
IMAGE SPLITTING

AND

RECONSTRUCTION

FOR

SECRET
COMMUNICATION

 1

ABSTRACT

In this paper Image splitting for secure storage and communication has been considered

through two different techniques. Firstly it is shown how by using a Linear Feedback

Shift Register (LFSR), an image can be split in such a way that none of the split parts

make any sense on its own, but when all the split parts are superimposed modulo-2, the

original image emerges. Secondly we generalize the splitting technique using two-

dimensional programmable Hybrid Cellular Automata. Cellular Automata based splitting

techniques provide a more difficult to break scheme and the number of split parts can be

increased to a very large number adding flexibility and security to the distribution scheme

to different agents. Implementation of both the schemes has been carried out and results

are demonstrated.

 2

CHAPTER 1

INTRODUCTION

1. Image Processing For Security

 An image is a media by which the information can be presented in effective and

better manner to the receivers for its better understanding. Visual information has vital

role in many defence as well as civil applications and its protection becomes essential to

avoid losses due to its leakage. Images are handled in digital form to achieve higher

security. Techniques for securing images can be considered as cryptographic or

steganographic. In cryptographic techniques, transforming it into an unintelligible form

conceals the contents of an image, which looks as a random mess of pixels. In

steganographic techniques, an image to be secured is embedded in an ordinary image

known as a cover or carrier image. The embedded image is then communicated. Yet

another technique used for secure storage or communication of an image is based on

Image splitting. This technique is an extension of a scheme known earlier for message

security under the name secret splitting [2].

 Secret Splitting is a method to take a message and divide it up into pieces. Each

piece by itself contains no information but when all the pieces are combined, the original

message is recovered. Any individual piece is of no consequence, but if put together the

message appears.

 The simplest sharing scheme splits the message between A and B participant

according to the following steps:

 3

• Dealer generates a random bit string, R, of the same length as that of the

message M.

• Dealer logically Exclusive ORs M with R to generate S

M XOR R = S

• Dealer gives R to A and S to B

Message Reconstruction:

• A and B XOR their pieces together to reconstruct the message R XOR S = M.

In this technique no encryption is carried out. The original image is split (divided

into a number of images of same size) in such a way, that only superposition of either all

the parts or minimum of k parts only lead to the original image and no information about

the image is available if less than k parts are superimposed.

 Mathematically, an image is defined as a 2D function f(x, y) where (x, y) denotes

the position of a pixel in xy plane and f(x, y) represents the gray level of pixel located at

(x, y) [1]. An image is categorized as binary, panchromatic/monochromatic or

multispectral image. A binary image is a black and white image recorded in two levels

black and white and has dynamic range {0, 1}. Monochromatic image is a multi level

image. An image recorded in 8 bits / pixel has 256 gray values ranging from 0 to 255.

Multispectral image is a colour image recorded in three different bands, viz. red (R),

green (G) and blue (B) bands.

 The term image processing refers to manipulating gray value of the pixel within

the image frame. Mathematically, a function T transforms f(x, y) to some new value g(x,

y) i.e. T(f(x, y)) = g(x, y)

 4

For securing images in cryptographic techniques, the transformation T holds the

following properties:

(i) Easy implementation of T to encrypt image.

(ii) Hard reversing process, T-1.

(iii) Encrypted images unintelligible and look random.

For securing images in steganographic techniques, the transformation T holds the

following properties:

(i) Easy implementation of T to embedded image.

(ii) Hard reversing process, T-1.

(iii) Stego images as similar as covers.

Cryptographic methods conceal the content and steganographic methods conceal

the existence of secret image.

In the split image technique of secure storing or communication the

transformation T holds the following properties:

(i) T splits every unit of image (say an 8-bit recorded image) in such a way

that only superposition of a minimum number of splits can lead to the

original image unit.

i.e. T(U) = T1(U) ⊕ T2(U) ⊕ … ⊕ Tm(U)

(ii) T is a lossless transformation. No information is lost during processing.

(iii) Size of each constituent split is equal to the size of the original unit.

In stream ciphers the message is converted into bits EXORed bitwise with key

sequence. The techniques for concealing the content are:

(i) Contrast Reversal: Normally, in contrast reversal, the pixel values are

inverted such that the brighter pixel becomes darker and vice versa. If an

image F(x, y) has a dynmic range R, then resulting image G(x, y) is given by

 G(x, y) = R - F (x, y)

 5

For an image of size N x N, 2 (N x N) trials have to be applied in an exhaustive

approach to get back the original image.

(ii) Image Scanning: Image Scanning refers to observing each pixel for its value.

The images are scanned as raster scanning, from left to right and top to bottom

while recording, transmitting or retrieving.

A scan function with t number of scan terms for given image of size N x N,

where N = 2x and x is an integer, is defined as

 St = L1n1 # L2n2 # … # Lini # … # Ltnt

 Li is scan letter. The symbol # connects two scan terms which are

performed hierarchically.

The techniques for concealing the existence are:

(i) Shift Register based Hiding: A shift register of suitable length is used to

hide the image.

(ii) Image Splitting: There can be two different ways to split an image (without

any alteration or encryption of the image):

(i) Only a small portion of an image is supplied to different agents who

can, when need be, get together to get the full image. If some portions

of the split image are kept away from agents, they would not be in a

position to get the full image and (secret) image would therefore

remain secure.

(ii) A very robust method of image splitting is to split each pixel in such a

way that a full size image (with split pixels) is kept or sent to each

agent. Thus each agent has a full size image with him with split pixels.

Nothing can be made out of this full size image, unless all such images

are superimposed (modulo 2).

This is the technique that has been studied in this dissertation using two different

methodologies.

 6

In order to further classify the technique of Image splitting and Image reconstruction

a simple key – based image splitting technique is first discussed and the technique is

illustrated through an example where the image is split in 4 parts and then reconstructed.

The shift register based and Celllular Automata based image splitting are later detailed in

Chapters 4 and 6.

Next it is shown in Chapter 4, how a simple methodology based on Linear Feedback

Shift Registers (LFSR) can be used for this purpose. In order to increase the number of

splits a maximal length (primitive) polynomial is used. A primitive polynomial of degree

m over GF(2), containing elements (0, 1) as coefficients generates a length of (2m – 1)

and therefore provides (2m – 2) splits --- one of the splits being the original pixel.

Secondly, a two dimensional programmable Hybrid Cellular automata has been used

to split each pixel of the image to be communicated securely. For this we use an 8 –

neighborhood two – dimensional Cellular Automata.

2. An elementary example of Image splitting and Reconstruction:

Suppose the BMP image consists of four columns and four rows of pixel vectors shown

as, where every pixel vector is of length 8:

A1 A2 A3 A4 = A

 B1 B2 B3 B4 = B

 C1 C2 C3 B4 = C

 D1 D2 D3 D4 = D

To generate four splits, we will use four keys: K1, K2, K3 and K4.

