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                              ABSTRACT 
 
 
In this thesis, a comparative study between transforms used for the compression 

of still images i.e. Discrete cosine transform (DCT), Karhunen Loeve 

Transform (KLT) and Discrete wavelet transform (DWT) is 

presented.  MATLAB software is used to generate image compression 

results for algorithms using  DCT,  KLT  and DWT.  

The Karhunen Loeve Transform (KLT) is optimal transform , as it packs most of  

the  energy into a fewer number of frequency domain elements and it completely 

de-correlates its elements but it is theoretical concept & practically very difficult 

to implement as its basis functions are data dependent.  

In terms of complexity involved, DCT achieves the fastest 

computational performance due to fast algorithms. 

Wavelet Transform has superior performance than other transforms 

in terms of peak signal to noise ratio & image quality. DWT 

provides higher compression ratio due to the wavelet transform 

multi-resolution capability which allows it to analyze signal at 

various scale and resolutions. 
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CHAPTER  1 
INTRODUCTION   
   
Digital images are used in many diverse applications, including multimedia 

technology, digital photography, Internet viewing, image archiving and medical 

imaging. With the advance development in Internet and multimedia technologies, the 

amount of information handled by computers has grown exponentially over the past 

decades. This information require large amount of  storage space and transmission 

bandwidth.  

 One of possible solution to this problem is to compress the information so that the 

storage space and transmission time can be reduced. Hence in order to transmit and 

store digital images, the images must be compressed, otherwise each image would 

require a huge amount of memory. Different Transform methods of image 

compression are Discrete Wavelet Transform (DWT), Discrete Cosine Transform 

(DCT), Karhunen Loeve Transform (KLT) , Discrete Fourier Transform (DFT),  

Discrete Sine Transform (DST) , Hadamard Transform, Harr Transform, Slant 

Transform &  Singular value decomposition transform.  

The energy compaction property of the DCT, KLT and DWT is well suited for image 

compression since, as in most images, the energy is concentrated in the low to middle 

frequencies, and the human eye is more sensitive to the low frequencies. 

The optimal transform is the KLT as it packs most of the energy into a fewer no. of 

frequency domain elements but it is theoretical concept & practically very difficult to 

implement because its basis functions are image dependent so this complicates the 

digital implementation. 

The Discrete Cosine Transform (DCT) was introduced by Ahmed in 1974. DCT is a 

approximation of the optimal Karhunen Love transform (KLT)  with large correlation 

coefficient. It has satisfactory performance in terms of energy compaction capability, 

and many fast DCT algorithms with efficient hardware and software while also 

having image independent basis functions.  

DWT based coders have outperformed DCT coders both in terms of image quality 

and higher PSNR. The most important reason why wavelet transformation is so 
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powerful is its Multi-Resolution Analysis (MRA) capability, which allows it to 

analyze signal at various scale and resolution. 

In terms of complexities involved in implementing DCT and DWT, DCT achieves the 

fastest computational performance due to fast algorithms.  

 

1.1 GRAYSCALE AND COLOR IMAGE COMPRESSION 

1.1.1.  GRAYSCALE IMAGE COMPRESSION 

A digital grayscale image is typically represented by 8 bits per pixel (bpp) in its 

uncompressed form. Each pixel has a value ranging from 0 (black) to 255 (white). 

Transform methods are applied directly to a two dimensional image by first operating 

on the rows, and then on the columns. Transforms that can be implemented in this 

way are called separable. 

1.1.2  COLOR  IMAGE  COMPRESSION 

A digital color image is stored as a three-dimensional array and uses 24 bits to 

represent each pixel in its uncompressed form. Each pixel contains a value 

representing a red ®, green (G), and blue (B) component scaled between 0 and 255–

this format is known as the RGB format. The PSNR is measured for each compressed 

component just as for grayscale images. The three output components are reassembled 

to form a reconstructed 24-bit color image (image out).  

 

1.2  APPROACH  TO  THESIS   : 

1. Study  & Evaluation of Image Compression Techniques using Discrete 

Wavelet Transform, Discrete Cosine Tranform and Karhunen- Loeve 

Transform. 

2. Implementation of Image Compression techniques for gray images using 

MATLAB software. 

3. Implementation of Image Compression techniques for color images using 

MATLAB software. 

4. Comparison of obtained results in terms of compression ratio, peak signal to 

noise ratio, human visual system & complexity involved using MATLAB 

software. 
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1.3 OUTLINE OF THE THESIS  

The remaining chapters of this work are organized as follows: 

Chapter 2 briefly discusses fundamentals of image compression & summary of JPEG 

standard. Chapter 3 discusses summary of image compression technique using 

Karhunen  Loeve Transform and its algorithm. Chapter 4 discusses summary of image 

compression technique using Discrete Cosine Transform and its algorithm. Chapter 5 

discusses summary of image compression technique using Discrete Wavelet 

Transform and its algorithm. 

Chapter 6 presents the simulation results of above mentioned compression techniques 

& comparison based on compression ratio, human visual system, peak signal to noise 

ratio & complexity involved. 

Chapter 7 presents the conclusions of the thesis along with suggestions for future 

work in this area.  
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CHAPTER 2 
OVERVIEW OF IMAGE COMPRESSION & JPEG STANDARD 
 
2.1   INTRODUCTION OF IMAGE COMPRESSION 

Reducing the amount of data to reproduce images or video is called compression and 

it saves  

• Storage space 

• Increase access speed 

• A way to achieve digital motion video on personal computer. 

Compression is concerned with minimizing the no. of bits required to represent an 

image. Perhaps the simplest and most dramatic form of data compression is the 

sampling of band limited images where an infinite number of pixels per unit area is 

reduced to one sample without any loss of information. 

A common characteristic of most images is that the neighbouring pixels are correlated 

and therefore contain redundant information. The foremost task then is to find less 

correlated representation of the image. Two fundamental components of compression 

are redundancy and irrelevancy reduction. 

Redundancy reduction aims at removing duplication from the signal source 

(image/video). Irrelevancy reduction omits parts of the signal that will not be 

noticed by the signal receiver, namely the Human Visual System (HVS). In general, 

three types of redundancy can be identified. 

• Spatial redundancy which is due correlation between neighbouring pixel values. 

• Spectral Redundancy which is due to correlation between different color planes 

or spectral bands. 

• Temporal Redundancy which is due to correlation between adjacent frames in a 

sequence of images (in video applications). 

Image compression researches aims to reduce the number of bits required to represent 

an image by removing these redundancies. Only spatial redundancy and spectral 

redundancy are removed in still images. 

 

 

  

 10



2.1.1 NEED OF COMPRESSION 

The example given below clearly illustrate the need for very high storage space, large 

transmission bandwidth and long transmission time for uncompressed image, audio 

and video data.  

 

Multimedia 

data 

Size/ Duration Bits/Pixel Uncompressed  

Size 

Transmission 

B.W 

Transmission 

Time 

A page of 

text 

11”x8.5” Varying 

resolution

4-8KB 32-64 Kb/page 1.1-2.2 sec 

Telephone 

quality 

10sec. 8bps 80KB 64Kb/sec 22.2 sec 

Grayscale 

image 

512 x 512 8bpp 262KB 2.1 Mb/image 1 min 13 sec 

Color 

image 

512 x 512 24bpp 786KB 6.29Mb/image 3min 39 sec 

Medical 

image 

2048 x 2048 12bpp 5.16MB 4.13Mb/image 23 min 54 

sec 

SHD 

Image 

 

2048 x 2048 24bpp 12.58MB 1000Mb/image 58 min 15 

sec 

Full-

motion 

Video 

640x480,1min 

(30frames/sec)

24bpp 1.66GB 221 Mb/sec 5 days 8hrs. 

 

Table 2.1: Multimedia data types with uncompressed storage space, transmission 

bandwidth and transmission time required. The prefix kilo-denotes a factor of 1000 

rather than 1024. 

At the present state of technology, the only solution is to compress multimedia data 

before its storage and transmission, and decompress it at the receiver for playback. 

For example, with a compression ratio of 32:1, the space, bandwidth and the 

transmission time requirements can be reduced by a factor of 32, with acceptable 

quality. 
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2.1.2 CLASSIFICATION OF COMPRESSION TECHNIQUES  

 
2.1.2.1   LOSSLESS VS. LOSSY COMPRESSION: 

LOSSLESS:  In lossless compression schemes, the reconstructed image after 

compression is numerically identical to the original image. However lossless 

compression can only achieve a modest amount of compression. 

Common lossless compressors include pkzip, winzip, bzip1 and bzip2. These are able 

to reconstruct an exact duplicate of the original input file after it has been compressed. 

 
LOSSY: An image reconstructed following lossy compression contains degradation 

relative to the original image. Often this is because the compression scheme 

completely discards the redundant information. However, lossy schemes are capable 

of achieving much higher compression. Under normal viewing conditions, no visible 

loss is perceived (visually lossless).  

