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ABSTRACT 
 

In this paper Image splitting for secure storage and communication has been considered 

through two different techniques. Firstly it is shown how by using a Linear Feedback 

Shift Register (LFSR), an image can be split in such a way that none of the split parts 

make any sense on its own, but when all the split parts are superimposed modulo-2, the 

original image emerges. Secondly we generalize the splitting technique using two-

dimensional programmable Hybrid Cellular Automata. Cellular Automata based splitting 

techniques provide a more difficult to break scheme and the number of split parts can be 

increased to a very large number adding flexibility and security to the distribution scheme 

to different agents. Implementation of both the schemes has been carried out and results 

are demonstrated.   
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CHAPTER 1 

 

INTRODUCTION 
 
 
1. Image Processing For Security 
 
 
 An image is a media by which the information can be presented in effective and 

better manner to the receivers for its better understanding. Visual information has vital 

role in many defence as well as civil applications and its protection becomes essential to 

avoid losses due to its leakage. Images are handled in digital form to achieve higher 

security. Techniques for securing images can be considered as cryptographic or 

steganographic. In cryptographic techniques, transforming it into an unintelligible form 

conceals the contents of an image, which looks as a random mess of pixels. In 

steganographic techniques, an image to be secured is embedded in an ordinary image 

known as a cover or carrier image. The embedded image is then communicated. Yet 

another technique used for secure storage or communication of an image is based on 

Image splitting. This technique is an extension of a scheme known earlier for message 

security under the name secret splitting [2]. 

 

 Secret Splitting is a method to take a message and divide it up into pieces. Each 

piece by itself contains no information but when all the pieces are combined, the original 

message is recovered. Any individual piece is of no consequence, but if put together the 

message appears. 

 

 The simplest sharing scheme splits the message between A and B participant 

according to the following steps: 
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• Dealer generates a random bit string, R, of the same length as that of the 

message M. 

• Dealer logically Exclusive ORs M with R to generate S 

M XOR R = S 

• Dealer gives R to A and S to B 

 

Message Reconstruction: 

 

• A and B XOR their pieces together to reconstruct the message R XOR S = M.  

           

In this technique no encryption is carried out. The original image is split (divided 

into a number of images of same size) in such a way, that only superposition of either all 

the parts or minimum of k parts only lead to the original image and no information about 

the image is available if less than k parts are superimposed. 

 

 Mathematically, an image is defined as a 2D function f(x, y) where (x, y) denotes 

the position of a pixel in xy plane and f(x, y) represents the gray level of pixel located at 

(x, y) [1]. An image is categorized as binary, panchromatic/monochromatic or 

multispectral image. A binary image is a black and white image recorded in two levels 

black and white and has dynamic range {0, 1}. Monochromatic image is a multi level 

image. An image recorded in 8 bits / pixel has 256 gray values ranging from 0 to 255.  

Multispectral image is a colour image recorded in three different bands, viz. red (R), 

green (G) and blue (B) bands.  

 

 The term image processing refers to manipulating gray value of the pixel within 

the image frame. Mathematically, a function T transforms f(x, y) to some new value g(x, 

y)    i.e. T(f(x, y))  =  g(x, y) 
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For securing images in cryptographic techniques, the transformation T holds the 

following properties: 

(i) Easy implementation of T to encrypt image. 

(ii) Hard reversing process, T-1. 

(iii) Encrypted images unintelligible and look random.  

 

For securing images in steganographic techniques, the transformation T holds the 

following properties: 

(i) Easy implementation of T to embedded image. 

(ii) Hard reversing process, T-1. 

(iii) Stego images as similar as covers. 

 

Cryptographic methods conceal the content and steganographic methods conceal 

the existence of secret image.  

 

In the split image technique of secure storing or communication the 

transformation T holds the following properties: 

(i) T splits every unit of image (say an 8-bit recorded image) in such a way 

that only superposition of a minimum number of splits can lead to the 

original image unit. 

i.e. T(U) =  T1(U) ⊕ T2(U) ⊕ … ⊕  Tm(U)  

(ii) T is a lossless transformation. No information is lost during processing. 

(iii) Size of each constituent split is equal to the size of the original unit. 

 

In stream ciphers the message is converted into bits EXORed bitwise with key 

sequence. The techniques for concealing the content are: 

 

(i) Contrast Reversal: Normally, in contrast reversal, the pixel values are 

inverted such that the brighter pixel becomes darker and vice versa. If an 

image F(x, y) has a dynmic range R, then resulting image G(x, y) is given by 

   G(x, y) = R - F (x, y) 
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For an image of size N x N, 2 (N x N) trials have to be applied in an exhaustive 

approach to get back the original image.  

 

(ii) Image Scanning: Image Scanning refers to observing each pixel for its value. 

The images are scanned as raster scanning, from left to right and top to bottom 

while recording, transmitting or retrieving. 

A scan function with t number of scan terms for given image of size N x N, 

where N = 2x and x is an integer, is defined as 

 St = L1n1 #  L2n2   # … # Lini  # … #  Ltnt

 Li is scan letter. The symbol # connects two scan terms which are 

performed hierarchically. 

 

The techniques for concealing the existence are: 

(i) Shift Register based Hiding: A shift register of suitable length is used to 

hide the image.  

 

(ii) Image Splitting:  There can be two different ways to split an image (without 

any alteration or encryption of the image): 

(i) Only a small portion of an image is supplied to different agents who 

can, when need be, get together to get the full image. If some portions 

of the split image are kept away from agents, they would not be in a 

position to get the full image and (secret) image would therefore 

remain secure. 

(ii) A very robust method of image splitting is to split each pixel in such a 

way that a full size image (with split pixels) is kept or sent to each 

agent. Thus each agent has a full size image with him with split pixels. 

Nothing can be made out of this full size image, unless all such images 

are superimposed (modulo 2). 

 

This is the technique that has been studied in this dissertation using two different 

methodologies.  
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In order to further classify the technique of Image splitting and Image reconstruction 

a simple key – based image splitting technique is first discussed and the technique is 

illustrated through an example where the image is split in 4 parts and then reconstructed. 

The shift register based and Celllular Automata based image splitting are later detailed in 

Chapters 4 and 6. 

 

Next it is shown in Chapter 4, how a simple methodology based on Linear Feedback 

Shift Registers (LFSR) can be used for this purpose. In order to increase the number of 

splits a maximal length (primitive) polynomial is used. A primitive polynomial of degree 

m over GF(2), containing elements (0, 1) as coefficients generates a length of (2m – 1) 

and therefore provides (2m – 2) splits --- one of the splits being the original pixel.  

 

Secondly, a two dimensional programmable Hybrid Cellular automata has been used 

to split each pixel of the image to be communicated securely. For this we use an 8 – 

neighborhood two – dimensional Cellular Automata.   

 

 

2. An elementary example of Image splitting and Reconstruction: 

 

Suppose the BMP image consists of four columns and four rows of pixel vectors shown 

as, where every pixel vector is of length 8: 

 

A1 A2 A3 A4 = A 

 B1 B2 B3 B4 = B 

 C1 C2 C3 B4 = C 

 D1 D2 D3 D4 = D 

 

To generate four splits, we will use four keys:  K1, K2, K3 and K4. 

