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Abstract 
 
Artificial neural networks (ANNs) are very general function approximators, which can be 

trained based on a set of examples. Given their general nature, ANNs would seem useful 

tools for nonlinear image processing. This paper explores the application of neural 

networks in digital image processing. Particularly, it details the design and 

implementation of a neural network based edge recognizer, and studies the effects of 

incorporating prior knowledge in its design. After a brief introduction to ANNs, ANN 

training algorithms, and digital image processing, the paper explains the design of a 

neural network based edge-recognizer and its training using the conjugate gradient 

descent (CGD) training algorithm. When the network is trained using the aforementioned 

training algorithm, it was observed that ANNs can be used as edge detectors. However, 

the presence of receptive fields in the architecture in itself does not guarantee that shift-

invariant feature detectors will be found. The appendix at the end of the report contains 

the implementation source code.  
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1.   Introduction 

Image processing is the field of research concerned with the development of computer 

algorithms working on digitized images (e.g. Pratt, 1991; Gonzalez and Woods, 1992). 

The range of problems studied in image processing is large, encompassing everything 

from low-level signal enhancement to high-level image understanding. In general, image 

processing problems are solved by a chain of tasks. This chain outlines the possible 

processing needed from the initial sensor data to the outcome (e.g. a classification or a 

scene description). The pipeline consists of the steps of pre-processing, data reduction, 

segmentation, object recognition and image understanding. In each step, the input and 

output data can either be images (pixels), measurements in images (features), and 

decisions made in previous stages of the chain (labels) or even object relation information 

(graphs). 

There are many problems in image processing for which good, theoretically 

justifiable solutions exists, especially for problems for which linear solutions suffice. For 

example, for pre-processing operations such as image restoration, methods from signal 

processing such as the Wiener filter can be shown to be the optimal linear approach. 

However, these solutions often only work under ideal circumstances; they may be highly 

computationally intensive (e.g. when large numbers of linear models have to be applied 

to approximate a nonlinear model); or they may require careful tuning of parameters. 

Where linear models are no longer sufficient, nonlinear models will have to be used. This 

is still an area of active research, as each problem will require specific nonlinearities to be 

introduced. That is, a designer of an algorithm will have to weigh the different criteria 

and come to a good choice, based partly on experience. Furthermore, many algorithms 

quickly become intractable when nonlinearities are introduced. Problems further in the 

image processing chain, such object recognition and image understanding, cannot even 

(yet) be solved using standard techniques. For example, the task of recognizing any of a 

number of objects against an arbitrary background calls for human capabilities such as 

the ability to generalize, associate etc. All this leads to the idea that nonlinear algorithms 

that can be trained, rather than designed, might be valuable tools for image processing. 

To explain why, a brief introduction into artificial neural networks will be given first. 
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2.   Artificial neural networks 
 

2.1   What is a neural network? 
 
An Artificial Neural Network (ANN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or 

data classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANNs as well. 

 
2.2   Historical background 
 
Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback 

and several eras. Many important advances have been boosted by the use of inexpensive 

computer emulations. Following an initial period of enthusiasm, the field survived a 

period of frustration and disrepute. During this period when funding and professional 

support was minimal, important advances were made by relatively few researchers. These 

pioneers were able to develop convincing technology which surpassed the limitations 

identified by Minsky and Papert. Minsky and Papert, published a book (in 1969) in which 

they summed up a general feeling of frustration (against neural networks) among 

researchers, and was thus accepted by most without further analysis. Currently, the neural 

network field enjoys a resurgence of interest and a corresponding increase in funding. 

The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pitts. But the technology available at that time did not 

allow them to do too much. 
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2.3   Why use neural networks? 
 
Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to 

be noticed by either humans or other computer techniques. A trained neural network can 

be thought of as an "expert" in the category of information it has been given to analyze. 

This expert can then be used to provide projections given new situations of interest and 

answer “what if” questions. Other advantages include: 

 
1. Adaptive learning: Neural networks have a built-in capability to adapt their 

synaptic weights to changes in the surrounding environment. In particular, a 

neural network trained to operate in a specific environment can be easily 

retrained to deal with minor changes in the operating environmental 

conditions. Moreover, when it is operating in a nonstationary environment 

(i.e., one where statistics change with time) a neural network can be designed 

to change its synaptic weights in real time. The natural architecture of a neural 

network for pattern classification, signal processing, and control applications, 

coupled with the adaptive capability of the network, make it a useful tool in 

adaptive pattern classification, adaptive signal processing, and adaptive 

control. As a general rule, it may be said that the more adaptive we make a 

system, all the time ensuring that the system remains stable, the more robust 

its performance will likely be when the system is required to operate in a 

nonstationary environment. It should be emphasized, however, that 

adaptability does not always lead to robustness; indeed, it may do the very 

opposite. 

2. Self-Organization: An ANN can create its own organization or representation 

of the information it receives during learning time.  

3. Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 

advantage of this capability.  
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4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, 

some network capabilities may be retained even with major network damage.  

5. Nonlinearity: An artificial neuron can be linear or nonlinear. A neural 

network, made up of an interconnection of nonlinear neurons, is itself 

nonlinear. Moreover, the nonlinearity is of a special kind in the sense that it is 

distributed throughout the network. Nonlinearity is a highly important 

property, particularly if the underlying physical mechanism responsible for 

generation of the input signal is inherently nonlinear. 

6. Input-Output mapping: A popular paradigm of learning called learning with a 

teacher or supervised learning involves modification of the synaptic weights 

of a neural network by applying a set of labeled training samples or task 

examples. Each example consists of a unique input signal and a corresponding 

desired response. The network is presented with an example picked at random 

from the set, and the synaptic weights (free parameters) of the network are 

modified to minimize the difference between the desired response and the 

actual response of the network produced by the input signal in accordance 

with an appropriate statistical criterion. The training of the network is repeated 

for many examples in the set until the network reaches a steady state where 

there are no further significant changes in the synaptic weights. The 

previously applied training examples may be reapplied during the training 

session but in different order. Thus the network learns form the examples by 

constructing an input-output mapping for the problem at hand. 

7. VLSI implementability: the massively parallel nature of a neural network 

makes it potentially fast for the computation of certain tasks. This same 

feature makes a neural network well suited for implementation using very-

large-scale-integrated (VLSI) technology. One particular beneficial virtue of 

VLSI is that it provides a means of capturing truly complex behavior in a 

highly hierarchical fashion. 

8. Uniformity of analysis and design: basically, neural networks enjoy 

universality as information processors. We say this in the sense that the same 
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notation is used in all domains involving the application of neural networks. 

This feature manifests itself in different ways: 

• Neurons, in one form or another, represent an ingredient common to all 

neural networks; 

• This commonality makes it possible to share theories and learning 

algorithms in different applications of neural networks; 

• Modular networks can be built through seamless integration of 
modules. 

9. Evidential response: in the context of pattern classification, a neural network   

can be designed to provide information not only about which particular 

pattern to select, but also about the confidence in the decision made. This later 

information may be used to reject ambiguous patterns, should they arise, and 

thereby improve the classification performance of the network. 

    10. Contextual information: knowledge is represented by the very structure   

            activation state of a neural network. Every neuron in the network is potentially  

            affected by the global activity of all other neurons in the network. 

            Consequently, contextual information is dealt with naturally by a neural  

            network. 

2.4   Neural networks versus conventional computers 

Neural networks take a different approach to problem solving than that of conventional 

computers. Conventional computers use an algorithmic approach i.e. the computer 

follows a set of instructions in order to solve a problem. Unless the specific steps that the 

computer needs to follow are known the computer cannot solve the problem. That 

restricts the problem solving capability of conventional computers to problems that we 

already understand and know how to solve. But computers would be so much more 

useful if they could things that we don’t exactly know how to do.               .                  

             Neural networks process information in a similar way the human brain does. The 

network is composed of a large number of highly interconnected processing elements 

(neurons) working in parallel to solve a specific problem. Neural networks learn by 
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example. They cannot be programmed to perform a specific task. The examples must be 

selected carefully otherwise useful time is wasted or even worse the network might be 

functioning incorrectly. The disadvantage is that because the network finds out how to 

solve the problems by itself, its operation can be unpredictable.                   .  

             On the other hand, conventional computers use a cognitive approach to problem 

solving; the way the problem is to be solved must be known and stated in small 

unambiguous instructions. These instructions are then converted to a high level language 

program and then into machine code that the computer can understand. These machines 

are totally predictable; if anything goes wrong is due to a software or hardware fault. 

Neural networks and conventional algorithmic computers are not in competition but 

complement each other. There are tasks are more suited to an algorithmic approach like 

arithmetic operations and tasks that are more suited to neural networks. Even more, a 

large number of tasks, require systems that use a combination of the two approaches 

(normally a conventional computer is used to supervise the neural network) in order to 

perform at maximum efficiency. Neural networks do not perform miracles. But if used 

sensibly they can produce some amazing results.        

3.   Artificial neurons  

3.1   Models of a neuron 

A neuron is an information processing unit that is fundamental to the operation of a 

neural network. The block diagram of figure 4 shows the model of a neuron, which forms 

the basis for designing (artificial) neural networks. Here we identify three basic elements 

of the neuronal model: 

1. A set of synapses or connecting links, each of which is characterized by a weight 

or strength of its own. Specifically, a signal xj at the input of synapse j connected 

to neuron k is multiplied by the synaptic weight wkj. Unlike a synapse in the brain, 

the synaptic weight of an artificial neuron may lie in a range that includes 

negative as well as positive values.   

2. An adder for summing the input signal, weighted by the respective synapses of 

the neuron; the operations described here constitutes a linear combiner.   
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3. An activation function for limiting the amplitude of the output of a neuron. The 

activation function is also referred to as a squashing function in that it squashes 

(limits) the permissible amplitude range of the output signal to some finite value. 

Bias, bk

                     x1                             

                     x2                                                                  

                                           vk                         Output, yk

         xm                           

φ(.)∑ 

 Figure 3.1: Nonlinear model of a neuron 

The neuronal model of figure 3.1 also includes an externally applied bias, denoted by bk. 

The bias bk has the effect of increasing or lowering the net input of the activation 

function, depending on whether it is positive or negative, respectively. In mathematical 

terms, we  

             m 

    uk =  ∑ wkj xj                        3.1   
                                  j = 1  

and 

                                                yk = φ(uk + bk)           3.2 

where x1, x2, …, xm are the input signals; wk1, wk2, …, wkm are the synaptic weights of 

neuron k; uk is the linear combiner output due to the input signals; bk is the bias; φ(.) is 

the activation function, and yk is the output signal of the neuron. The use of bias bk has an 

affine transformation to the output uk of the linear combiner in the model of figure 4, as 

shown 

                       vk = uk + bk                   3.3 

In particular, depending on the whether the bias bk is positive or negative, the relationship 

between the induced local field or activation function vk of neuron k and the linear 
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combiner output uk is modified in the manner illustrated in the figure 3.2. Note that as a 

result of this affine transformation, the graph vk versus uk no longer passes the origin. 

                              Induced local                      bias bk>0 
                                field, uk                                  bk = 0 
                                                                                           bk < 0       

                                        

0                                                                                       
Linear combiner’s  
 output, uk 

 

Figure 3.2: affine transformation produced by the presence of a bias; note    
                  that vk = bk at uk = 0. 

The bias bk is an external parameter of artificial neuron k. We may account for its 

presence as in Eq. (3.2). Equivalently, we may formulate the combination of Eqs. (3.1) to 

(3.3) as follows: 

                                                         m 

    vk =  ∑ wkj xj                              3.4      
                                  j = 0  

and  
                                                yk = φ(vk)                 3.5     
 
In Eq. (3.4) we have added a new synapse. Its input is  

 x0 = +1                  3.6 
and its weight is  

 wk0 = bk                       3.7  
 
3.2   Types of activation function 

The activation function, denoted by φ(v), defines the output of a neuron in terms of the 

induced local field v. Here we identify three basic types of activation function: 
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3.2.1   Threshold function 

 For this type of activation function, described in figure 3.3a,   we have   

   
       φ(v) =   1      if v ≥ 0                                  3.8 
                                                              0      if v < 0 

In engineering literature this form of a threshold function is commonly referred to as a 

Heaviside function. Correspondingly, the output of neuron k employing such a threshold 

function is expressed as  

 yk =           1    if  vk ≥  0                                           3.9                           

                                                                0     if  vk  < 0    

where vk is the induced local field of the neuron; that is , 

                                              m 

    vk =  ∑ wkj xj   + bk                       3.10      
                                  j = 1   

 
Such a neuron is referred to in literatures as the McCulloch-Pitts model, in recognition of 

the pioneering work done by McCulloch and Pitts (1943). In this model, the output of a 

neuron takes on the value of 1 if the induced local field of that neuron is nonnegative and 

0 otherwise. This statement describes the all-or-none property of the McCulloch-Pitts 

model.  