The BMP image where the pixels are represented by 8 bit binary data is shown as:

 7

Image I represented as:

1001 1010 1010 0011 1101 0110 0011 1011 = A

1000 1000 0110 0110 1001 1101 1100 1010 = B

0110 1001 0011 0011 1101 1110 1111 1111 = C

1111 0110 0000 1101 0101 0111 1001 1101 = D

Split 1 generation:

Assuming K1 = 1010 0011 to obtain first split

Image I1 represented as:

1001 0011 1010 0011 1101 0011 0011 0011 = A’

1000 0011 0110 0011 1001 0011 1100 0011 = B’

0110 0011 0011 0011 1101 0011 1111 0011 = C’

1111 0011 0000 0011 0101 0011 1001 0011 = D’

Split 2 generation:

Assuming K2 = 1000 1010 to obtain second split

Image I2 represented as:

1001 1010 1010 1010 1101 1010 0011 1010 = A’’

 8

1000 1010 0110 1010 1001 1010 1100 1010 = B’’

0110 1010 0011 1010 1101 1010 1111 1010 = C’’

1111 1010 0000 1010 0101 1010 1001 1010 = D’’

Split 3 generation:

Assuming K3 = 1000 1101 to obtain third split

Image I3 represented as:

1001 1101 1010 1101 1101 1101 0011 1101 = A’’’

1000 1101 0110 1101 1001 1101 1100 1101 = B’’’

0110 1101 0011 1101 1101 1101 1111 1101 = C’’’

1111 1101 0000 1101 0101 1101 1001 1101 = D’’’

Split 4 generation:

The nth split is generated as:

Image XOR (n-1) splits

Thus image I4 obtained as:

I4 = I XOR I1 XOR I2 XOR I3

 9

0000 1110 0000 0111 0000 0010 0000 1111

0000 1100 0000 0010 0000 1001 0000 1110

0000 1101 0000 0111 0000 1010 0000 1011

0000 0010 0000 1001 0000 0011 0000 1001

Method Of Image Reconstruction:

The secret image can be regenerated back if we take the XOR of n splits, which are with

n participants.

Thus, I = I1 XOR I2 XOR I3 XOR I4

Reconstructing row A of image I

1001 0011 1010 0011 1101 0011 0011 0011

XOR

1001 1010 1010 1010 1101 1010 0011 1010

XOR

1001 1101 1010 1101 1101 1101 0011 1101

XOR

0000 1110 0000 0111 0000 0010 0000 1111

 EQUALS

1001 1010 1010 0011 1101 0110 0011 1011 = A

 10

Reconstructing row B of image I

1000 0011 0110 0011 1001 0011 1100 0011

XOR

1000 1010 0110 1010 1001 1010 1100 1010

XOR

1000 1101 0110 1101 1001 1101 1100 1101

XOR

0000 1100 0000 0010 0000 1001 0000 1110

 EQUALS

1000 1000 0110 0110 1001 1101 1100 1010 = B

Reconstructing row C of image I

0110 0011 0011 0011 1101 0011 1111 0011

 XOR

0110 1010 0011 1010 1101 1010 1111 1010

XOR

0110 1101 0011 1101 1101 1101 1111 1101

XOR

0000 1101 0000 0111 0000 1010 0000 1011

 EQUALS

0110 1001 0011 0011 1101 1110 1111 1111 = C

Reconstructing row D of image I

1111 0011 0000 0011 0101 0011 1001 0011

 11

XOR

1111 1010 0000 1010 0101 1010 1001 1010

XOR

1111 1101 0000 1101 0101 1101 1001 1101

XOR

0000 0010 0000 1001 0000 0011 0000 1001

 EQUALS

1111 0110 0000 1101 0101 0111 1001 1101 = D

Thus the entire image I has been reconstructed as:

Image I :

1001 1010 1010 0011 1101 0110 0011 1011 = A

1000 1000 0110 0110 1001 1101 1100 1010 = B

0110 1001 0011 0011 1101 1110 1111 1111 = C

1111 0110 0000 1101 0101 0111 1001 1101 = D

Therefore, the original image has been reconstructed by taking the XOR of 4-splits in
possession of the 4-participants.

i.e. I = I1 XOR I2 XOR I3 XOR I4

 12

3. About this dissertation:

Two methods of splitting an image for secure communication of the image have

been studied. Firstly, a technique of splitting based on Linear Feedback Shift Register

with a primitive polynomial feedback is studied. The degree of the primitive polynomial

is chosen to be equal to the number of bits in each pixel vector and the initial state of the

shift register is taken to be any non-zero binary vector except the pixel vector itself. The

subsequent vectors so generated by the shift register are distributed to different agents

randomly or each agent being given a certain number of vectors (pixels) as per the

scheme of the sender. As the vectors are distributed randomly, no one agent can get at the

‘secret’ pixel. However when all the agents get together and add modulo-2 all the vectors

(pixels) with them, they reach at the correct pixel. This scheme of splitting the image is

explained fully in Chapter 4.

 Another scheme of splitting the image based on Cellular Automata is explained in

Chapter 6. Here again the various stages of Cellular Automata produced pixels are

distributed amongst a number of agents randomly and only when all the agents come

together they can arrive at the correct pixel. Chapter 5 first explains the basics of Cellular

Automata Theory and then applies it into image splitting. Cellular Automata based

splitting is much more complex and provides many more choices in the number of

choices for distribution of split images.

 13

CHAPTER 2

BMP FORMATS AND THEIR STRUCTURE IN C

BMP files are commonly used file format for commonly used operating system called

“Windows”. BMP images can range from black and white (1 byte per pixel) up to 24 bit

colour (16.7 million colours). While the images can be compressed this is rarely used in

practice and won’t be discussed in detail here.

Structure

A BMP file consists of either 3 or 4 parts. The first part is a header, this is followed by a

information section, if the image is indexed colour then the palette follows, at last of all

pixel data. The position of the image data with respect to thestart of the file is contained

in the header. Information such as the image width and height, the type of compression,

the number of colours is contained in the information header.

Header

The header consists of the following fields.We are assuming short int of 2 bytes, int of 4

bytes, and long int of 8 bytes. Further we are assuming byte ordering as for typical (Intel)

machines. The header is 14 bytes in length.

typedef struct {

 unsigned short int type ; /* Magic identifier */

 unsigned int size ; /* File size in bytes */

 unsigned short int reserved 1, reserved 2 ;

 unsigned int offset ; /* Offset to image data, bytes */

 14

} HEADER;
The useful fields in this structure are the type field (should be ‘BM’) which is a simple

check that is likely to be a legitimate BMP file, and the offset field which gives the

number of bytes before the actual pixel data (this is relative to the start of the file). This

structure is not a multiple of 4 bytes for those machines/compilers that might assume this,

these machines will generally pad this structure by 2 bytes to 16 which will unalign the

future fread() calls.

Information

The image info data that follows is 40 bytes in length, it is defined in the struct given

below. The fields of most interest below are the image width and height, the number of

bits per pixel (should be 1, 4, 8 or 24), the number of planes (assumed to be 1 here), and

the compression type (assumed to be 0 here).

typedef struct {

 unsigned int size ; /* Header size in bytes */

int width, height ; /* Width and height of image */

unsigned short int planes ; /* Number of colour planes */

unsigned short int bits ; /* Bits per pixel */

unsigned int compression ; /* Compression type */

unsigned int imagesize ; /* Image size in bytes */

int xresolution, yresolution ; /* Pixels per meter */

unsigned int ncolours ; /* Number of colours */

unsigned int importantcolours ; /* Important colours */

} INFOHEADER ;

The compression types supported by BMP are listed below:

0 – no compression

1 – 8 bit run length encoding

2 – 4 bit run length encoding

 15

3 – RGB bitmap with mask

type 0 (no compression)

24 bit Image Data

The simplest data to read is 24 bit true colour images. In this case the image data follows

immediately after the information header, that is, there is no colour palette. It consists of

three bytes per pixel in b, g, r order. Each byte gives the saturation for that colour

component, 0 for black and 1 for white (fully saturated).

Indexed colour data

If the image is indexed colour then immediately after the information header there will be

a table of infoheader .ncolours colours, each of 4 bytes. The first three bytes correspond

to b, g, r components, the last byte is reserved/unused but could obviously represent the

alpha channel. For 8 bit greyscale images this colour index will generally just be a

greyscale ramp. If you do the sums….then the length of the header plus the length of the

information block plus 4 times the number of palette colours should equal the image data

offset. In other words

14 + 40 + 4 * infoheader .ncolours = header .offset

 16

CHAPTER 3

SEQUENCES GENERATED BY LINEAR FEEDBACK SHIFT
REGISTERS

Primary sequences generated by Linear Feedback Shift Registers have been

extensively studied in literature [2, 3, 4] in the context of their usefulness in cryptography

especially in the design of stream ciphers.