 

The BMP image where the pixels are represented by 8 bit binary data is shown as: 
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Image I represented as: 

 

1001 1010 1010 0011 1101 0110 0011 1011 = A 

 

1000 1000 0110 0110 1001 1101 1100 1010 = B 

 

0110 1001 0011 0011 1101 1110 1111 1111 = C 

 

1111 0110 0000 1101 0101 0111 1001 1101  = D 

 

 

Split 1 generation: 

 

Assuming K1 = 1010 0011 to obtain first split 

Image I1 represented as: 

 

1001 0011 1010 0011 1101 0011 0011 0011 = A’ 

 

1000 0011 0110 0011 1001 0011 1100 0011 = B’ 

 

0110 0011 0011 0011 1101 0011 1111 0011 = C’ 

 

1111 0011 0000 0011 0101 0011 1001 0011  = D’ 

 

 

Split 2 generation: 

 

Assuming K2 = 1000 1010 to obtain second split 

Image I2  represented as: 

 

1001 1010 1010 1010 1101 1010 0011 1010 = A’’ 
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1000 1010 0110 1010 1001 1010 1100 1010 = B’’ 

 

0110 1010 0011 1010 1101 1010 1111 1010 = C’’ 

 

1111 1010 0000 1010 0101 1010 1001 1010  = D’’ 

 

 

 

Split 3 generation: 

 

Assuming K3 = 1000 1101 to obtain third split 

Image I3 represented as: 

 

1001 1101 1010 1101 1101 1101 0011 1101 = A’’’ 

 

1000 1101 0110 1101 1001 1101 1100 1101 = B’’’ 

 

0110 1101 0011 1101 1101 1101 1111 1101 = C’’’ 

 

1111 1101 0000 1101 0101 1101 1001 1101   = D’’’ 

 

 

Split 4 generation: 

 

The nth split is generated as: 

Image XOR (n-1) splits 

 

Thus image I4 obtained as: 

I4 =  I XOR I1  XOR   I2  XOR  I3    
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0000 1110 0000 0111 0000 0010 0000 1111 

 

0000 1100  0000 0010 0000 1001 0000 1110 

 

0000 1101 0000 0111 0000 1010 0000 1011 

 

0000 0010 0000 1001 0000 0011 0000 1001 

 

 

Method Of Image Reconstruction: 

 

The secret image can be regenerated back if we take the XOR of n splits, which are with 

n participants. 

Thus, I = I1 XOR I2 XOR I3 XOR I4  

 

Reconstructing row A of image I 

 

1001 0011        1010 0011        1101 0011      0011 0011 

XOR 

1001 1010 1010 1010 1101 1010 0011 1010  

XOR 

1001 1101 1010 1101 1101 1101 0011 1101  

XOR 

0000 1110 0000 0111 0000 0010 0000 1111 

                    EQUALS 

1001 1010 1010 0011 1101 0110 0011 1011 = A 
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Reconstructing row B of image I 

 

1000 0011 0110 0011 1001 0011 1100 0011  

XOR 

1000 1010 0110 1010 1001 1010 1100 1010  

XOR 

1000 1101 0110 1101 1001 1101 1100 1101  

XOR 

0000 1100       0000 0010      0000 1001        0000 1110 

                    EQUALS 

1000 1000 0110 0110 1001 1101 1100 1010 = B 

 

 

Reconstructing row C of image I 

 

0110 0011 0011 0011 1101 0011 1111 0011  

           XOR 

0110 1010       0011 1010      1101 1010        1111 1010  

XOR 

0110 1101       0011 1101       1101 1101        1111 1101  

XOR 

0000 1101       0000 0111      0000 1010          0000 1011 

                                EQUALS 

0110 1001 0011 0011 1101 1110 1111 1111 = C 

 

 

Reconstructing row D of image I 

 

1111 0011 0000 0011 0101 0011 1001 0011   
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XOR 

1111 1010 0000 1010 0101 1010 1001 1010   

XOR 

1111 1101       0000 1101      0101 1101        1001 1101    

XOR 

0000 0010       0000 1001      0000 0011        0000 1001 

                               EQUALS 

1111 0110 0000 1101 0101 0111 1001 1101  = D 

 

Thus the entire image I has been reconstructed as: 
 

Image I : 

 

1001 1010 1010 0011 1101 0110 0011 1011 = A 

 

1000 1000 0110 0110 1001 1101 1100 1010 = B 

 

0110 1001 0011 0011 1101 1110 1111 1111 = C 

 

1111 0110 0000 1101 0101 0111 1001 1101  = D 

 

 
Therefore, the original image has been reconstructed by taking the XOR of 4-splits in 
possession of the 4-participants. 
 
i.e.  I = I1 XOR I2 XOR I3 XOR I4  
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3. About this dissertation: 

 

Two methods of splitting an image for secure communication of the image have 

been studied. Firstly, a technique of splitting based on Linear Feedback Shift Register 

with a primitive polynomial feedback is studied. The degree of the primitive polynomial 

is chosen to be equal to the number of bits in each pixel vector and the initial state of the 

shift register is taken to be any non-zero binary vector except the pixel vector itself. The 

subsequent vectors so generated by the shift register are distributed to different agents 

randomly or each agent being given a certain number of vectors (pixels) as per the 

scheme of the sender. As the vectors are distributed randomly, no one agent can get at the 

‘secret’ pixel. However when all the agents get together and add modulo-2 all the vectors 

(pixels) with them, they reach at the correct pixel. This scheme of splitting the image is 

explained fully in Chapter 4.    

 
 Another scheme of splitting the image based on Cellular Automata is explained in 

Chapter 6. Here again the various stages of Cellular Automata produced pixels are 

distributed amongst a number of agents randomly and only when all the agents come 

together they can arrive at the correct pixel. Chapter 5 first explains the basics of Cellular 

Automata Theory and then applies it into image splitting. Cellular Automata based 

splitting is much more complex and provides many more choices in the number of 

choices for distribution of split images.  
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CHAPTER 2 
 

BMP FORMATS AND THEIR STRUCTURE IN C 
 
 
BMP files are commonly used file format for commonly used operating system called 

“Windows”. BMP images can range from black and white (1 byte per pixel) up to 24 bit 

colour (16.7 million colours). While the images can be compressed this is rarely used in 

practice and won’t be discussed in detail here. 

 

Structure 

 

A BMP file consists of either 3 or 4 parts. The first part is a header, this is followed by a 

information section, if the image is indexed colour then the palette follows, at last of all 

pixel data. The position of the image data with respect to thestart of the file is contained 

in the header. Information such as the image width and height, the type of compression, 

the number of colours is contained in the information header. 

 

Header 

 

The header consists of the following fields.We are assuming short int of 2 bytes, int of 4 

bytes, and long int of 8 bytes. Further we are assuming byte ordering as for typical (Intel) 

machines. The header is 14 bytes in length.  

 

typedef struct { 

 unsigned short int type ;   /* Magic identifier  */ 

 unsigned int size ;     /* File size in bytes  */ 

 unsigned short int reserved 1, reserved 2 ;    

 unsigned int offset ;    /* Offset to image data, bytes */ 
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} HEADER; 
The useful fields in this structure are the type field (should be ‘BM’) which is a simple 

check that is likely to be a legitimate BMP file, and the offset field which gives the 

number of bytes before the actual pixel data ( this is relative to the start of the file). This 

structure is not a multiple of 4 bytes for those machines/compilers that might assume this, 

these machines will generally pad this structure by 2 bytes to 16 which will unalign  the 

future fread() calls. 

 

Information 

 

The image info data that follows is 40 bytes in length, it is defined in the struct given 

below. The fields of most interest below are the image width and height, the number of 

bits per pixel (should be 1, 4, 8 or 24), the number of planes (assumed to be 1 here), and 

the compression type (assumed to be 0 here).    

 

typedef struct { 

 unsigned int size ;    /* Header size in bytes           */ 

int width, height ;    /* Width and height of image */ 

unsigned short int planes ;   /* Number of colour planes   */ 

unsigned short int bits ;   /* Bits per pixel                     */ 

unsigned int compression ;   /* Compression type              */ 

unsigned int imagesize ;   /* Image size in bytes            */ 

int xresolution, yresolution ;   /* Pixels per meter                 */ 

unsigned int ncolours ;   /* Number of colours             */ 

unsigned int importantcolours ;  /* Important colours             */ 

} INFOHEADER ; 

 
The compression types supported by BMP are listed below: 

 

0 – no compression 

1 – 8 bit run length encoding 

2 – 4 bit run length encoding 
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3 – RGB bitmap with mask 

 

type 0 (no compression) 

 

24 bit Image Data 

 

The simplest data to read is 24 bit true colour images. In this case the image data follows 

immediately after the information header, that is, there is no colour palette. It consists of 

three bytes per pixel in b, g, r order. Each byte gives the saturation for that colour 

component, 0 for black and 1 for white (fully saturated). 

