by Mallat.

In the discrete wavelet transform, an image signal can be analyzed by passing it

through an analysis filter bank followed by a decimation operation. This analysis filter

bank, which consists of a low pass and a high pass filter at each decomposition stage,

is commonly used in image compression. When a signal passes through these filters,

it is split into two bands. The low pass filter, which corresponds to an averaging

operation, extracts the coarse information of the signal. The high pass filter, which

corresponds to a differencing operation, extracts the detail information of the signal.

The output of the filtering operations is then decimated by two.

 34

5.2.1 ONE-STAGE FILTERING: APPROXIMATIONS AND DETAILS

For many signals, the low-frequency content is the most important part. The high-

frequency content, on the other hand, imparts flavor or nuance. Consider the human

voice. If the high- frequency components are removed, the voice sounds different, but

still it can tell what’s being said. However, if the low-frequency components are

removed, only gibberish is heard.

Wavelet analysis consists of approximations and details. The approximations are the

high-scale, low- frequency components of the signal. The filtering process, at its most

basic level, looks like this:

The original signal, S, passes through two complementary filters and emerges as two

signals. If the original signal S consists of 1000 samples of data then the resulting

signals will each have 1000 samples, for a total of 2000.

Hence down sampling is performed to maintain the same length a original one which

will produce two sequences called cA and cD.

The process on the right, which includes down sampling, produces DWT coefficients.

To gain a better appreciation of this process, a one-stage discrete wavelet transform of

a signal is performed. Our signal is a pure sinusoid with high-frequency noise added

to it.

Schematic diagram is shown with real signals inserted into it:

 35

5.2.2 MULTIPLE - LEVEL DECOMPOSITION

The decomposition process can be iterated, with successive approximations being

decomposed in turn, so that one signal is broken down into many lower resolution

components. This is called the wavelet decomposition tree.

Signal’s wavelet decomposition tree can yield valuable information.

 36

5.2.3 WAVELET RECONSTRUCTION

Where wavelet analysis involves filtering and down sampling, the wavelet

reconstruction process consists of up-sampling and filtering. Up-sampling is the

process of lengthening a signal component by inserting zeros between samples:

The Wavelet toolbox includes commands, like idwt and waverec, that perform single-

level or multilevel reconstruction, respectively, on the components of one-

dimensional signals.

5.2.4 RECONSTRUCTION FILTERS

The filtering part of the reconstruction process is important because it is the choice of

filters that is crucial in achieving perfect reconstruction of the original signal.

The down sampling of the signal components performed during the decomposition

phase introduces a distortion called aliasing. By carefully choosing filters for the

decomposition and reconstruction phases that are closely related (but not identical),

the effects of aliasing can be cancelled out.

The low and high pass decomposition filters (L and H), together with their associated

reconstruction filters (L' and H'), form a system of what is called quadrature mirror

filters:

 37

5.2.5 RECONSTRUCTING APPROXIMATIONS AND DETAILS

It is observed that it is possible to reconstruct our original signal from the coefficients

of the approximations and details.

It is also possible to reconstruct the approximations and details themselves from their

coefficient vectors. As an example, the first-level approximation A1 can be

reconstructed from the coefficient vector cA1 by passing the coefficient vector cA1

through the same process used to reconstruct the original signal. However, instead of

combining it with the level-one detail cD1, a vector of zeros is feeded in place of the

detail coefficients vector:

The process yields a reconstructed approximation A1, which has the same length as

the original signal S and which is a real approximation of it.

Similarly, the first-level detail D1 is reconstructed using the analogous process:

The reconstructed details and approximations are true constituents of the original

signal. In fact, we find when we combine them that:

A1+D1 = S

The coefficient vectors cA1 and cD1 were produced by down sampling and are only

half the length of the original signal cannot directly be combined to reproduce the

 38

signal. It is necessary to reconstruct the approximations and details before combining

them.

Extending this technique to the components of a multilevel analysis, we find that

similar relationships hold for all the reconstructed signal constituents. That is, there

are several ways to reassemble the original signal:

5.2.6 MULTISTEP DECOMPOSITION AND RECONSTRUCTION

A multi-step analysis-synthesis process can be represented as:

This process involves two aspects: breaking up a signal to obtain the wavelet

coefficients, and reassembling the signal from the coefficients.

Decomposition and reconstruction at same length are discussed. There is no use of

breaking up a signal to have the satisfaction of immediately reconstructing it. The

wavelet coefficients can modify before performing the reconstruction step. Wavelet

analysis is performed because the coefficients thus obtained have many known uses,

de-noising and compression being most important among them.

 39

5.2.7 TWO DIMENTIONAL DISCRETE WAVELET TRANSFORM

A two-dimensional transform can be accomplished by performing two separate one-

dimensional transforms. First, the image is filtered along the x-dimension and

decimated by two. Then, it is followed by filtering the sub-image along the y-

dimension and decimated by two. Finally, we have split the image into four bands

denoted by LL, HL, LH and HH after one-level de-composition .

f(x,y)

G(x)

H(x)

G(x)

Downsample
by 2 along x

fL(x,y)

Downsample
by 2 along x

H(y)

G(y)

Downsample
by 2 along y

Downsample
by 2 along y

fLL(x,y)

Downsample
by 2 along y

Downsample
by 2 along y

fLH(x,y)

fHH(x,y)

H(y)

G(y)

fH(x,y)

row

row

column

column

column

column

fHL(x,y)

Further decompositions can be achieved by acting upon the LL sub-band successively

and the resultant image is split into multiple bands.