The operational disadvantages of one-time-pad have led to the development of

Synchronous Stream Ciphers, which encipher the plain text in much the same way as the

one-time-pad with deterministically random generated sequence (generated by key-

stream generators or Pseudo-random generators such as shift registers) with perfect

synchronization between the encrypting and the decrypting devices. The security of a

synchronous Stream Cipher now depends on the randomness of the key stream and the

way the system is synchronized.

The working of the stream cipher is explained in Fig 3.1. The plaintext (or

message) is encrypted on bit by bit basis by adding modulo-2 or XOR (exclusive or) with

the key stream, which is a binary sequence generated by electronic machine with memory

or without, to produce a ciphertext (encrypted message), which is sent through the

channel. At the receiving end, the same key stream is added modulo-2 to the ciphertext to

get the plaintext (or message). Example 3.1 illustrates the principle.

 17

 Cipher

 text

 M C K

 key k

 K M
 ⊕
 Plain
 text
 Decryption

Pseudo Random bit
Generator

(Key Stream Generator)

 key k

 Plain K
 text ⊕

 Encryption

Pseudo Random bit
Generator

(Key Stream Generator)

Fig 3.1 A Stream Cipher System

Example 3.1

Plaintext M : 1001100010101110100110

Key Stream K : 1000101001001111011110

Ciphertext M ⊕ K = C : 0001001011100001111000

Key Stream K : 1000101001001111011110

Plaintext C ⊕ K = M : 1001100010101110100110

The machine that produces the key stream from the actual key k and the internal

state is called the key stream generator. Whenever the key k and the internal states are

identical at the sender and the receiver end, the key streams are also identical, and

 18

deciphering is easily accomplished. One says that the key generators at the sending and

receiving ends are synchronized with each other. Whenever the key generator looses

synchronism, deciphering becomes impossible and means must be provided to reestablish

synchronization.

 In self synchronizing stream ciphers, the deciphering transformation has a finite

memory with respect to the influence of the past bits, so that an erroneous or lost

ciphered bits cause only a fixed number of errors in the deciphered plaintext, after which,

again, the correct plaintext is produced. In any system with initial contents (IC) and logic

F, if each key stream bit is derived from a fixed number of preceding ciphertext bits, then

the system becomes self synchronizing. A serious disadvantage of self synchronizing

stream ciphers is their limited analyzability because of the dependence of the key stream

on the message stream (Fig 3.2).

 ki ki

 mi ⊕ -Ci- ⊕ mi

 IC

 F

 F

 IC

 Fig 3.2 Principle of self synchronizing stream cipher

 When a communication link employs some means of frame synchronization (as in

the case of digital communication), the synchronous stream cipher may be supplied with

some sort of self-synchronizing property without decreasing the security level.

 19

CONSIDERATIONS IN DESIGN OF STREAM CIPHER SYSTEMS FOR

MESSAGE / IMAGE ENCRYPTION

 In order to ensure that a stream cipher designed by a cryptographer takes some

minimum amount of effort on the part of the cryptanalyst to be able to reach at the

communicated plaintext, it is necessary to give due consideration to the design of the key

stream generator so that the produced encryption sequences satisfies some properties. As

the encryption sequences are generated through shift registers, first of all we describe

various types of shift registers and the properties of the sequences generated by them.

Some of the important design considerations for stream cipher are:

(i) The encryption sequences should have a large period. As we are generating

the encryption sequences deterministically and such a sequence have a finite

period, it is to be ensured that the sequence does not repeat itself within a

reasonable period taking into account the amount of plaintext to be encrypted

into a particular key.

(ii) The most important property of encryption sequences is unpredictability. To

ensure this property we have to have a large complexity in the sequence as

also proper distribution of ones and zeroes in the sequences.

(iii) One way to ensure the above two requirements is to generate a sequence by a

non linear combining function whose arguments are the shift register

sequences generated by linear feedback shift registers. Such sequences,

however, are vulnerable to a new type of attack called the correlation attack if

the ciphertext sequence can be correlated to one of the constituent sequences

generated by linear shift register.

(iv) From a cryptographer’s point of view it is necessary to ensure that the

adversary may not be able to launch a “Brute Force Attack” to find the key

used for encryption. Having ensured a large period, a large complexity and

randomness, there should be a large variability of the possible keys to be used

for encryption. This number should be so large that taking into account the

speed of the latest computers, including parallel processing possibilities, it

should not be feasible for the cryptanalyst to arrive at the plaintext. From the

 20

point of view of key management however, it is better to have as small a key

set as possible. To meet the twin requirements of ease of key set management

and security from brute force attack, usually a key structure is introduced in

the stream cipher system, which is arrived at by taking into account

enciphering requirements.

It may be appreciated that all the requirements can only be met if the designed

system lends itself to analysis. We can therefore add analyzability as an important

requirement.

 In the above we have given a detailed account of the requirements of a good

stream cipher based on shift register sequences, which produce an enciphering sequence

to be added mod (2) to the message sequence (or pixel vectors).

 Although, we carry out only image splitting and no encryption, it is to be

appreciated that the technique of producing an encryption sequence or pixel vector splits

is just the same. In pixel vector splits we use the vectors generated by LFSR instead of

the sequence generated in the process. Therefore in the methodology suggested here for

splitting the image is closely related to encryption by LFSR generated sequences. The

connection between LFSR and Cellular Automata is brought out in Chapter 5 on Cellular

Automata.

GENERATION OF BINARY SEQUENCES BY LINEAR FEEDBACK SHIFT

REGISTER (LFSR):

A linear feedback shift register (LFSR) of length r is shown in Fig 3. It consists of

a cascade of r unit delay cells or registers with a provision to form a linear combination

of cell contents, which then serves as the input to the first register or stage. After each

time unit, the contents of the registers are shifted one place to the right and a new bit,

which is modulo-2 addition of some of the contents of the shift register, is placed at the

first stage. The output of LFSR is assumed to be taken from the last stage. The initial

 21

contents a0, a1, …, ar-1 of the r stages coincide with the first r output bits and the

remaining output bits are uniquely determined by the recursion

 r

 an = ∑ cian-i n > r-1

 i = 1

 an-1 a n-2 a n-3 a n-r {a n }

 output

 sequence

c1 C2 C3 Cr

 ⊕

 Fig 3 An r-stage Linear Feedback Shift Register

 The feedback coefficients c 1, c 2, …, c r are assumed to lie in the field GF(2), so

as to take the value one or zero according as the ith register is, or is not involved in the

feedback circuit. An output sequence generated by LFSR satisfying the difference is also

 r

called a linear recurring sequence. The polynomial 1 + ∑ cixi is called the

 i = 1

characteristic polynomial or feedback polynomial. The output sequence

{an} = a0 a1 a2 … is called a linear feedback shift register sequence and generator is called

Linear Feedback Shift Register Generator (LFSR).

 22

THE MATRIX METHOD:

If we treat the contents of an LFSR as an r-dimensional state vector, the shift

register can then be interpreted as a linear operator, which changes each state into next. It

is a familiar fact that a linear operator operating on r-dimensional vector is most

conveniently represented by an r x r matrix. In general, a shift register matrix takes the

form with all ones along the diagonal above the main diagonal; the feedback coefficients

down the first column and zero at all other positions. Thus the matrix

 c1 1 0 … 0

 c2 0 1 … 0

T =

 cr-1 0 0 … 1

 cr 0 0 … 0

and [an-1, a n-2, …, a n-r] T = [a n, a n-1, …, a n-r+1]

 [an, a n-1, …, a n-r+1] T = [a n+1, a n, …, a n-r+2]

The repeated application of T on vector S = [an-1, a n-2, …, a n-r] will introduce power

of T in the successive register state vectors i.e. S, ST, ST2, ST3, ST4, … . It follows that a

periodic output of period p will result if we can find an exponent p such that Tp = I, the

identity matrix. Also the characteristic equation of the matrix T = det [T – xI] is the

reciprocal polynomial of the characteristic polynomial of the shift register.