 

Indexed colour data 

If the image is indexed colour then immediately after the information header there will be 

a table of infoheader .ncolours colours, each of 4 bytes. The first three bytes correspond 

to b, g, r components, the last byte is reserved/unused but could obviously represent the 

alpha channel. For 8 bit greyscale images this colour index will generally just be a 

greyscale ramp. If you do the sums….then the length of the header plus the length of the 

information block plus 4 times the number of palette colours should equal the image data 

offset. In other words  

14 + 40 + 4 *  infoheader  .ncolours = header .offset  
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CHAPTER 3 
 
  

SEQUENCES GENERATED BY LINEAR FEEDBACK SHIFT 
REGISTERS 

 

 

Primary sequences generated by Linear Feedback Shift Registers have been 

extensively studied in literature [2, 3, 4] in the context of their usefulness in cryptography 

especially in the design of stream ciphers.  

 

The operational disadvantages of one-time-pad have led to the development of 

Synchronous Stream Ciphers, which encipher the plain text in much the same way as the 

one-time-pad with deterministically random generated sequence (generated by key-

stream generators or Pseudo-random generators such as shift registers) with perfect 

synchronization between the encrypting and the decrypting devices. The security of a 

synchronous Stream Cipher now depends on the randomness of the key stream and the 

way the system is synchronized. 

 

The working of the stream cipher is explained in Fig 3.1. The plaintext (or 

message) is encrypted on bit by bit basis by adding modulo-2 or XOR (exclusive or) with 

the key stream, which is a binary sequence generated by electronic machine with memory 

or without, to produce a ciphertext (encrypted message), which is sent through the 

channel. At the receiving end, the same key stream is added modulo-2 to the ciphertext to 

get the plaintext (or message). Example 3.1 illustrates the principle. 
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Fig 3.1 A Stream Cipher System 

 

Example 3.1 

 

Plaintext M   : 1001100010101110100110 

Key Stream K   : 1000101001001111011110 

 

Ciphertext M ⊕ K =   C : 0001001011100001111000 

Key Stream K   : 1000101001001111011110 

 

Plaintext C ⊕ K = M  : 1001100010101110100110 

 

The machine that produces the key stream from the actual key k and the internal 

state is called the key stream generator. Whenever the key k and the internal states are 

identical at the sender and the receiver end, the key streams are also identical, and 
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deciphering is easily accomplished. One says that the key generators at the sending and 

receiving ends are synchronized with each other. Whenever the key generator looses 

synchronism, deciphering becomes impossible and means must be provided to reestablish 

synchronization. 

 

 In self synchronizing stream ciphers, the deciphering transformation has a finite 

memory with respect to the influence of the past bits, so that an erroneous or lost 

ciphered bits cause only a fixed number of errors in the deciphered plaintext, after which, 

again, the correct plaintext is produced. In any system with initial contents (IC) and logic 

F, if each key stream bit is derived from a fixed number of preceding ciphertext bits, then 

the system becomes self synchronizing. A serious disadvantage of self synchronizing 

stream ciphers is their limited analyzability because of the dependence of the key stream 

on the message stream (Fig 3.2). 

 

 

 

 

 

 

 

 

 

 

                                      ki                                                                          ki

    mi                          ⊕                                  -Ci-                       ⊕         mi  

                         IC                     

  
                 F 

 
               F 

                        IC 

 

                                  Fig 3.2  Principle of self synchronizing stream cipher 

 

 When a communication link employs some means of frame synchronization (as in 

the case of digital communication), the synchronous stream cipher may be supplied with 

some sort of self-synchronizing property without decreasing the security level. 
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CONSIDERATIONS IN DESIGN OF STREAM CIPHER SYSTEMS FOR 

MESSAGE / IMAGE ENCRYPTION 

 

 In order to ensure that a stream cipher designed by a cryptographer takes some 

minimum amount of effort on the part of the cryptanalyst to be able to reach at the 

communicated plaintext, it is necessary to give due consideration to the design of the key 

stream generator so that the produced encryption sequences satisfies some properties. As 

the encryption sequences are generated through shift registers, first of all we describe 

various types of shift registers and the properties of the sequences generated by them. 

Some of the important design considerations for stream cipher are: 

(i) The encryption sequences should have a large period. As we are generating 

the encryption sequences deterministically and such a sequence have a finite 

period, it is to be ensured that the sequence does not repeat itself within a 

reasonable period taking into account the amount of plaintext to be encrypted 

into a particular key.  

(ii) The most important property of encryption sequences is unpredictability. To 

ensure this property we have to have a large complexity in the sequence as 

also proper distribution of ones and zeroes in the sequences.  

(iii) One way to ensure the above two requirements is to generate a sequence by a 

non linear combining function whose arguments are the shift register 

sequences generated by linear feedback shift registers. Such sequences, 

however, are vulnerable to a new type of attack called the correlation attack if 

the ciphertext sequence can be correlated to one of the constituent sequences 

generated by linear shift register. 

(iv) From a cryptographer’s point of view it is necessary to ensure that the 

adversary may not be able to launch a “Brute Force Attack” to find the key 

used for encryption. Having ensured a large period, a large complexity and 

randomness, there should be a large variability of the possible keys to be used 

for encryption. This number should be so large that taking into account the 

speed of the latest computers, including parallel processing possibilities, it 

should not be feasible for the cryptanalyst to arrive at the plaintext. From the 
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point of view of key management however, it is better to have as small a key 

set as possible. To meet the twin requirements of ease of key set management 

and security from brute force attack, usually a key structure is introduced in 

the stream cipher system, which is arrived at by taking into account 

enciphering requirements.   

 

It may be appreciated that all the requirements can only be met if the designed 

system lends itself to analysis. We can therefore add analyzability as an important 

requirement. 

 

 In the above we have given a detailed account of the requirements of a good 

stream cipher based on shift register sequences, which produce an enciphering sequence 

to be added mod (2) to the message sequence (or pixel vectors). 

 

 Although, we carry out only image splitting and no encryption, it is to be 

appreciated that the technique of producing an encryption sequence or pixel vector splits 

is just the same. In pixel vector splits we use the vectors generated by LFSR instead of 

the sequence generated in the process. Therefore in the methodology suggested here for 

splitting the image is closely related to encryption by LFSR generated sequences. The 

connection between LFSR and Cellular Automata is brought out in Chapter 5 on Cellular 

Automata. 

 

GENERATION OF BINARY SEQUENCES BY LINEAR FEEDBACK SHIFT 

REGISTER (LFSR): 

 

A linear feedback shift register (LFSR) of length r is shown in Fig 3. It consists of 

a cascade of r unit delay cells or registers with a provision to form a linear combination 

of cell contents, which then serves as the input to the first register or stage. After each 

time unit, the contents of the registers are shifted one place to the right and a new bit, 

which is modulo-2 addition of some of the contents of the shift register, is placed at the 

first stage. The output of LFSR is assumed to be taken from the last stage. The initial 
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contents a0, a1, …, ar-1  of the r stages coincide with the first r output bits and the 

remaining output bits are uniquely determined by the recursion  

                 r 

  an =  ∑ cian-i      n > r-1 

                               i = 1 

 

 

     an-1         a n-2             a n-3                                              a n-r                         {a n } 

                                                                                                                                output 

                 sequence 

c1 C2 C3 Cr

       ⊕ 

 

 

 

 

 

 

 

 

 

  Fig 3  An r-stage Linear Feedback Shift Register 

 

 The feedback coefficients c 1, c 2, …, c r  are assumed to lie in the field GF(2), so 

as to take the value one or zero according as the ith register is, or is not involved in the 

feedback circuit. An output sequence generated by LFSR satisfying the difference is also  

                                                                                                                                         r 

called a linear recurring sequence. The polynomial  1 +  ∑ cixi      is called the                

                                   i = 1 

                                                                                   

characteristic polynomial or feedback polynomial. The output sequence  

{an} = a0 a1 a2 … is called a linear feedback shift register sequence and generator is called 

Linear Feedback Shift Register Generator (LFSR). 
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THE MATRIX METHOD: 

If we treat the contents of an LFSR as an r-dimensional state vector, the shift 

register can then be interpreted as a linear operator, which changes each state into next. It 

is a familiar fact that a linear operator operating on r-dimensional vector is most 

conveniently represented by an r x r matrix. In general, a shift register matrix takes the 

form with all ones along the diagonal above the main diagonal; the feedback coefficients 

down the first column and zero at all other positions. Thus the matrix 

 

 

  c1 1 0 … 0 

  c2 0 1 … 0 

  . . .  . 

T     = . . . . 