3.2.2   Piecewise-linear function 

 For this piecewise-linear function described in fig. 3.3b, we have  

 1,             v ≥ +½ 
                           φ(v)  =   v,     +½ > v > -½               3.11 
 0,              v ≤ -½ 

• where the amplification factor inside the linear region of operation is assumed to 

be unity. This form of an activation function may be viewed as an approximation 

to a non- linear amplifier. 
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      Figure 3.3: (a) Threshold function. (b) piecewise-linear function. (c) Sigmoid  
                         function. 

The following two situations may be viewed as special forms of the piecewise-linear 

function: 

• A linear combiner arises if the linear region of operation is maintained without 

running into saturation; 
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• The piecewise linear function reduces to a threshold function if the amplification 

of the linear region is made infinitely large.  

3.2.3   Sigmoid function 

The Sigmoid function, whose graph is s-shaped, is by far the most common form of 

activation function used in the construction of artificial neural networks. It is defined as a 

strictly increasing function that exhibits a graceful balance between linear and nonlinear 

behavior. An example of the sigmoid function is the logistic function, defined 

 φ(v)    =    1 / (1 + exp(-av))          3.12 

 where a is the slope parameter of the sigmoid function. By varying the parameter a, we 

obtain sigmoid functions of different slopes. In the limit, as the slope parameter 

approaches infinity, the sigmoid function becomes simply a threshold function. Whereas 

a threshold function assumes the value of 0 or 1, a sigmoid function assumes a 

continuous range of values from 0 to 1. Note also that the sigmoid function is 

differentiable, whereas the threshold function is not. Differentiability is an important 

feature of neural network theory. The activation functions defined in Eqs. (3.8), (3.11), 

and (3.12) range from 0 to +1. It is sometimes desirable to have the activation function 

range from -1 to +1, in which case the activation function assumes an antisymmetric form 

with respect to the origin; that is, the activation function is an odd function of the induced 

local field. Specifically, the threshold function of Eq. (3.8) is now defined as  

 
                         1     if v > 0 
                                        φ(v) =          0     if v = 0                                                       3.13 
                                                           -1    if v < 0 

which is commonly referred to as the signum function. For the corresponding form of a 

sigmoid function we may use the hyperbolic tangent function, defined by 

       φ(v) =  tanh(v)        3.14   
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Allowing an activation function of the sigmoid type to assume negative values as 

prescribed by Eq. (3.14) has analytic benefits. 

3.3    Stochastic model of a neuron 

The neuronal model of Fig 3.1 is deterministic in that its input-output behavior is 

precisely defined for all inputs. For some applications of neural network, it desirable to 

base the analysis on a stochastic neuronal model. In an analytically tractable approach, 

the activation function of the McCulloch-Pitts model is given a probabilistic 

interpretation. Specifically, a neuron is permitted to reside in only one of two states: +1 

or -1, say. The decision for a neuron to fire (i.e., switch its state from “off” to “on”) is 

probabilistic. Let x denote the state of a neuron, and P(v) denote the probability of firing, 

where v is the induced local field of the neuron.  

We may then write 
                                               x    =       +1        with probability P(v)    
                                                               -1        with probability 1 – P(v) 

A standard choice for P(v) is the sigmoid shaped function: 

                         

  P(v) =  1/ ( 1 + exp(-v/T) )         3.15                                               

                              

where T is a pseudotemperature that is used to control the noise level and therefore the 

uncertainty in firing. It is important to realize, however, that T is not the physical 

temperature of s neural network, but is a biological or an artificial neural network. 

Rather, as already stated, we should think of T merely as a parameter that controls the 

thermal fluctuations representing the effects of synaptic noise. Note that when T→ 0, the 

stochastic neuron described by Eq. (3.15) reduces to a noiseless (i.e., deterministic) form, 

namely the McCulloch-Pitts model. 

4.   Architecture of neural networks 

The manner in which the neurons of a neural network are structured is intimately linked 

with the learning algorithm used to train the network. We may therefore speak of learning 
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algorithms (rules) used in the design of neural networks as being structured. In general, 

we may identify three fundamentally different classes of network architectures: 

 

4.1   Single-layer feedforward networks 

In a layered neural network the neurons are organized in the form of layers. In the 

simplest form of a layered network, we have an input-layer of source nodes that projects 

onto an output layer of neurons (computation nodes), but not vice versa. In other words, 

this network is strictly a feedforward or acyclic type. It is illustrated in Fig. 4.1 for the 

case of four nodes in both the input and output layers. Such a network is called is called a 

single-layer-network, with the designation “single-layer” referring to the output layer of 

computation nodes (neurons). We do not count the input layer of source nodes because 

no computation is performed there. 

                  

                  █   

 

 

        █   

          

        

                    █     

  

 

                   █     

            Input layer               Output layer                 
             of source                 of neurons 
             nodes 
 
Fig. 4.1 Feedforward or acyclic network with a single layer of neurons 
 
4.2    Multilayer feedforward networks 

The second class of a feedforward neural network distinguishes itself by the presence of 

one or more hidden layers, whose computation nodes are correspondingly called hidden 

 21



neurons or hidden units. The function of hidden neurons is to intervene between the 

external input and the network output in some useful manner. By adding one or more 

hidden layers, the network is enabled to extract higher-order statistics. In a rather loose 

sense the network acquires a global perspective despite its local connectivity due to the 

extra set of synaptic connections and the extra dimension of neural interaction. The 

ability of hidden neurons to extract higher order statistics is particularly valuable when 

the size of the input layer is large. 

The source nodes in the input layer of the network supply respective elements of 

the activation pattern (input vector), which constitute the input signals applied to the 

neurons (computation nodes) in the second layer (i.e., the first hidden layer). The output 

signals of the second layer are used as inputs to the third layer, and so on for the rest of 

the network. Typically the neurons in each layer of the network have as their inputs the 

output signals of the preceding layer only. The set of output signals of the neurons in the 

output (final) layer of the network constitute the overall response of the network to the 

activation pattern supplied by the source nodes in the input (first) layer. The architectural 

graph in Fig. 3.2 illustrates the layout of a multilayer feedforward neural network for the 

case of a single hidden layer. For brevity the network in Fig. 3.2 is referred to as a 10-4-2 

network because it has 10 source nodes, 4 hidden neurons, and 2 output neurons. As 

another example, a feedforward network with m source nodes, h1 neurons in the first 

hidden layer, h2 neurons in the second hidden layer, q neurons in the output layer is 

referred to as an m-h1-h2-q network. The neural network in Fig. 4.2 is said to be fully 

connected in the sense that every node in each layer of the network is connected to every 

other node in the adjacent forward layer. If, however, some of the communication links 

(synaptic connections) are missing from the network, we say that the network is partially 

connected.     
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                   █     

     Input layer of source              Layer of hidden         Layer of out             
         nodes                                        neurons                  neurons  
 
Fig. 4.2 fully connected feedforward network with one hidden layer and one output layer. 

 
4.3   Recurrent networks     

A recurrent neural network distinguishes itself from a feedforward neural network in that 

it has at least one feedback loop. For example, a recurrent network may consist of a 

single layer of neurons with each neuron feeding its output signal back to the inputs of all 

the other neurons, as illustrated in the architectural graph in Fig. 4.3. In the structure 

depicted in this figure there are no self-feedback loops in the network; self-feedback 

refers to a situation where the output of a neuron is fed back into its own input. The 

recurrent network illustrated in Fig. 4.3 also has no hidden neurons. In Fig. 4.4 we 

illustrate another class of recurrent networks with hidden neurons. The feedback 

connections shown in Fig. 4.4 originate from the hidden neurons as well as from the 

output neurons. The presence of feedback loops, whether in the recurrent structure of Fig. 

4.3 or that of Fig. 4.4, has a profound impact on the learning capability of the network 

and on its performance. Moreover, the feedback loops involve the use of particular 

branches composed of unit-delay element (denoted by z-1), which result in a nonlinear 

dynamical behavior, assuming that the neural network contains nonlinear units.    
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Figure 4.3: Recurrent network with no self-feedback loops and no hidden neurons 
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                        Figure 4.4: Recurrent network with hidden neurons 
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5.   The learning processes  

The property that is of primary significance for a neural network is the ability of the 

network to learn from its environment, and to improve its performance through learning. 

The improvement in performance takes place over time in accordance with some 

prescribed measure. A neural network learns about its environment through an interactive 

process of adjustments applied to its synaptic weights and bias levels. Ideally, the 

network becomes more knowledgeable about its environment after each iteration of the 

learning process. 

There are too many activities associated with the notion of “learning” to justify 

defining it in precise manner. Moreover, the process of learning is a matter of viewpoint, 

which makes it all the more difficult to agree on a precise definition of the term. For 

example, learning as viewed by a psychologist is quite different from learning in a 

classroom sense. Recognizing that our particular interest is in neural networks, we use a 

definition of learning that is adapted from Mendel and McClaren. We define learning in 

the context of neural networks as: 

Learning is a process by which the free parameters of a neural network are 

adapted through a process of simulation by the environment in which the network 

is embedded. The type of learning is determined by the manner in which the 

parameter changes take place. 

This definition of the learning process implies the following sequence of events: 

1. The neural network is stimulated by an environment. 

2. The neural network undergoes changes in its free parameters as a result of this 

stimulation. 

3. The neural network responds in a new way to the environment because of the 

changes that have occurred in its internal structure. 

A prescribed set of well-defined rules for the solution of a learning problem is called a 

learning algorithm. As one would expect, there is no unique learning algorithm for the 

design of neural networks. Rather, we have a “kit of tools” represented by a diverse 

variety of learning algorithms, each of which offers advantages of its own. Basically, 

learning algorithms differ from each other in the way in which the adjustment to a 

synaptic weight of a neuron is formulated. Another factor to be considered is the manner 
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in which a neural network (learning machine), made up of a set of interconnected 

neurons, relates to its environment. In this latter context we speak of a learning paradigm 

that refers to a model of the environment in which the neural network operates. There are 

five basic learning rules: error-correction learning, memory-based learning, Hebbian 

learning, competitive learning, and Boltzmann learning, each of which is discussed 

below. 

 

5.1   Error-correction learning 

To illustrate our first learning rule, consider case of a neuron k constituting the only 

computational node in the output layer of a feed forward neural network, as shown in 

figure 5.1a.  Neuron k is driven by a signal vector x(n) produced by one or more layers of 

hidden neurons, which are themselves driven by an input vector applied to the source 

nodes of the neural network. The argument n denotes discrete time, more precisely, the 

time step of an iterative process involved in adjusting the synaptic weights of neuron k.  

The output signal of neuron k is denoted by yk(n). This output signal, representing the 

only output of the neural network, is compared to a desired response denoted by dk(n). 

Consequently an error signal, denoted by ek(n), is produced. By definition, we thus have   

ek(n) = dk(n) – yk(n)                                          5.1   

The error signal actuates a control mechanism, the purpose of which is to apply a 

sequence of corrective adjustments to the synaptic weights of the neuron k. The 

corrective adjustments are designed to the output signal yk(n) come closer to the desired 

response dk(n) in a step-by-step manner. This objective is achieved by minimizing a cost 

function or index of performance, ε(n), defined in terms of the error signal ek(n) is:  

    ε(n) = ½ e2
k(n)        5.2 

That is ε(n) is the instantaneous value of the error energy. The step-by-step adjustments 

to the synaptic weights of neuron k are continued until the system reaches a steady state 

(i.e., the synaptic weights are essentially stabilized). At that point the learning point is 

terminated.  
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                                                                                                          ek(n) 

 

                                                                                                           x(n)   

                                       
One or more     
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hidden neurons

 Σ 

  Multilayer feedforward network 

(a)  Block diagram of a neural network, highlighting the only neuron in the output  

       layer. 