CHAPTER 4

SPLITTING OF PIXEL VECTOR USING LFSR

 23

 Sequences generated by a four stage shift register with feedback polynomial :

 1 + x + x4.

 1 1 1 1

 Output

 ⊕

Generated polynomial is : 1 + x + x4.

Starting vector is 1111. The stages through which such a register will go through are as

follows :

 1 1 1 1------- 1

 0 1 1 1------- 2

 1 0 1 1------- 3

 0 1 0 1------- 4

 1 0 1 0------- 5

 1 1 0 1------- 6

M = 0 1 1 0------- 7

 0 0 1 1------- 8

 1 0 0 1------- 9

 0 1 0 0------- 10

 0 0 1 0------- 11

 0 0 0 1------- 12

 1 0 0 0-------- 13

 1 1 0 0-------- 14

 1 1 1 0-------- 15

 24

M is a 15 x 4 matrix ---- each row is 4-length vector.

Also every column of Matrix M is the Pseudo - random sequence generated through the

above shift register. One can say we have generated 4 sequences of length 15 each. All

the four sequences are cyclic shifts of each other. Each one of these sequences can be

used as encryption sequence as shown earlier.

 However for Image splitting we use the 14 vectors (No. 2 – 15) in the following

way. Let the pixel we want to split be represented by 4 bit vector. Let it be the pixel 1111.

In order to split this pixel we use a 4 stage Linear Feedback Shift Register with the

feedback polynomial: 1 + x + x4 which is a primitive polynomial of 4th degree and the

initial contents of the register can be any non-zero vector except 1111.

 To achieve splitting this pixel in 24 – 2 = 14 parts (the number of parts is one less

than the length of the sequence which in this case is 15), we start with any one pixel

except 1111 and generate a sequence of 14 vectors. These 14 vectors can be distributed in

any manner amongst various Agents. An agent may get more than one pixel or a single

pixel, but no one agent would be in a position to get the correct pixel 1111. This pixel can

be achieved by mod(2) addition of all the splits.

 For an m-bit pixel, using an m degree primitive polynomial, we can split each of

the 2m – 1 pixels into 2m – 2 splits which when added mod 2 altogether would yield the

required pixel but any number of pixels added together mod 2 taken separately would be

of no consequence if the number of distinct pixels is less than 2m – 2.

Thus with a simple technique stated above we can distribute the pixels amongst different

people in

 mC1 + mC2 + … + mCm-1

different ways. In case of above example where m = 4, we have

 25

 4C1 + 4C2 + 4C3 = 14 possible ways to distribute the splits.

 In each possible distribution, a bit by bit mod 2 additions would yield the correct pixel.

The above is achieved because of the following:

All the binary vectors of length m together form a vector space of dimension m.

Therefore any combination of less than m vectors cannot give any desired vector and any

vector can be produced by addition of m or more than m vectors. It has to be ensured for

distribution of the pixel vectors that no single agent may get more than m vectors. Also

the addition of 2m – 2 vectors would yield (2m – 1)th vector which is the desired pixel

vector with 2m th vector being all zero vector. Thus we can split each pixel of the image to

be communicated in the above manner. The size of the image is maintained and if each

pixel is split as per the above scheme, one can easily send the split images to different

agents who would be able to get the image only when all of them get together and

superimpose 2m – 2 split images mod 2, the correct original image would appear.

 A number of other techniques of securing images have been given by Ratan [4].

He has specifically discussed Shift register based hiding. But our approach is based on

Pixel wise splitting while his hiding of image is Coordinate based.

 26

CHAPTER 5

CELLULAR AUTOMATA

The Cellular automation (CA) first introduced by John Von Neumann [1] in the

1950s, has been accepted as a good computational model for the simulation of complex

physical systems. It can be used to simulate readily the complex growth pattern of a

snowflake and it has also been suggested that the analysis of the general features of the

CA may yield better insight of the behaviour of such complex models. Wolfram et al

[8 &9] have studied one-dimensional, periodic, boundary additive CAs with the help of

polynomial algebra. Mathematical studies of null and periodic boundary additive CAs

and some experimental observations have been reported by Pries et al [10]. The treatment

is based on a similar kind of polynomial algebra and is confined mainly to uniform

additive CAs.

A more generalised treatment of additive CAs was introduced by Das et al [10] as

a new tool based on matrix algebra. Treatments of both null and periodic boundary CAs,

uniform and hybrid, non complemented and complemented – are reported. In this paper,

some of the properties reported were verified and established with the help of Matrix

based formulation. It was shown by Das et al [10] that the use of LFSR as a

pseudorandom pattern generator is based on sound mathematical tools around polynomial

algebra. LFSR was also shown to be a special case of additive Cellular Automata.

A CA is a collection of simple cells usually arranged in a regular fashion. The

next state of the cell depends on the present state of ‘k’ of its neighbours, for a k-

neighbourhood CA, specified by its neighbourhood function. There can be various

 27

boundary conditions namely ‘00’ (null, where extreme cells are connected to ground

level), ‘periodic’ (extreme cells are adjacent), etc.

Mathematically, the next state transition of the ith cell can be represented as a

function of the present states of the ith, (i+1)th and (i – 1)th (for 3-neighbourhood) cells:

 q1(t:) = f(qi(t), q(i + 1) (t), q(i – 1) (t))

where ‘f’ is known as the rule of the CA denoting the combinational logic.

 For a 2-state 3-neighbourhood CA, there can be a total of 23 distinct

neighbourhood configurations. For such a CA with cells having only 2 states there can be

a total of 28 distinct mappings from all these neighbourhood configurations to the next

state. Each mapping is called a rule of the CA. Two particular sets of transition from a

neighbourhood configuration to the next state have been shown below:

111 110 101 100 011 010 001 000

 0 1 1 1 1 0 0 0 rule 120

 0 1 0 1 1 0 1 0 rule 90

 Two sets of transition

These are two rules of mappings, designating a transition from the neighbourhood

configuration (consisting of the present states of the cells qi-1, qi and qi+1) to the next state

of qi. This 8-bit binary number expressed in equivalent decimal form gives a convenient

scheme for representing the CA rule. Rules 120 and 90 are illustrated above.

The combinational logic equivalent for rule 120 is given as

 _ _ _

 qi (t+1) = qi+1 (t) qi-1 (t) + qi+1 (t) qi (t) + qi+1 (t) qi qi-1

The minimized expression for rule 90 is

 _ _

 28

 qi (t+1) = qi+1 (t) qi-1 (t) + qi+1 (t) qi-1 (t)

qi (t+1) = qi+1 (t) ⊕ qi-1 (t)

In rules 120 and 90, we have assumed a CA with two states per cell. We shall adhere to

this kind of CA only.

Definition 1: If in a CA the same rule applies to all the cells, then the CA is called as

uniform or regular CA.

Definition 2: If in a CA different rules are applied over different cells, then the CA is

called as a hybrid CA.

Definition 3: If in a CA (which is a 2-state per cell CA) the neighbourhood dependence

is on EXOR or EXNOR only, then the CA is called as an additive CA. The next state of a

cell in such a CA can be expressed as a modulo-2 sum of the neighbours.

Definition 4: If in a CA the neighbourhood dependence is EXOR, then it is called a

noncomplemented CA and the corresponding rule is referred to as a noncomplemented

rule. For neighbourhood dependence on EXNOR only (where there is an inversion of the

modulo-2 logic), the CA is called a complemented CA. The corresponding rule involving

the EXNOR function is called the complemented rule.

 A hybrid CA may have both complemented and noncomplemented rules.