  . . .  . 

  cr-1 0 0 … 1 

  cr 0 0 … 0 

  

 

and  [an-1, a n-2, …, a n-r ] T =  [ a n, a n-1, …, a n-r+1 ]  

        [an, a n-1, …, a n-r+1 ] T =  [ a n+1, a n, …, a n-r+2 ]  

 

The repeated application of T on vector    S =   [an-1, a n-2, …, a n-r ]    will introduce power 

of T in the successive register state vectors i.e. S, ST, ST2, ST3, ST4, … .  It follows that a 

periodic output of period p will result if we can find an exponent p such that Tp = I, the 

identity matrix. Also the characteristic equation of the matrix T = det [T – xI] is the 

reciprocal polynomial of the characteristic polynomial of the shift register. 

 

CHAPTER 4 

SPLITTING OF PIXEL VECTOR USING LFSR 
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 Sequences generated by a four stage shift register with feedback polynomial : 

 1 + x + x4.  

 

   

                           1                 1               1              1 

                                                                                                                 Output 

 

 

 

    ⊕ 

Generated polynomial is :    1 + x + x4.  

 

Starting vector is 1111. The stages through which such a register will go through are as 

follows : 

 

  1 1 1 1------- 1 

  0 1 1 1------- 2 

  1 0 1 1------- 3 

  0 1 0 1------- 4 

  1 0 1 0------- 5 

  1 1 0 1------- 6 

M   =  0 1 1 0------- 7 

  0 0 1 1------- 8 

  1 0 0 1------- 9 

  0 1 0 0------- 10 

  0 0 1 0------- 11 

  0 0 0 1------- 12 

  1 0 0 0-------- 13 

  1 1 0 0-------- 14 

  1 1 1 0-------- 15 
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M is a 15 x 4 matrix ---- each row is 4-length vector. 

Also every column of Matrix M is the Pseudo - random sequence generated through the 

above shift register. One can say we have generated 4 sequences of length 15 each. All 

the four sequences are cyclic shifts of each other. Each one of these sequences can be 

used as encryption sequence as shown earlier. 

 

 However for Image splitting we use the 14 vectors (No. 2 – 15) in the following 

way. Let the pixel we want to split be represented by 4 bit vector. Let it be the pixel 1111. 

In order to split this pixel we use a 4 stage Linear Feedback Shift Register with the 

feedback polynomial: 1 + x + x4 which is a primitive polynomial of 4th degree and the 

initial contents of the register can be any non-zero vector except 1111. 

 

 To achieve splitting this pixel in 24 – 2 = 14 parts (the number of parts is one less 

than the length of the sequence which in this case is 15), we start with any one pixel 

except 1111 and generate a sequence of 14 vectors. These 14 vectors can be distributed in 

any manner amongst various Agents. An agent may get more than one pixel or a single 

pixel, but no one agent would be in a position to get the correct pixel 1111. This pixel can 

be achieved by mod(2) addition of all the splits. 

 

 For an m-bit pixel, using an m degree primitive polynomial, we can split each of 

the 2m – 1 pixels into 2m – 2 splits which when added mod 2 altogether would yield the 

required pixel but any number of pixels added together mod 2 taken separately would be 

of no consequence if the number of distinct pixels is less than 2m – 2. 

Thus with a simple technique stated above we can distribute the pixels amongst different 

people in 

 
 mC1 + mC2 + … + mCm-1     

different ways. In case of above example where m = 4, we have  
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 4C1 + 4C2  + 4C3   = 14 possible ways to distribute the splits. 

 In each possible distribution, a bit by bit mod 2 additions would yield the correct pixel. 

The above is achieved because of the following: 

All the binary vectors of length m together form a vector space of dimension m. 

Therefore any combination of less than m vectors cannot give any desired vector and any 

vector can be produced by addition of m or more than m vectors. It has to be ensured for 

distribution of the pixel vectors that no single agent may get more than m vectors. Also 

the addition of 2m – 2 vectors would yield (2m – 1)th vector which is the desired pixel 

vector with 2m th vector being all zero vector. Thus we can split each pixel of the image to 

be communicated in the above manner. The size of the image is maintained and if each 

pixel is split as per the above scheme, one can easily send the split images to different 

agents who would be able to get the image only when all of them get together and 

superimpose 2m – 2  split images mod 2, the correct original image would appear. 

 

 A number of other techniques of securing images have been given by Ratan [4]. 

He has specifically discussed Shift register based hiding. But our approach is based on 

Pixel wise splitting while his hiding of image is Coordinate based.  
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CHAPTER 5 
 

CELLULAR AUTOMATA 
 

The Cellular automation (CA) first introduced by John Von Neumann [1] in the 

1950s, has been accepted as a good computational model for the simulation of complex 

physical systems. It can be used to simulate readily the complex growth pattern of a 

snowflake and it has also been suggested that the analysis of the general features of the 

CA may yield better insight of the behaviour of such complex models. Wolfram et al     

[8 &9] have studied one-dimensional, periodic, boundary additive CAs with the help of 

polynomial algebra. Mathematical studies of null and periodic boundary additive CAs 

and some experimental observations have been reported by Pries et al [10]. The treatment 

is based on a similar kind of polynomial algebra and is confined mainly to uniform 

additive CAs. 

 

A more generalised treatment of additive CAs was introduced by Das et al [10] as 

a new tool based on matrix algebra. Treatments of both null and periodic boundary CAs, 

uniform and hybrid, non complemented and complemented – are reported. In this paper, 

some of the properties reported were verified and established with the help of Matrix 

based formulation. It was shown by Das et al [10] that the use of  LFSR as a 

pseudorandom pattern generator is based on sound mathematical tools around polynomial 

algebra. LFSR was also shown to be a special case of additive Cellular Automata. 

 

A CA is a collection of simple cells usually arranged in a regular fashion. The 

next state of the cell depends on the present state of ‘k’ of its neighbours, for a k-

neighbourhood CA, specified by its neighbourhood function. There can be various 
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boundary conditions namely ‘00’ (null, where extreme cells are connected to ground 

level), ‘periodic’ (extreme cells are adjacent), etc. 

 

Mathematically, the next state transition of the ith cell can be represented as a 

function of the present states of the ith, (i+1)th and (i – 1)th ( for 3-neighbourhood) cells:  

 q1(t: ) = f(qi(t), q(i + 1) (t), q(i – 1) (t)) 

where ‘f’ is known as the rule of the CA denoting the combinational logic. 

 

 For a 2-state 3-neighbourhood CA, there can be a total of 23 distinct 

neighbourhood configurations. For such a CA with cells having only 2 states there can be 

a total of 28 distinct mappings from all these neighbourhood configurations to the next 

state. Each mapping is called a rule of the CA. Two particular sets of transition from a 

neighbourhood configuration to the next state have been shown below: 

   

111 110      101       100      011      010     001      000 

  0   1          1            1         1          0         0          0        rule 120 

  0   1          0            1         1          0         1          0        rule 90 

                                 

                               Two sets of transition 

 

These are two rules of mappings, designating a transition from the neighbourhood 

configuration (consisting of the present states of the cells qi-1, qi and qi+1 ) to the next state 

of qi. This 8-bit binary number expressed in equivalent decimal form gives a convenient 

scheme for representing the CA rule. Rules 120 and 90 are illustrated above.  

 

The combinational logic equivalent for rule 120 is given as 

                              _                          _           _ 

 qi (t+1) =   qi+1 (t) qi-1 (t)  +  qi+1 (t)  qi (t) +  qi+1 (t) qi qi-1     

 

The minimized expression for rule 90 is 

                              _              _            

 28



 qi (t+1) =   qi+1 (t) qi-1 (t)  +  qi+1 (t) qi-1 (t) 

 

qi (t+1) =   qi+1 (t)  ⊕  qi-1 (t) 

 

In rules 120 and 90, we have assumed a CA with two states per cell. We shall adhere to 

this kind of CA only. 

 

Definition 1: If in a CA the same rule applies to all the cells, then the CA is called as 

uniform or regular CA. 

 

Definition 2: If in a CA different rules are applied over different cells, then the CA is 

called as a hybrid CA. 

 

Definition 3: If in a CA (which is a 2-state per cell CA) the neighbourhood dependence 

is on EXOR or EXNOR only, then the CA is called as an additive CA. The next state of a 

cell in such a CA can be expressed as a modulo-2 sum of the neighbours. 