 40

The figure shows two Dimensional Discrete Wavelet Transform with original image,

one level de-composition, two level decompositions and three level decompositions.

In mathematical terms, the averaging operation or low pass filtering is the inner

product between the signal and the scaling function Φ whereas the differencing

operation or high pass filtering is the inner product between the signal and the wavelet

function Ψ .

Average coefficients,

 ∫>==< dtttfttfkc kjkjj)(),()(),()(,, φφ

Detail coefficients,

 ∫>==< dtttfttfkd kjkjj)(),()(),()(,, ψψ

The scaling function or the low pass filter is defined as

)2(2)(2/
, ktt jj
kj −= φφ

The wavelet function or the high pass filter is defined as

)2(2)(2/
, ktt jj
kj −= ψψ

 where j denotes the discrete scaling index
 k denotes discrete translation index

 41

5.2.8 TWO DIMENSIONAL INVERSE DISCRETE WAVELET TRANSFORM

The reconstruction of the image can be carried out by the following procedure. First,

upsampling is done by a factor of two on all the four sub-bands at the coarsest scale,

and filter the sub-bands in each dimension. Then the four filtered sub bands are added

to reach the low-low sub-band at the next finer scale. This process is repeated until the

image is fully reconstructed.

G(x)

Upsample by
2 along y

Upsample by
2 along y

fLL(x,y)

Upsample by
2 along x

Upsample by
2 along x

fLH(x,y)

fHH(x,y)

fHL(x,y)

row

row

column

column

column

column

Upsample by
2 along y

Upsample by
2 along y

f(x,y)

G-1(x)

H-1(x)

H-1(y)

G-1(y)

G-1(y)

H-1(y)

 42

CHAPTER 6

SIMULATION RESULTS

The results presented in this section are obtained using gray & color images

using MATLAB software & a comprehensive comparison is made between data

compression transforms i.e. the Karhunen-Loeve Transform (KLT), the Discrete

Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT). The

simulation results are based on PSNR, Computational complexity & Image

quality of the reconstructed image.

 43

6.1 VISUAL RESULTS FOR GRAY IMAGE

OUTPUT FILE OF GRAY IMAGE USING KLT

Original image size (bytes) = 65536
Compressed image size (bytes) = 16291
Decompressed image size (bytes) = 65536
Compression Ratio = 75%
Signal to Noise Ratio (db) =30.92
Simulation Time (Seconds) = 3.68

 44

OUTPUT FILE OF GRAY IMAGE USING DCT

Original image size (bytes) = 65536
Compressed image size (bytes) = 16264
Decompressed image size (bytes) = 65536
Compression Ratio = 75%
Signal to Noise Ratio(db) =29.26
Simulation Time (Seconds) = 1.10

 45

OUTPUT FILE OF GRAY IMAGE USING DWT

Original image size (bytes) = 65536
Compressed image size (bytes) = 16291
Decompressed image size (bytes) = 65536
Compression Ratio = 75%
Signal to Noise Ratio (db) =31.24
Simulation Time (Seconds) = 1.31

 46

OUTPUT FILE OF GRAY IMAGE USING KLT

Original image size (bytes) = 65536
Compressed image size (bytes) = 9682
Decompressed image size (bytes) = 65536
Compression Ratio = 85%
Signal to Noise Ratio (db) =29.23
Simulation Time (Seconds) = 3.79

 47

OUTPUT FILE OF GRAY IMAGE USING DCT

Original image size (bytes) = 65536
Compressed image size (bytes) = 9765
Decompressed image size (bytes) = 65536
Compression Ratio = 85%
Signal to Noise Ratio (db) =26.32
Simulation Time (Seconds) = 1.15

 48

OUTPUT FILE OF GRAY IMAGE USING DWT

Original image size (bytes) = 65536
Compressed image size (bytes) = 9682
Decompressed image size (bytes) = 65536
Compression Ratio = 85%
Signal to Noise Ratio (db) =30.29
Simulation Time (Seconds) = 1.33

 49

OUTPUT FILE OF GRAY IMAGE USING KLT

Original image size (bytes) = 65536
Compressed image size (bytes) = 6471
Decompressed image size (bytes) = 65536
Compression Ratio = 90%
Signal to Noise Ratio (db) =28.47
Simulation Time (Seconds) = 3.95

 50

OUTPUT FILE OF GRAY IMAGE USING DCT

Original image size (bytes) = 65536
Compressed image size (bytes) = 6382
Decompressed image size (bytes) = 65536
Compression Ratio = 90%
Signal to Noise Ratio (db) =24.49
Simulation Time (Seconds) = 1.21

 51

OUTPUT FILE OF GRAY IMAGE USING DWT

Original image size (bytes) = 65536
Compressed image size (bytes) = 6479
Decompressed image size (bytes) = 65536
Compression Ratio = 90%
Signal to Noise Ratio (db) =29.06
Simulation Time (Seconds) = 1.34