LFSR as special case of hybrid additive group CA:

An n-bit LFSR can be conveniently modeled as a hybrid additive CA where the

neighbourhood dependence of the leftmost cell (input cell) extends to n and for each of

the rest of the cells, the dependence is confined to the cell towards its left only. Fig shows

a 4-bit LFSR associated with the characteristic polynomial

 29

f(x) = 1 + a1x + a2x2+ a3x3+ x4 , ai Є {0, 1} i = 1 to 3

 O/P

 a3 a2 a1

Fig : 4-bit LFSR
a1 = 1 when feedback connection physically exists

The corresponding T matrix when it is modeled as a hybrid CA is as follows:

 a3 a3 a3 1

 1 0 0 0

 T = 0 1 0 0

 0 0 1 0

 +
 + +

 x x
 x

By virtue of the fact that the T matrix is nonsingular, it becomes immediately evident that

LFSR generates cycles of states, i.e. periodic sequences.

 30

Lemma: The characteristic equation of the T matrix for an LFSR is identical to the

characteristic polynomial f(x) of the LFSR with x replaced by T.

TWO-DIMENSIONAL CELLULAR AUTOMATA:

Two-dimensional finite cellular automata (2D-CA for short) are discrete

dynamical systems formed by a finite two-dimensional array of r x s identical objects

called cells, such that each of them can assume a state. The state of each cell is an

element of the finite state set, S. We will consider S = Zc where c = 2b is the number of

colours of the image; i.e., if the image is a black and white image, then b = 1; for gray

level images the value is b = 8, and if it is a colour image, then b = 24 Maronon et al [11].

 The (i, j)-th cell is denoted by <i, j>, and the state of this cell at time t is aij
(t) Є Zc.

The 2D-CA evolves deterministically in discrete time steps, changing the states of all

cells according to a local transition function,

 f : (Zc)n → Zc

The updated state of each cell depends on the n variables of the local transition function,

which are the previous states of a set of cells, including the cell itself, and constitute its

neighbourhood. For 2D-CA, there are some classic types of neighbourhood, but in this

work only the extended Moore neighbourhood will be considered;that is, the

neighbourhood of the cell <i, j> is formed by its nine nearest cells:

 Vi,j = {<i-1, j-1>, <i-1, j>, <i-1, j+1>, <i, j-1>,

 <i, j>, <i, j+1>, <i+1, j-1>, <i+1, j>, <i+1, j+1>}

Graphically it can be seen as follows:

 31

< i-1, j-1 > < i-1, j > < i-1, j+1 >

< i, j-1 > < i, j > < i, j+1 >

< i+1, j-1 > < i+1, j > < i+1, j+1 >

Consequently the local transition function

 f : (Zc)9 → Zc is

aij
(t+1) = f (ai-1 j-1

(t) , ai-1 j
(t) , ai-1 j+1

(t) , ai j-1
(t), ai j

(t) , ai j+1
(t) , ai+1 j-1

(t) , ai+1 j
(t), ai+1 j+1

(t)) ,

or equivalently,

 ai j
(t+1) = f (Vij (t)) , 0 ≤ i ≤ r-1, 0 ≤ j ≤ s-1,

where Vij (t) (Zc)9 stands for the the states of the neighbour cells of < i, j >

at time t.

The matrix

 ai00
(t) . . . a0, s-1

(t)

 . . .

 C(t) = . . .

 . .

 ar-1, 0
(t) . . . ar-1, s-1

(t)

is called the configuration at time t of the 2D-CA, and C(0) is the initial configuration of

the CA. Moreover, the sequence {C (t)}0≤ t ≤ k is called the evolution of order k of the 2D-

CA, and C is the set of all possible configurations of the 2D-CA; consequently C = c r.s.

 32

CELLULAR AUTOMATA AS BIT STREAM GENERATORS

 In stream ciphers pseudorandom pattern generators are widely used to generate

the key streams for encryption. Nandi et al [12] have demonstrated use of Hybrid Cellular

Automata for sequence generation based on the two programmes and then implemented

through PCA1 and PCA2. We describe this technique in the following and then use the

same scheme for creating split images.

KEY STREAM GENERATORS:

 Many key stream generators are based on combining two or more generators

(i.e. LFSR’s) by using nonlinear functions. It is already established that maximum length

CA’s generate patterns having high quality of pseudo randomness. Using CA properties

two types of key stream generators are proposed:

i) PCA with ROM

ii) Two stage PCA

Fig 6.1 shows a 90 / 150 PCA cell used in the key stream generators.

 Control

 signal

Cell # 0 Cell # 1 Cell # 2

C
O
N
T
R
O
L

Cell # i

 33

Fig A 3-cell Programmable CA structure and a PCA cell

PCA With ROM as a Key Stream Generator:

 Let L be the number of cells in the PCA and w be the number of maximal length

CA’s with rule 90 and rule 150. Assume that l maximal length CA’s are chosen out of w

maximal length CA’s. These rules are noted as {R0, R1, R2, …, Rl-1 }. The rule

configuration control word corresponding to a rule Ri is stored in a ROM word. Initially

the PCA is configured with rule R0 and loaded with a non-zero seed. With this

configuration the PCA runs one clock cycle. Then it is reconfigured with the next rule

(i.e., R1) and runs another cycle. This process repeats until CLOCK SIGNAL to PCA is

made inactive. The rule configuration of PCA changes after every run, i.e., if in the ith

run rule configuration is Ri, then in the next run, rule is R(i+1)modl. After each clock cycle,

the output of PCA is taken as a pseudorandom pattern.

 Now our objective is to show that this output sequence is a pseudorandom pattern

sequence. The following Theorem provides the background.

Theorem 1 : If the characteristic polynomial of a CA is primitive then it generates

pseudorandom pattern.

Corollary 1: A PCA built with maximal length CA configurations generates

pseudorandom patterns.

Proof: All the maximal length CA’s generate pseudorandom sequences, individually.

The sequence generated by the PCA can be taken as a set of subsequences generated by a

particular maximal length CA. As the subsequences are pseudorandom in nature so the

overall sequence is also pseudorandom in nature.

 34

The above key stream generator scheme may be implemented through a circuit whose

block diagram is shown in Fig 6.2

 CLOCK START

 CONTROL

 BUS ADDRESS

 BUS

 CONTROL

 DATA BUS BUS

PC

CONTROL

 UNIT

 ROM
 l x L

 L – bit
 PCA

 I/O CONNECTION

 Fig 6.2 PCA based psedorandom pattern generator

Description of the Circuit:

PCA (Programmable CA): It is an L-bit null boundary, uniform or hybrid CA

configured with the rule 90 and 150. The control signals corresponding to a CA

configuration are stored in the ROM and loaded into the PCA via the DATA BUS.

ROM(Read Only Memory): It is of size l x L (l words, each of L bits), and it stores the

control signals for the PCA.

Control Unit: It consists of several counters to generate different types of control signals

for PCA and ROM. The control sequences of the circuit are described in the Algorithm 1

 35

below. Program Counter (PC) is (log2l)-bit (i.e., l is power of 2) up counter and is used to

store address of the ROM where next PCA rule is present.

I/O Connection: It is an input/output unit for data transfer between PCA and outside

world.

Only two external signals are required to operate the whole circuit, i.e., CLOCK

for running the circuit and START for reset and start of the circuit. The working is

explained through Algorithms 1 & 2 given below.

Algorithm 1:

Step 1: Reset all counters in the Control Unit.

Step 2: Load PCA with L-bit initial seed from I/O connection.

Step 3: Read the ROM control word and configure the PCA.

Step 4: Run PCA for one cycle.

Step 5: Read pseudorandom pattern from I/O connections and increment PC by 1.

Step 6: If (CLOCK active) then go to Step 3.

Step 7: Stop.

 In the above scheme, the PCA configured by a rule (stored in the ROM) is

assumed to run one cycle only. By using some extra ROM bits and additional control, we

can specify the number of cycles the PCA should run for each configuration. Such

modification can substantially enhance the quality of encipher.