Common lossy compressors include JPEG, MPEG, MP3 etc. These formats generally 

work by reproducing a file that can be quite different to the original at bit level, while 

being indistinguishable to the human ear or eye for most particular purposes.  

 
2.1.2.1   PREDICTIVE VS.TRANSFORM CODING : 

PREDICTIVE CODING: In predictive coding, information already sent or available 

is used to predict future values, and the difference is coded. Since this is done in the 

image or spatial domain, it is relatively simple to implement and is readily adapted to 

local image characteristics. Differential Pulse Code Modulation is one particular 

example of predictive coding.     

 
TRANSFORM CODING: Transform coding first transforms the image from its 

spatial domain representation to a different type of representation using the some well 

known transform and then codes the transformed value (coefficients). This method 

provides greater data compression compared to predictive methods, although at the 

expense of greater computation.  

In transform coding, a reversible, linear transform (such as F.T.) is used to map the 

image into a set of transform coefficients. 

The goal of transformation process is to de-correlate the pixels of each sub image, or 

to pack as much information as possible into the smallest number of coefficients. 
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2.1.3 IMAGE COMPRESSION CHARACTERISTICS 

There are three main characteristics by which image-compression algorithms can be 

judged: compression ratio, compression speed, and image quality. These 

characteristics can be used to determine the suitability of a given compression 

algorithm to our application. 

 
 2.1.3.1   COMPRESSION RATIO 

Compression performance is often specified by giving the ratio of input data to output 

data for compression process. This basic measure for the performance of a 

compression algorithm is compression ratio. 

      imageoriginalofsize
imagecompressedofsizeimageoriginalofsizeRC −

=..  

This ratio gives an indication of how much compression is achieved for a particular 

image. 

The compression ratio achieved usually indicates the picture quality. Higher the 

compression ratio, the poorer the quality of the resulting image. The trade off between 

compression ratio and picture quality is an important one to consider when 

compressing images. 

Furthermore, some compression schemes produce compression ratios that are highly 

dependent on the image content. This aspect of compression is called data 

dependency. Using an algorithm with a high degree of data dependency, an image of 

crowd at a football game (which contains a lot of detail) may produce a very small 

compression ratio, whereas an image of a blue sky (which consists mostly of constant 

colors and intensities) may produce a very high compression ratio. 

A much better way to specify the amount of compression is to determine the number 

of bits per displayed pixel needed in the compressed bit stream. 

 
2.1.3.2   IMAGE QUALITY 

Image quality describes the fidelity with which an image-compression scheme 

recreates the source image data. Compression scheme can be characterized as being 

either lossy or lossless. Lossless schemes preserve all of the original data. Lossy 

compression does not preserve the data precisely. Image data is lost, and it cannot be 

recovered after compression. Most lossy scheme  try to compress the data as much as 
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possible, without decreasing the image quality in a noticeable way. Some scheme may 

be either lossy or lossless, depending upon the quality level desired by the user. 

Higher compression ratio may produce lower picture quality. Quality and compression 

can also vary according to source image characteristics and scene content. One 

measure for the quality of the picture is number of bits per pixel in a compressed 

image (BPP) which is defined as the total number of bits in the compressed image 

divided by the number of pixels. 

 

                          pixelsofno
imagecompressedinbitsofnumberbpp

.
=                                               

    According to this measure, four different picture qualities are defined. 

 

(bits / pixel) Picture quality 

0.12-0.5 Moderate to good quality 

0.5-0.75 Good to very good quality 

0.75-1.0 Excellent quality 

1.5-2.0 Undistinguishable from the original 

 

 

2.1.3.3   COMPRESSION SPEED 

Compression time and decompression time are defined as the amount of the time 

required to compress and  decompress a picture, respectively. Their value depends on 

the following considerations: 

• The complexity of the compression algorithm 

• The efficiency of the software or hardware implementation of the algorithm 

• The speed of the utilized processor or auxiliary hardware 

  

2.1.3.4   PSNR 

Peak signal-to-noise ratio (PSNR) is the standard method for comparing a compressed 

image with the original image. It is not a direct measure of the perceptual visual 

quality, i.e. the way the image looks to human eye. However, PSNR can be used as an 

indicator of image quality.  
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where M and N are width and height of image. X is the original image data and Y is 

the compressed image data.  MAX is the max. value  that a pixel can have, 255.             

PSNR is measured in decibels (dB). 

 

2.2   INTRODUCTION OF JPEG STANDARD 

JPEG stands for Joint Photographic Experts Groups is a standard image compression 

mechanism. There was no adequate standard for compressing 24-bit per pixel color 

data, committee came up with algorithm for compressing color or grayscale images 

depicting real world scenes (like photographs). JPEG handles only still images but 

there is a related standard called MPEG for motion pictures. 

JPEG is “lossy,” meaning that the decompressed image is not exactly same as the one  

started  with. (There are lossless image compression algorithms, but JPEG achieves 

much greater compression than is possible with lossless methods). JPEG is designed 

to exploit known limitations of the human eye, notably the fact that small color 

changes are perceived less accurately than small changes in brightness. Thus, JPEG is 

intended for compressing images that will be looked at by humans. If images are 

planed to machine-analyze, the small errors introduced by JPEG may be problem, 

even if they are invisible to our eyes.  

A useful property of JPEG is that adjusting compression parameters can vary the 

degree of lossiness. This means that the image-maker can trade off file size against 

output image quality. Extremely small files can make if little poor quality is 

acceptable.  

JPEG images have become a default standard for a variety of mediums, mainly the 

internet and other applications where it is necessary to have images of high quality, 

but low data size. The advantages of this include low transmission times for Internet 

web browsing and the development of useful digital cameras that can store a number 

of images on a relatively low amount of on-board memory.  
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2.2.1   JPEG   ARCHITECHURE 

In the JPEG image compression the input image is divided into 8-by-8 or 16-by-16 

blocks, and the two-dimensional DCT is computed for each block. The DCT 

coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG 

file reader) decodes the quantized DCT coefficients, computes the inverse two-

dimensional DCT of each block, and then puts the blocks back together into a single 

image. For typical images, many of the DCT coefficients have values close to zero; 

these coefficients can be discarded without seriously affecting the quality of the 

reconstructed image. 

 

 
ENCODER 

 
DECODER 

Source image 
data 

Compressed 
Image Data 

Reconstructed 
Image Data 

 
                        Figure 2.1 : Block Diagram of Image Compression 
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…
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…
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   ….….... 

    ..….  

 

 

                     

    Figure 2.2 : Block Diagram of JPEG Encoder 

 

 

2.2.2 MAJOR  PARTS OF  JPEG  ENCODER 
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• Color space Conversion and Down-sampling 

• DCT (Discrete Cosine Transformation)  

• Quantization  

• Zigzag Scan  

• DPCM on DC component & RLE on AC Components  

• Entropy Encoding (Huffman Encoding & Arithmetic Encoding) 
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CHAPTER  3 
THE KARHUNEN-LOEVE TRANSFORM (KLT) 

 
Originated from the series expansions for random processes developed by Karhunen 

and Loeve in 1947 and 1949 based on the work of Hoteling in 1933 (the discrete 

version of the KL transform). Also known as Hoteling transform or method of 

principal component. It packs the maximum energy in first few samples. It minimizes 

the mean square error for any truncated series expansion. Error vanishes in case there 

is no truncation. The idea is to transform a signal into a set of uncorrelated 

coefficients. 

Karhunen Loeve Transform provides the orthogonal basis along which the 

coefficients are uncorrelated. 

 

3.1  K.L TRANSFORM OF IMAGES 

An N x N image is represented by a two dimensional random sequence v (m,n). It can 

be represented by matrix of order N x N. Alternatively, a given N x N image can be 

viewed as  an N2 x 1 column vector v. Now just as one dimensional signal can be 

represented by an orthogonal series of basis function, an image can also be generated 

by unitary matrices. 

A general orthogonal series expansion for an N x N image v (m, n) is given as, 

General form: 
 

∑ ∑
−

=

−

=

=
1

0

1

0
),,,(),(),(

N

k

N

l
nmlklkunmv ψ  

 
where  m, n = 0,1,2………., N-1 
 
And the kernel ψ( k, l, m, n)  is given by the orthonormalized eigenvectors of the 
correlation matrix, i.e. it satisfies  
 
        λiψi    =   Rψi                      i= 0, ... , N2 – 1 
 
R is the (N 2 x N 2) autocorrelation matrix of image and iψ   are (N 2 x 1) eigen 
vectors. So R matrix of the image mapped into an (N 2 x 1) vector and  ψi  is the ith 
column of  ψ  
                 
If R is separable, i.e., 
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     R= R1⊗ R2   
 
then the KL kernel is also separable, i.e., 
 
ψ ( k, l ; m, n) =  ψ1( m, k) ψ2( n, l) 
 
or 
 
ψ =ψ1⊗ ψ2  
 
ψ  is called the eigen matrix of R. 
 
The elements u (k ,l) are called the transform coefficients. 