 52

6.1.1 SNR PERFORMANCE FOR GRAY IMAGE

 CR = 75% CR = 85% CR = 90%
DWT 31.24 30.29 29.06

KLT 30.92 29.23 28.47

DCT 29.26 26.32 24.49

 Table 6.1 : SNR Values For Gray Image (All values in db)

 53

6.1.2 SIMULATION TIME PERFORMANCE FOR GRAY IMAGE

 CR = 75% CR = 85% CR = 90%
KLT 3.68 3.79 3.95
DWT 1.31 1.33 1.34
DCT 1.1 1.15 1.21

 Table 6.2 : Simulation Time For Gray Image (All values in seconds)

 54

6.2 VISUAL RESULTS FOR COLOR IMAGE

OUTPUT FILE OF COLOR IMAGE USING KLT

Original image size (bytes) = 196608
Compressed image size (bytes) = 58761
Decompressed image size (bytes) = 196608
Compression Ratio = 70%
Signal to Noise Ratio (db) =27.98
Simulation Time (Seconds) = 10.50

 55

OUTPUT FILE OF COLOR IMAGE USING DCT

Original image size (bytes) = 196608
Compressed image size (bytes) = 58896
Decompressed image size (bytes) = 196608
Compression Ratio = 70%
Signal to Noise Ratio (db) =23.05
Simulation Time (Seconds) = 3.57

 56

OUTPUT FILE OF COLOR IMAGE USING KLT

Original image size (bytes) = 196608
Compressed image size (bytes) = 38838
Decompressed image size (bytes) = 196608
Compression Ratio = 80%
Signal to Noise Ratio (db) = 24.29
Simulation Time (Seconds) = 10.68

 57

OUTPUT FILE OF COLOR IMAGE USING DCT

Original image size (bytes) = 196608
Compressed image size (bytes) = 38864
Decompressed image size (bytes) = 196608
Compression Ratio = 80%
Signal to Noise Ratio (db) =20.47
Simulation Time (Seconds) = 3.60

 58

OUTPUT FILE OF COLOR IMAGE USING KLT

Original image size (bytes) = 196608
Compressed image size (bytes) = 18986
Decompressed image size (bytes) = 196608
Compression Ratio = 90%
Signal to Noise Ratio (db) =19.59
Simulation Time (Seconds) = 10.80

 59

OUTPUT FILE OF COLOR IMAGE USING DCT

Original image size (bytes) = 196608
Compressed image size (bytes) = 18978
Decompressed image size (bytes) = 196608
Compression Ratio = 90%
Signal to Noise Ratio (db) = 17.51
Simulation Time (Seconds) = 3.68

 60

6.2.1 SNR PERFORMANCE FOR COLOR IMAGE

 CR = 70% CR = 80% CR = 90%
KLT 27.98 24.29 19.59
DCT 23.05 20.47 17.51

 Table 6.3 : SNR Values For Color Image (All values in db)

 61

6.2.2 SIMULATION TIME PERFORMANCE FOR COLOR IMAGE

 CR = 70% CR = 80% CR = 90%
KLT 10.50 10.68 10.80
DCT 3.57 3.60 3.68

 Table 6.4 : Simulation Time For Color Image (All values in seconds)

 62

CHAPTER 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

The performance of KLT, DCT and DWT was compared for images in response to

human visual system (HVS), PSNR and the Complexities involved in implementation.

In terms of complexities involved, KLT is practically very difficult to implement as

its basis functions are data dependent while in terms of image quality and PSNR, it

has excellent results.

By observing the simulations it can be seen that the compression of an image by DCT

is inferior to compression by using wavelet transform. For the same amount of

compression, wavelet has produced a better result than DCT in terms of image quality

& PSNR. Wavelet transformation is powerful because of its multi-resolution

decomposition technique. This technique allows wavelets to de-correlate an image

and concentrate the energy in a few coefficients.

DCT achieves the fastest computational performance due to fast algorithms.

DCT achieves the fastest computational performance due to fast algorithms & DWT

has out performed in terms of image quality & higher PSNR so there is further scope

for evaluation of code which uses combination of DCT & DWT in order to achieve

the fastest computational performance, image quality & higher PSNR and these

techniques can be implemented on DSP processors for real time applications.