 

                    x1(n)        

                                     wk1(n) 

 
                     x2(n)                                    
 
     x(n)         wk2(n)                  φ(.)                 -1              
                                                     ○                ○            ○             ○ dk(n) 
                                                     vk(n)          yk(n)  
                          
                     xj(n)    wkj(n)                                                                                           
                                                                                      ○ ek(n)     
                                      wkm(n)                         
                    xm(n)    
    
 
      (b) Signal flow diagram of output neuron 
  Fig. 5.1 illustrating error-correction learning 
 
The learning process described herein is obviously referred to as error-correction 

learning. In particular, minimization of the cost function ε(n) leads to a learning rule 

commonly referred to as the delta rule or Widrow-Hoff rule, named in honor of its 

originators. Let wkj(n) denote the value of synaptic weight wkj of neuron k excited by 

element xj(n) of the signal vector x(n) at time step n. According to the delta rule, the 

adjustment ∆wkj(n) applied to the synaptic weight wkj(n) at time step n is defined by  

  ∆wkj(n) =  η ek(n) xj(n)              5.3    
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where η is a positive constant that determines the rate of learning as we proceed from one 

step in the learning process to another. It is therefore natural to refer to η the learning-

rate parameter. In other words, the delta rule may be stated as: 

The adjustment made to a synaptic weight of a neuron is proportional to the product of 

error signal and the input signal of the synapse in question. 

Keep in mind that the delta rule, as stated herein, presumes that the error signal is 

directly measurable. For this measurement to be feasible we clearly need a supply of 

desired response from some external source, which is directly accessible to neuron k. In 

other words, neuron k is visible to the outside world. Having computed the synaptic 

adjustment ∆wkj(n), the update value of synaptic weight wkj is determined by  

 

        wkj(n + 1) = wkj(n) + ∆wkj(n)         5.4 
 
In effect, wkj(n) and wkj(n+1) may be viewed as the old and new values of synaptic 

weight wkj, respectively. In computational terms we may also write  

 

  wkj(n)  =  z-1[wkj(n+1)]         5.5 
 
where z-1 is the unit-delay operator. That is, z-1 represents a storage element. 

Figure 5.1b shows a signal-flow graph representation of the error-correction learning 

process, focusing on activity surrounding neuron k. The input signal xj and induced local 

vk of neuron k are referred to as the presynaptic and postsynaptic signals of the jth 

synapse of neuron k, respectively. From Fig 5.1b we see that error-correction learning is 

an example of an example of a closed-loop feedback system. From control theory we 

know that the stability of such a system is determined by those parameters that constitute 

the feedbacks of the system. In our case we only have a single feedback loop, and one of 

those parameters of particular interest is the learning-rate parameter η. It is therefore 

important that η is carefully selected to ensure that the stability or convergence of the 

iterative learning process is achieved. The choice of η also has a profound influence on 

the accuracy and other aspects of the learning process. In short, the learning-rate 

parameter η plays a key role in determining the performance of error-correction learning 

in practice. 
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5.2   Memory-based learning 

In memory-based learning, all (or most) of the past experiences are explicitly stored in a 

large memory of correctly classified input-output examples: {(xi, di)N
i=1 , where xi

 denotes 

an input vector and di denotes the corresponding desired response. Without loss of 

generality, we have restricted the desired response to be a scalar. For example, in a binary 

pattern classification problem there are two classes/hypotheses, denoted by l1 and l2, to be 

considered. In this example, the desired response di takes the value 0 (or -1) for class l1 

and the value 1 for class l2. When classification of a test vector xtest (not seen before) is 

required, the algorithm responds by retrieving and analyzing the training data in a “local 

neighborhood” of  xtest.  

All memory based learning algorithms involve two essential ingredients: 

• Criterion used for defining the local neighborhood of the test vector xtest. 

• Learning rule applied to the training examples in the local neighborhood of xtest. 

The algorithms differ from each other in the way in which these two ingredients are 

defined. In a simple yet effective type of memory-based learning known as the nearest 

neighbor rule, the local neighborhood is defined as the training that lies in the immediate 

neighborhood of the test vector xtest. In particular, the vector 

 

  X’N є {x1, x2, xN}             5.6 
 
   is said to be the nearest neighborhood of xtest if  
 
  mid d(xi, xtest)  =  d(x’N, xtest)          5.7 
                          i 
 
where d(x’N, xtest) is the Euclidean distance between the vectors xi and xtest. The class 

associated with the minimum distance, that is, vector x’N, is reported as the classification 

of xtest. This rule is independent of the underlying distribution responsible for generating 

the training examples.  

Cover and Hat(1967) have formally studied the nearest neighbor rule as a tool for 

pattern classification. The analysis presented therein is based on two assumptions: 

• The classified examples (xj, di) are independently and identically distributed (iid), 

according to the joint probability distribution of the example (x, d). 
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• The sample size N is infinitely large. 

Under these two assumptions, it is shown that the probability of classification error 

incurred by the nearest neighbor rule bounded above by twice the Bayes probability of 

error, that is, the minimum probability of error over all decision rules. In this sense, it 

may be said that half the classification information in a training set of infinite size is 

contained in the nearest neighbor, which is a surprising result. 

A variant of the nearest neighbor classifier is the k- nearest neighbor classifier, 

which proceeds as follows: 

• Identify the k classified patterns that lie nearest to the test vector xtest for some 

integer k. 

• Assign xtest to the class (hypothesis) that is most frequently represented in the k 

nearest neighbors to xtest (i.e., use a majority vote to make the classification). 

Thus the k-nearest neighbor classifier acts like an averaging device. In particular, it 

discriminates against a single outlier, as illustrated in Fig. 5.2 for k = 3. An outlier is an 

observation that is improbably large for a nominal model of interest. 

 
                      0 0 0 

             0 0 0 
               0 0 0     
                                               0 0 
                 Outlier 
                                      1              1 
                                 1 1 1 1 1 1 

1   1
   0d

                                     1 1 1 1  
 
 Figure 5.2: The area lying inside the dashed circle includes two points pertaining 

            to class 1 and an outlier from class 0.  The point d corresponds to the 

            test vector xtest. With k = 3, the k-nearest neighbor classifier assigns  

           class 1 to point d even though it lies closest to the outlier.   

 
5.3   Hebbian learning 
 
Hebb’s postulate of learning is the oldest and most famous of all learning rules; it is 

named in honor of the neuropsychologist Hebb (1949). Quoting from Hebb’s book, The 

Organization of Behavior (1949, p.62):   
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 When an axon of cell A is near enough to excite a cell B and repeatedly or  

 persistently takes part in firing it, some growth process or metabolic changes take 

 place in one or both cells such that A’s efficiency as one of the cells firing B, is  

 increased.  

Hebb proposed this change as a basis of associative learning (at the cellular level), which 

would result in an enduring modification in the activity pattern of a spatially distributed 

“assembly of nerve cells.” 

This statement is made in neurobiological context. We may expand and rephrase it as a 

two-part rule: 

1. If two neurons on either side of a synapse (connection) are activated 

simultaneously (i.e., synchronously), then the strength of that synapse is 

selectively increased.  

2. If two neurons on either side of a synapse are activated asynchronously, then that 

synapse is selectively weakened or eliminated.   

Such a synapse is called a Hebbian synapse. More precisely, we define a Hebbian 

synapse as a synapse that uses a time-dependent, highly local, and strongly interactive 

mechanism to increase synaptic efficiency as a function of the correction between the 

presynaptic and post synaptic activities. From this definition we may deduce the 

following four key mechanisms (properties) that characterize a Hebbian synapse:  

1. Time-dependent mechanism: This mechanism refers to the fact that the 

modifications in Hebbian synapse depend on the exact time of occurrence of the 

presynaptic and postsynaptic signals. 

2.  Local mechanism: By its very nature, a synapse is the transmission site where 

information-bearing signals (representing ongoing activity in the presynaptic and 

postsynaptic units) are in spatiotemporal contiguity. This locally available information is 

used by a Hebbian synapse to produce a local synaptic modification that is input specific. 

3.  Interactive mechanism: The occurrence of a change in a Hebbian synapse 

depends on signals on both sides of the synapse. That is, a Hebbian form of learning 

depends on a “true interaction” between presynaptic and postsynaptic signals in the sense 

that we cannot make a prediction from either on these tow activities by itself. Note also 

that this dependence or interaction may be deterministic or statistical in nature. 
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4.  Conjunctional or correlational mechanism: One interpretation of Hebb’s 

postulate of learning is that the condition for a change in synaptic efficiency is the 

conjunction of presynaptic and postsynaptic signals. Thus, according to this 

interpretation, the co-occurrence of presynaptic and postsynaptic signals (within a short 

interval of time) is sufficient to produce the synaptic modification. It is for this reason 

that a Hebbian synapse is sometimes referred to as a conjunctional synapse. For another 

interpretation of Hebb’s postulate of learning, we may think of the interactive mechanism 

characterizing a Hebbian synapse in statistical terms. In particular, the correlation over 

time between presynaptic and postsynaptic signals is viewed as being responsible for a 

synaptic change. Accordingly, a Hebbian synapse is also referred to as a correlational 

synapse. Correlation is indeed the basis of learning. 

 

5.3.1   Synaptic enhancement and depression       

The definition of a Hebbian synapse represented here does not include additional 

processes that may result in weakening of a synapse connecting a pair of neurons. Indeed, 

we may generalize the concept of a Hebbian modification by recognizing that positively 

correlated activity produces synaptic strengthening, and that either uncorrelated or 

negatively correlated activity produces synaptic weakening. Synaptic depression may 

also be of a noninteractive type. Specifically, the interactive condition for synaptic 

weakening may simply be noncoincident presynaptic or postsynaptic activity.  

We may go one step further by classifying synaptic modification as Hebbian, 

anti-Hebbian, and non-Hebbian. According to this scheme, a Hebbian synapse increases 

its strength with positively correlated presynaptic and postsynaptic signals, and decreases 

its strength when these signals are either uncorrelated or negatively correlated. 

Conversely, in anti-Hebbian synapse weakens positively correlated presynaptic and 

postsynaptic signals, and strengthens negatively correlated signals. In both Hebbian and 

anti-Hebbian synapses, however, the modification of synaptic efficiency relies on a 

mechanism that is time-dependent, highly local, and strongly interactive in nature. In that 

sense, an anti-Hebbian synapse is still Hebbian in nature, though not in function. A non-

Hebbian synapse, on the other hand, does not involve a Hebbian mechanism of either 

kind. 
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5.3.2   Mathematical models of Hebbian functions           

To formulate Hebbian learning in mathematical terms, consider a synaptic weight wkj of 

neuron k with presynaptic and postsynaptic signals denoted by xj and yk, respectively. 

The adjustment applied to the synaptic weight wkj at time step n is expressed in the 

general form 

   ∆wkj(n) = F(yk(n), xj(n))                                5.8 

where F(•, •) is a function of both presynaptic and postsynaptic signals. The signals xj(n) 

and yk(n) are often treated as dimensionless. The formula of Eq. 5.8 admits many forms, 

all of which qualify as Hebbian. In what follows, we consider two such forms: 

 

Hebb’s hypothesis: The simplest form of Hebbian learning is described by: 

∆wkj (n) = η yk(n) xj(n)                    5.9 

where η is a positive constant that determines the rate of learning. Eq. 5.9 clearly 

emphasizes the correlational nature of a Hebbian synapse. It is sometimes referred to as 

the activity product rule. The top curve of figure 5.3 shows a graphical representation of 

Eq. (5.9) with the change ∆wkj plotted versus the output signal (postsynaptic activity) yk. 

From this representation we see that the repeated application of the input signal 

(presynaptic activity) xj leads an increase in yk and therefore exponential growth that 

finally drives the synaptic connection into saturation. At that point no information will be 

stored in the synapse and selectivity is lost.                         . 

 

                 w        slope = ηx                       Hebb’s hypothesis kj j
                                                                            
                                               slope  =  η(xj – x` )               Covariance hypothesis  
                      0 

                                                         
                                                 Balance     _                     Postsynaptic 

             -η(xj-x` )y`                                    point  =  y`                       activity yk
    

         Maximum  
                                                          depression point 
 
  Fig 5.3: Illustration of Hebb’s hypothesis and the covariance hypothesis. 
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Covariance hypothesis 

One way of overcoming the limitation of Hebb’s hypothesis is to use the covariance 

hypothesis. In this hypothesis, the presynaptic and postsynaptic signals in Eq. 5.9 are 

replaced by the departure of presynaptic and postsynaptic signals from their respective 

average values over a certain time interval. Let x`   and y` denote the time-averaged 

values of the presynaptic signal xj and postsynaptic signal yk, respectively. According o 

the covariance hypothesis, the adjustment applied to the synaptic weight wkj is defined by 

 

  ∆wkj = η(xj – x`)(yk – y`)      5.10 
 
where η is the learning-rate parameter. The average values x` and y` constitute 

presynaptic and postsynaptic thresholds, which determine the sign of synaptic 

modification. In particular, the covariance hypothesis allows for the following: 

• Convergence to a nontrivial, which is reached when xk = x` or yj = y’.  