 

Definition 4: If in a CA the neighbourhood dependence is EXOR, then it is called a 

noncomplemented CA and the corresponding rule is referred to as a noncomplemented 

rule. For neighbourhood dependence on EXNOR only (where there is an inversion of the 

modulo-2 logic), the CA is called a complemented CA. The corresponding rule involving 

the EXNOR function is called the complemented rule. 

 A hybrid CA may have both complemented and noncomplemented rules. 

 

LFSR as special case of hybrid additive group CA: 

 

An n-bit LFSR can be conveniently modeled as a hybrid additive CA where the 

neighbourhood dependence of the leftmost cell (input cell) extends to n and for each of 

the rest of the cells, the dependence is confined to the cell towards its left only. Fig shows  

a 4-bit LFSR associated with the characteristic polynomial 
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f(x) = 1 + a1x + a2x2+ a3x3+ x4  , ai   Є  {0, 1}     i = 1 to 3 

  

 

 

 

 

                                                                                                                                        O/P 

                                                                                                                    

 

 

                           

                                         a3                                              a2                                             a1

 

   

 

                    

 

Fig : 4-bit LFSR 
a1 = 1 when feedback connection physically exists 

 

 

The corresponding T matrix when it is modeled as a hybrid CA is as follows: 

 

                                    a3         a3                a3               1 

                                    1          0            0           0 

              T     =            0          1            0           0 

                                    0          0            1           0 

 

 + 
 +  + 

 x  x 
 x 

By virtue of the fact that the T matrix is nonsingular, it becomes immediately evident that 

LFSR generates cycles of states, i.e. periodic sequences. 
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Lemma: The characteristic equation of the T matrix for an LFSR is identical to the 

characteristic polynomial f(x) of the LFSR with x replaced by T. 

 

 

 

TWO-DIMENSIONAL CELLULAR AUTOMATA: 

 

Two-dimensional finite cellular automata (2D-CA for short) are discrete 

dynamical systems formed by a finite two-dimensional array of r x s identical objects 

called cells, such that each of them can assume a state. The state of each cell is an 

element of the finite state set, S. We will consider S = Zc where c = 2b is the number of 

colours of the image; i.e., if the image is a black and white image, then b = 1; for gray 

level images the value is b = 8, and if it is a colour image, then b = 24 Maronon et al [11]. 

 

           The (i, j)-th cell is denoted by <i, j>, and the state of this cell at time t is aij
(t)   Є Zc.

The 2D-CA evolves deterministically in discrete time steps, changing the states of all 

cells according to a local transition function,  

 

    f :  ( Zc )n  →  Zc

 

The updated state of each cell depends on the n variables of the local transition function, 

which are the previous states of a set of cells, including the cell itself, and constitute its 

neighbourhood. For 2D-CA, there are some classic types of neighbourhood, but in this 

work only the extended Moore neighbourhood will be considered;that is, the 

neighbourhood of the cell <i, j> is formed by its nine nearest cells: 

 

  Vi,j = {<i-1, j-1>, <i-1, j>, <i-1, j+1>, <i, j-1>,  

                   <i, j>, <i, j+1>, <i+1, j-1>, <i+1, j>, <i+1, j+1>} 

 

Graphically it can be seen as follows:    
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< i-1, j-1 > < i-1, j > < i-1, j+1 > 

< i, j-1 > < i, j > < i, j+1 > 

< i+1, j-1 > < i+1, j > < i+1, j+1 > 

 

 

Consequently the local transition function  

 

  f :  ( Zc )9  →  Zc    is 

 

aij
(t+1)   =    f (   ai-1 j-1

(t) , ai-1 j
(t) , ai-1 j+1

(t) , ai j-1
(t),  ai j

(t) , ai j+1
(t) , ai+1 j-1

(t) , ai+1 j
(t),  ai+1 j+1

(t) ) , 

 

or equivalently, 

 

  ai j
(t+1)    =    f ( Vij (t)) ,    0 ≤  i ≤ r-1,   0 ≤   j ≤  s-1, 

 

where  Vij (t)           ( Zc )9  stands for the the states of the neighbour cells of < i, j > 

at time t.  

 

The matrix  

 

                         ai00
(t)       .          .          .            a0, s-1

(t)   

                                       .         .                                      . 

          C(t)     =                                 .                    .           . 

                                      .      . 

                                   ar-1, 0
(t)             .        .                      .                ar-1, s-1

(t)

 

 

is called the configuration at time t of the 2D-CA, and C(0) is the initial configuration of 

the CA. Moreover, the sequence {C (t)}0≤ t ≤ k is called the evolution of order k of the 2D-

CA, and C is the set of all possible configurations of the 2D-CA; consequently   C = c r.s. 
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CELLULAR  AUTOMATA AS BIT STREAM GENERATORS

 

 In stream ciphers pseudorandom pattern generators are widely used to generate 

the key streams for encryption. Nandi et al [12] have demonstrated use of Hybrid Cellular 

Automata for sequence generation based on the two programmes and then implemented 

through PCA1 and PCA2. We describe this technique in the following and then use the 

same scheme for creating split images. 

 

KEY STREAM GENERATORS: 

 

 Many key stream generators are based on combining two or more generators  

(i.e. LFSR’s) by using nonlinear functions. It is already established that maximum length 

CA’s generate patterns having high quality of pseudo randomness. Using CA properties  

two types of key stream generators are proposed: 

i) PCA with ROM 

ii) Two stage PCA 

Fig 6.1 shows a 90 / 150 PCA cell used in the key stream generators. 

 

 

 

                                                                                                                                  Control 

                                                                                                                                    signal 

 

 

 
Cell # 0 Cell # 1 Cell # 2 

C 
O 
N 
T 
R 
O 
L 

Cell # i
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Fig   A 3-cell Programmable CA structure and a PCA cell 

 

 

PCA With ROM as a Key Stream Generator: 

 
 Let L be the number of cells in the PCA and w be the number of maximal length 

CA’s with rule 90 and rule 150. Assume that l maximal length CA’s are chosen out of w  

maximal length CA’s. These rules are noted as {R0, R1, R2, …,  Rl-1 }. The rule 

configuration control word corresponding to a rule Ri is stored in a ROM word. Initially 

the PCA is configured with rule R0 and loaded with a non-zero seed. With this 

configuration the PCA runs one clock cycle. Then it is reconfigured with the next rule 

(i.e., R1 ) and runs another cycle. This process repeats until CLOCK SIGNAL to PCA is 

made inactive. The rule configuration of PCA changes after every run, i.e., if in the ith 

run rule configuration is Ri, then in the next run, rule is R(i+1)modl. After each clock cycle, 

the output of PCA is taken as a pseudorandom pattern. 

 

 Now our objective is to show that this output sequence is a pseudorandom pattern 

sequence. The following Theorem provides the background. 

 

Theorem 1 : If the characteristic polynomial of a CA is primitive then it generates 

pseudorandom pattern. 

 

Corollary 1: A PCA built with maximal length CA configurations generates 

pseudorandom patterns. 

 

Proof: All the maximal length CA’s generate pseudorandom sequences, individually. 

The sequence generated by the PCA can be taken as a set of subsequences generated by a 

particular maximal length CA. As the subsequences are pseudorandom in nature so the 

overall sequence is also pseudorandom in nature. 
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The above key stream generator scheme may be implemented through a circuit whose 

block diagram is shown in Fig 6.2 

           CLOCK                                                          START 

 

                            CONTROL 

                             BUS                                 ADDRESS 

                                                                      BUS 

 

                                                                       CONTROL  

                                           DATA BUS                    BUS 

 

 

 

 

PC 

CONTROL 
 
    UNIT 

 
 
 
  ROM 
   l x  L 

 
 
  L – bit 
    PCA 

 
          I/O CONNECTION 

 

 

 

                            Fig 6.2  PCA based psedorandom pattern generator 

 

Description of the Circuit: 

 

PCA (Programmable CA): It is an L-bit null boundary, uniform or hybrid CA 

configured with the rule 90 and 150. The control signals corresponding to a CA 

configuration are stored in the ROM and loaded into the PCA via the DATA BUS. 

 

ROM(Read Only Memory): It is of size l x L (l words, each of L bits), and it stores the 

control signals for the PCA. 