 63

REFERENCES

1. Rafael C.Gonzalez and Richard E. Woods, Digital Image Processing, Addison

Wesley publishing company, 1993, ISBN 0-201-50803-B

2. Rafael C.Gonzalez and Richard E. Woods, Digital Image Processing, using

MATLAB Addison Wesley publishing company,1997, ISBN0-201-50803-B

3. Anil K. Jain, Fundamentals of Digital Image Processing, Pearson Education,

1989, ISBN 81-297-0083-2

4. Azriel Rosenfeld and Avinash C.Kak, Digital Picture Processing, Academic

Press, INC, 1982, San Diego, California 92101

5. N. Ahmed, T. Natararajan and K.R. Rao, “Discrete Cosine Transform”, IEEE

Trans. Computers, Vol. C-23, pp.90-94, 1974

6. Rao K.R. and Yip, P. Discrete Cosine Transform-Algorithms, Advantages,

Applications. Academic Press, Inc. London, 1990

7. W H Chen, and S C.Fralick “A Fast Computational Algorithm for the Discrete

Cosine Transform” IEEE Trans Commun COM-25 (September 1977) 1004-1009

8. M J Narasimha and A. M Peterson “On the computation of the Discrete Cosine

Transform.” IEEE Trans. Commun.COM-26, (June 1978): 934-936

9. W.D. Ray and R M Driver “ Further Decomposition of the Karhunen-Loeve

Series Representation of a Stationary Random Process’ IEEE Trans Info Theory

IT-11 (November 1970); 663-668

10. A. Graps, “An Introduction to Wavelets”, IEEE Computational Sciences and

Engineering, Vol. 2, No. 2, Summer 1995, pp 50-61

11. M.L. Hilton, B.D. Jawerth, A. Sengupta, ” Compressing Still and Moving

Images with Wavelets, Multimedia Systems, Vol. 2 and No. 3, Apr. 18, 1994

12. C. Mulcahy, ‘Image Compression Using The Haar Wavelet Transform’

Spelman College Science & Mathematics Journal, Vol. 1, No 1, Apr. 1997, pp.

22-31

13. Amir Averbuch, Danny Lazar, Moshe Israeli, “Image Compression Using

Wavelet Transform and Multiresolution Decomposition”, IEEE transactions on

image processing, vol. 5, No. 1, January 1996.

14. S. Saha, ” Image Compression ’ from DCT to Wavelets: A Review„,

http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html (current May 1,

2001)

 64

http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html

15. R.Polikar, ‘The WaveletTutorial’ -

http://engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html, (current

March 20, 2001)

16. C. Valens, ” A Really Friendly guide to Wavelets„,

 http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html, (current

 March 20, 2001)

17 JPEG vs. JPEG 2000- Comparison, Available:

 http://www.dspworx.com/primer_jpeg_vs__jpeg2000.htm

18 Wavelet Image Compression Construction Kit

 http://www.cs.dartmouth.edu/~gdavis/wavelet/wavelet.html

19 Comparative study of DCT- and wavelet-based image coding

 http://www.debut.cis.nctu.edu.tw/~sasami/ work/presentations/19991126.pdf
20 Discrete Cosine Transform.

 http://www.dynamo.ecn.purdue.edu/~ace/jpeg-tut/jpgdct1.html
21 The Wavelet Transform

 http://www.eso.org/projects/esomidas/ doc/user/98NOV/volb/node308.html

22 Mallat, S. G. A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation, IEEE Trans. PAMI, vol. 11, no. 7, July 1989, pp. 674

23 Froment, J. and Mallat, S. Second Generation Compact Image Coding with

Wavelets, in C.K. Chui, editor, Wavelets: A Tutorial in Theory and Applications,

vol. 2, Academic Press, NY, 1992

24 Lewis, A. S. and Knowles, G. Image Compression Using the 2-D Wavelet

Transform, IEEE Trans. IP, vol. 1, no. 2, April 1992, pp. 244-250.

25 Strang, G. and Nguyen, T. Wavelets and Filter Banks, Wellesley-Cambridge

 Press, Wellesley, MA, 1996, http://www-math.mit.edu/~gs/books/wfb.html

26 Taubman, D. High Performance Scalable Image Compression with EBCOT,

submitted to IEEE Tran. IP, Mar. 1999,

 http://maestro.ee.unsw.edu.au/~taubman/activities/preprints/ebcot.zip

 65

http://engineering.rowan.edu/%7Epolikar/WAVELETS/WTtutorial.html
http://perso.wanadoo.fr/polyvalens/clemens/wavelets/wavelets.html
http://www.dspworx.com/primer_jpeg_vs__jpeg2000.htm
http://www.cs.dartmouth.edu/%7Egdavis/wavelet/wavelet.html
http://www.debut.cis.nctu.edu.tw/%7Esasami/%20work/presentations/19991126.pdf
http://www.dynamo.ecn.purdue.edu/%7Eace/jpeg-tut/jpgdct1.html
http://www.eso.org/projects/esomidas/%20doc/user/98NOV/volb/node308.html
http://www-math.mit.edu/%7Egs/books/wfb.html
http://maestro.ee.unsw.edu.au/%7Etaubman/activities/preprints/ebcot.zip

APPENDIX

 FLOW CHART FOR KARHUNEN LOEVE TRANSFORM

Input the image

 Start

Resize the image 256 x 256(A)

Compute the column matrix (B) of (A)

M= Mean of (B)

Obtain zero mean matix of (B)

Obtain autocorrelation of zero mean image

Obtain the eigen value & eigen vectors of
zero mean image

Compute the multiplication of zero mean
image with eigen vectors(g)

 A

Input threshold value

 66

Read the eigen value

Is eigen value ≤
threshold value

 A

Coefficients of (g) = 0

Compressed matrix

Recovery of compressed image

Yes

Computing peak signal to noise
ratio & simulation time

No

Plotting of original and
decompressed image

End

 67

FLOW CHART FOR IMAGE COMPRESSION USING DCT

Input the image

Resize the image (256 x 256)