Two Stage PCA as a Key Stream Generator:

 In the ROM based Key Stream Generator, the main disadvantage is the increased

area overhead with lower speed of operation due to use of ROM for storage of control

signals. This can be avoided by replacing the ROM with another maximal length 90/150

rule PCA (i.e., PCA2) as shown in Fig 6.3. A single chip can be fabricated with PCA1,

 36

 CLOCK START

 CONTROL

 BUS CONTROL

 BUS

 DATA BUS

CONTROL
UNIT

 L – bit
 PCA2

 L – bit
 PCA1

I/O CONNECTION

Fig Two stage PCA baed pseudorandom pattern generator

PCA2 and the CONTROL UNIT. The control signals (R) to configure PCA2 and the input

seed (I2) for PCA2 can be concatenated to the input seed (I1) of PCA1 to form the key

(i.e., <R, I2, I1 >) for the key stream generator. The PCA2 generates the control signals to

configure PCA1 (Program 1).

Description of the Circuit:

 37

PCA1 (Programmable CA1): It is an L-bit null boundary, uniform or hybrid CA loaded

with the rule 90 and 150. The control signals to configure PCA1 are loaded from the

output of PCA2 via the DATA BUS.

 PCA2 (Programmable CA2): It is an L-bit null boundary, uniform or hybrid CA

configured with the rule 90 and 150. Rule (R) is part of the key and it is loaded into the

PCA2 via the DATA BUS.

Control Unit: It consists of several counters to generate different control signals for

PCA1 and PCA2. The control sequences of the circuit are described in the Algorithm 2

below.

I/O Connection: It is an input/output unit for data transfer between PCA1, PCA2 and the

outside world.

Algorithm 2:

Step 1: Reset all counters in the Control Unit.

Step 2: Configure PCA2 with the control signals (R) from the I/O connections.

Step 3: Load PCA1 and PCA2 with initial seed I1 and I2.

Step 4: Run PCA2 for one cycle.

Step 5: Configure PCA1 with the control signals from the output of PCA2.

Step 6: Run PCA1 for one cycle.

Step 7: Output pseudorandom pattern from I/O connections (i.e. output of PCA1).

Step 8: If (CLOCK active) then go to Step 4.

Step 9: Stop.

 The enciphering process using this type of generator fails if PCA1 goes to all zero

graveyard state. Analogous to modified LFSR design, with some extra logic it is possible

to design the PCA1 to have a transition out of all- zero state. On the other hand, it is

necessary to avoid a situation where PCA2 enters in a graveyard state resulting in PCA1

being configured with the same rule all through out. So, the user of the scheme must

avoid such a key combination from the simulation study.

 38

CHAPTER 6

CELLULAR AUTOMATA IN IMAGE SPLITTING

 Let each pixel vector in the image proposed to be securely stored or

communicated be of 8 - bit length. We propose to use an 8 - neighborhood cellular

automata for splitting this 8 - bit

pixel. For this purpose, we use a two - dimensional, Hybrid, Programmable Cellular

Automata.

c4 s1 c1

s4 Sc s2

c3 s3 c2

 In this scheme, we number those cells which have a side common with the central

cell to evolve according to Program - 1 and cells which have a corner common with the

central cell evolve according to Program - 2. In this formation we have tried to generalize

the LFSR approach followed in Chapter 3. Please refer to figure for the circuit for simple

implementation of two-dimensional hybrid programmable automata used for generating

splits of an 8-bit pixel vector. The two parts of the Hybrid use different programs

Program 1 and Program 2 for evolution. The close connection with LFSR and Cellular

Automata has been brought out []. While the cells having a side common with the central

cell are marked as s1, s2, s3 and s4, the ones which have only a corner common with the

central cell to be marked as c1, c2, c3 and c4. While s1, s2, s3 and s4 follow a program

governed by s1 + s4 replacing s1 followed by a clockwise shift in s2, s3, s4 ---- c1, c2, c3 and

c4 follow a program governed c3 + c4 replacing c4 followed by the following rule:

 39

Program 1:

 s1, s2, s3 and s4 follow the following program

1. The initial seed for the cells s1, s2, s3 and s4 is 1101.

2. Sc is 1.

3. At time t+1 : S1 is replaced by S1 ⊕ S4 at time t

 S2 is replaced by S1 at time t

 S3 is replaced by s2 at time t

 S4 is replaced by s3 at time t

 4. Sc at t+1 = S1
t+1

 ⊕ S2
 t+1

 ⊕ S3
 t+1

 ⊕ S4
 t+1

 In short S1
t+1

 = S1
 t

 ⊕ S4
 t

 Sc
t+1

 = S1
t+1

 ⊕ S2
 t+1

 ⊕ S3
 t+1

 ⊕ S4
 t+1

 and S2
 t+1

 = S1
 t

 , S3
 t+1

 = S2
 t

 and S4
 t+1

 = S3
 t

Program 2:

c1, c2, c3 and c4 follow the following program

1. At time t+1 : c1 is replaced by c1 ⊕ c4 at time t

 c2 is replaced by c1 at time t

 c3 is replaced by c2 at time t

 c4 is replaced by c3 at time t

2. At time t+1: Sc is replaced by c1 ⊕ c2 ⊕ c3⊕ c4 at time t+1

 i.e. Sc
t+1 = c1

 t+1 ⊕ c2
 t+1 ⊕ c3

 t+1 ⊕ c4
 t+1

c1
t+1 = c3

 t + c4
 t

c2
t+1 = c1

 t

c3
 t+1 = c2

 t

c4
t+1 = c3

 t

 40

The first few assigned values are shown. Let the starting position be:

 s1 s2 s3 s4 c1 c2 c3 c4

 1 1 0 1 1 1 0 1

The automata evolve through two different rules, one each for 4 – neighborhood case.

 The number of splits that can be achieved through cellular automata evolution are

much more than with LFSRs. Also it is possible to deal with pixel vectors of greater

length, thus suggesting the use of cellular automata in quality colour images.

 Let the image pixel vector be eight bit binary vector 1 1 0 1 1 0 1 1 – we start

with the configuration

 s1

c1 c4

s4 s2

c2 c3

 sc

 s3

Thus the neighbour of sc (the central cell) consists of two types:

 41

(i) s1, s2, s3 ,s4 are cells which have a side common with sc

(ii) c1, c2, c3, c4 are cells which have a corner common with sc

We start with the following configurations:

t = 0

We start with some pixel vector 0110 0111

At t = 0 s1 has a 0, s2 has a 1, s3 has a 1 and s4 has a 0.

s1 ⊕ s2 ⊕ s3 ⊕ s4 = sc = 0 (boundary)

 1 0 0

 0

 0 1

 1 1 1

t = 1

Apply the law. Let s1 get s1 ⊕ s4 and s2, s3 and s4 get the values s1
0 , s2

0 , s3
0

respectively, i.e. s2
t1 → s1

t0 → s3
t1 → s2

t0 and s4
t1 → s3

t0 and c1, c2, c3, c4 remain

unchanged

1 0 0

 1

 0 0

t = 2

 1 1 1

Apply the law c1 gets c3 ⊕ c4 and c2, c3 and c4 at (t+1) get a shift of c2, c3 and c4 at t as

follows: c2
t+1 = c1

 t , c3
 t+1 = c2

 t , c4
t+1 = c3

 t and s1, s2, s3, s4 remain unchanged

and sc = c1 ⊕ c2 ⊕ c3⊕ c4

 42

1 0 0

 1

 1 0

 1 1 1

t = 3

Apply the law s1 gets s1 ⊕ s4 and s2, s3 and s4 get the values of s1, s2, s3 at t=2 and c1, c2,