 

Control Unit: It consists of several counters to generate different types of control signals 

for PCA and ROM. The control sequences of the circuit are described in the Algorithm 1 
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below. Program Counter (PC) is (log2l)-bit (i.e., l is power of 2) up counter and is used to 

store address of the ROM where next PCA rule is present. 

 

I/O Connection: It is an input/output unit for data transfer between PCA and outside 

world. 

  

Only two external signals are required to operate the whole circuit, i.e., CLOCK 

for running the circuit and START for reset and start of the circuit. The working is 

explained through Algorithms 1 & 2 given below.  

 

Algorithm 1: 

Step 1: Reset all counters in the Control Unit. 

Step 2: Load PCA with L-bit initial seed from I/O connection. 

Step 3: Read the ROM control word and configure the PCA.  

Step 4: Run PCA for one cycle.  

Step 5: Read pseudorandom pattern from I/O connections and increment PC by 1.  

Step 6: If (CLOCK active) then go to Step 3. 

Step 7: Stop. 

 

 In the above scheme, the PCA configured by a rule (stored in the ROM) is 

assumed to run one cycle only. By using some extra ROM bits and additional control, we 

can specify the number of cycles the PCA should run for each configuration. Such 

modification can substantially enhance the quality of encipher. 

 

Two Stage PCA as a Key Stream Generator: 

 

 In the ROM based Key Stream Generator, the main disadvantage is the increased 

area overhead with lower speed of operation due to use of ROM for storage of control 

signals. This can be avoided by replacing the ROM with another maximal length 90/150  

rule PCA (i.e., PCA2) as shown in Fig 6.3. A single chip can be fabricated with PCA1,
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                                CLOCK                                                       START 

 

 
                                        CONTROL 

                                            BUS                                                 CONTROL 

                                                                                    BUS 

 

 
                                                         DATA BUS 

 
 

CONTROL 
UNIT         

 
 
 
       L – bit 
         PCA2
 
 

 
 
 
 
        L – bit 
         PCA1
 

 

 

 

 
I/O CONNECTION 

 

 

 

 

 

Fig  Two stage PCA baed pseudorandom pattern generator 

 

 

PCA2 and the CONTROL UNIT. The control signals (R) to configure PCA2 and the input 

seed (I2 ) for PCA2 can be concatenated to the input seed (I1) of PCA1 to form the key 

(i.e., <R, I2, I1 >) for the key stream generator. The PCA2 generates the control signals to 

configure PCA1  (Program 1). 

 

Description of the Circuit: 
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PCA1  (Programmable CA1): It is an L-bit null boundary, uniform or hybrid CA loaded 

with the rule 90 and 150. The control signals to configure PCA1 are loaded from the 

output of PCA2 via the DATA BUS. 

 

 PCA2  (Programmable CA2): It is an L-bit null boundary, uniform or hybrid CA 

configured with the rule 90 and 150. Rule (R) is part of the key and it is loaded into the 

PCA2 via the DATA BUS. 

 

Control Unit: It consists of several counters to generate different control signals for  

PCA1 and PCA2. The control sequences of the circuit are described in the Algorithm 2 

below. 

 

I/O Connection: It is an input/output unit for data transfer between PCA1, PCA2 and the 

outside world. 

  

Algorithm 2: 

Step 1: Reset all counters in the Control Unit. 

Step 2: Configure PCA2 with the control signals (R) from the I/O connections. 

Step 3: Load PCA1 and PCA2 with initial seed I1 and I2.  

Step 4: Run PCA2 for one cycle.  

Step 5: Configure PCA1 with the control signals from the output of PCA2.  

Step 6: Run PCA1 for one cycle.  

Step 7: Output pseudorandom pattern from I/O connections (i.e. output of PCA1). 

Step 8: If (CLOCK active) then go to Step 4. 

Step 9: Stop. 

 The enciphering process using this type of generator fails if PCA1 goes to all zero 

graveyard state. Analogous to modified LFSR design, with some extra logic it is possible 

to design the PCA1 to have a transition out of all- zero state. On the other hand, it is 

necessary to avoid a situation where PCA2 enters in a graveyard state resulting in PCA1 

being configured with the same rule all through out. So, the user of the scheme must 

avoid such a key combination from the simulation study.    
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CHAPTER 6 
 

CELLULAR AUTOMATA IN IMAGE SPLITTING
 

 Let each pixel vector in the image proposed to be securely stored or 

communicated be of 8 - bit length. We propose to use an 8 - neighborhood cellular 

automata for splitting this 8 - bit 

pixel. For this purpose, we use a two - dimensional, Hybrid, Programmable Cellular 

Automata. 

   

    

c4 s1 c1

s4 Sc s2

c3 s3 c2 

 

 

 In this scheme, we number those cells which have a side common with the central 

cell to evolve according to Program - 1 and cells which have a corner common with the 

central cell evolve according to Program - 2. In this formation we have tried to generalize 

the LFSR approach followed in Chapter 3. Please refer to figure for the circuit for simple 

implementation of two-dimensional hybrid programmable automata used for generating 

splits of an 8-bit pixel vector. The two parts of the Hybrid use different programs 

Program 1 and Program 2 for evolution. The close connection with LFSR and Cellular 

Automata has been brought out [ ]. While the cells having a side common with the central 

cell are marked as s1, s2, s3 and s4, the ones which have only a corner common with the 

central cell to be marked as c1, c2, c3 and c4. While s1, s2, s3 and s4 follow a program 

governed by s1 + s4 replacing s1 followed by a clockwise shift in s2, s3, s4   ---- c1, c2, c3 and 

c4 follow a program governed c3 + c4 replacing c4 followed by the following rule: 
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Program 1: 

  s1, s2, s3 and s4 follow the following program 

1. The initial seed for the cells s1, s2, s3 and s4  is 1101. 

2.  Sc   is 1. 

3. At time  t+1 : S1 is replaced by S1 ⊕ S4  at time t 

    S2  is replaced by S1  at time t 

                               S3  is replaced by s2  at time t 

                                              S4 is replaced by s3 at time t 

 

      4.    Sc at t+1 =  S1
t+1

 ⊕ S2
 t+1

  ⊕ S3
 t+1

  ⊕ S4
 t+1

   

    In short    S1
t+1

  =  S1
 t

 ⊕ S4
 t  

                 Sc
t+1

    =  S1
t+1

 ⊕ S2
 t+1

  ⊕ S3
 t+1

  ⊕ S4
 t+1

   

     and S2
 t+1

  =   S1
 t

  ,     S3
 t+1

  =  S2
 t 

    and  S4
 t+1

   =  S3
 t   

   
Program 2:  

c1, c2, c3 and c4 follow the following program 

1. At time  t+1 :     c1 is replaced by c1 ⊕ c4  at time t 

      c2  is replaced by c1  at time t 

                                 c3  is replaced by c2  at time t 

                                                c4 is replaced by c3 at time t 

2. At time  t+1:  Sc is replaced by  c1 ⊕ c2 ⊕ c3⊕ c4  at time t+1 

     i.e. Sc
t+1   = c1

 t+1    ⊕ c2
 t+1    ⊕ c3

 t+1   ⊕ c4
 t+1   

  

c1
t+1   = c3

 t    +  c4
 t       

c2
t+1   = c1

 t     

c3
 t+1 = c2

 t     

c4
t+1   =  c3

 t   
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The first few assigned values are shown. Let the starting position be: 

 

 s1  s2  s3  s4   c1  c2  c3  c4 

  1   1  0  1    1   1  0   1 

 

The automata evolve through two different rules, one each for 4 – neighborhood case. 

 

          The number of splits that can be achieved through cellular automata evolution are 

much more than with LFSRs. Also it is possible to deal with pixel vectors of greater 

length, thus suggesting the use of cellular automata in quality colour images.  