Divide the image by 256

Computing the two dimensional DCT

Input the threshold value

Read the DCT coefficients

Is coefficients ≤
threshold value

Coefficients = 0

Get the compressed matrix

Computing the two dimensional inverse DCT

Computing the peak signal to noise ratio and simulation time

 Start

Plotting the original & decompressed image

 End

No

Yes

 68

 FLOW CHART FOR IMAGE COMPRESSION USING DWT

Start

Input the image

Resize image (256 x 256)

Compute the two-dimensional DWT with
specifying type of wavelet to be used

Computing the threshold value for
specific value of compression ratio

Using threshold value, compress the
original image

Computing the peak signal to noise ratio
and simulation time

Plotting of original and Compressed image

 End

Compute the two-dimensional IDWT

Decompose the image & mention the
level of decomposition

 69

FLOW CHART FOR TWO DIMENSIONAL DWT

Com pass pute the high
filter
i = decomp. level

Start

Get input parameters
i.e. image, wavelet
type, decomp. level

Read the 2D decomposed
image to a matrix

Retrieve the l w pass
d

o
filter from the list base
on the wavelet type

Perform 2D decomposion
on the image

i >= decomp.
Level ? Decomposed image

End

Convolve all rows with
the low pass filter to
obtain the low pass
coefficients

A

 70

End

 A

Downsample by two

Convolve all rows with the high pass
filter to obtain the high pass
coefficients

Downsample by two

Concatenate both high and low
coefficients and transpose the matrix

Convolve all columns with the low
pass filter to obtain the low pass
coefficients

Downsample by two

Concatenate both high and low
coefficients and transpose the matrix

Convolve all columns with the high
pass filter to obtain the high pass
coefficients

Downsample by two

 71

PROGRAM CODE

%GDCT75
%To find the Two Dimensional Lossy Cosine Transform of the GRAY Images
function [] = LYdct2d
 clc;
clear all;
close all;
ImageName = input('Enter the filename(tif) ','s');
ImageExt = 'tif';
Input = input('Enter the name of the resized file ','s');
Transformed = input('Enter the name of the transformed image ','s');
Reconstructed = input('Enter the name of the reconstructed image ','s');

t=cputime;
I=imread(ImageName,ImageExt);
img=imresize(I,[256 256]);
img=double(img)/255;
imwrite(img,Input,ImageExt);

Transform=dct2(img);
count=0;
for i=1:255

 for j=1:255

 if abs(Transform(i,j))<=0.054

 Transform(i,j)=0;
 count=count+1;

 end
 end
 end
count;
imwrite(Transform,Transformed,ImageExt);

R=idct2(Transform);

imwrite(R,Reconstructed,ImageExt);

CR = (count/65536)*100
size(img)
size(R)
figure (1);
subplot(221);imshow(img);title('original image');
subplot(222);imshow(Transform);title('dct');
subplot(223);imshow(R);title('compressed image')

 72

% SNR(img,R) returns the signal to noise ratio between img and R (dB).
% img is the original image and R is reconstructed image.
% The SNR value is useful to calculate the distortions on an image.

[m n] = size(img);
total_img = 0;
total_Dif = 0;

for u = 1:m
 for v = 1:n
 total_img = total_img + img(u, v)^2;
 total_Dif = total_Dif + (img(u, v) - R(u, v))^2;
 end
end

SNR = (total_img) / (total_Dif);
SNR = (10 * log10(SNR))
simulation_time=cputime-t

%GKLT75
%To find the Lossless Karhunen- Loeve Transform of the GRAY Images

function [] = LYklt
ImageName = input('Enter the filename(tif) ','s');
ImageExt = 'tif';
Input = input('Enter the name of the resized file ','s');
Transformed = input('Enter the name of the transformed image ','s');
Reconstructed = input('Enter the name of the reconstructed image ','s');
t=cputime;
I=imread(ImageName,ImageExt);
img=imresize(I,[256 256]);
img=double(img)/255;
imwrite(img,Input,ImageExt);

[a,b]= size(img);

m = sum(img');

Mean = (1/b)*(m');

newmean=(Mean)*(Mean');

X=0;

for i=1:b

 X = X + (img(:,i)*img(:,i)');

 73

end

newx = (1/b)* X;

covmatrix = newx - newmean;

[V,D] = eig(covmatrix);

for i=1:b

 output(:,i) = V*(img(:,i) - Mean);

end

count1=0;
for i=1:255

 for j=1:255
 if abs(output(i,j))<=.054

 output(i,j)=0;
 count1=count1+1;
 end
 end
 end

count1;
imwrite(output,Transformed,ImageExt);

for i=1:b

 R(:,i) = V'*output(:,i) + Mean;

end
imwrite(R,Reconstructed,ImageExt);

size(img)
size(R)
figure ;
subplot(221);imshow(img);title('original image');
subplot(222);imshow(output);title('klt');
subplot(223);imshow(R);title('compressed image')
[m n] = size(img);
total_img = 0;
total_Dif = 0;
for u = 1:m
 for v = 1:n

 74

total_img = total_img + img(u, v)^2;
 total_Dif = total_Dif + (img(u, v) - R(u, v))^2;
 end
end

SNR = (total_img) / (total_Dif);
SNR = (10 * log10(SNR))
simulation_time=cputime-t