c3, c4 remain unchanged and

sc = s1 ⊕ s2 ⊕ s3 ⊕ s4

1 1 0

 1

 0 0

 1 0 1

Repeatedly applying the above two laws of evolution; we get at

t = 4

1 1 1

 1

 0 0

 1 0 1

t = 5

1 1 1

 1

 1 0
 1 0 1

 43

t = 6

 0 1 1

 1

 1 0

 1 0 1

t = 7

0 0 1

 0

 1 1

 1 0 1

t = 8

0 0 1

 0

 0 1

 0 0 1

t = 9

 44

0 0 1

 0

 1 0

 0 1 1

t = 10

0 0 1

 0

 1 0

 0 1 0

t = 11

0 0 1

 1

 1 0

 0 0 0

t = 12
1 0

 1

 1 1 0

 0 0 0

t = 13

 45

1 1 1

 0

 1 0

 0 0 0

t = 14
0 1 0

 0

 1 0

 1 0 0

t = 15
 0 1 0

 0

 0 1
 0 0 1

t = 16
 0 1 0

 0

 1 1
 1 0 0

t = 17

 46

 0 1 0

 0

 1 1
 1 1 0

t = 18
 1 1 1

 0

 0 1
 0 1 0

t = 19
 1 1 1

 1

 0 1
 0 1 0

t = 20
 1 1 0

 1

 0 1

 1 1 0

t = 21

 47

 1 0 0

 1

 1 1

 1 1 0

t = 22
0 0 0

 1

 0 1

 1 1 1

t = 22
0 0 0

 1

 0 1
 1 1 1

t = 23
 0 0 0

 1

 1 1
 1 1 1

t = 24

 48

 1 1 1

 1

 1 0
 0 1 1

t = 25
 1 0 1

 1

 1 1
 0 0 1

t = 26
 1 1 0

 1

 0 0
 0 1 1

t = 27
 1 1 0

 0

 0 0
 0 1 1

 49

t = 28
 0 1 1

 0

 1 0
 1 1 0

If we superimpose 29 stages from t = 0 to t = 28 modulo-2 we get the original pixel

vector, i.e.

 1 1 1

 1

 0 1
 1 0 0

Proceeding like this one complete cycle of the Programmable Hybrid Cellular Automata

can be written down

 s c

 1101 1011

 t = 1 0110 t = 0 0111

 t = 3 0011 t = 2 1111

 t = 5 1001 t = 4 1110

 t = 7 0100 t = 6 1100

t = 9 0010 t = 8 1000

 t = 11 0001 t = 10 0001

 t = 13 1000 t = 12 0010

 50

 t = 15 1100 t = 14 0100

t = 17 1110 t = 16 1001
t = 19 1111 t = 18 0011
t = 21 0111 t = 20 0110
t = 23 1011 t = 22 1101
t = 25 0101 t = 24 1010
t = 27 1010 t = 26 0101

 1101 1011

 It can be seen that the above scheme leads to two groups of splits to be

distributed. One group consisting of splits shown at t = 0, 2, 4, …, 26 and the other group

splits at t = 1, 3, 5, …, 27. Each group separately can reach the original pixel vector by

adding mod-2 fourteen pixel vectors of one group. The shares of Group 2 also lead to the

original pixel vector 1101 1011 by addung mod 2.

Now having more programs p3,p4,---, p5, p6 we can enlarge the cycle length to

desirable levels and when all the n agents get together, only then they are able to arrive at

each of the correct pixels.

 It is relevant to remark here that the entry in the cell Sc can be easily used for

making the split sequence to be more complicated and for increasing the number of splits

using the following rule:

(i) When Sc is zero, use the s cycle

(ii) When Sc is 1, use the c cycle

 instead of the alternate use of s & c cycles regularly.

 We have intentionally resisted from using the value of Sc as

 51

(i) it would make mathematical analysis of the splits so generated extremely

complicated and consequently

(ii) it would be difficult to compare the results achieved by the two techniques

of LFSR and 2-dimensional CA worked out here.

The comparison of results achieved through the above technique is presented in

Chapter 7.

CHAPTER 7

RESULTS

ORIGINAL IMAGE

SPLIT 1

 52

SPLIT 2

 SPLIT 3

 SPLIT 4

 53

SPLIT 5

 SPLIT 6

SPLIT 7

 54

 SPLIT 8

 SPLIT 9

SPLIT 10

 55

SPLIT 11

 SPLIT 12

 SPLIT 13

 56

SPLIT 14

The image is reconstructed back from the above splits, which is same as the

original image.

 57

COMPARISON OF RESULTS: LFSR AND TWO-DIMENSIONAL

HYBRID PCA

1. It is well known that LFSR’s are only particular cases of Cellular Automata. See

for example Nandi etal [3] and Das et al [10]. By using an r-stage LFSR one can

generate (2r – 2) splits of each pixel vector, which together would reproduce the

original (2m – 1)th pixel vector. However we can generate split images using

Cellular Automata with many more splits, which can be divided to various agents

– who can get the original image only when all of them get together.

2. One can easily increase the number of splits in two ways by use of Cellular

Automata by:

(i) Vertical Splitting: As demonstrated above. The number can be

increased by choosing Program I and II in such a way that the cycle

length of the CA is larger.

(ii) Horizontal Splitting: The dimension of the pixel vector can be

increased by either:

 58

(i) Increasing the size of the CA – for example a 5 x 5 or 7 x 7

square can easily be used as two dimensional CA to increase

the pixel size to 10, 12 or any other convenient size – If the

dimensions of the pixel vectors are p1 and p2, we can increase

the cycle length to (2p1 – 2) x (2p2 – 2).

(ii) By taking a larger number of pixel vectors in each. If the size

of the pixel vector is s we may increase the dimension of the

pixel to s x n where n is the number of pixels in the pixel

vector.

(iii) By interspersing the pixel bits and progressing the evaluation by

different programs one can achieve much more security.

 It is clear from the above discussion that cellular automata offer much superior

techniques of secure communication of images, in terms of :

(i) Number of splits: This is much larger in case of cellular automata based

scheme than in case of LFSR.

(ii) Cellular automata technique can handle much longer pixels and can

therefore be useful in high quality colour images where the constituent

pixels are of much longer length to cater for different colours.

(iii) As cellular automata are capable of creating highly complex patterns,

these can be used for providing much higher level of security than in the

case of LFSR’s where 2m-1 splits security from a cryptanalyst’s point of

view is only m, as m bits are sufficient to predict the rest of the bits in a

period of 2m-1.

Thus it can be concluded that Cellular Automata provides endless possibilities of

generating splits by adopting various variants of the CA two dimensional, programmable

and Hybrid CA’s.

 59

CONCLUSION & FURTHER SCOPE OF WORK

 Many methods of securing images for secure preservation and communication

have been suggested in literature. For reasons explained in Chapter 2, we choose to study

the methods of image splitting for this purpose.

 We studied two methods for secure storage and secure communication for images

in this dissertation. Two methods of splitting images studied here are

(i) LFSR based splitting

(ii) Image splitting through a two-dimensional 8-neighbourhood hybrid cellular

automata in which each half of the 8-bit pixel (8-neighbourhood) cellular

automata evolve according to different rules.

 The following problems are suggested for investigation by the work presented in

this dissertation:

1. The number of the splits generated and the scheme of split distribution if

the entries at Sc are taken to drive the PCAs, for example PCA1 is

activated when Sc = 0 and PCA2 is activated when Sc = 1.

2. To discuss the security aspects of the above schemes.

 60

3. To study the strength of encryption schemes suggested by the above two-

dimensional Hybrid CA driven schemes.

REFERENCES

1. Ram Ratan : “Techniques of Securing Images”, Proceedings of the

National Conference on Information Security. BVCOE, New Delhi

Jan 8 – 9, 2003

2. Bruce Steiner Applied Cryptography

3. Paul Bourke [1998], BMP image format

4. I.J.Kumar Cryptology, System Identification and key clustering Agean

Park Press, 1997

5. Golomb S W [1980] On the classification of Balanced Binary

Sequences IEEE Transactions on Information Theory Vol 26 pp 730 –

732

6. H. Becker and F. Piper [1982] Cipher Systems, Worthwood Books

7. Von Neumann J: The Theory of self reproducing automata Burks,

University of Illinois Press, London, 1966.