∑ ∑
−

=

−

=

=
1

0

1

0
),,,(),(),(

N

m

N

n
nmlknmvlku ψ  

 
where  k ,l =0, 1 ,2,….,N-1                 
 
For images, the eigen matrix of auto-correlation matrix R can be obtained using 

the separable property of auto correlation matrix R. In which we separate the N 3 

x N 3 matrix into three N x N matrix and then find the eigen matrix of each. After 

that by taking the kronecker product of these eigen matrix we get the eigen 

matrix of auto correlation matrix R.  

 
Advantages of separability 

Reduce the computational complexity from O(N 6) to O(N 3) 

Recall that an N x N eigen value problem requires O(N 3) computations 

 

 

 

 

 

 

 

 

 3.2   PROPERTIES OF THE KL TRANSFORM 
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1.  Decorrelation: 

     The KL transform coefficients are uncorrelated and have zero mean, i.e., 

     E [v (k  ,l) ] = 0  for all  k ,l 

2. It minimizes the mean square error for any truncated series expansion. Error 
vanishes in case there is no truncation. 

3.   Among all unitary transformations, KL packs the maximum average energy in the                

      first few samples of v. 

 

3.3   DRAWBACKS 

1. Unlike other transforms, the KL is image dependent. 

2. It is practically very difficult to implement. 

     3.   It is computationally very intensive. 

 

3.4 ALGORITHM  FOR  K-L  TRANSFORM 

1) Input Image 

2) Resize the image of size 256*256 

3) Image into column matrix (b) 

4) Find mean (m) of b 

5) Find zero mean image i.e. 

          c = b-m  

6) Find autocorrelation of zero mean image. 

7) Find eigen values and eigen vectors 

8) Multiplication of zero mean image with eigen vectors (g) 

9) Input the value of threshold 

10) If eigen value =< threshold value 

             g(i) = 0 

        otherwise  

         g(i) = original value 

11) Displaying the no. of compressed coefficients 
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12) Recovery of the compressed image 

13) Computing the compression ratio 

14) Computing the PSNR of image 

15) Computing the simulation time of image 

16) Plotting of original image,  

17) Plotting of KLT & Reconstructed image 

18) Plotting of SNR with respect to compression ratio 

19) Plotting of Simulation time with respect to compression ratio 
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CHAPTER 4 
DISCRETE COSINE TRANSFORM  (DCT) 
 
Discrete cosine transform (DCT) is a technique for converting signal into elementary 

frequency components. It is widely used in image compression. 

The DCT has the property that most of the visually significant information about the 

image is concentrated in just a few coefficients of the DCT. For this reason, the DCT 

is often used in image compression applications. The DCT is the heart of the 

international standard lossy image compression algorithm known as JPEG. (The name 

comes from the working group that developed the standard: the Joint Photographic 

Experts Group). 

The DCT is a lossless and reversible mathematical transformation that converts a 

spatial amplitude representation of data into a spatial frequency representation. One of 

the advantages of the DCT is its energy compaction property i.e. the signal energy is 

concentrated on a few components while most other components are zero or  

negligible  small. The DCT was first introduced in 1974 and since it has been used in 

many applications such as filtering, transmultiplexers, speech coding, image coding 

(still frame, video and image storage), pattern recognition, image enhancement. The 

DCT is widely used in image compression applications, especially in lossy image 

compression, MPEG moving image compression, and the H.261 and H.263 video-

telephony coding schemes. The energy compaction property of the DCT is well suited 

for image compression as in the most images, the energy is concentrated in the low 

frequencies, and the human eye is more sensitive to the low frequencies.  

In the JPEG image compression algorithm, the input image is divided into 8-by-8 or 

16-by-16 blocks, and the two-dimensional DCT is computed for each block. The DCT 

coefficients are then quantized, coded, and transmitted. The JPEG receiver (or JPEG 

file reader) decodes the quantized DCT coefficients, computes the inverse two-

dimensional DCT of each block, and then puts the blocks back together into a single 

image. For typical images, many of the DCT coefficients have values close to zero; 

these coefficients can be discarded without seriously affecting the quality of the 

reconstructed image. 

 

4.1 THE  2-D  DISCRETE  COSINE  TRANSFORM ( DCT) 
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The discrete cosine transform (DCT) is closely related to the discrete Fourier 

transform. It is a separable, linear transformation; that is, the two-dimensional 

transform is equivalent to a one-dimensional DCT performed along a single 

dimension followed by a one-dimensional DCT in the other dimension. The definition 

of the two-dimensional DCT for an input image A and output image B is 

 

N
qn

M
pmAB

M

m

N

n
mnqppq 2

)12(cos
2

)12(cos
1

0

1

0

++
= ∑ ∑

−

=

−

=

ππαα  

 
  where    0 ≤ p ≤ M-1 
  0 ≤ q ≤ N-1 

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

M

M
pα                         11

0
−≤≤

=
Mp

p
      

⎪⎩

⎪
⎨
⎧

=
,

,
2

1

N

N
qα                         11

0
−≤≤

=
Mq

q
                                         

 

M = Number of rows in the input data set 

N = Number of columns in the input data set 

m = Row index in the time domain 0 ≤ m ≤ M-1 

n = Column index in the time domain 0 ≤ n ≤ N-1 

Amn = Time domain data 

p = Row index in the frequency domain 

q = Column index in the frequency domain 

Bpq = Frequency domain coefficients 

The values Bpq are called the DCT coefficients of A. (Matrix indices in MATLAB 

always start at 1 rather than 0; therefore, the MATLAB matrix elements A(1,1) and 

B(1,1) correspond to the mathematical quantities A(0,0) and  B(0,0)  respectively. 

 

 

 

 

4.2  THE 2-D INVERSE DISCRETE COSINE TRANSFORM (IDCT) 
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IDCT2 computes the two dimensional inverse discrete cosine transform using 
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M = Number of rows in the input data set 

N = Number of columns in the input data set 

m = Row index in the time domain 0 ≤ m ≤ M-1 

n = Column index in the time domain 0 ≤ n ≤ N-1 

Amn = Time domain data 

p = Row index in the frequency domain 

q = Column index in the frequency domain 

Bpq = Frequency domain coefficients 

 
The inverse DCT equation can be interpreted as that any M x N matrix, A can be 

written as a sum of MN functions of the form 
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These functions are called the basis functions of the DCT. The DCT coefficients Bpq, 

then, can be regarded as the weights applied to each basis function.  

Horizontal frequencies increase from left to right, and vertical frequencies increase 

from top to bottom. The constant-valued basis function at the upper left is often called 

the DC basis function, and the corresponding DCT coefficient B (0,0) is often called 

the DC coefficient. 
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4.3  THE 64 (8 X 8) DCT BASIS FUNCTIONS 

As in the one-dimensional case, each element B(p,q) of the transform is the inner 

product of the input and a basis function, but in this case, the basis functions are nxm 

matrices. Each two-dimensional basis matrix is the outer product of two of the one-

dimensional basis vectors. Each basis matrix can be thought of as an image. For n = m 

= 8, the 64 basis images in the array are shown in figure 4.1.  

 

Figure 4.1: The 8X8 Array of Basis Images For The 2D Discrete Cosine 

Transform 

Each basis matrix is characterized by a horizontal and a vertical spatial frequency. 

The matrices shown here are arranged left to right and bottom to top in order of 

increasing frequencies. 
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Why DCT not FFT? -- DCT is like FFT, but can approximate linear signals well with 

few coefficients.  

 

 

   

4.4   PROPERTIES OF DCT 

1. The cosine transform is real. 

2. It is a fast transform. 

3. It is very close to the KL transform. 

4. It has excellent energy compaction for  highly correlated data. 

 

 

 

 

 

 

 

 

 

 

 

 26



 

CHAPTER   5 
WAVELET TRANSFORM 
 
Fourier analysis breaks down a signal into constituent sinusoids of different 

frequencies. Fourier analysis is as a mathematical technique for transforming our view 

of the signal from time-based to frequency-based. 

 
For many signals, fourier analysis is extremely useful because the signal’s frequency 

content is of great importance. Fourier analysis has a serious drawback. In 

transforming to the frequency domain, time information is lost. When looking at a 

fourier transform of a signal, it is impossible to tell when a particular event took 

place. 

If the signal properties do not change much over time is called a stationary signal. 

However, most interesting signals contain numerous non-stationary or transitory 

characteristics: drift, trends, abrupt changes, and beginnings and ends of events. These 

characteristics are often the most important part of the signal, and Fourier analysis is 

not suited to detect them. 

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier 

transform to analyze only a small section of the signal at a time—a technique called 

windowing the signal, called the Short-Time Fourier Transform (STFT), maps a 

signal into a two-dimensional function of time and frequency. 
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The STFT represents a sort of compromise between the time and frequency based 

views of a signal. It provides some information about both when and at what 

frequencies a signal event occurs. However, this information can be obtained with 

limited precision, and that precision is determined by the size of the window. 

While the STFT compromise between time and frequency information can be useful, 

the drawback is that once a particular size for the time window is choosed, that 

window is the same for all frequencies. Many signals require a more flexible 

approach—one where the window size can vary to determine more accurately either 

time or frequency. 