%GDWT
%To find the discrete wavelet transform of GRAY Image

function [] = LYdwt
ImageName = input('Enter the filename(tif) ','s');
ImageExt = 'tif';
Input = input('Enter the name of the resized file ','s');

Transformed = input('Enter the name of the transformed image ','s');
Reconstructed = input('Enter the name of the reconstructed image ','s');
t=cputime;

I=imread(ImageName,ImageExt);

im_input = imresize(I,[256 256]);

input=double(im_input);

[cA,cH,cV,cD] = dwt2(im_input,'bior');
[C,S] = wavedec2(im_input,2,'bior3.7');

[m,n] = size(cA);
temp_cA = reshape(cA,1,m*n);
temp_cA = sort(temp_cA);
temp_cH = reshape(cH,1,m*n);
temp_cH = sort(temp_cH);
temp_cV = reshape(cV,1,m*n);
temp_cV = sort(temp_cV);
temp_cD = reshape(cD,1,m*n);
temp_cD = sort(temp_cD);

index = round(0.112*(length(temp_cA)/4));
cA25_cutoff = temp_cA(index);
cA25 = cA.*(cA(:,:)>= cA25_cutoff);
cH25_cutoff = temp_cH(index);
cH25 = cH.*(cH(:,:)>= cH25_cutoff);
cV25_cutoff = temp_cV(index);
cV25 = cV.*(cV(:,:)>= cV25_cutoff);
cD25_cutoff = temp_cD(index);

 75

cD25 = cD.*(cD(:,:)>= cD25_cutoff);
% compression
im_rec = idwt2(cA25,cH25,cV25,cD25,'bior3.7');
imwrite(im_rec,'CompressedImage.tif');

% display results
figure; subplot(1,2,1); imshow(im_input); title('Original Image');
subplot(1,2,2); imshow(uint8(im_rec75)); title('Compressed Image ');

%SNR
[m n] = size(im_input);
total_img = 0;
total_Dif = 0;

for u = 1:m
 for v = 1:n
 total_img = total_img + input(u, v)^2;
 total_Dif = total_Dif + (input(u, v) - im_rec75(u, v))^2;
 end
end

SNR = (total_img) / (total_Dif);
SNR_75 = (10 * log10(SNR))
simulation_time=cputime-t

%CDCT90
%To find the Lossy Direct Cosine Transform of the color Images

function [] = LYcolordct
ImageName = input('Enter the filename(tif) of color image ','s');
ImageExt = 'tif';
Input = input('Enter the name of the resized file ','s');
Transformed = input('Enter the name of the transformed image ','s');
Reconstructed = input('Enter the name of the reconstructed image ','s');
time1=cputime;
[X,map1]=imread(ImageName,ImageExt);
img=imresize([X,map1],[256 256]);
img=double(img)/256;
size(img)
R=img(:,:,1);

G=img(:,:,2);

B=img(:,:,3);

n1=dct2(R);

n2=dct2(G);

 76

n3=dct2(B);
count1=0;
for i=1:256

 for j=1:256

 if abs(n1(i,j))<=0.158

 n1(i,j)=0;
 count1=count1+1;

 end
 end
 end
count1;
count2=0;
for i=1:256

 for j=1:256

 if abs(n2(i,j))<=0.158

 n2(i,j)=0;
 count2=count2+1;

 end

 end

end
count2;
count3=0;
for i=1:256

 for j=1:256

 if abs(n3(i,j))<=0.158

 n3(i,j)=0;
 count3=count3+1;
 end

 end

end
count3;
count=count1+count2+count3;

 77

n = n1;
n(:,:,2) = n2;
n(:,:,3) = n3;
imwrite(n,Transformed,ImageExt);
transform = imread(Transformed,ImageExt);

size(transform)
%compression ratio=(size of original image-size of compressed image)/(size of
original image)

CR=(count/196608)*100
m1=idct2(n1);

m2=idct2(n2);

m3=idct2(n3);

m= m1;

m(:,:,2) = m2;

m(:,:,3) = m3;

imwrite(m,Reconstructed,ImageExt);

[Y,map2]= imread(Reconstructed,ImageExt);

R=imresize([Y,map2],[256 256]);

R=double(R)/256;

figure (1);
subplot(221);imshow(img);title('original image');
subplot(222);imshow(transform);title('dct');
subplot(223);imshow(R);title('compressed image');

% SNR(img,R) returns the signal to noise ratio between I and R (dB).
% I is the original image and R is a modified version of I.
% The SNR value is useful to calculate the distortions on an image.