 

 Let the image pixel vector be eight bit binary vector 1 1 0 1  1 0 1 1 – we start 

with the configuration 

 

                       s1                                          

 

c1  c4

s4  s2

c2  c3     

                                                                                                                                                      

   

     sc  

   

            s3                                                                                                                                         

 

 

                                                    

Thus the neighbour of sc  (the central cell) consists of two types:                     
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(i) s1, s2, s3 ,s4 are cells which have a side common with sc 

(ii) c1, c2, c3, c4  are cells which have a corner common with sc 

 

 

We start with the following configurations: 

 

t = 0 

We start with some pixel vector 0110 0111 

At t = 0  s1 has a 0, s2 has a 1, s3 has a 1 and s4 has a 0. 

s1 ⊕ s2 ⊕ s3 ⊕ s4 = sc   =  0  (boundary) 

 

 1  0  0 

 0 

 

 

 

 0  1 

 1  1     1 

 

t = 1 

Apply the law. Let s1  get  s1 ⊕ s4  and  s2, s3 and s4 get the values s1
0 , s2

0 ,  s3
0  

respectively, i.e. s2
t1 → s1

t0 → s3
t1 → s2

t0    and s4
t1 → s3

t0  and c1, c2, c3, c4  remain 

unchanged 

 
1  0  0 

 1 
 

 0  0 
 

 

 

t = 2  

 1  1     1 

Apply the law c1 gets  c3 ⊕  c4  and  c2, c3 and c4  at (t+1) get a shift of  c2, c3 and c4  at t as 

follows:  c2
t+1   = c1

 t  ,  c3
 t+1 = c2

 t  , c4
t+1   =  c3

 t    and s1, s2, s3, s4  remain unchanged 

and sc   = c1 ⊕ c2 ⊕ c3⊕ c4  
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1  0  0 

 1 

 

 1  0  

  1  1     1 

 

 

 

t = 3 

Apply the law s1 gets  s1 ⊕ s4  and  s2, s3 and s4  get the values of s1, s2, s3 at t=2 and c1, c2, 

c3, c4  remain unchanged and 

sc   =  s1 ⊕ s2 ⊕ s3 ⊕ s4  

 

1  1  0 

 1 

 

 0  0  

  1  0     1 

 

 

Repeatedly applying the above two laws of evolution; we get at 

 

t = 4 

  

 
1  1  1 

 1 
 

 

 

 0  0 

 1  0     1 

 

  

t = 5 

 
1  1  1 

 1 
 

 1  0  
 1  0     1 
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t = 6 

 
 0  1  1 

 1 
 

 

 

 1  0 

 1  0     1 

 

 

t = 7 

 
0  0  1 

 0 
 

 1  1 
 

 

 

 1  0     1 

 

 

t = 8 

 
0  0  1 

 0 
 

 0  1 
 

 0  0     1  

 

 

 

 

t = 9 
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0  0  1 

 0 
 

 

 

 1  0 

 0  1     1 

 

 

t = 10 

 
0  0  1 

 0 
 

 

 

 1  0 

 0  1     0 

 

 

t = 11 

 
0  0  1 

 1 
 

 1  0 
 

 

 

 0  0     0 

 

 

t = 12 
1  0  

  
 1 

 1  1  0 
 

 0  0      0 
 

 

 

 

 

t = 13 
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1  1  1 

 0 
 

 1  0  

 

 

 0  0      0 

 

 

t = 14 
0  1  0 

 0 
 

 1  0  

 

 

 1  0      0 

 

 

t = 15 
 0  1  0 

 0 
 

 0  1  
 0  0      1  

 

 

 

 

 

t = 16 
 0  1  0 

 0 
 

 1  1  
 1  0      0  

 

 

 

 

t = 17 
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 0  1  0 

 0 
 

 1  1  
 1  1      0  

 

 

 

 

t = 18 
 1  1  1 

 0 
 

 0  1  
 0  1      0  

 

 

 

 

t = 19 
 1  1  1 

 1 
 

 0  1  
 0  1      0  

 

 

 

 

t = 20 
 1  1  0 

 1 
 

 0  1  

 

 

 1  1      0 

 

 

t = 21 
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 1  0  0 

 1 
 

 1  1  

 

 

 1  1      0 

 

 

t = 22 
0  0  0 

 1 
 

 0  1  

 

 

 1  1      1 

 

 

t = 22 
0  0  0 

 1 
 

 0  1  
 1  1      1  

 

 

 

 

t = 23 
  0  0  0 

 1 
 

 1  1  
 1  1      1  

 

 

 

 

t = 24 
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 1  1  1 

 1 
 

 1  0  
 0  1      1  

 

 

 

 

 

t = 25 
 1  0  1 

 1 
 

 1  1  
 0  0      1  

 

 

 

 

t = 26 
 1  1  0 

 1 
 

 0  0  
 0  1      1  

 

 

 

 

t = 27 
 1  1  0 

 0 
 

 0  0  
 0  1      1  
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t = 28 
 0  1  1 

 0 
 

 1  0  
 1  1      0  

 

 

 

If we superimpose 29 stages from t = 0 to t = 28 modulo-2 we get the original pixel 

vector,  i.e. 

 
 1  1  1 

 1 
 

 0  1  
 1  0      0  

 

 

Proceeding like this one complete cycle of the Programmable Hybrid Cellular Automata 

can be written down 

       s        c 

   1101      1011 

 t = 1  0110    t = 0  0111 

 t = 3  0011    t = 2  1111 

 t = 5  1001    t = 4  1110 

 t = 7  0100    t = 6  1100   

t = 9  0010    t = 8  1000 

 t = 11  0001    t = 10  0001 

 t = 13  1000    t = 12  0010 
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  t = 15  1100    t = 14  0100 

t = 17  1110    t = 16  1001  
t = 19  1111    t = 18  0011 
t = 21  0111    t = 20  0110 
t = 23  1011    t = 22  1101 
t = 25  0101    t = 24  1010 
t = 27  1010    t = 26  0101 

 

  1101      1011 
 

 
 It can be seen that the above scheme leads to two groups of splits to be 

distributed. One group consisting of splits shown at t = 0, 2, 4, …, 26 and the other group 

splits at t = 1, 3, 5, …, 27. Each group separately can reach the original pixel vector by 

adding mod-2 fourteen pixel vectors of one group. The shares of Group 2 also lead to the 

original pixel vector 1101 1011 by addung mod 2. 

  

Now having more programs p3,p4,---, p5, p6  we can enlarge the cycle length to 

desirable levels and when all the n agents get together, only then they are able to arrive at 

each of the correct pixels. 

 
 It is relevant to remark here that the entry in the cell Sc can be easily used for 

making the split sequence to be more complicated and for increasing the number of splits 

using the following rule: 

(i) When Sc is zero, use the s cycle 

(ii) When Sc  is 1, use the c cycle 

 

            instead of the alternate use of s & c cycles regularly. 

 

 We have intentionally resisted from using the value of Sc as 
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(i) it would make mathematical analysis of the splits so generated extremely 

complicated and consequently 

(ii) it would be difficult to compare the results achieved by the two techniques 

of LFSR  and 2-dimensional CA worked out here.  

 

The comparison of results achieved through the above technique is presented in 

Chapter 7. 

 

 

 

   

CHAPTER 7 

RESULTS 
 
ORIGINAL IMAGE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SPLIT 1 
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SPLIT 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 4 
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SPLIT 5 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPLIT 7 
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 SPLIT 8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

SPLIT 10 
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SPLIT 11 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 12 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 SPLIT 13 
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SPLIT 14 
 
 
 
 
 
 
 
 
 
 
 

 
The image is reconstructed back from the above splits, which is same as the 

original image. 
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COMPARISON OF RESULTS: LFSR AND TWO-DIMENSIONAL 

HYBRID PCA 
 

1. It is well known that LFSR’s are only particular cases of Cellular Automata. See 

for example Nandi etal [3] and Das et al [10]. By using an r-stage LFSR one can 

generate  (2r – 2) splits of each pixel vector, which together would reproduce the 

original (2m – 1)th  pixel vector. However we can generate split images using 

Cellular Automata with many more splits, which can be divided to various agents 

– who can get the original image only when all of them get together. 

 

2. One can easily increase the number of splits in two ways by use of Cellular 

Automata by: 

(i) Vertical Splitting: As demonstrated above. The number can be 

increased by choosing Program I and II in such a way that the cycle 

length of the CA is larger. 

 

(ii) Horizontal Splitting: The dimension of the pixel vector can be 

increased by either: 
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(i) Increasing the size of the CA – for example a 5 x 5 or 7 x 7 

square can easily be used as two dimensional CA to increase 

the pixel size to 10, 12 or any other convenient size – If the 

dimensions of the pixel vectors are p1 and p2, we can increase 

the cycle length to (2p1 – 2) x (2p2 – 2). 