• Prediction of both synaptic potentiation (i.e., increase in synaptic strength) and 

synaptic depression (i.e., decrease in synaptic strength).  

Fig. 5.3 illustrates the difference between Hebb’s hypothesis and the covariance 

hypothesis. In both cases the dependence of ∆wkj on yk is linear; however, the intercept 

with the yk-axis in Hebb’s hypothesis is at the origin, whereas in the covariance 

hypothesis it is at yk = y`.  

We make the following important observations from Eq. 5.10: 

1. Synaptic weight wkj is enhanced if there are sufficient levels of presynaptic and 

postsynaptic activities, that is, the conditions xj > x` and yk > y` are both satisfied. 

2. Synaptic weight wkj is depressed if there is either  

• a presynaptic activation (i.e., xj > x’) in the absence of sufficient 

postsynaptic activation (i.e., yk < y`);  

• postsynaptic activation (i.e., yk > y`) in the absence of sufficient 

presynaptic activation (i.e., xj < x`); 

 

This behavior may be regarded as a form of temporal competition between the incoming 

patterns. There is strong physiological evidence for Hebbian learning in the area of the 
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brain called the hippocampus. The hippocampus plays an important role in certain 

aspects of learning or memory. This physiological evidence makes Hebbian learning all 

the more appealing. 

 

5.4   Competitive learning 

In competitive learning, as the name implies, the output neurons of a neural network 

compete among themselves to become active. Whereas in a neural network based on 

Hebbian learning several output neurons may be active simultaneously, in competitive 

learning only a single output neuron is active at a time. It is this feature that makes 

competitive learning highly suited to discover statistically salient features that may be 

used to classify a set of input patterns. There are three basic elements to a competitive 

learning rule: 

• A set of neurons that are all the same except for some randomly distributed 

synaptic weights, and which therefore respond differently to a given set of input 

patterns. 

• A limit imposed on the “strength” of each neuron. 

• A mechanism that permits the neurons to compete for the right to respond to a 

given subset of inputs, such that only one output neuron, or only one neuron per 

group, is active at a time. The neuron that wins the competition is called a winner-

takes-all neuron. 

Accordingly, the individual neurons of the network learn to specialize on ensembles of 

similar patterns; in so doing they become feature detectors for different classes of input 

patterns.  

In the simplest form of competitive learning, the neural network has a single layer 

of output neurons, each of which is fully connected to the input nodes. The network may 

include feedback connections among the neurons, as indicated in the fig 5.4. In the 

network architecture described herein, the feedback connections perform lateral 

inhibition, with each neuron tending to inhibit the neuron to which it is laterally 

connected. In contrast, the feedforward synaptic connections in the network of fig 5.4 are 

all excitatory. For a neuron k to be the winning neuron, its induced local field vk for a 
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specified input pattern x must be the largest among all the neurons in the network. The 

output signal yk of winning neuron k is set equal to one; the output signals of all the 

neurons that lose the competition are set equal to zero. We thus write 

 

              yk =  1      if  vk > vj  for all j, j ≠ k    5.11 
                   0      otherwise               
 

where the induced local field vk represents the combined action of  all the forward and 

feedback inputs to neuron k.  

 
                               x1              
 
 
                               x2   
 
                               x3   
      
 
                               x4     
 
    Layer of   Single layer 
      Source    of output 
       Nodes     neurons 
 
Figure 5.4 Architectural graph of a simple competitive learning network with 

feedforward (excitatory) connection from the source nodes to the neurons, and lateral 

(inhibitory) connections among neurons; the lateral connections are signified by open 

arrows. 

Let wkj denote the synaptic weight connecting input node j to neuron k. Suppose 

that each neuron is allotted a fixed amount of synaptic weight (i.e., all synaptic weights 

are positive), which distributed among its input nodes; that is, 

 
∑ wkj = 1                for all k      5.12 
 j 
 

A neuron then learns by shifting synaptic weights from its inactive to active nodes. If a 

neuron does respond to a particular input pattern, no learning takes place in that neuron. 

If a particular neuron wins the competition, each input node of that neuron relinquishes 
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some proportion of its synaptic weight, and the weight relinquished is then distributed 

equally among the active input nodes. According to the standard competitive learning 

rule, the change ∆wkj applied to synaptic weight wkj is defined by      

    
  ∆wkj =       η(xj – wkj)  if neuron k wins competition  5.13 
          0   if neuron k loses the competition  
 
where η is the learning-rate parameter. This rule has the overall effect of moving the 

synaptic weight vector wk of winning neuron k toward the input pattern x. 

   
 
5.5   Bolzmann learning 
 
The Bolzmann learning rule, named in honor of Ludwig Boltzmann, is a stochastic 

learning algorithms derived from ideas rooted in statistical mechanics. A neural network 

designed on the basis of the Boltzmann learning rule is called a Boltzmann machine. 

 In a Boltzmann machine, the neurons constitute a recurrent structure, and they 

operate in a binary manner since, for example, they are either in an “on” state denoted by 

+1 or in an “off” state denoted by -1. The machine is characterized by an energy function, 

E, the value of which is determined by the particular states occupied by the individual 

neurons of the machine, as shown by 

 
   E = -½ ∑ ∑ wkj xkxj        5.15 
    j   k  
              j ≠ k 

 
where xj is the state of neuron j, and wkj is the synaptic weight connecting neuron j to 

neuron k. The fact that j ≠ k means simply that none of the neurons in the machine has 

self-feedback. The machine operates by choosing a neuron at random- for example, 

neuron k- at some step of the learning process, then flipping the state of neuron k from 

state xk to state –xk at some temperature T with probability  

 
   P(xk → -xk) =  1/(1 + exp(-∆Ek / T))                5.16 
 
where ∆Ek is the energy change (i.e., the change in the energy function of the machine) 

resulting from such a flip. Notice that T is not a physical temperature, but rather a 
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pseudotemprature. If this rule is applied repeatedly, the machine will reach thermal 

equilibrium. 

The neurons of a Boltzmann machine partition into two functional groups: visible 

and hidden. The visible neurons provide an interface between the network and the 

environment in which it operates, whereas the hidden neurons always operate freely.  

There are two modes of operation to be considered: 

• Clamped condition, in which the visible neurons are all clamped onto specific 

states determined by the environment. 

• Free-running condition, in which all neurons (visible and hidden) are allowed to 

operate freely. 

Let ρ+
kj denote the correlation between the states of neurons j and k, with the network in 

its clamped condition. Let ρ-
kj denote the correlation between the states of neurons j and 

k, with the network in its free-running condition. Both correlations are averaged over all 

possible states the machine when it is in thermal equilibrium. Then, according to the 

Bolzmann learning rule, the change ∆wkj applied to the synaptic weight wkj from neuron 

j to neuron k is defined by 

 

   ∆wkj = η(ρ+
kj -  ρ-

kj),      j ≠ k     5.17 
 
Note that both ρ+

kj -  ρ-
kj range in value from -1 to +1.  

 

6.   Training algorithms 
 

6.1   The error back-propagation algorithm 
 
Error Backpropagation was created by generalizing the Widrow-Hoff learning rule to 

multiple-layer networks and nonlinear differentiable transfer functions. Input vectors and 

the corresponding target vectors are used to train a network until it can approximate a 

function, associate input vectors with specific output vectors, or classify input vectors in 

an appropriate way as defined by you. Networks with biases, a sigmoid layer, and a linear 

output layer are capable of approximating any function with a finite number of 

discontinuities. 
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Standard error backpropagation is a gradient descent algorithm, as is the Widrow-Hoff 

learning rule, in which the network weights are moved along the negative of the gradient 

of the performance function. The term error backpropagation refers to the manner in 

which the gradient is computed for nonlinear multilayer networks. There are a number of 

variations on the basic algorithm that are based on other standard optimization 

techniques, such as conjugate gradient and Newton methods. 

Basically, error back-propagation learning consists of two passes through the 

different layers of the network: a forward pass and a backward pass. In the forward pass, 

an activity pattern (input vector) is applied to the sensory nodes of the network, and its 

effect propagates through the network layer by layer. Finally, a set of outputs is produced 

as the actual response of the network. During the forward pass the synaptic weights of the 

network are all fixed. During the backward pass, on the other hand, the synaptic weights 

are all adjusted in accordance with an error-correction rule. Specifically, the actual 

response of the network is subtracted from a desired (target) response to produce an error 

signal. This error signal is then propagated backward through the network against the 

direction of synaptic connections- hence the name “error back-propagation.” The 

synaptic weights are adjusted to make the actual response of the network move closer to 

the desired response in a statistical sense. The error back-propagation algorithm is also 

referred to in the literature as the back-propagation algorithm, simply back-prop.    

The error signal at the output of neuron j at iteration n (i.e., presentation of the nth 

training example) is defined by  

 

  ej(n) = dj(n) – yj(n),   neuron j is an output node  6.1  

 

We define the instantaneous value of the error energy for neuron j as ½e2
j(n). 

Correspondingly, the instantaneous value ε(n) of the total error energy is obtained by 

summing ½e2
j(n) over all neurons in the output layer; these are the only “visible” 

neurons  for which error signals can be calculated directly. We may thus write 

 
  ε(n) = ½ ∑ e2

j(n)                 6.2 
      j є C 
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where the set C includes all the neurons in the output layer of the network. Let N denote 

the total number of patterns (examples) contained in the training set. The average 

squared error energy is obtained by summing ε(n) over all n and then normalizing with 

respect to the size of N, as shown by 
     N 

  εav = 1/N ∑ ε(n)                6.3  
           n = 1  

The instantaneous error energy ε(n), and therefore the average error energy εav, is a 

function of all the free parameters (i.e., synaptic weights and bias levels) of the network. 

For a given training set, εav represents the cost function as a measure of learning 

performance. The objective of the learning process is to adjust the free parameters of the 

network to minimize εav. To do this minimization, we use an approximation similar in 

rationale to that used for the derivation of the LMS algorithm. Specifically, we consider a 

simple method of training in which the weights are updated on a pattern-by-pattern basis 

until an epoch, that is, one complete presentation of the entire training set has been dealt 

with. The adjustments to the weights are made in accordance with the respective errors 

computed for each pattern presented to the network.    

The Arithmetic average of these individual weight changes over the training set is 

therefore an estimate of the true change would result from modifying the weights based 

on minimizing the cost function εav the entire training set. Consider Fig. 6.1, which 

depicts neuron j being fed by a set of function signals produced by a layer of neurons to 

its left. 

The induced local field vj(n) produced at the input of the activation function 

associated with neuron j is therefore 
    m 

  vj(n) =  ∑ wji(n)yi(n)         6.4 
              i = 0  

 
where m is the total number inputs (excluding the bias ) applied to neuron j. The synaptic 

weight wj0 (corresponding to the fixed input y0 = +1) equals the bias bj applied to neuron 

j. hence the function signal yj(n) appearing at the output of neuron j at iteration n is  

 

  yj(n) = φj(vj(n))                 6.5 
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y0 = +1             
 
 
   wj0(n) = bj(n)  
 
                                                                                         ○dj(n) 
 
                        wji(n)                  vj(n)   φ(.)   yj(n)   -1 
   yi(n)                                           ○               ○               ○               ○ ej(n) 
 
 
 
  
 
 
 
  
 
 
               Figure 6.1 a signal-flow graph highlighting the details of output neuron j. 
 
 

In a manner similar to the LMS algorithm, the back-propagation algorithm applies a 

correction ∆wji(n) to the synaptic weight wji(n), which is proportional to the partial 

derivative ∂ε(n) /∂wji(n). According to the chain rule of calculus, we may express this 

gradient as: 

 
∂ε(n) /∂wji(n) = (∂ε(n) /∂ej(n))x(∂ej(n)/ ∂yj(n))x(∂yj(n)/ ∂vj(n))x(∂vj(n)/ ∂wji(n))        6.6 
 
The partial derivative ∂ε(n) /∂wji(n) represents a sensitivity factor, determining the 

direction of search in weight space for the synaptic weight wji. 