[m n] = size(img);
total_img = 0;
total_Dif = 0;

for u = 1:m
 for v = 1:n

 78

 total_img = total_img + img(u, v)^2;
 total_Dif = total_Dif + (img(u, v) - R(u, v))^2;
 end
end
% if (total_Dif == 0)
% total_Dif = 1;
% end
S = (total_img) / (total_Dif);
S = (10 * log10(S))

time=cputime-time1

%CKLT90
%To find the Lossless Karhunen- Loeve Transform of the color Images

function [] = LYklt
ImageName = input('Enter the filename(tif) of color image ','s');
ImageExt = 'tif';
Input = input('Enter the name of the resized file ','s');
Transformed = input('Enter the name of the transformed image ','s');
Reconstructed = input('Enter the name of the reconstructed image ','s');
time1=cputime;
[X,map1]=imread(ImageName,ImageExt);
img=imresize([X,map1],[256 256]);

img=double(img)/256;

R=img(:,:,1);
G=img(:,:,2);
B=img(:,:,3);
[a,b]= size(R);

t = sum(R');

Mean1= (1/b)*(t');

newmean1=(Mean1)*(Mean1');

X=0;

for i=1:b

 X = X + (R(:,i)*R(:,i)');

end

newx = (1/b)* X;

 79

covmatrix1 = newx - newmean1;

[V1,D1] = eig(covmatrix1);

for i=1:b

 n1(:,i) = V1*(R(:,i) - Mean1);

end
q = sum(G');

Mean2 = (1/b)*(q');

newmean2=(Mean2)*(Mean2');

Y=0;

for i=1:b

 Y = Y + (G(:,i)*G(:,i)');

end

newy = (1/b)* Y;

covmatrix2 = newy - newmean2;

[V2,D2] = eig(covmatrix2);

for i=1:b

 n2(:,i) = V2*(G(:,i) - Mean2);

end

r = sum(B');

Mean3 = (1/b)*(r');

newmean3=(Mean3)*(Mean3');

Z=0;

for i=1:b

 Z= Z + (B(:,i)*B(:,i)');

end

 80

newz = (1/b)* Z;

covmatrix3 = newz - newmean3;

[V3,D3] = eig(covmatrix3);

for i=1:b

 n3(:,i) = V3*(B(:,i) - Mean3);

end
count1=0;

for i=1:255

 for j=1:255

 if abs(n1(i,j))<=.12

 n1(i,j)=0;
 count1=count1+1;

 end

 end

end
count1;
count2=0;
for i=1:255

 for j=1:255

 if abs(n2(i,j))<=.12

 n2(i,j)=0;
 count2=count2+1;
 end

 end

end
count2;
count3=0;

for i=1:255

 81

 for j=1:255

 if abs(n3(i,j))<=.12

 n3(i,j)=0;
 count3=count3+1;
 end

 end

end

count3;
 count4=count1+count2+count3;
n=n1;
n(:,:,2) = n2;

n(:,:,3) = n3;

imwrite(n,Transformed,ImageExt);

D = imread(Transformed,ImageExt);

for i=1:b

 m1(:,i) = V1'*n1(:,i) + Mean1;

end
for i=1:b

 m2(:,i) = V2'*n2(:,i) + Mean2;

end
for i=1:b

 m3(:,i) = V3'*n3(:,i) + Mean3;

end
m=m1;
m(:,:,2)=m2;
m(:,:,3)=m3;

imwrite(m,Reconstructed,ImageExt);
[Y,map2]= imread(Reconstructed,ImageExt);

R=imresize([Y,map2],[256 256]);

 82

R=double(R)/256;
%compression ratio=(size of original image-size of compressed image)/(size of
original image)

size(img)
size(R)

figure (1);
subplot(221);imshow(img);title('original image');
subplot(222);imshow(D);title('klt');
subplot(223);imshow(R);title('compressed image');

% SNR(img,R) returns the signal to noise ratio between I and R (dB).
% I is the original image and R is a modified version of I.
% The SNR value is useful to calculate the distortions on an image.

[m n] = size(img);
total_img = 0;
total_Dif = 0;

for u = 1:m
 for v = 1:n
 total_img = total_img + img(u, v)^2;
 total_Dif = total_Dif + (img(u, v) - R(u, v))^2;
 end
end
% if (total_Dif == 0)
% total_Dif = 1;
% end
S = (total_img) / (total_Dif);
S = (10 * log10(S))

time=cputime-time1

DWT
t1=cputime;
load Image
image(X);
X1=imresize(X,[256 256]);
size(X1);
colormap(map);
% colorbar;
% Perform a single-level decomposition of the image
% using the bior3.7 wavelet. Type:
[cA1,cH1,cV1,cD1] = dwt2(X1,'bior3.7');
[C,S] = wavedec2(X1,2,'bior3.7');

% To construct the level-one approximation and details

 83

% (A1, H1, V1, and D1) from the coefficients cA1, cH1,
% cV1, and cD1, type:
A1 = upcoef2('a',cA1,'bior3.7',1);
H1 = upcoef2('h',cH1,'bior3.7',1);
V1 = upcoef2('v',cV1,'bior3.7',1);
D1 = upcoef2('d',cD1,'bior3.7',1);
sx = size(X1);
A1 = idwt2(cA1,[],[],[],'bior3.7',sx);
H1 = idwt2([],cH1,[],[],'bior3.7',sx);
V1 = idwt2([],[],cV1,[],'bior3.7',sx);
D1 = idwt2([],[],[],cD1,'bior3.7',sx);

% To display the results of the level 1 decomposition type:
figure;
colormap(map);
subplot(2,2,1); image(wcodemat(A1,192));
title('Approximation A1')
axis square
subplot(2,2,2); image(wcodemat(H1,192));
title('Horizontal Detail H1')
axis square
subplot(2,2,3); image(wcodemat(V1,192));
axis square
title('Vertical Detail V1')
subplot(2,2,4); image(wcodemat(D1,192));
title('Diagonal Detail D1')
axis square
Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');
% To perform a level 2 decomposition of the image
% (again using the bior3.7 wavelet), type:
[C,S] = wavedec2(X1,2,'bior3.7');