8. Wolform S. et al, Algebraic properties of Cellular Automata,

Communication Mathematical Physics vol 93, pp219-258

 61

9. N A Packard, Stephen Wolform [1985], Two dimensional Automata

Journal of Mathematical Physics, Vol 38, 1985 pp 901 – 942.

10. A K Das el al : Efficient Characterisation of Cellular automata E E

Proceedings Vol 137, 1990, pp 81 – 87.

11. Pries W et al : Group properties of cellular automata and VLSI

application, IEEE Transaction on Computers,1986, c – 35 (12) pp

1013 – 1024.

12. G. Alvarez Maranon et al [2003], Sharing secret color images using

cellular automata with memory

13. S. Nandi, B.K. Kar and P. Pal Chaudhary IEEE Transactions on

Computers, Vol 43, pp 1346 – 1357

APPENDIX

IMPLEMENTATION OF IMMAGE SPLITTING USING TWO DIMENSIONAL

HYBRIDS CELLULAR AUTOMATA

//implementation of CA by LFSR

#include<stdio.h>

#include<graphics.h>

#include<iostream.h>

#include<conio.h>

void side_corner_arrayfill();

void side_corner_square(int,int, int);

void display();

void display_square(int);

void one(int);

void final();

void final_check();

int s[16][4],c[16][4],temp[28][9],temp1[14][9],temp2[14][9],f1[9],f2[9],x=0,y=0,r=0;

 62

void main()

{

int i,j,k;

clrscr();

//initialization of side and corner array

s[0][0]=1;s[0][1]=1;s[0][2]=0;s[0][3]=1;

c[0][0]=1;c[0][1]=0;c[0][2]=1;c[0][3]=1;

 cout<<"side and corner arrays contents\n";

 side_corner_arrayfill();

 display();

 getch();

 int count=0;

 for(i=1;i<15;i++)

 {

 for(j=i;j<=i+1;j++)

 {

 side_corner_square(count,j,i);

 display_square(count);

 cout<<endl;

 getch();

 count++;

 if(count==27)

 {

 side_corner_square(count,1,i);

 display_square(count);

 break;

 63

 }

 }

 if(count==27) break;

 }

 // cout<<count;

 getch();

 final();

 // final_check();

 // one(2);

// display_square(2);

getch();

}

//this function will fill the square with side and corner

void side_corner_arrayfill()

{

int x,y,cnt=0;

 while(cnt<16)

 {

 x=0,y=0;

 for(int i=0;i<3;i++)

 s[cnt+1][i+1]=s[cnt][i];

 for(i=0;i<3;i++)

 64

 c[cnt+1][i]=c[cnt][i+1];

 x=x^s[cnt][0];

 x=x^s[cnt][3];

 y=y^c[cnt][0];

 y=y^c[cnt][1];

 s[cnt+1][0]=x;

 c[cnt+1][3]=y;

 cnt++;

 }

 c[0][0]=1;c[0][1]=0;c[0][2]=1;c[0][3]=1;

}

void display()

{

int i,j;

 for(i=0;i<16;i++)

 {

 for(j=0;j<4;j++)

 cout<<s[i][j]<<" ";

 cout<<" "<<i<<" ";

 for(j=0;j<4;j++)

 cout<<c[i][j]<<" ";

 cout<<endl;

 65

 }

}

void side_corner_square(int k, int j, int i)

{

temp[k][1]=s[j][0];temp[k][5]=s[j][1];temp[k][7]=s[j][2];temp[k][3]=s[j][3];

temp[k][0]=c[i][0];temp[k][6]=c[i][1];temp[k][8]=c[i][2];temp[k][2]=c[i][3];

 if (k%2 == 0)

{

 x=0;

 for(int r=0;r<4;r++)

 {

 x=x^c[i][r];

 }

}

 else

{

 x=0;

 for(r=0;r<4;r++)

 {

 x=x^s[j][r];

 }

}

temp[k][4]=x;

}

void display_square(int k)

{

cout<<"At t="<<k<<"...................."<<endl;

 66

 for(int i=0;i<9;i++)

 {

 cout<<" "<<temp[k][i]<<" ";

 if((i==2) || (i==5) || (i==8))

 cout<<endl;

 }

}

void final()

{

 int x,i,j,k=0;

 for(i=0;i<28;i=i+2)

 {

 for(j=0;j<9;j++)

 {

 temp1[k][j]=temp[i][j];

 temp2[k][j]=temp[i+1][j];

 }

 k++;

 }

// cout<<"the value of k is :::"<<k<<endl;

 for(i=0;i<9;i++)

 {

 x=0; y=0;

 for(j=0;j<14;j++)

 {

 x=x^temp1[j][i];

 y=y^temp2[j][i];

 }

 f1[i]=x;

 67

 f2[i]=y;

 }

 cout<<"Group 1 (t=0,2,4,8,.......,26)"<<endl;

 for(i=0;i<9;i++)

 {

 cout<<" "<<f1[i]<<" ";

 if((i==2) || (i==5) || (i==8))

 cout<<endl;

 }

 cout<<"Group 2 (t=1,3,5,7,.......,27)"<<endl;

 for(i=0;i<9;i++)

 {

 cout<<" "<<f2[i]<<" ";

 if((i==2) || (i==5) || (i==8))

 cout<<endl;

 }

}

//int t[9];

/*void final_check()

{

cout<<"displaying final\n";

 int x;

 for(int i=0;i<4;i++)

 {

 x=0;

 for(int j=1;j<=14;j++)

 {

 x=x^s[j][i];

 }

 68

 t[i]=x;

 }

 for(int k=0;k<4;k++)

 {

 x=0;

 for(int j=1;j<15;j++)

 {

 x=x^c[j][k];

 }

 t[i]=x;

 i++;

 }

 for(i=0;i<9;i++)

 {

 cout<<t[i]<<" ";

 if((i==2) || (i==5) || (i==8))

 cout<<endl;

 }

} */

 69

	
	ABSTRACT
	1. Image Processing For Security
	Method Of Image Reconstruction:
	The secret image can be regenerated back if we take the XOR of n splits, which are with n participants.
	Thus, I = I1 XOR I2 XOR I3 XOR I4

	
	
	i.e. I = I1 XOR I2 XOR I3 XOR I4
	
	Two methods of splitting an image for secure communication of the image have been studied. Firstly, a technique of splitting based on Linear Feedback Shift Register with a primitive polynomial feedback is studied. The degree of the primitive polynomial is chosen to be equal to the number of bits in each pixel vector and the initial state of the shift register is taken to be any non-zero binary vector except the pixel vector itself. The subsequent vectors so generated by the shift register are distributed to different agents randomly or each agent being given a certain number of vectors (pixels) as per the scheme of the sender. As the vectors are distributed randomly, no one agent can get at the ‘secret’ pixel. However when all the agents get together and add modulo-2 all the vectors (pixels) with them, they reach at the correct pixel. This scheme of splitting the image is explained fully in Chapter 4.

	BMP FORMATS AND THEIR STRUCTURE IN C
	

	
	Example 3.1
	CELLULAR AUTOMATA

	CELLULAR AUTOMATA AS BIT STREAM GENERATORS
	
	
	PCA With ROM as a Key Stream Generator:
	
	CHAPTER 6
	 t = 15 1100 t = 14 0100
	t = 17 1110 t = 16 1001
	t = 19 1111 t = 18 0011
	t = 21 0111 t = 20 0110
	t = 23 1011 t = 22 1101
	t = 25 0101 t = 24 1010
	t = 27 1010 t = 26 0101
	
	 1101 1011
	
	CHAPTER 7
	RESULTS

	ORIGINAL IMAGE
	SPLIT 1
	SPLIT 2