Differentiating both sides of Eq. 6.2 with respect to ej(n), we get 
 
  ∂ε(n)/ ∂ej(n) = ej(n)          6.7 
 
Differentiating both sides of Eq. 6.1 with respect to yj(n), we get 
 
  ∂ej(n)/ ∂yj(n) = -1          6.8 
 
 
 

 41



Next, differentiating Eq. 6.5 with respect to vj(n), we get 
 
  ∂yj(n)/ ∂vj(n) = φ’j(vj(n))        6.9 
 
where the use of prime (on the right-and side) signifies differentiation with respect to the 

argument. Finally, differentiating Eq. (6.4) with respect to wji(n) yields 

 
  ∂vj(n)/ ∂wji(n) = yj(n)        6.10 
 

The use of Eqs. (6.7) to (6.10) in (6.6) yields 
 
  ∂ε(n)/ ∂ej(n) = -ej(n)φ’j(vj(n))yi(n)      6.11  
 
The correction ∆wji(n) applied to wji(n) is defined by the delta rule: 
 
  ∆wji(n) = -η (∂ε(n)/ ∂ wji(n))       6.12 
 
where η is the learning-rate parameter of the backpropagation algorithm. The use of the 

minus sign in Eq. (6.12) accounts for gradient descent in weight space (i.e., seeking a 

direction for weight change that reduces the value of ε(n)). Accordingly, the use of Eq. 

(6.11) in (6.12) yields 

 
            ∆wji(n) = ηδj(n)yi(n)                  6.13 
 
where the local gradient ηδj(n) is defined by 
 
  ηδj(n) = -∂ε(n)/ ∂vj(n)                   6.14 
  = (∂ε(n) /∂ej(n))x(∂ej(n)/ ∂yj(n))x(∂yj(n)/ ∂vj(n)       
 
  = ej(n)φ’(vj(n))                     6.15 
 
 
The local gradient points to required changes in synaptic weights. According to Eq. 

(6.15), the local gradient δj(n) for output neuron j is equal to the product of the 

corresponding error signal ej(n) for that neuron and the derivative φ’j(vj(n)) of the 

associated activation function. From Eqs. (6.13) and (6.14) we note that a key factor 

involved in the calculation of the weight adjustment ∆wji(n) is the error signal ej(n) at the 

output of neuron j. In this context we may identify two distinct cases, depending on 
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where in the network neuron j is located. In case 1, neuron j is an output node. This case 

is simple to handle because each output node of the network is supplied with a desired 

response of its own, making it a straight forward matter to calculate the associated error 

signal. In case 2, neuron j is a hidden node. Even though hidden neurons are not directly 

accessible, they share responsibility for any error made at the output of the network. The 

question, however, is to know how to penalize or reward hidden neurons for their share 

of the responsibility. This problem is the called the credit-assignment problem. It is 

solved in an elegant fashion by back-propagating the error signals through the network. 

 
Case 1 Neuron j is an output node 
 
When neuron j is located in the output layer of the network, it is supplied with a desired 

response of its own. We may Eq. (6.1) to compute the error signal ej(n) associated with 

this neuron; Having determined ej(n) it is a straight forward matter to compute the local 

gradient δj(n) using Eq. (6.14).   

 
Case 2 Neuron j is a hidden node 
 
When neuron j is located in a hidden layer of the network, there is no specified desired 

response for that neuron. Accordingly, the error signal for a hidden neuron would have to 

be determined recursively in terms of the error signals of all the neurons to which that 

hidden neuron is directly connected; this is where the development of the back-

propagation algorithm gets complicated. Consider the situation depicted in Fig. (6.4), 

which depicts neuron j as a hidden node of the network. According to Eq. (6.14), we may 

redefine the local gradient δj(n) for hidden neuron j as       

 
  δj(n) = -(∂ε(n)/∂yj(n))x(∂yj(n)/∂vj(n))      

          = (∂ε(n)/∂yj(n))φ’(vj(n)),        6.16 
 
where in the second line we have used Eq. (6.9). To calculate the partial derivative 

∂ε(n)/∂yj(n), we may proceed as follows. From Fig. 6.4 we see that  

   ε(n) = ½ ∑ e2
k(n),   neuron k is an output node    6.17 

       kєC
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Differentiating equation Eq. (6.17) with respect to the function signal yj(n), we get 
 
  ∂ε(n)/∂yj(n) =  ∑ ∂ek(n)/ ∂yj(n)      6.18 
     k

Next we use the chain rule for the partial derivative ∂ek(n)/ ∂yj(n), and rewrite Eq. (6.18) 

in the equivalent form 

 
  ∂ek(n)/ ∂yj(n)   =  ∑ ek(n)  (∂ek(n)/ ∂vk(n))x(∂vk(n)/ ∂yj(n))  6.19 
         k 

However, from Fig. 6.4, we note that  
 
  ek(n)  =  dk(n) – yk(n) 

           =  dk(n) – φk(vk(n)), neuron k is an output node  6.20  

 
Hence 
 
  ∂ek(n)/ ∂vk(n)   =  - φ’k(vk(n))      6.21 
 
We also note that from Fig. 6.4 that for neuron k the induced local field is  
    m 
  vk(n) = ∑ wkj(n)yj(n)       6.22 
   j = 0 

 
where m is the total number of inputs (excluding the bias) applied to neuron k. Here 

again, the synaptic weight wk0(n) is equal to the bias bk(n) applied to neuron k, and the 

corresponding input is fixed at the value +1. Differentiating Eq. (6.22) with respect to 

yj(n) yields 

  ∂vk(n)/∂yj(n)  =  wkj(n)       6.23 

 

By using Eqs. (6.21) and (6.23) we get the desired partial derivative: 
 
  ∂ε(n)/∂yj(n)  =  -∑ ek(n)φ’k(vk(n)) wkj(n)      
        k
      
          =   ∑ δk(n) wkj(n)      6.24 
       k 

 
where in the second line we have used the definition of the local gradient δk(n) given in 

Eq. (6.14) with the index k substituted for j. 
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Finally, using Eq. (6.24) in (6.16), we get the back-propagation formula for the local 

gradient δk(n) as described by: 

 
  δk(n) = φ’k(vk(n)) ∑ δk(n) wkj(n), neuron j is hidden             6.25 
         k 

 
The factor φ’k(vk(n)) involved in the computation of the local gradient δj(n) in Eq. (6.25) 

depends solely on the activation function associated with hidden neurons j. The 

remaining factor involved in this computation, namely the summation over k, depends on 

two sets of terms. The first set of terms, δk(n), requires knowledge of the error signal 

ek(n), for all neurons that lie in the layer to the immediate right of hidden neuron j, and 

that are directly connected to neuron j. The second set of terms, the wkj(n), consists of the 

synaptic weights associated with these connections. 

We now summarize the relation that we have derived for the back-propagation 

algorithm. First, the correction ∆wji(n) applied to the synaptic weight connecting neuron i 

to neuron j is defined by the delta rule: 

 

  Weight          learning                    local -             input signal 

           Correction      =     rate parameter   .     gradient      .   of neuron j         6.26 

  ∆wji(n)            η          δj(n)         yi(n)             

 

Second, the local gradient δj(n) depends on whether neuron j is an output node or a 

hidden node: 

1 If neuron j is an output node, δj(n) equals the product of the derivative φ’k(vk(n)) 

and the error signal ej(n), both of which are associated with neuron j. 

2 If neuron j is a hidden node, δj(n) equals the product of the associated derivative 

φ’k(vk(n)) and the weighted sum of the δs computed for the neuron in the next 

hidden or output layer that are connected to neuron j.   
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6.1.1 The two passes of computation 

In the application of the back-propagation algorithm, two distinct passes of computation 

are distinguished. The first pass is referred to as the forward pass, and the second is 

referred to as the backward pass. In the forward pass the synaptic weights remain 

unaltered throughout the network, and the function signals of the network are computed 

on a neuron-by-neuron basis. The function signal appearing at the output of neuron j is 

computed as  

  yj(n) =   φ(vj(n))        6.27 

where vj(n) is the induced local field of neuron j, defined by 

    m 
vj(n) =  ∑   wji(n) yi(n)       6.28 
 i = 0 

where m is the total number of inputs (including the bias) applied to neuron j, and wji(n) 

is synaptic weight connecting neuron i to neuron j, and yi(n) is the input signal of neuron j 

or equivalently, the function signal appearing at the output of neuron i. If neuron j is in 

the first hidden layer of the network, m = m0 and the index i refers to the ith input terminal 

of the network, for which we write 

 
  yi(n) = xi(n)                  6.29 
 
where xi(n) is the ith element of the input vector (pattern). If, on the other hand, neuron j is 

in the output layer of the network, m = mL and the index i refers to the ith output terminal 

of the network, for which we write 

 
  yj(n) = oj(n)                 6.30 
 
where oj(n) is the jth element of the output vector (pattern). This output is compared with 

the desired response dj(n), obtaining the error signal ej(n) for the jth output neuron. Thus 

the forward phase of computation begins at the first hidden layer by presenting it with the 

input vector, and terminates at output layer by computing the error signal for each neuron 

of this layer. 

The backward phase, on the other hand, starts at the output layer by passing the 

error signal leftward through the network, layer by layer, and recursively computing the δ 

(i.e., the local gradient) for each neuron. This recursive process permits the synaptic 
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weights of the network to undergo changes in accordance with the delta rule of Eq. 

(6.26). For a neuron located in the output layer, the δ is simply equal to the error signal of 

that neuron multiplied by the first derivative of its nonlinearity. Hence we use Eq. (6.26) 

to compute the changes to the weights of all the connections feeding into the output layer. 

Given the δs for all neurons in the output layer, we next use Eq. (6.25) to compute the δs 

for all neurons the penultimate layer and therefore the changes to the weights of all 

connections feeding into it. The recursive computation is continued, layer by layer, by 

propagating the changes to all synaptic weights in the network. 

Note that for the presentation of each training example; the input pattern is fixed 

(“clamped”) throughout the round-trip process, encompassing the forward pass followed 

by the backward pass. 

 

6.1.2 Rate of learning 

The propagation algorithm provides an “approximation” to the trajectory in the weight 

space computed by the method of steepest descent. The smaller we make the learning-

rate parameter η, the smaller the changes to the synaptic weights in the network will be 

from one iteration to the next, and the smoother will be the trajectory in weight space. 

This improvement, however, is attained at the cost of a slower rate of learning. If, on the 

other hand, we make the learning-rate parameter η too large in order to speed up the rate 

of learning, the resulting large changes in the synaptic weights assume such a form that 

the network may become unstable (i.e., oscillatory). A simple method of increasing the 

rate of learning yet avoiding the danger of instability is to modify the delta rule of Eq. 

(6.13) by including a momentum term, as shown by  

 

  ∆wji(n) = α ∆wji(n-1) + ηδj(n)yi(n)     6.31 

where α is usually a positive number called the momentum constant. It controls the 

feedback loop acting around ∆wji(n). Equation (6.31) is the generalized delta rule. 

In order to see the effect of the sequence of pattern presentations on the synaptic 

weights due to the momentum constant α constant, we rewrite Eq. (6.31) as a time series 

with index t. The index t goes from the initial time 0 to the current time n. equation (6.31) 
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may be viewed as a first-order difference equation in the weight correction ∆wji(n). 

Solving this equation for ∆wji(n) we have 

 

             n  

  ∆wji(n)  =  η ∑ αn-t δj(t)yi(t)      6.32     
               t = 0 

which represents a time series of length n+1. From equations (6.11) and (6.14) we note 

the product δj(t)yi(t) is equal to ∂ε(n) /∂wji(n). Accordingly, we may rewrite Eq. (6.32) in 

the equivalent form 

                  n
   ∆wji(n)   =  - η ∑ αn-t  ∂ε(n) /∂wji(n)     6.33 
                    t = 0 

 
Based on this relation, we may make the following insightful observations: 
 

1. The current adjustment ∆wji(n) represents the sum of an exponentially weighted 

time series. For the time series to be convergent, the momentum constant must be 

restricted to the range 0 ≤ | α | < 1. When α is zero, the back-propagation 

algorithm operates without momentum. Also the momentum constant α can be 

positive or negative, although it is unlikely that a negative α would be used in 

practice. 