% To extract the level 2 approximation coefficients from C, type:
cA2 = appcoef2(C,S,'bior3.7',2);
% To extract the first- and second-level detail coefficients from C, type:
cH2 = detcoef2('h',C,S,2);
cV2 = detcoef2('v',C,S,2);
cD2 = detcoef2('d',C,S,2);
cH1 = detcoef2('h',C,S,1);
cV1 = detcoef2('v',C,S,1);
cD1 = detcoef2('d',C,S,1);
% or
[cH2,cV2,cD2] = detcoef2('all',C,S,2);
[cH1,cV1,cD1] = detcoef2('all',C,S,1);

% To reconstruct the level 2 approximation from C, type:
A2 = wrcoef2('a',C,S,'bior3.7',2);

 84

% To reconstruct the level 1 and 2 details from C, type:
H1 = wrcoef2('h',C,S,'bior3.7',1);
V1 = wrcoef2('v',C,S,'bior3.7',1);
D1 = wrcoef2('d',C,S,'bior3.7',1);
H2 = wrcoef2('h',C,S,'bior3.7',2);
V2 = wrcoef2('v',C,S,'bior3.7',2);
D2 = wrcoef2('d',C,S,'bior3.7',2);
% To display the results of the level 2 decomposition, type:
figure;
colormap(map);
subplot(2,4,1);image(wcodemat(A1,192));
title('Approximation A1')
axis square
subplot(2,4,2);image(wcodemat(H1,192));
title('Horizontal Detail H1')
axis square
subplot(2,4,3);image(wcodemat(V1,192));
title('Vertical Detail V1')
axis square
subplot(2,4,4);image(wcodemat(D1,192));
title('Diagonal Detail D1')
axis square
subplot(2,4,5);image(wcodemat(A2,192));
title('Approximation A2')
axis square
subplot(2,4,6);image(wcodemat(H2,192));
title('Horizontal Detail H2')
axis square
subplot(2,4,7);image(wcodemat(V2,192));
title('Vertical Detail V2')
axis square
subplot(2,4,8);image(wcodemat(D2,192));
title('Diagonal Detail D2')
axis square
% To reconstruct the original image from the wavelet decomposition structure,
% type:
X0 = waverec2(C,S,'bior3.7');
sorh='h';

x=abs(C);
x=sort(x);
dropindex = length(x) * (90)/100;
 dropindex = round(dropindex);
 threshold = x(dropindex);

if (threshold == 0)
end
threshold;

 85

% Compressing an Image.
% To compress the original image X, use the ddencmp command to calculate
% the default parameters and the wdencmp command to perform the actual
% compression. Type:
[thr,sorh,keepapp] = ddencmp('cmp','wv',X);
[Xcomp,CXC,LXC,PERF0,PERFL2]=
wdencmp('gbl',C,S,'bior3.7',2,threshold,sorh,1);

% Displaying the Compressed Image.
% To view the compressed image side by side with the original, type:
figure
colormap(map);
subplot(121); image(X1); title('Original Image');
 axis square
subplot(122); image(Xcomp); title('Compressed Image');
axis square

% SNR(X,R) returns the signal to noise ratio between img and R (dB).
% img is the original image and R is a modified version of img.
% The SNR value is useful to calculate the distortions on an image.

[m n] = size(X1);
total_X = 0;
total_Dif = 0;

for u = 1:m
 for v = 1:n
 total_X = total_X + X1(u, v)^2;
 total_Dif = total_Dif + (X1(u, v) - Xcomp(u, v))^2;
 end
end

SNR = (total_X)/ (total_Dif);
SNR = (10 * log10(SNR))
simulation_time=cputime-t1

% SNR Plots for Gray Image
x=[75 85 90];
w=[31.24,30.29,29.06];
k=[30.92,29.23,28.47];
d=[29.26 26.32,24.49];
plot(x,w,'-ms',x,k,'-bx',x,d,'-ro')
h = legend('DWT','KLT','DCT',3);
Xlabel('COMPRESSION RATIO(%)')
Ylabel('SNR(db)')
Title('SNR PLOT for GRAY IMAGE');
grid on;
% SIMULATION TIME PLOT FOR GRAY IMAGE
x=[75 85 90];

 86

k=[3.68,3.79,3.95];
w=[1.31,1.33,1.34];
d=[1.1,1.15,1.21];
plot(x,k,'-bx',x,w,'-ms',x,d,'-ro')
h = legend('KLT','DWT','DCT',3);
Xlabel('COMPRESSION RAIO(%)')
Ylabel('SIMULATION TIME(sec.)')
Title('SIMULATION TIME PLOT FOR GRAY IMAGE');
grid on;

 87

	OUTPUT FILE OF GRAY IMAGE USING KLT
	OUTPUT FILE OF COLOR IMAGE USING KLT
	
	CHAPTER 7
	CONCLUSIONS AND SCOPE FOR FUTURE WORK
	REFERENCES