 

(ii) By taking a larger number of pixel vectors in each. If the size 

of the pixel vector is s we may increase the dimension of the 

pixel to s x n where n is the number of pixels in the pixel 

vector. 

 

(iii) By interspersing the pixel bits and progressing the evaluation by 

different programs one can achieve much more security. 

 

 It is clear from the above discussion that cellular automata offer much superior 

techniques of secure communication of images, in terms of : 

(i) Number of splits: This is much larger in case of cellular automata based 

scheme than in case of LFSR. 

(ii) Cellular automata technique can handle much longer pixels and can 

therefore be useful in high quality colour images where the constituent 

pixels are of much longer length to cater for different colours. 

(iii) As cellular automata are capable of creating highly complex patterns, 

these can be used for providing much higher level of security than in the 

case of LFSR’s where 2m-1 splits security from a cryptanalyst’s point of 

view is only m, as m bits are sufficient to predict the rest of the bits in a 

period of 2m-1. 

 

Thus it can be concluded that Cellular Automata provides endless possibilities of 

generating splits by adopting various variants of the CA two dimensional, programmable 

and Hybrid CA’s. 
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CONCLUSION & FURTHER SCOPE OF WORK 
 

 Many methods of securing images for secure preservation and communication 

have been suggested in literature. For reasons explained in Chapter 2, we choose to study 

the methods of image splitting for this purpose.  

  

 We studied two methods for secure storage and secure communication for images 

in this dissertation. Two methods of splitting images studied here are 

(i) LFSR based splitting 

(ii) Image splitting through a two-dimensional 8-neighbourhood hybrid cellular 

automata in which each half of the 8-bit pixel (8-neighbourhood) cellular 

automata evolve according to different rules. 

 

 The following problems are suggested for investigation by the work presented in 

this dissertation: 

 

1. The number of the splits generated and the scheme of split distribution if 

the entries at Sc are taken to drive the PCAs, for example PCA1 is 

activated when Sc  = 0 and PCA2 is activated when  Sc  = 1. 

2. To discuss the security aspects of the above schemes. 
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3. To study the strength of encryption schemes suggested by the above two-

dimensional Hybrid CA driven schemes.  
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APPENDIX 

IMPLEMENTATION OF IMMAGE SPLITTING USING TWO DIMENSIONAL 

HYBRIDS CELLULAR AUTOMATA 

 

//implementation of CA by LFSR 

#include<stdio.h> 

#include<graphics.h> 

#include<iostream.h> 

#include<conio.h> 

 

void side_corner_arrayfill(); 

void side_corner_square(int,int, int); 

void display(); 

void display_square(int); 

void one(int); 

void final(); 

void final_check(); 

int s[16][4],c[16][4],temp[28][9],temp1[14][9],temp2[14][9],f1[9],f2[9],x=0,y=0,r=0; 
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void main() 

{ 

int i,j,k; 

clrscr(); 

 

//initialization of side and corner array 

s[0][0]=1;s[0][1]=1;s[0][2]=0;s[0][3]=1; 

c[0][0]=1;c[0][1]=0;c[0][2]=1;c[0][3]=1; 

 

 cout<<"side        and     corner arrays contents\n"; 

 

 side_corner_arrayfill(); 

 display(); 

 getch(); 

 int count=0; 

 

 for(i=1;i<15;i++) 

 { 

    for(j=i;j<=i+1;j++) 

    { 

  side_corner_square(count,j,i); 

  display_square(count); 

  cout<<endl; 

  getch(); 

  count++; 

 

  if(count==27) 

  { 

  side_corner_square(count,1,i); 

  display_square(count); 

  break; 
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  } 

    } 

  if(count==27) break; 

 } 

 

 

 

 

 

 

 

       // cout<<count; 

 getch(); 

 final(); 

      // final_check(); 

 // one(2); 

//  display_square(2); 

getch(); 

} 

//this function will fill the square with side and corner 

void side_corner_arrayfill() 

{ 

int x,y,cnt=0; 

 

  while(cnt<16) 

  { 

  x=0,y=0; 

  for(int i=0;i<3;i++) 

      s[cnt+1][i+1]=s[cnt][i]; 

 

  for(i=0;i<3;i++) 
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      c[cnt+1][i]=c[cnt][i+1]; 

 

 

  x=x^s[cnt][0]; 

  x=x^s[cnt][3]; 

 

  y=y^c[cnt][0]; 

  y=y^c[cnt][1]; 

 

  s[cnt+1][0]=x; 

  c[cnt+1][3]=y; 

 

  cnt++; 

  } 

 

  c[0][0]=1;c[0][1]=0;c[0][2]=1;c[0][3]=1; 

} 

 

void display() 

{ 

int i,j; 

   for(i=0;i<16;i++) 

   { 

  for(j=0;j<4;j++) 

    cout<<s[i][j]<<" "; 

 

     cout<<"  "<<i<<"           "; 

 

  for(j=0;j<4;j++) 

    cout<<c[i][j]<<" "; 

    cout<<endl; 
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    } 

} 

 

void side_corner_square(int k, int j, int i) 

{ 

temp[k][1]=s[j][0];temp[k][5]=s[j][1];temp[k][7]=s[j][2];temp[k][3]=s[j][3]; 

temp[k][0]=c[i][0];temp[k][6]=c[i][1];temp[k][8]=c[i][2];temp[k][2]=c[i][3]; 

  if ( k%2 == 0) 

{ 

 x=0; 

 for(int r=0;r<4;r++) 

 { 

  x=x^c[i][r]; 

 } 

} 

  else 

{ 

  x=0; 

 for( r=0;r<4;r++) 

 { 

  x=x^s[j][r]; 

 } 

} 

 

temp[k][4]=x; 

 

} 

 

void display_square(int k) 

{ 

cout<<"At t="<<k<<"...................."<<endl; 
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   for(int i=0;i<9;i++) 

   { 

   cout<<"       "<<temp[k][i]<<" "; 

   if( ( i==2 ) || ( i==5 ) || ( i==8 ) ) 

   cout<<endl; 

   } 

} 

 

void final() 

{ 

   int x,i,j,k=0; 

   for(i=0;i<28;i=i+2) 

   { 

 for(j=0;j<9;j++) 

 { 

    temp1[k][j]=temp[i][j]; 

    temp2[k][j]=temp[i+1][j]; 

 } 

   k++; 

   } 

//   cout<<"the value of k is :::"<<k<<endl; 

 

   for(i=0;i<9;i++) 

   { 

 x=0; y=0; 

      for(j=0;j<14;j++) 

      { 

  x=x^temp1[j][i]; 

  y=y^temp2[j][i]; 

      } 

   f1[i]=x; 
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   f2[i]=y; 

 

  } 

 cout<<"Group 1 (t=0,2,4,8,.......,26)"<<endl; 

 for(i=0;i<9;i++) 

 { 

  cout<<"      "<<f1[i]<<" "; 

  if( ( i==2 ) || ( i==5 ) || ( i==8 ) ) 

  cout<<endl; 

 } 

 cout<<"Group 2 (t=1,3,5,7,.......,27)"<<endl; 

 for(i=0;i<9;i++) 

 { 

  cout<<"      "<<f2[i]<<" "; 

  if( ( i==2 ) || ( i==5 ) || ( i==8 ) ) 

  cout<<endl; 

 } 

} 

//int t[9]; 

/*void final_check() 

{ 

cout<<"displaying final\n"; 

   int x; 

   for(int i=0;i<4;i++) 

   { 

 x=0; 

      for(int j=1;j<=14;j++) 

      { 

 

 x=x^s[j][i]; 

      } 
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      t[i]=x; 

   } 

 

  for(int k=0;k<4;k++) 

   { 

     x=0; 

      for(int j=1;j<15;j++) 

      { 

 

  x=x^c[j][k]; 

      } 

   t[i]=x; 

   i++; 

  } 

 

 for(i=0;i<9;i++) 

 { 

  cout<<t[i]<<" "; 

  if( ( i==2 ) || ( i==5 ) || ( i==8 ) ) 

  cout<<endl; 

 } 

} */ 
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