2. When the partial derivative ∂ε(n)/∂wji(n) has the same algebraic sign on 

consecutive iterations, the exponentially weighted sum ∆wji(n) grows in 

magnitude, and so the weight wji(n)  is adjusted  by a large amount. The inclusion 

of momentum in the back-propagation algorithm tends to accelerate descent in 

steady downhill directions. 

3. When the partial derivative ∂ε(n)/∂wji(n) has opposite signs on consecutive 

iterations, the exponentially weighted sum ∆wji(n) shrinks in magnitude, so the 

weight wji(n) is adjusted by a small amount. The inclusion of momentum in the 

back-propagation algorithm has a stabilizing effect in directions that oscillate in 

sign. 
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The incorporation of momentum in the back-propagation algorithm represents a minor 

modification to the weight update, yet it may have some beneficial effects on the learning 

behavior of the algorithm. The momentum term may also have the benefit of preventing 

the learning process from terminating in a shallow local minimum on the error surface. 

 

6.2 Method of conjugate gradients 

The reason why the method of Steepest Descent converges slowly is that it has to take a 

right angle turn after each step, and consequently search in the same direction as earlier 

steps. The method of Conjugate Gradients is an attempt to mend this problem by 

learning from experience. Conjugancy means two unequal vectors, di and dj, are 

orthogonal with respect to any symmetric positive definite matrix. 

  dT
i ▪ Q ▪ dj  =  0                            6.34 

This can be looked upon as a generalization of orthogonality, for which Q is the unity 

matrix. The idea is to let each search direction di be dependent on all the other directions 

searched to locate the minimum of f(x).  A set of such search directions is referred to as a 

Q-orthogonal, or conjugate, set, and it will take a positive definite n-dimensional 

quadratic function to its minimum point in, at most, n exact linear searches. This method 

is often referrred to as conjugate directions, and a short description follows:   

The best way to visualize the working of Conjugate Directions is by comparing 

the space we are working in with a ``stretched'' space. An example of this ``stretching'' of 

space is illustrated in Figure 52: (a) demonstrates the shape of the contours of a quadratic 

function in real space, which are elliptical (for b≠ 0). Any pair of vectors that appear 

perpendicular in this space, would be orthogonal. (b) show the same drawing in a space 

that are stretched along the eigenvector axes so that the elliptical contours from (a) 

become circular. Any pair of vectors that appear to be perpendicular in this space, is in 

fact Q-orthogonal. The search for a minimum of the quadratic functions starts at x0 in 

Figure 6.2(a), and takes a step in the direction d0 and stops at the point x1. This is a 

minimum point along that direction, determined the same way as for the Steepest Decent 

method in the previous section: the minimum along a line is where the directional 

derivative is zero .The essential difference between the Steepest Descent and the 
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Conjugate Directions lies in the choice of the next search direction from this minimum 

point. While the Steepest Descent method would search in the direction r1 in Figure 

6.2(a), the Conjugate Direction method would chose d1. How come Conjugate Directions 

manage to search in the direction that leads us straight to the solution x? The answer is 

found in Figure 6.2(b): In this stretched space, the direction d0 appears to be a tangent to 

the now circular contours at the point x1. Since the next search direction d1 is constrained 

to be Q-orthogonal to the previous, they will appear perpendicular in this modified space. 

Hence, d1will take us directly to the minimum point of the quadratic function f(x).  

 

 
 

Figure 6.2: Optimality of the method of Conjugate Directions. (a) Lines that appear 
perpendicular are orthogonal. (b) The same problem in a ``stretched'' space. Lines that 
appear perpendicular are Q-orthogonal. 
 

To avoid searching in directions that have been searched before, the Conjugate Direction 

guarantees that the minimization of f(xk) along one direction does not ``spoil'' the 

minimization along another; i.e. that after i steps, f(xi) will be minimized over all 

searched directions. This is essentially what is stated in equation (6.34): A search along di 

has revealed where the gradient is perpendicular to di, ▼fi ▪ di = 0, and as we now move 

along some new direction dj, the gradient changes by δ(▼f) = Q ▪ dj. In order to not 
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interfere with the minimization along di, we require that the gradient remain 

perpendicular to di; i.e. that the change in gradient itself be perpendicular to di. Hence, we 

have equation (6.34). We see from Figure 6.2(b), where d0 and d1appear perpendicular 

because they are Q-orthogonal, that it is clear that d1 must point to the solution x.  

The Conjugate Gradients method is a special case of the method of Conjugate 

Directions, where the conjugate set is generated by the gradient vectors. This seems to be 

a sensible choice since the gradient vectors have proved their applicability in the Steepest 

Descent method, and they are orthogonal to the previous search direction. For a quadratic 

function the procedure is as follows: 

Steepest descent:  

  d0 = - g(x0) = -g0                6.35 

 Subsequently, the mutually conjugate directions are chosen so that  

  dk+1 = -gk+1 + βk + dk        k = 0, 1, . . .,            6.36 

 where the coefficient βk is given by, for example, the so called Fletcher-Reeves formula:  

              βk  =   (gT
k+1▪ gk+1) / ( gT

k ▪ gk )             6.37 

The step length along each direction is given by  

   λk  =   (dT
k▪ gk) / (dT

k ▪ (Q ▪ dk))          6.38 

When the matrix Q in (6.38) is not known, or is too computationally costly to determine, 

the stepsize can be found by linear searches. For the Conjugate Gradient method to 

converge in n iterations, these linear searches need to be accurate. Even small deviations 

can cause the search vectors to lose Q-orthogonality, resulting in the method spending 

more than n iterations in locating the minimum point. In practice, accurate linear searches 

are impossible, both due to numerical accuracy and limited computing time. The direct 

use of equation (6.38) will most likely not bring us to the solution in n iterations either, 

the reason being the limited numerical accuracy in the computations which gradually will 

make the search vectors lose their conjugacy. It should also be mentioned that if the 
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matrix Qis badly scaled, the convergence will be slowed down considerably, as it was for 

the steepest descent method. 

Even though the Conjugate Gradients method is designed to find the minimum 

point for simple quadratic functions, it also does the job well for any continuous function 

f(x)for which the gradient ▼f(x) can be computed. Equation (6.38) can not be used for 

non-quadratic functions, so the step length has to be determined by linear searches. The 

conjugacy of the generated directions may then progressively be lost, not only due to the 

inaccurate linear searches, but also due to the non-quadratic terms of the functions. An 

alternative to the Fletcher-Reeves formula that, to a certain extent, deals with this 

problem, is the Polak-Ribie`re fromula press: 

βk  =   (gT
k+1▪ (gk+1 - gk)) / (gT

k ▪ gk)              6.39 

The difference in performance between these two formulas is not big though, but 

the Polak-Ribie`re fromula is known to perfom better for non-quadratic functions. The 

iterative algorithm for the nonlinear conjugate gradients method for non-quadratic 

functions using the Polak-Ribie`re fromula is presented in the following table: Regardless 

of the direction-update formula used, one must deal with the loss of conjugacy that 

results from the the non-quadratic terms. The Conjugate Gradients method is often 

employed to problems where the number of variables n is large, and it is not unusual for 

the method to start generating nonsensical and inefficient directions of search after a few 

iterations. For this reason it is important to operate the method in cycles, with the first 

step being the Steepest Descent step. One example of a restarting policy is to restart with 

the steepest descent step after n iterations after the preceding restart. 

 Another practical issue relates to the accuracy of the linear search that is 

necessary for efficient computation. On one hand, an accurate linear search is needed to 

limit the loss of direction conjugacy. On the other hand, insisting on very accurate line 

search can be computationally expensive. To find the best possible middle path, trial and 

error is needed. The Conjugate Gradients method is apart from being an optimization 

method, also one of the most prominent iterative method for solving sparse systems of 

linear equations. It is fast and uses small amounts of storage since it only needs the 

calculation and storage of the second derivative at each iteration. The latter becomes 
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significant when n is so large that problems of computer storage arises. But, everything is 

not shiny; the less similar f is to a quadratic function, the more quickly the search 

directions lose conjugacy, and the method may in the worst case not converge at all. 

Although, it is generally to be preferred over the speepesr descent method. 

 
                          
TABLE 1  Summary of the nonlinear conjugate gradient algorithm for the supervised  
       training of a multilayer perceptron    
             
Initialization 
Unless prior knowledge on the weight vector w is available, choose the initial value w(0)  
 
Computation 

1. For w(0), use back-propagation to compute the gradient vector g(0). 

2. Set d(0) = r(0) = -g(0). 

3. At time step n, use a line search to find η(n) that minimizes εav(η) sufficiently, 

representing the cost function εav expressed as a function of η for fixed values of 

w and d. 

4. Test to determine if the Euclidean norm of the residual r(n) has fallen below a 

specified value, that is, a small fraction of the initial value || r(0) ||. 

5. Update the weight vector: 

w(n+1) = w(n) + η(n) d(n) 

6. Set r(n+1) = -g(n+1) 

7. Use the Polak-Ribie`re method to calculate βk(n+1): 

βk(n+1)   =   max   { rT(n+1)●((r(n+1) – r(n))/( rT(n) ●r(n)), 0 } 

8. Update the direcion vector: 
 

d(n+1) = r(n+1) +  βk(n+1) d(n) 
 

9. Set n = n+1, and go back to step 3. 
 

Stopping criterion. Terminate the algorithm when the following condition is satisfied: 
    
   || r(n) || ≤ є || r(0) || 
 

where є is a prescribed small number. 
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7.   Digital Image processing 

Techniques from statistical pattern recognition have, since the revival of neural networks, 

obtained a widespread use in digital image processing. Initially, pattern recognition 

problems were often solved by linear and quadratic discriminants or the (non-parametric) 

k-nearest neighbor classifier and the Parzen density estimator. In the mid-eighties, the 

PDP group, together with others, introduced the back-propagation learning algorithm for 

neural networks. This algorithm for the first time made it feasible to train a non-linear 

neural network equipped with layers of the so-called hidden nodes. Since then, neural 

networks with one or more hidden layers can, in theory, be trained to perform virtually 

any regression or discrimination task. Moreover, no assumptions are made as with respect 

to the type of underlying (parametric) distribution of the input  variables, which may be 

nominal, ordinal, real or any combination hereof. 

Vis-à-vis ANN based image processing; there are two central questions that need 

to be answered: 

1. What are major applications of neural networks in image processing       

      now and in the nearby future? 

2. Which are the major strengths and weaknesses of neural networks for  

solving image processing tasks? 
 

There is a two-dimensional taxonomy for image processing techniques. This taxonomy 

establishes a framework in which the advantages and unresolved problems can be 

structured in relation to the application of neural networks in image processing. 

 

7.1   Taxonomy for image processing algorithms 

Traditional techniques from statistical pattern recognition like the Bayesian discriminant 

and the Parzen windows were popular until the beginning of the 1990s. Since then, neural 

networks (ANNs) have increasingly been used as an alternative to classic pattern 

classifiers and clustering techniques. Non-parametric feed-forward ANNs quickly turned 

out to be attractive trainable machines for feature-based segmentation and object 

recognition. When no gold standard is available, the self-organizing feature map (SOM) 

is an interesting alternative to supervised techniques. It may learn to discriminate, e.g., 
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different textures when provided with powerful features. The current use of ANNs in 

image processing exceeds the aforementioned traditional applications. The role of feed-

forward ANNs and SOMs has been extended to encompass also low-level image 

processing tasks such as noise suppression and image enhancement. Hopfield ANNs were 

introduced as a tool for finding satisfactory solutions to complex (NP-complete) 

optimization problems. This makes them an interesting alternative to traditional 

optimization algorithms for image processing tasks that can be formulated as 

optimization problems.  

The following distinction is made between steps in the image processing chain 

(see Fig. 1): 

1. Preprocessing/filtering: Operations that give as a result a modified image with 

the same dimensions as the original image (e.g., contrast                  

enhancement and noise reduction). 

2. Data reduction/feature extraction: Any operation that extracts significant 

components from an image (window). The number of extracted features is 

generally smaller than the number of pixels in the input window. 

3. Segmentation: Any operation that partitions an image into regions, which are 

coherent with respect to some criterion. One example is the segregation of 

different textures.   