Wavelet analysis represents the next logical step: a windowing technique with 

variable-sized regions. Wavelet analysis allows the use of long time intervals where 

we want more precise low-frequency information, and shorter regions where we want 

high-frequency information. 

 
The time-based, frequency-based, and STFT views of a signal: 

 
 

Wavelet analysis does not use a time-frequency region, but rather a time-scale region. 

One major advantage of wavelets is the ability to perform local analysis that is, to 

analyze a localized area of a larger signal. Consider a sinusoidal signal with a small 

discontinuity one so tiny as to be barely visible. Such a signal easily could be 

generated in the real world, perhaps by a power fluctuation or a noisy switch. 
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A plot of the Fourier coefficients (as provided by the fft command) of this signal 

shows a flat spectrum with two peaks representing a single frequency. However, a 

plot of wavelet coefficients clearly shows the exact location in time of the 

discontinuity. Wavelet analysis can often compress or de-noise a signal without 

appreciable degradation. 

 
 

A wavelet is a waveform of effectively limited duration that has an average value of 

zero. The basis functions of the wavelet transform are known as wavelets. There are a 

variety of different wavelet functions to suit the needs of different applications. In 

general, a wavelet is a small wave that has finite energy concentrated in time. It is this 

characteristic about a wavelet that gives it the ability to analyze any time-varying 

signals. 

 
Comparing wavelets with sine waves, which are the basis of Fourier analysis, 

sinusoids do not have limited duration. They extend from minus to plus infinity. And 

where sinusoids are smooth and predictable, wavelets tend to be irregular and 

asymmetric. 
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Fourier analysis consists of breaking up a signal into sine waves of various 

frequencies. Similarly, wavelet analysis is the breaking up of a signal into shifted and 

scaled versions of the original (or mother) wavelet. 

From pictures of wavelets it is observed that signals with sharp changes can be better 

analyzed with an irregular wavelet than with a smooth sinusoid, just as some foods 

are better handled with a fork than a spoon. 

There are two types of wavelet transform. They are the continuous wavelet transform 

(CWT) and discrete wavelet transform (DWT). The main idea about the wavelet 

transform is the same in both of these transforms. However, they differ in the way the 

transformation is being carried out. In CWT, an analyzing window is shifted along the 

time domain to pick up the information about the signal. This process is difficult to 

implement and the information that has been picked up may overlap and result in 

redundancy. In still Image Compression using Wavelet Transform DWT, signals are 

analyzed in discrete steps through a series of filters. This method is realizable in a 

computer and has the advantage of extracting non-overlapping information about the 

signal. 

To take a wavelet transform, a wavelet base function is first selected and then each 

possible scaling and translation of that wavelet is correlated with the function to be 

transformed. The correlation values thus obtained are the coefficients of the wavelet 

transform. The equation for scaling and translation of the wavelet function is 

 

                          )(1
, a

bt
ba a

−= ψψ  

where )(tψ is the original, or “mother” wavelet, a is the scale factor, and b is the 

transform factor.  
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5.1   THE CONTINOUS WAVELET TRANSFORM 

Mathematically, the process of fourier analysis is represented by the Fourier 

transform:  

                      ∫
−∞

∞

−= dtetfwF jat)()(

which is the sum over all  time of the  signal  f(t)  multiplied  by a complex   
exponential. 

 (Complex exponential can be broken down into real and imaginary sinusoidal 

components). 

The results of the transform are the fourier coefficients, which when multiplied by a 

sinusoid of frequency, yield the constituent sinusoidal components of the original 

signal. Graphically, the process looks like: 

 
Similarly, the continuous wavelet transform (CWT) is defined as the sum over all 

time of the signal multiplied by scaled, shifted versions of the wavelet function : 

∫
∞

∞−

= dttpositionscaletfpositionscaleC ),,()(),( ψ The result of the CWT are many 

wavelet coefficients C, which are a function of scale and position. 

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the 

constituent wavelets of the original signal: 

 
Scaling 

Wavelet analysis produces a time-scale view of a signal. Scaling a wavelet simply 

means stretching (or compressing) it. 

The smaller the scale factor, the more “compressed” the wavelet. 
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For a sinusoid the scale factor is related (inversely) to the radian frequency. Similarly, 

with wavelet analysis, the scale is related to the frequency of the signal.  

Shifting 

Shifting a wavelet simply means delaying its onset. Mathematically, delaying a 

function by k is represented by f(t-k) : 

 
 Five Easy Steps to a Continuous Wavelet Transform 

The continuous wavelet transform is the sum over all time of the signal multiplied by 

scaled, shifted versions of the wavelet. This process produces wavelet coefficients 

that are a function of scale and position.  In fact, there are the five steps for creating a 

CWT: 

1  A  wavelet is taken  and compared  it  to  a section at the start of the original signal. 

2  A number C is calculated that represents how closely the wavelet is correlated  with 

this section of the signal. The higher C is, the more the similarity. If the signal energy 

and the wavelet energy are equal to one, C may be interpreted as a correlation 

coefficient. 

The results will depend on the shape of the wavelet choose. 
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3  The wavelet is shifted to the right and  steps 1 and 2 are repeated until the whole 

signal   is covered. 

 
4 The wavelet is scaled (stretched) and steps 1 through 3 are repeated. 

5   Steps 1 through 4 are repeated for all scales. 

Now there are coefficients produced at different scales by different sections of the 

signal. The coefficients constitute the results of a regression of the original signal 

performed on the wavelets. 

The plot of coefficients is made where the x-axis represents position along the signal 

(time), the y-axis represents scale, and the color at each x-y point represents the 

magnitude of the wavelet coefficient C.  

 

 
These coefficient plots resemble a bumpy surface. 

 
The continuous wavelet transform coefficient plots are the time-scale view of the 

signal. It is a different view of signal data than the time-frequency fourier view, but it 

is not unrelated. 
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Scale and Frequency 

The scales in the coefficients plot (shown as y-axis labels) run from 1 to 31. The 

higher scales correspond to the most “stretched” wavelets. The more stretched the 

wavelet, the longer the portion of the signal with which it is being compared, and thus 

the coarser the signal features being measured by the wavelet coefficients. 

 

 
Thus, there is a relation between wavelet scales and frequency as  

•low  scale ⇒compressed wavelet ⇒ rapidly changing details ⇒high frequency . 

•high scale⇒stretched wavelet⇒slowly changing coarse features⇒low 

frequency . 

 

5.2 THE DISCRETE WAVELET TRANSFORM 

Calculating wavelet coefficients at every possible scale is a very large amount of 

work. Scales and positions are selected based on powers of two called dyadic scales 

and positions. This analysis will be much more efficient and accurate. Such analysis is 

obtained from the discrete wavelet transform (DWT). An efficient way to implement 

this scheme using filters was developed in 1988 by Mallat. 

In the discrete wavelet transform, an image signal can be analyzed by passing it 

through an analysis filter bank followed by a decimation operation. This analysis filter 

bank, which consists of a low pass and a high pass filter at each decomposition stage, 

is commonly used in image compression.  When a signal passes through these filters, 

it is split into two bands. The low pass filter, which corresponds to an averaging 

operation, extracts the coarse information of the signal. The high pass filter, which 

corresponds to a differencing operation, extracts the detail information of the signal. 

The output of the filtering operations is then decimated by two. 
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5.2.1 ONE-STAGE FILTERING: APPROXIMATIONS AND DETAILS 

For many signals, the low-frequency content is the most important part. The high-

frequency content, on the other hand, imparts flavor or nuance. Consider the human 

voice. If  the high- frequency components are removed, the voice sounds different, but  

still it can tell what’s being said. However, if the low-frequency components are 

removed, only gibberish is heard. 

Wavelet analysis consists of approximations and details. The approximations are the 

high-scale, low- frequency components of the signal. The filtering process, at its most 

basic level, looks like this: 

 
 

The original signal, S, passes through two complementary filters and emerges as two 

signals. If the original signal S consists of 1000 samples of data then the resulting 

signals will each have 1000 samples, for a total of 2000. 

Hence down sampling is performed to maintain the same length a original one which 

will produce two sequences called cA and cD. 

 

 
 

The process on the right, which includes down sampling, produces DWT coefficients. 

To gain a better appreciation of this process, a one-stage discrete wavelet transform of 

a signal is performed. Our signal is a pure sinusoid with high-frequency noise added 

to it. 

Schematic diagram is shown with real signals inserted into it: 
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5.2.2   MULTIPLE - LEVEL  DECOMPOSITION 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree. 

 

 
 

Signal’s wavelet decomposition tree can yield valuable information. 
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5.2.3 WAVELET RECONSTRUCTION   

Where wavelet analysis involves filtering and down sampling, the wavelet 

reconstruction process consists of up-sampling and filtering. Up-sampling is the 

process of lengthening a signal component by inserting zeros between samples: 

 

 
The Wavelet toolbox includes commands, like idwt and waverec, that perform single-

level or multilevel reconstruction, respectively, on the components of one-

dimensional signals.  