4. Object detection and recognition: Determining the position and,  possibly, also 

the orientation and scale of specific objects in an image, and classifying these 

objects   

5. Image understanding: Obtaining high level (semantic) knowledge of                  

what an image shows. 

6. Optimization: Minimization of a criterion function which may be used for, 

e.g., graph matching or object delineation.    

 
Optimization techniques are not seen as a separate step in the image processing chain but 

as a set of auxiliary techniques, which support the other steps.  
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Besides the actual task performed by an algorithm, its processing capabilities are partly 

determined by the abstraction level of the input data. We distinguish between the 

following abstraction levels: 

1 Pixel level: The intensities of individual pixels are provided as input to the 

algorithm. 

2 Local feature level: A set of derived, pixel-based features constitute the input. 

3 Structure (edge) level: The relative location of one or more perceptual features 

(e.g., edges, corners, junctions, surfaces, etc.). 

4 Object level: Properties of individual objects. 

5 Object set level: The mutual order and relative location of detected   

objects. 

6 Scene characterization: A complete description of the scene possibly including 

lighting conditions, context, etc. 

 
Noise suppression,                      Compression,                      Texture-                         Template-                     Scene-  
Deblurring,                                    Feature-                           segregation,                    matching,                   analysis, 
Image enhancement                    extraction                          Color recognition,           Feature-based            Object- 
               Clustering                       recognition                arrangement 
 

     

 

 

Image 
Underst-
anding 

Object 
Recogni-
tion 

Segment   
-ation 

    Data   
Reduction

Preprocessing 

 
                             Graph matching, 

          Automatic thresholding 
                                                                                                             

Optimization 

 
Fig. 7.1; the image processing chain containing the five different tasks: preprocessing, data 
reduction, segmentation, object recognition and image understanding. Optimization techniques 
are used as a set of auxiliary tools that are available in all steps of the image processing chain. 
 

7.2   Exploring the image processing chain 

In this section, the six tasks in the image processing chain will be discussed in detail. 
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7.2.1   Preprocessing 

The first step in the image processing chain consists of preprocessing. Loosely defined, 

by preprocessing we mean any operation of which the input consists of sensor data, and 

of which the output is a full image. Preprocessing operations generally fall into one of 

three categories: image reconstruction (to reconstruct an image from a number of sensor 

measurements), image restoration (to remove any aberrations introduced by the sensor, 

including noise) and image enhancement (accentuation of certain desired features, which 

may facilitate later processing steps such as segmentation or object recognition).  

 
7.2.1.1   Image reconstruction 

Image reconstruction problems often require quite complex computations and a unique 

approach is needed. For example, an ADALINE network can be to perform an electrical 

impedance tomography (EIT) reconstruction, i.e., a reconstruction of a 2D image based 

on 1D measurements on the circumference of the image, or a modified Hopfield network 

can be trained to perform the inverse Radon transform (e.g., for reconstruction of 

computerized tomography images). 

 

7.2.1.2   Image restoration 

The majority of applications of ANNs in preprocessing can be found in image restoration. 

In general, one wants to restore an image that is distorted by the (physical) measurement 

system. The system might introduce noise, motion blur, out-of-focus blur, distortion 

caused by low resolution, etc. Restoration can employ all information about the nature of 

the distortions introduced by the system, e.g., the point spread function. The restoration 

problem is ill-posed because conflicting criteria need to be fulfilled: resolution versus 

smoothness. In the most basic image restoration approach, noise is removed from an 

image by simple filtering. For instance, a regression feed-forward network in a 

convolution-like way can be used to suppress noise (with a 5x5 pixel window as input 

and one output node). Another interesting ANN architecture is the generalized adaptive 

neural filter (GANF) which has been used for noise suppression. A GANF consists of a 
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set of neural operators, based on stack filters that use binary decompositions of grey-

value data.  

Traditional methods for more complex restoration problems such as deblurring 

and diminishing out-of-focus defects are maximum a posteriori estimation (MAP) and 

regularization. Applying these techniques entails solving high-dimensional convex 

optimization tasks. The objective functions of MAP estimation or the regularization 

problem can both be mapped onto the energy function of the Hopfield network. Often, 

mapping the problem turned out to be difficult, so in some cases the network architecture 

had to be modified as well.  

 

7.2.1.3   ANNs in preprocessing 

There seem to be three types of problems in preprocessing (unrelated to the three possible 

operation types) to which ANNs can be applied:  

• optimization of an objective function defined by a traditional preprocessing 

problem; 

• approximation of a mathematical transformation used for image reconstruction , 

e.g., by regression; 

• mapping by an ANN trained to perform a certain task, usually based directly on 

pixel data (neighborhood input, pixel output). 

 

To solve the first type of problems, traditional methods for optimization of some 

objective function may be replaced by a Hopfield network. For the approximation task, 

regression (feed-forward) ANNs could be applied. Although for some applications such 

ANNs were indeed successful, it would seem that these applications call for more 

traditional mathematical techniques, because a guaranteed (worst-case) performance is 

crucial in preprocessing. 

In several other applications, regression or classification (mapping) networks 

were trained to perform image restoration or enhancement directly from pixel data. A 

remarkable finding was that non-adaptive ANNs (e.g., CNNs) were often used for 

preprocessing. Secondly, when networks were adaptive, their architectures usually 
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differed much from those of the standard ANNs: prior knowledge about the problem was 

used to design the networks that were applied for image restoration or enhancement (e.g., 

by using shunting mechanisms to force a feed-forward ANN to make binary decisions). 

The interest in non-adaptive ANNs indicates that the fast, parallel operation and the ease 

with which ANNs can be embedded in hardware may be important criteria when 

choosing for a neural implementation of a specific preprocessing operation. However, the 

ability to learn from data is apparently of less importance in preprocessing. While it is 

relatively easy to construct a linear filter with a certain, desired behavior, e.g., by 

specifying its frequency profile, it is much harder to obtain a large enough data set to 

learn the optimal function as a high-dimensional regression problem. This holds 

especially when the desired network behavior is only critical for a small subset of all 

possible input patterns (e.g., in edge detection). Moreover, it is not at all trivial to choose 

a suitable error measure for supervised training, as simply minimizing the mean squared 

error might give undesirable results in an image processing setting. 

An important caveat is that the network parameters are likely to become tuned to 

one type of image (e.g., a specific sensor, scene setting, scale, etc.), which limits the 

applicability of the trained ANN. When the underlying conditional probability 

distributions, p(x|ωj) or p(y|x), change, the classification or regression network-like all 

statistical models-needs to be retrained. 

 
7.2.2   Data reduction and feature extraction 

Two of the most important applications of data reduction are image compression and 

feature extraction. In general, an image compression algorithm, used for storing and 

transmitting images, contains two steps: encoding and decoding. For both these steps, 

ANNs have been used. Feature extraction is used for subsequent segmentation or object 

recognition. The kind of features one wants to extract often correspond to particular 

geometric or perceptual characteristics in an image (edges, corners and junctions), or 

application dependent ones, e.g., facial features. 
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7.2.2.1   Image compression applications 

Two different types of image compression approaches can be identified: direct pixel-

based encoding/decoding by one ANN and pixel-based encoding/decoding based on a 

modular approach. Different types of ANNs have been trained to perform image 

compression: feed-forward networks, SOMs, adaptive fuzzy leader clustering (a fuzzy 

ART-like approach), a learning vector quantifier and a radial basis function network. 

Auto-associator networks have been applied to image compression where the input signal 

was obtained from a convolution window. These networks contain at least one hidden 

layer, with fewer units than the input and output layers. The network is then trained to 

recreate the input data. Its bottle-neck architecture forces the network to project the 

original data onto a lower dimensional (possibly non-linear) manifold from which the 

original data should be predicted. 

Other approaches rely on a SOM, which after training acts as a code book. The 

most advanced approaches are based on specialized compression modules. These 

approaches either combine different ANNs to obtain the best possible image compression 

rate or they combine more traditional statistical methods with one or more ANNs. ANN 

approaches have to compete with well-established compression techniques such as JPEG, 

which should serve as a reference. The major advantage of ANNs is that their parameters 

are adaptable, which may give better compression rates when trained on specific image 

material. However, such a specialization becomes a drawback when novel types of 

images have to be compressed. 

 

7.2.2.2   Feature extraction applications 

Feature extraction can be seen as a special kind of data reduction of which the goal is to 

first a subset of informative variables based on image data. Since image data are by 

nature very high dimensional, feature extraction is often a necessary step for 

segmentation or object recognition to be successful. Besides lowering the computational 

cost, feature extraction is also a means for controlling the so-called curse of 

dimensionality. When used as input for a subsequent segmentation algorithm, one wants 

to extract those features that preserve the class separability well.  
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There is a wide class of ANNs that can be trained to perform mappings to a lower-

dimensional space. A well-known feature-extraction ANN is a neural implementation of 

a one-dimensional principal component analysis. It can be proven that training three-layer 

auto-associator networks corresponds to applying PCA to the input data. Auto-associator 

networks with five layers can be shown to be able to perform non-linear dimensionality 

reduction (i.e., finding principal surfaces). It is also possible to use a mixture of linear 

subspaces to approximate a non-linear subspace.  

Another approach to feature extraction is first to cluster the high-dimensional 

data, e.g., by a SOM, and then use the cluster centers as prototypes for the entire cluster. 

Usually, neural-network feature extraction is performed for: 

• subsequent automatic target recognition in remote sensing (accounting for 

orientation) and character recognition; 

• subsequent segmentation of food images  and of magnetic resonance (MR) 

images; 

• finding the orientation of objects (coping with rotation); 

• finding control points of deformable models; 

• clustering low-level features found by the Gabor filters in face recognition and 

wood defect detection;  

• subsequent stereo matching; 

• clustering the local content of an image before it is encoded. 
 

In most applications, the extracted features are used for segmentation, image matching or 

object recognition. For (anisotropic) objects occurring at the same scale, rotation causes 

the largest amount of intra-class variation. Some feature extraction approaches were 

designed to cope explicitly with (changes in) orientation of objects.  

It is important to make a distinction between application of supervised and 

unsupervised ANNs for feature extraction. For a supervised auto-associator ANN, the 

information loss implied by the data reduction can be measured directly on the predicted 

output variables, which is not the case for unsupervised feature extraction by the SOM. 

Both supervised and unsupervised ANN feature extraction methods have advantages 

compared to traditional techniques such as PCA. Feed-forward ANNs with several 

 61



hidden layers can be trained to perform non-linear feature extraction, but lack a formal, 

statistical basis. 

 

7.2.3   Image segmentation 

Segmentation is the partitioning of an image into parts that are coherent according to 

some criterion. When considered as a classification task, the purpose of segmentation is 

to assign labels to individual pixels or voxels. Some neural-based approaches perform 

segmentation directly on the pixel data, obtained either from a convolution window 

(occasionally from more bands as present in, e.g., remote sensing and MR images), or the 

information is provided to a neural classi1er in the form of local features. 

 

7.2.3.1   Segmentation based on pixel data 

Many ANN approaches have been presented that segment images directly from pixel or 

voxel data. Several different types of ANNs have been trained to perform pixel-based 

segmentation: feed-forward ANNs, SOMs, Hopfield networks, probabilistic ANNs, radial 

basis function networks, CNNs, constraint satisfaction ANNs and RAM-networks. A 

self-organizing architecture with fuzziness measures can also be used.   

Hierarchical segmentation approaches have been designed to combine ANNs on 

different abstraction levels. The guiding principles behind hierarchical approaches are 

specialization and bottom–up processing: one or more ANNs are dedicated to low level 

feature extraction/segmentation, and their results are combined at a higher abstraction 

level where another (neural) classifier performs the final image segmentation. Reddick et 

al. developed a pixel-based two-stage approach where a SOM is trained to segment 

multispectral MR images. The segments are subsequently classified into white matter, 

grey matter, etc., by a feed-forward ANN. Non-hierarchical, modular approaches have 

also been developed ?connecting edges and lines. 

In general, pixel-based (often supervised) ANNs have been trained to classify the 

image content based on: 

• texture 

• a combination of texture and local shape 
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ANNs have also been developed for pre- and post processing steps in relation to 

segmentation, e.g., for: 

• delineation of contours 

• connecting edge pixels 

• identification of surfaces 

• deciding whether a pixel occurs inside or outside a segment 

• defuzzifying the segmented image; 
 

and for: 
• clustering of pixels 

• motion segmentation 

 

In most applications, ANNs were trained as supervised classifiers to perform the desired 

segmentation. One feature that most pixel-based segmentation approaches lack is a 

structured way of coping with variations in rotation and scale. This shortcoming may 

deteriorate the segmentation result. 