 

5.2.4   RECONSTRUCTION FILTERS 

The filtering part of the reconstruction process is important because it is the choice of 

filters that is crucial in achieving perfect reconstruction of the original signal. 

The down sampling of the signal components performed during the decomposition 

phase introduces a distortion called aliasing. By carefully choosing filters for the 

decomposition and reconstruction phases that are closely related (but not identical), 

the effects of aliasing can be cancelled out. 

The low and high pass decomposition filters (L and H), together with their associated 

reconstruction filters (L' and H'), form a system of what is called quadrature mirror 

filters: 
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5.2.5 RECONSTRUCTING APPROXIMATIONS AND DETAILS 

It is observed that it is possible to reconstruct our original signal from the coefficients 

of the approximations and details. 

 

 
It is also possible to reconstruct the approximations and details themselves from their 

coefficient vectors. As an example, the first-level approximation A1 can be 

reconstructed from the coefficient vector cA1 by passing the coefficient vector cA1 

through the same process used to reconstruct the original signal. However, instead of 

combining it with the level-one detail cD1, a vector of zeros is feeded in place of the 

detail coefficients vector: 

 
 

The process yields a reconstructed approximation A1, which has the same length as 

the original signal S and which is a real approximation of it. 

Similarly, the first-level detail D1 is reconstructed using the analogous process: 

 
The reconstructed details and approximations are true constituents of the original 

signal. In fact, we find when we combine them that: 

A1+D1 = S 

The coefficient vectors cA1 and cD1 were produced by down sampling and are only 

half the length of the original signal cannot directly be combined to reproduce the 
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signal. It is necessary to reconstruct the approximations and details before combining 

them. 

Extending this technique to the components of a multilevel analysis, we find that 

similar relationships hold for all the reconstructed signal constituents. That is, there 

are several ways to reassemble the original signal: 

 
 

5.2.6   MULTISTEP DECOMPOSITION AND RECONSTRUCTION 

A multi-step analysis-synthesis process can be represented as: 

 

 
This process involves two aspects: breaking up a signal to obtain the wavelet 

coefficients, and reassembling the signal from the coefficients. 

Decomposition and reconstruction at same length are discussed. There is no use of 

breaking up a signal to have the satisfaction of immediately reconstructing it. The 

wavelet coefficients can modify before performing the reconstruction step. Wavelet 

analysis is performed because the coefficients thus obtained have many known uses, 

de-noising and compression being most important among them. 
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5.2.7   TWO DIMENTIONAL DISCRETE WAVELET TRANSFORM 

A two-dimensional transform can be accomplished by performing two separate one-

dimensional transforms. First, the image is filtered along the x-dimension and 

decimated by two. Then, it is followed by filtering the sub-image along the y-

dimension and decimated by two. Finally, we have split the image into four bands 

denoted by LL, HL, LH and HH after one-level de-composition . 
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Further decompositions can be achieved by acting upon the LL sub-band successively 

and the resultant image is split into multiple bands. 
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The figure shows two Dimensional Discrete Wavelet Transform with original image, 

one level de-composition, two level decompositions and three level decompositions. 

 
In mathematical terms, the averaging operation or low pass filtering is the inner 

product between the signal and the scaling function Φ whereas the differencing 

operation or high pass filtering is the inner product between the signal and the wavelet 

function Ψ . 

Average coefficients, 

                  ∫>==< dtttfttfkc kjkjj )(),()(),()( ,, φφ
 

Detail coefficients,  

                  ∫>==< dtttfttfkd kjkjj )(),()(),()( ,, ψψ
 

 
The scaling function or the low pass filter is defined as  

                                  )2(2)( 2/
, ktt jj
kj −= φφ

The wavelet function or the high pass filter is defined as 

                                     )2(2)( 2/
, ktt jj
kj −= ψψ

 
 where j denotes the discrete scaling index 
           k denotes discrete translation index  
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5.2.8 TWO DIMENSIONAL INVERSE DISCRETE WAVELET TRANSFORM 

The reconstruction of the image can be carried out by the following procedure.  First, 

upsampling is done by a factor of two on all the four sub-bands at the coarsest scale, 

and filter the sub-bands in each dimension. Then the four filtered sub bands are added 

to reach the low-low sub-band at the next finer scale. This process is repeated until the 

image is fully reconstructed.  
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CHAPTER  6 

SIMULATION  RESULTS  
 

The results presented in this section are obtained using gray & color images 

using MATLAB software  & a comprehensive comparison is made between data 

compression transforms i.e. the Karhunen-Loeve Transform (KLT), the Discrete 

Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT).  The 

simulation results are based on PSNR, Computational complexity & Image 

quality of the reconstructed image. 
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6.1  VISUAL RESULTS FOR GRAY IMAGE 

OUTPUT FILE OF GRAY IMAGE USING KLT 

 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  16291  
Decompressed image size (bytes) =  65536 
Compression Ratio = 75% 
Signal to Noise Ratio (db)  =30.92 
Simulation Time (Seconds) = 3.68 
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OUTPUT FILE OF GRAY IMAGE USING DCT 

 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  16264  
Decompressed image size (bytes) =  65536 
Compression Ratio = 75% 
Signal to Noise Ratio(db) =29.26 
Simulation Time (Seconds) = 1.10 
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OUTPUT FILE OF GRAY IMAGE USING DWT 

 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  16291  
Decompressed image size (bytes) =  65536 
Compression Ratio = 75% 
Signal to Noise Ratio (db)  =31.24 
Simulation Time (Seconds) = 1.31 
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OUTPUT FILE OF GRAY IMAGE USING KLT 
 
Original image size (bytes) =  65536  
Compressed image size (bytes) = 9682   
Decompressed image size (bytes) =  65536 
Compression Ratio = 85% 
Signal to Noise Ratio (db) =29.23 
Simulation Time (Seconds) = 3.79 
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OUTPUT FILE OF GRAY IMAGE USING DCT 
 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  9765  
Decompressed image size (bytes) =  65536 
Compression Ratio = 85% 
Signal to Noise Ratio (db)  =26.32 
Simulation Time (Seconds) = 1.15 
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OUTPUT FILE OF GRAY IMAGE USING DWT 

 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  9682  
Decompressed image size (bytes) =  65536 
Compression Ratio = 85% 
Signal to Noise Ratio (db)  =30.29 
Simulation Time (Seconds) = 1.33 
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OUTPUT FILE OF GRAY IMAGE USING KLT 
 
Original image size (bytes) =  65536  
Compressed image size (bytes) = 6471   
Decompressed image size (bytes) =  65536 
Compression Ratio = 90% 
Signal to Noise Ratio (db) =28.47 
Simulation Time (Seconds) = 3.95 
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OUTPUT FILE OF GRAY IMAGE USING DCT 
 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  6382  
Decompressed image size (bytes) =  65536 
Compression Ratio = 90% 
Signal to Noise Ratio (db)  =24.49 
Simulation Time (Seconds) = 1.21 
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OUTPUT FILE OF GRAY IMAGE USING DWT 

 
Original image size (bytes) =  65536  
Compressed image size (bytes) =  6479  
Decompressed image size (bytes) =  65536 
Compression Ratio = 90% 
Signal to Noise Ratio (db)  =29.06 
Simulation Time (Seconds) = 1.34 
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6.1.1 SNR  PERFORMANCE FOR GRAY IMAGE 
 
 

 
 
 
          
 

 CR = 75% CR = 85% CR = 90% 
DWT 31.24 30.29 29.06 

KLT 30.92 29.23 28.47 

DCT 29.26 26.32 24.49 

             
        Table 6.1 : SNR Values For Gray Image (All values in db) 
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6.1.2  SIMULATION TIME  PERFORMANCE FOR GRAY IMAGE 
 
 

 
 
 
 
 

 

 

 CR = 75% CR = 85% CR = 90% 
KLT 3.68 3.79 3.95 
DWT 1.31 1.33 1.34 
DCT 1.1 1.15 1.21 

    Table 6.2 : Simulation Time For Gray Image (All values in seconds) 
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6.2 VISUAL RESULTS FOR COLOR IMAGE 
 

OUTPUT FILE OF COLOR IMAGE USING KLT 
 
Original image size (bytes) = 196608  
Compressed image size (bytes) = 58761   
Decompressed image size (bytes) =  196608 
Compression Ratio = 70% 
Signal to Noise Ratio (db)  =27.98 
Simulation Time (Seconds) = 10.50 
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OUTPUT FILE OF COLOR IMAGE USING DCT 
 
Original image size (bytes) = 196608  
Compressed image size (bytes) =  58896  
Decompressed image size (bytes) =  196608 
Compression Ratio = 70% 
Signal to Noise Ratio (db)  =23.05 
Simulation Time (Seconds) = 3.57 
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OUTPUT FILE OF COLOR IMAGE USING KLT 

 
Original image size (bytes) = 196608  
Compressed image size (bytes) =  38838  
Decompressed image size (bytes) =  196608 
Compression Ratio = 80% 
Signal to Noise Ratio (db) = 24.29 
Simulation Time (Seconds) = 10.68 
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OUTPUT FILE OF COLOR IMAGE USING DCT 
 
Original image size (bytes) = 196608  
Compressed image size (bytes) =  38864  
Decompressed image size (bytes) =  196608 
Compression Ratio = 80% 
Signal to Noise Ratio (db)  =20.47 
Simulation Time (Seconds) = 3.60 
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OUTPUT FILE OF COLOR IMAGE USING KLT 

 
Original image size (bytes) = 196608  
Compressed image size (bytes) =  18986  
Decompressed image size (bytes) =  196608 
Compression Ratio = 90% 
Signal to Noise Ratio (db) =19.59 
Simulation Time (Seconds) = 10.80 
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OUTPUT FILE OF COLOR IMAGE USING DCT 
 
Original image size (bytes) = 196608  
Compressed image size (bytes) =  18978 
Decompressed image size (bytes) =  196608 
Compression Ratio = 90% 
Signal to Noise Ratio (db)  = 17.51 
Simulation Time (Seconds) = 3.68 
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6.2.1  SNR  PERFORMANCE FOR COLOR  IMAGE 

 
 

 
 
 
 
 

 CR = 70% CR = 80% CR = 90% 
KLT 27.98 24.29 19.59 
DCT 23.05 20.47 17.51 

 
            Table 6.3 : SNR Values For Color Image (All values in db) 
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6.2.2  SIMULATION TIME PERFORMANCE FOR COLOR IMAGE 
 
 

 
 
 
 
 
 

 CR = 70% CR = 80% CR = 90% 
KLT 10.50 10.68 10.80 
DCT 3.57 3.60 3.68 

 
     Table 6.4  : Simulation Time For Color Image (All values in seconds) 
 
 
 
 
 
 

 

 

 

 62



 

CHAPTER 7 

CONCLUSIONS AND SCOPE FOR FUTURE WORK  
 

The performance of KLT, DCT and DWT was compared for images in response to 

human visual system (HVS), PSNR and the Complexities involved in implementation.  

In terms of complexities involved, KLT is practically very difficult to implement as 

its basis functions are data dependent while in terms of image quality and PSNR, it 

has excellent results. 

By observing the simulations it can be seen that the compression of an image by DCT 

is inferior to compression by using wavelet transform. For the same amount of 

compression, wavelet has produced a better result than DCT in terms of image quality 

& PSNR. Wavelet transformation is powerful because of its multi-resolution 

decomposition technique. This technique allows wavelets to de-correlate an image 

and concentrate the energy in a few coefficients. 

DCT achieves the fastest computational performance due to fast algorithms.  

DCT achieves the fastest computational performance due to fast algorithms & DWT 

has out performed in terms of image quality & higher PSNR so there is further scope 

for evaluation of code which uses combination of DCT & DWT in order to achieve 

the fastest computational performance, image quality & higher PSNR and these 

techniques can be implemented on DSP processors for real time applications. 
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APPENDIX 
               

                       FLOW CHART FOR KARHUNEN LOEVE TRANSFORM 
 

Input the image

 Start

Resize the image 256 x 256(A) 

Compute the column matrix (B) of (A) 

M= Mean of (B) 

Obtain zero mean matix of (B ) 

Obtain autocorrelation of  zero mean  image 

Obtain the eigen value & eigen vectors of 
zero  mean image 

Compute the multiplication of  zero mean 
image with eigen vectors(g)  

 A 

Input threshold value  
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Read the eigen value 

Is eigen value ≤ 
threshold value 

  A

Coefficients of (g) = 0 

Compressed  matrix 

Recovery of compressed image 

Yes

Computing peak signal to noise 
ratio & simulation time 

No 

 
 
 
 

 

Plotting of original and 
decompressed image 

End 
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FLOW  CHART  FOR  IMAGE COMPRESSION USING  DCT 
 

 

Input the image

Resize the image (256 x 256) 

Divide the image by 256 

Computing the two dimensional DCT 

Input the threshold value 

Read the DCT coefficients 

Is coefficients ≤ 
threshold value 

Coefficients = 0

Get the compressed matrix 

Computing the two dimensional inverse DCT 

Computing the peak signal to noise ratio and simulation time  

  Start

Plotting the original & decompressed image 

  End 

No 

Yes 
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     FLOW CHART FOR IMAGE COMPRESSION USING DWT 
 

Start

Input the image  

Resize image (256 x 256) 

Compute the two-dimensional DWT with 
specifying type of wavelet to be used 

Computing the threshold value for 
specific value of compression ratio 

Using threshold value, compress the 
original image 

Computing the peak signal to noise ratio 
and simulation time 

Plotting of original and Compressed image 

 End

Compute the two-dimensional IDWT  

Decompose the image & mention the 
level of decomposition 
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FLOW CHART FOR TWO DIMENSIONAL DWT 
 

 
 
 

Com pass pute the high 
filter  
i = decomp.  level

Start

Get input parameters 
i.e. image, wavelet 
type, decomp. level 

Read the 2D decomposed 
image to a matrix 

Retrieve the l w pass 
d 

o
filter from the list base
on the wavelet type

Perform 2D decomposion 
on the image 

i >= decomp. 
Level ? Decomposed image 

End 

Convolve all rows with 
the low pass filter to 
obtain the low pass 
coefficients

A

 70



End

  A

Downsample by two 

Convolve all rows with the high pass 
filter to obtain the high pass 
coefficients 

Downsample by two 

Concatenate both high and low 
coefficients and transpose the matrix 

Convolve all columns with the low 
pass filter to obtain the low pass 
coefficients 

Downsample by two 

Concatenate both high and low 
coefficients and transpose the matrix 

Convolve all columns with the high 
pass filter to obtain the high pass 
coefficients 

Downsample by two 
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PROGRAM CODE   
 
%GDCT75 
%To find the Two Dimensional Lossy Cosine Transform of the GRAY  Images 
function [] = LYdct2d 
 clc; 
clear all; 
close all; 
ImageName = input('Enter the filename(tif) ','s'); 
ImageExt = 'tif'; 
Input = input('Enter the name of the resized file ','s'); 
Transformed = input('Enter the name of the transformed image ','s');  
Reconstructed = input('Enter the name of the reconstructed image ','s'); 
 
t=cputime; 
I=imread(ImageName,ImageExt); 
img=imresize(I,[256 256]); 
img=double(img)/255; 
imwrite(img,Input,ImageExt); 
 
Transform=dct2(img); 
count=0; 
for i=1:255 
  
    for j=1:255 
     
        if abs(Transform(i,j))<=0.054  
       
            Transform(i,j)=0; 
            count=count+1; 
             
        end 
          end  
    end 
count; 
imwrite(Transform,Transformed,ImageExt); 
 
R=idct2(Transform); 
 
imwrite(R,Reconstructed,ImageExt); 
 
CR = (count/65536)*100 
size(img) 
size(R) 
figure (1); 
subplot(221);imshow(img);title('original image'); 
subplot(222);imshow(Transform);title('dct'); 
subplot(223);imshow(R);title('compressed image') 
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% SNR(img,R) returns the signal to noise ratio between img and R (dB). 
% img is the original image and R is reconstructed image.  
% The SNR value is useful to calculate the distortions on an image. 
 
[m n] = size(img); 
total_img = 0; 
total_Dif = 0; 
 
for u = 1:m 
     for v = 1:n 
         total_img = total_img + img(u, v)^2; 
         total_Dif = total_Dif + (img(u, v) - R(u, v))^2; 
     end 
end 
 
SNR = (total_img) / (total_Dif); 
SNR = (10 * log10(SNR)) 
simulation_time=cputime-t 
 
%GKLT75 
%To find the Lossless Karhunen- Loeve Transform of the GRAY Images 
 
function [] = LYklt 
ImageName = input('Enter the filename(tif) ','s'); 
ImageExt = 'tif'; 
Input = input('Enter the name of the resized file ','s'); 
Transformed = input('Enter the name of the transformed image ','s');  
Reconstructed = input('Enter the name of the reconstructed image ','s'); 
t=cputime; 
I=imread(ImageName,ImageExt); 
img=imresize(I,[256 256]); 
img=double(img)/255; 
imwrite(img,Input,ImageExt); 
 
[a,b]= size(img); 
 
m = sum(img'); 
 
Mean = (1/b)*(m'); 
 
newmean=(Mean)*(Mean'); 
 
X=0; 
 
for i=1:b 
 
    X = X + (img(:,i)*img(:,i)'); 
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end 
 
newx = (1/b)* X; 
 
covmatrix = newx - newmean; 
 
[V,D] = eig(covmatrix); 
 
for i=1:b 
 
    output(:,i) = V*(img(:,i) - Mean); 
     
end 
 
count1=0; 
for i=1:255 
 
   for j=1:255 
            if abs(output(i,j))<=.054   
       
            output(i,j)=0; 
            count1=count1+1; 
        end 
            end  
    end 
 
count1; 
imwrite(output,Transformed,ImageExt); 
 
for i=1:b 
 
    R(:,i) = V'*output(:,i) + Mean; 
     
end 
imwrite(R,Reconstructed,ImageExt); 
 
size(img) 
size(R) 
figure ; 
subplot(221);imshow(img);title('original image'); 
subplot(222);imshow(output);title('klt'); 
subplot(223);imshow(R);title('compressed image') 
[m n] = size(img); 
total_img = 0; 
total_Dif = 0; 
for u = 1:m 
     for v = 1:n 
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total_img = total_img + img(u, v)^2; 
         total_Dif = total_Dif + (img(u, v) - R(u, v))^2; 
     end 
end 
 
SNR = (total_img) / (total_Dif); 
SNR = (10 * log10(SNR)) 
simulation_time=cputime-t 
 
%GDWT 
%To find the discrete wavelet transform of GRAY Image 
 
function [] = LYdwt 
ImageName = input('Enter the filename(tif) ','s'); 
ImageExt = 'tif'; 
Input = input('Enter the name of the resized file ','s'); 
 
Transformed = input('Enter the name of the transformed image ','s');  
Reconstructed = input('Enter the name of the reconstructed image ','s'); 
t=cputime; 
 
I=imread(ImageName,ImageExt); 
 
im_input = imresize(I,[256 256]); 
 
input=double(im_input); 
 
[cA,cH,cV,cD] = dwt2(im_input,'bior'); 
[C,S] = wavedec2(im_input,2,'bior3.7'); 
 
[m,n] = size(cA); 
temp_cA = reshape(cA,1,m*n); 
temp_cA = sort(temp_cA); 
temp_cH = reshape(cH,1,m*n); 
temp_cH = sort(temp_cH); 
temp_cV = reshape(cV,1,m*n); 
temp_cV = sort(temp_cV); 
temp_cD = reshape(cD,1,m*n); 
temp_cD = sort(temp_cD); 
 
index = round(0.112*(length(temp_cA)/4)); 
cA25_cutoff = temp_cA(index); 
cA25 = cA.*(cA(:,:)>= cA25_cutoff); 
cH25_cutoff = temp_cH(index); 
cH25 = cH.*(cH(:,:)>= cH25_cutoff); 
cV25_cutoff = temp_cV(index); 
cV25 = cV.*(cV(:,:)>= cV25_cutoff); 
cD25_cutoff = temp_cD(index); 
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cD25 = cD.*(cD(:,:)>= cD25_cutoff); 
% compression 
im_rec = idwt2(cA25,cH25,cV25,cD25,'bior3.7'); 
imwrite(im_rec,'CompressedImage.tif'); 
 
% display results 
figure; subplot(1,2,1); imshow(im_input); title('Original Image'); 
subplot(1,2,2); imshow(uint8(im_rec75)); title('Compressed Image '); 
 
%SNR 
[m n] = size(im_input); 
total_img = 0; 
total_Dif = 0; 
 
for u = 1:m 
     for v = 1:n 
         total_img = total_img + input(u, v)^2; 
         total_Dif = total_Dif + (input(u, v) - im_rec75(u, v))^2; 
     end 
end 
 
SNR = (total_img) / (total_Dif); 
SNR_75 = (10 * log10(SNR)) 
simulation_time=cputime-t 
 
%CDCT90 
%To find the Lossy  Direct Cosine Transform of the color  Images 
 
function [] = LYcolordct 
ImageName = input('Enter the filename(tif) of color image ','s'); 
ImageExt = 'tif'; 
Input = input('Enter the name of the resized file ','s'); 
Transformed = input('Enter the name of the transformed image ','s');  
Reconstructed = input('Enter the name of the reconstructed image ','s'); 
time1=cputime; 
[X,map1]=imread(ImageName,ImageExt); 
img=imresize([X,map1],[256 256]); 
img=double(img)/256; 
size(img) 
R=img(:,:,1); 
 
G=img(:,:,2); 
 
B=img(:,:,3); 
 
n1=dct2(R); 
 
n2=dct2(G); 
 
 

 76



n3=dct2(B); 
count1=0; 
for i=1:256 
 
    for j=1:256 
     
        if abs(n1(i,j))<=0.158 
       
            n1(i,j)=0; 
            count1=count1+1; 
             
        end 
           end  
    end 
count1; 
count2=0; 
for i=1:256 
   
    for j=1:256 
     
        if abs(n2(i,j))<=0.158   
       
            n2(i,j)=0; 
            count2=count2+1; 
             
        end 
         
    end  
     
end 
count2; 
count3=0; 
for i=1:256 
   
    for j=1:256 
     
        if abs(n3(i,j))<=0.158  
       
            n3(i,j)=0; 
            count3=count3+1; 
        end 
         
    end  
     
end 
count3; 
count=count1+count2+count3; 
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n = n1; 
n(:,:,2) = n2; 
n(:,:,3) = n3; 
imwrite(n,Transformed,ImageExt); 
transform = imread(Transformed,ImageExt); 
 
size(transform) 
%compression ratio=(size of original image-size of compressed image)/(size of 
original image) 
 
CR=(count/196608)*100 
m1=idct2(n1); 
 
m2=idct2(n2); 
 
m3=idct2(n3); 
 
m= m1; 
 
m(:,:,2) = m2; 
 
m(:,:,3) = m3; 
 
imwrite(m,Reconstructed,ImageExt); 
 
[Y,map2]= imread(Reconstructed,ImageExt);  
 
R=imresize([Y,map2],[256 256]); 
 
R=double(R)/256; 
 
figure (1); 
subplot(221);imshow(img);title('original image'); 
subplot(222);imshow(transform);title('dct'); 
subplot(223);imshow(R);title('compressed image'); 
 
 
% SNR(img,R) returns the signal to noise ratio between I and R (dB). 
% I is the original image and R is a modified version of I.  
% The SNR value is useful to calculate the distortions on an image. 
 
[m n] = size(img); 
total_img = 0; 
total_Dif = 0; 
 
for u = 1:m 
     for v = 1:n 
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      total_img = total_img + img(u, v)^2; 
         total_Dif = total_Dif + (img(u, v) - R(u, v))^2; 
     end 
end 
% if (total_Dif == 0)  
%     total_Dif = 1; 
% end 
S = (total_img) / (total_Dif); 
S = (10 * log10(S)) 
 
time=cputime-time1 
 
%CKLT90 
%To find the Lossless Karhunen- Loeve Transform of the color Images 
 
function [] = LYklt 
ImageName = input('Enter the filename(tif) of color image ','s'); 
ImageExt = 'tif'; 
Input = input('Enter the name of the resized file ','s'); 
Transformed = input('Enter the name of the transformed image ','s');  
Reconstructed = input('Enter the name of the reconstructed image ','s'); 
time1=cputime; 
[X,map1]=imread(ImageName,ImageExt); 
img=imresize([X,map1],[256 256]); 
 
img=double(img)/256; 
 
R=img(:,:,1); 
G=img(:,:,2); 
B=img(:,:,3); 
[a,b]= size(R); 
 
t = sum(R'); 
 
Mean1= (1/b)*(t'); 
 
newmean1=(Mean1)*(Mean1'); 
 
X=0; 
 
for i=1:b 
 
    X = X + (R(:,i)*R(:,i)'); 
     
end 
 
newx = (1/b)* X; 
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covmatrix1 = newx - newmean1; 
 
[V1,D1] = eig(covmatrix1); 
 
for i=1:b 
 
   n1(:,i) = V1*(R(:,i) - Mean1); 
     
end 
q = sum(G'); 
 
Mean2 = (1/b)*(q'); 
 
newmean2=(Mean2)*(Mean2'); 
 
Y=0; 
 
for i=1:b 
 
    Y = Y + (G(:,i)*G(:,i)'); 
     
end 
 
newy = (1/b)* Y; 
 
covmatrix2 = newy - newmean2; 
 
[V2,D2] = eig(covmatrix2); 
 
for i=1:b 
 
   n2(:,i) = V2*(G(:,i) - Mean2); 
     
end 
 
r = sum(B'); 
 
Mean3 = (1/b)*(r'); 
 
newmean3=(Mean3)*(Mean3'); 
 
Z=0; 
 
for i=1:b 
 
    Z= Z + (B(:,i)*B(:,i)'); 
     
end 
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newz = (1/b)* Z; 
 
covmatrix3 = newz - newmean3; 
 
[V3,D3] = eig(covmatrix3); 
 
for i=1:b 
 
   n3(:,i) = V3*(B(:,i) - Mean3); 
     
end 
count1=0; 
 
for i=1:255 
 
   for j=1:255 
     
        if abs(n1(i,j))<=.12 
       
      n1(i,j)=0; 
       count1=count1+1; 
                  
        end 
         
    end  
     
end 
count1; 
count2=0; 
for i=1:255 
 
   for j=1:255 
     
        if abs(n2(i,j))<=.12 
       
          n2(i,j)=0; 
        count2=count2+1;     
        end 
         
    end  
     
end 
count2; 
count3=0; 
 
for i=1:255 
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 for j=1:255 
     
        if abs(n3(i,j))<=.12 
       
            n3(i,j)=0; 
           count3=count3+1;  
        end 
         
    end  
     
end 
 
count3; 
 count4=count1+count2+count3; 
n=n1; 
n(:,:,2) = n2; 
 
n(:,:,3) = n3; 
 
imwrite(n,Transformed,ImageExt); 
 
D = imread(Transformed,ImageExt); 
 
 
for i=1:b 
 
    m1(:,i) = V1'*n1(:,i) + Mean1; 
    
end 
for i=1:b 
 
    m2(:,i) = V2'*n2(:,i) + Mean2; 
     
end 
for i=1:b 
 
    m3(:,i) = V3'*n3(:,i) + Mean3; 
     
end 
m=m1; 
m(:,:,2)=m2; 
m(:,:,3)=m3; 
 
imwrite(m,Reconstructed,ImageExt); 
[Y,map2]= imread(Reconstructed,ImageExt);  
 
R=imresize([Y,map2],[256 256]); 
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R=double(R)/256; 
%compression ratio=(size of original image-size of compressed image)/(size of 
original image) 
 
size(img) 
size(R) 
 
figure (1); 
subplot(221);imshow(img);title('original image'); 
subplot(222);imshow(D);title('klt'); 
subplot(223);imshow(R);title('compressed image'); 
 
% SNR(img,R) returns the signal to noise ratio between I and R (dB). 
% I is the original image and R is a modified version of I.  
% The SNR value is useful to calculate the distortions on an image. 
 
[m n] = size(img); 
total_img = 0; 
total_Dif = 0; 
 
for u = 1:m 
     for v = 1:n 
         total_img = total_img + img(u, v)^2; 
         total_Dif = total_Dif + (img(u, v) - R(u, v))^2; 
     end 
end 
% if (total_Dif == 0)  
%     total_Dif = 1; 
% end 
S = (total_img) / (total_Dif); 
S = (10 * log10(S)) 
 
time=cputime-time1 
 
DWT 
t1=cputime; 
load Image 
image(X); 
X1=imresize(X,[256 256]); 
size(X1); 
colormap(map);  
% colorbar; 
% Perform a single-level decomposition of the image 
% using the bior3.7 wavelet. Type: 
[cA1,cH1,cV1,cD1] = dwt2(X1,'bior3.7'); 
[C,S] = wavedec2(X1,2,'bior3.7'); 
 
% To construct the level-one approximation and details 
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% (A1, H1, V1, and D1) from the coefficients cA1, cH1, 
% cV1, and cD1, type: 
A1 = upcoef2('a',cA1,'bior3.7',1);  
H1 = upcoef2('h',cH1,'bior3.7',1); 
V1 = upcoef2('v',cV1,'bior3.7',1); 
D1 = upcoef2('d',cD1,'bior3.7',1); 
sx = size(X1); 
A1 = idwt2(cA1,[],[],[],'bior3.7',sx);  
H1 = idwt2([],cH1,[],[],'bior3.7',sx);  
V1 = idwt2([],[],cV1,[],'bior3.7',sx);  
D1 = idwt2([],[],[],cD1,'bior3.7',sx);  
 
% To display the results of the level 1 decomposition type: 
figure; 
colormap(map); 
subplot(2,2,1); image(wcodemat(A1,192)); 
title('Approximation A1') 
axis square 
subplot(2,2,2); image(wcodemat(H1,192)); 
title('Horizontal Detail H1') 
axis square 
subplot(2,2,3); image(wcodemat(V1,192)); 
axis square 
title('Vertical Detail V1') 
subplot(2,2,4); image(wcodemat(D1,192)); 
title('Diagonal Detail D1') 
axis square 
Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7'); 
% To perform a level 2 decomposition of the image 
% (again using the bior3.7 wavelet), type: 
[C,S] = wavedec2(X1,2,'bior3.7'); 
 
% To extract the level 2 approximation coefficients from C, type: 
cA2 = appcoef2(C,S,'bior3.7',2); 
% To extract the first- and second-level detail coefficients from C, type: 
cH2 = detcoef2('h',C,S,2); 
cV2 = detcoef2('v',C,S,2);  
cD2 = detcoef2('d',C,S,2);  
cH1 = detcoef2('h',C,S,1); 
cV1 = detcoef2('v',C,S,1);  
cD1 = detcoef2('d',C,S,1); 
% or 
[cH2,cV2,cD2] = detcoef2('all',C,S,2);  
[cH1,cV1,cD1] = detcoef2('all',C,S,1);  
 
% To reconstruct the level 2 approximation from C, type: 
A2 = wrcoef2('a',C,S,'bior3.7',2); 
 
 
 

 84



% To reconstruct the level 1 and 2 details from C, type: 
H1 = wrcoef2('h',C,S,'bior3.7',1);  
V1 = wrcoef2('v',C,S,'bior3.7',1);  
D1 = wrcoef2('d',C,S,'bior3.7',1);  
H2 = wrcoef2('h',C,S,'bior3.7',2); 
V2 = wrcoef2('v',C,S,'bior3.7',2);  
D2 = wrcoef2('d',C,S,'bior3.7',2); 
% To display the results of the level 2 decomposition, type: 
figure; 
colormap(map); 
subplot(2,4,1);image(wcodemat(A1,192)); 
title('Approximation A1') 
axis square 
subplot(2,4,2);image(wcodemat(H1,192)); 
title('Horizontal Detail H1') 
axis square 
subplot(2,4,3);image(wcodemat(V1,192)); 
title('Vertical Detail V1') 
axis square 
subplot(2,4,4);image(wcodemat(D1,192)); 
title('Diagonal Detail D1') 
axis square 
subplot(2,4,5);image(wcodemat(A2,192)); 
title('Approximation A2') 
axis square 
subplot(2,4,6);image(wcodemat(H2,192)); 
title('Horizontal Detail H2') 
axis square 
subplot(2,4,7);image(wcodemat(V2,192)); 
title('Vertical Detail V2') 
axis square 
subplot(2,4,8);image(wcodemat(D2,192)); 
title('Diagonal Detail D2') 
axis square 
% To reconstruct the original image from the wavelet decomposition structure, 
% type: 
X0 = waverec2(C,S,'bior3.7'); 
sorh='h'; 
 
x=abs(C); 
x=sort(x); 
dropindex = length(x) * (90)/100; 
    dropindex = round(dropindex); 
    threshold = x(dropindex); 
        
if (threshold == 0) 
end 
threshold; 
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% Compressing an Image.    
% To compress the original image X, use the ddencmp command to calculate 
% the default parameters and the wdencmp command to perform the actual 
% compression. Type: 
[thr,sorh,keepapp] = ddencmp('cmp','wv',X); 
[Xcomp,CXC,LXC,PERF0,PERFL2]= 
wdencmp('gbl',C,S,'bior3.7',2,threshold,sorh,1); 
 
% Displaying the Compressed Image.    
% To view the compressed image side by side with the original, type: 
figure 
colormap(map); 
subplot(121); image(X1); title('Original Image'); 
 axis square 
subplot(122); image(Xcomp); title('Compressed Image'); 
axis square 
 
% SNR(X,R) returns the signal to noise ratio between img and R (dB). 
% img is the original image and R is a modified version of img.  
% The SNR value is useful to calculate the distortions on an image. 
 
[m n] = size(X1); 
total_X = 0; 
total_Dif = 0; 
 
for u = 1:m 
     for v = 1:n 
         total_X = total_X + X1(u, v)^2; 
         total_Dif = total_Dif + (X1(u, v) - Xcomp(u, v))^2; 
     end 
end 
 
SNR = (total_X)/ (total_Dif); 
SNR = (10 * log10(SNR)) 
simulation_time=cputime-t1 
 
% SNR Plots for Gray Image 
x=[75 85 90]; 
w=[31.24,30.29,29.06]; 
k=[30.92,29.23,28.47]; 
d=[29.26 26.32,24.49]; 
plot(x,w,'-ms',x,k,'-bx',x,d,'-ro') 
h = legend('DWT','KLT','DCT',3); 
Xlabel('COMPRESSION RATIO(%)') 
Ylabel('SNR(db)') 
Title('SNR PLOT for GRAY IMAGE'); 
grid on; 
% SIMULATION TIME PLOT FOR GRAY IMAGE 
x=[75 85 90]; 
 

 86



k=[3.68,3.79,3.95]; 
w=[1.31,1.33,1.34]; 
d=[1.1,1.15,1.21]; 
plot(x,k,'-bx',x,w,'-ms',x,d,'-ro') 
h = legend('KLT','DWT','DCT',3); 
Xlabel('COMPRESSION RAIO(%)') 
Ylabel('SIMULATION TIME(sec.)') 
Title('SIMULATION TIME PLOT FOR GRAY IMAGE'); 
grid on; 
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