 

7.2.3.2   Segmentation based on features 

Several feature-based approaches apply ANNs for segmentation of images. Different 

types of ANNs have been trained to perform feature-based image segmentation: feed-

forward ANNs, recursive networks, SOMs, variants of radial basis function networks  

and CNNs, Hopfield ANNs, principal component networks and a dynamic ANN.  

Hierarchical network architectures have been developed for optical character recognition 

and for segmentation of range images. Feature-based ANNs have been trained to segment 

images based on the differences in: 

• texture; 

• a combination of texture and local shape. 

Besides direct classification, ANNs have also been used for: 

• estimation of ranges; 

• automatic image thresholding by annealing  or by mapping the histogram; 

• estimation of the optical flow; 
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• connecting edges and lines; 

• region growing. 

 

A segmentation task that is most frequently performed by feature-based ANNs is texture 

segregation, which is typically based on: 

• co-occurrence matrices; 

• wavelet features; 

• multiresolution features extracted from the Gabor wavelets; 

• spatial derivatives computed in the linear scale-space. 

 

The Gabor and wavelet-based features, and features extracted from the linear scale-space 

provide information at several scales to the classifier, which, however, needs to cope 

explicitly with variations in scale. As with respect to orientation, the Gabor and wavelet-

based approaches are, in general, sensitive to horizontal, vertical and diagonal features. 

These three directions can be combined into a local orientation measure such that rotation 

invariance is obtained. The scale-space features can be reduced to a few invariants that 

are indeed rotation invariant. The generalized co-occurrence matrices cope with 

variations in orientation by averaging over four orthogonal orientations. Scale can also be 

taken into account by varying the distance parameter used to compute the co-occurrence 

matrix. 

 

7.2.3.3   Open issues in segmentation by ANNs 

Three central problems in image segmentation by ANNs are: how to incorporate context 

information, the inclusion of (global) prior knowledge, and the evaluation of 

segmentation approaches. Context information can be obtained from, for instance, 

multiscale wavelet features or from features derived from the linear scale space 

(computed at a coarse scale). How context information can best be incorporated, is an 

interesting issue for further research. 

A caveat is how to obtain a gold standard for the (in most cases supervised) 

segmentation algorithms. In general, the true class membership of the pixels/voxels in the 
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training set is known with varying degrees of confidence. This problem can be addressed 

by letting an expert demarcate the inner parts of areas with a similar (coherent) texture 

but leaving the transition areas unclassified. Certainly, intra- and inter-observer 

variability needs to be assessed thoroughly (e.g., by the kappa statistic) before suitable 

training and test images can be compiled. Even when a reliable gold standard is available, 

objective performance assessment entails more than simply computing error rates on 

novel test images. There is not yet a single measure capable of unequivocally quantifying 

segmentation quality. Besides statistical performance aspects such as coverage, bias and 

dispersion, desirable properties such as within-region homogeneity and between-region 

heterogeneity are also important. 

 

7.2.4   Object recognition 

Object recognition consists of locating the positions and possibly orientations and scales 

of instances of objects in an image. The purpose may also be to assign a class label to a 

detected object. In most applications, ANNs have been trained to locate individual 

objects based directly on pixel data. Another less frequently used approach is to map the 

contents of a window onto a feature space that is provided as input to a neural classifier. 

 
7.2.4.1   Based on pixel data 

Among the ANN approaches developed for pixel-based object recognition, several types 

of ANNs can be distinguished: feed-forward-like ANNs, variants using weight sharing, 

recurrent networks, the ART networks, (evolutionary) fuzzy ANNs, bi-directional auto-

associative memories, the Neocognitron and variants, piecewise-linear neural classifiers, 

higher-order ANNs, and Hopfield ANNs. Besides, interesting hardware ANNs have been 

built for object recognition: the RAM network and optical implementations. Finally, 

SOMs are occasionally used for feature extraction from pixel data; the output of the map 

is then propagated to a (neural) classifier. 

Several novel network architectures have been developed specifically to cope 

with concomitant object variations in position, (in-plane or out-of-plane) rotation and 

scale (in one case, an approach has been developed that is invariant to changes in 
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illumination). It is clear that a distinction needs to be made between invariant recognition 

in 2D (projection or perspective) images and in 3D volume images. An interesting 

approach that performs object recognition, which is invariant to 2D translations in-plane 

rotation and scale, is the neurally inspired what-and-where filter. It combines a multiscale 

oriented filter bank (what) with an invariant matching module (where). Other approaches 

rely on learning the variations explicitly by training. Egmont-Petersen and Arts built a 

statistical intensity model of the object that should be detected. The convolution ANN 

was trained using synthetic images of the (modeled) object with randomly chosen 

orientations. 

Clearly, when object recognition is performed by teaching a classifier to 

recognize the whole object from a spatial pattern of pixel intensities, the complexity of 

the classifier grows exponentially with the size of the object and with the number of 

dimensions (2D versus 3D). An interesting approach that circumvents this problem is 

iterative search through the image for the object centre. The output of the ANN is the 

estimated displacement vector to the object centre. Depending on the contents of the 

scene, even context information may be required before the objects of interest can be 

recognized with confidence. The incorporation of context information may again lead to 

a large number of extra parameters and thereby a more complex classifier. To cope with 

this problem the so-called multiresolution approaches have been developed, which 

combine the intensities from pixels located on different levels of a pyramid but centered 

on around the same location. This provides the classifier with context information, but a 

combinatorial explosion in the number of parameters is circumvented. Still, variations in 

scale have to be learned explicitly by the classifier. A disadvantage of ANN pyramid 

approaches is that they sample the scale space coarsely as the resolution is reduced with a 

factor two at each level in the pyramid (in, e.g., the linear scale space , scale is a 

continuous variable). A special type of ANN that incorporates the scale information 

directly in a pyramidal form is the so-called higher-order ANN. This network builds up 

an internal scale-space-like representation by what is called coarse coding. However, 

higher-order ANNs need to learn variations in scale explicitly too. They should be used 

with caution because the coarse coding scheme may lead to aliasing, as the high-

resolution images are not blurred before computing the coarser image at the next level. 
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Recurrent ANNs (with feed-back loops ) can be used to develop special approaches for 

object recognition [179]. The added value of recurrent network architecture lies in its 

memory: the current state contains information about the past, which may constitute 

valuable context information. For instance, a recurrent network can be developed to 

perform a convolution with an image in order to detect oil spills. The recurrence principle 

introduces averaging, which can give a more robust performance. Several of the 

approaches for object detection and classification operate on binary images. Although 

binarisation simplifies the recognition problem considerably, it generally decreases the 

recognition performance of an ANN. 

 

7.2.4.2   Based on features 

Several neural-network approaches have been developed for feature-based object 

recognition including: feed-forward ANNs, Hopfield ANNs, fuzzy ANN and RAM 

ANNs. SOMs are occasionally used to perform feature extraction prior to object 

recognition, although SOMs have also been trained to perform object classification. The 

smaller variety of neural architectures developed for feature-based object recognition 

compared to the pixel-based approaches discussed in the previous section, reflects the 

fact that most effort is focused on developing and choosing the best features for the 

recognition task. Common for many feature-based approaches is that variations in 

rotation and scale are coped with by the features, e.g., statistical moments. A certain 

amount of noise will influence the computed features and deteriorate the recognition 

performance. So the major task of the subsequent classifier is to filter out noise and 

distortions propagated by the features. Moreover, when the object to be detected is large 

and needs to be sampled densely, feature extraction is inevitable. Otherwise, a neural 

classifier will contain so many parameters that a good generalization will be impeded. 

In general, the types of features that are used for object recognition differ from the 

features used by the neural-based segmentation approaches already discussed. For object 

recognition, the features typically capture local geometric properties: 

• points with a high curvature on the detected object contours; 

• (Gabor) filter banks including wavelets; 
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• dedicated features: stellate features and OCR features; 

• projection of the (sub)image onto the x- and y-axis; 

• principal components obtained from the image; 

• (distances to) feature space trajectories, which describe objects in all rotations, 

translations or scales; 

Multiresolution approaches have also been developed for object recognition based on 

features from: 

• the linear scale-space; 

• the Gauss pyramid; 

• the Laplace pyramid. 

 

Which set of features is best suited for a particular recognition task, depends on the 

variations among the objects (and of the background) with respect to position, (in-plane) 

orientation and scale. Knowledge of the degrees of freedom the approach has to cope 

with is needed for choosing a suited set of features. 

 

7.2.4.3   Using pixels or features as input? 

Most ANNs that have been trained to perform image segmentation or object recognition 

obtain as input either pixel/voxel data (input level A) or a vector consisting of local, 

derived features (input level B). For pixel- and voxel-based approaches, all information 

(within a window) is provided directly to the classifier. The perfect (minimal error-rate) 

classifier should, when based directly on pixel data, be able to produce the best result if 

the size of the window is comparable to that of the texture elements (texels) or the 

window encompasses the object and the (discriminative) surrounding background. When, 

on the other hand, the input to the classifier consists of a feature vector, the image content 

is always compressed. Whether sufficient discriminative information is retained in the 

feature vector, can only be resolved experimentally. 

Two-dimensional image modalities such as radiography, 2D ultrasound and 

remote sensing often exhibit concomitant variations in rotation and scale. If such 

invariances are not built into a pixel-based ANN, careful calibration (estimation of the 
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physical size of a pixel) and subsequent rescaling of the image to a standard resolution 

are required steps to ensure a confident result. When only rotations occur, features 

obtained from a polar mapping of the window may ensure a good segmentation or 

detection result. In many applications, however, calibration is unfeasible and 2D/3D 

rotation and scale invariance needs to be incorporated into the ANN. For pixel-based 

approaches, invariance can be either built directly into the neural classifier (e.g., using 

weight sharing or by taking symmetries into account), or the classifier has to be trained 

explicitly to cope with the variation by including training images in all relevant 

orientations and scales. A major disadvantage of these approaches is that object 

variations in rotation and scale have to be learned explicitly by the classifier (translation 

can usually be coped with by convolution). This again calls for a very large, complete 

training set and a classifier that can generalize well. Model-based approaches have been 

presented that can generate such a complete training set, see the discussion above. How 

to design robust pixel-based algorithms for segmentation and object recognition that can 

cope with the three basic affine transforms is a challenging subject for future research.  

In situations where many concomitant degrees of freedom occur (2D or 3D 

rotation, scale, affine greylevel transformations, changes in color, etc.), only feature-

based approaches may guarantee that the required invariance is fully obtained. It is clear 

that when variations in orientation and scale occur and reliable calibration is unfeasible, 

an ANN based on invariant features should be preferred above a pixel-based approach. 

Another advantage of feature-based approaches is that variations in rotation and scale 

may remain unnoticed by the user, who may then end up with a poor result. When there 

is no limited set of images on which an algorithm has to work (e.g., image database 

retrieval), the more flexible pixel-based methods can prove useful. 

The recommendation to prefer feature-based over pixel/voxel-based image 

processing (when significant variations in rotation and scale actually occur in the image 

material), puts emphasis on the art of developing and choosing features which, in concert, 

contain much discriminative power in relation to the particular image processing task. 

Prior knowledge regarding the image processing task (e.g., invariance) should guide the 

development and selection of discriminative features. Feature-based classifiers will, in 

general, be easier to train when the chosen features cope adequately with the degrees of 
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freedom intrinsic to the image material at hand. The removal of superfluous features is 

often necessary to avoid the peaking phenomenon and guarantee a good generalization 

ability of the classifier.  

 

7.2.4.4   Issues in pattern recognition 

When trying to solve a recognition problem, one may be faced with several problems that 

are fundamental to applied statistical pattern recognition: avoiding the curse of 

dimensionality, selecting the best features and achieving a good transferability. The first 

problem, the curse of dimensionality, occurs when too many input variables are provided 

to a classifier or regression function. The risk of ending up with a classifier or regressor 

that generalizes poorly on novel data increases with the number of dimensions of the 

input space. The problem is caused by the inability of existing classifiers to cope 

adequately with a large number of (possibly irrelevant) parameters, a deficiency that 

makes feature extraction and/or feature selection necessary steps in classifier 

development. Feature extraction has been discussed in detail in Section 7.2.2. Feature 

selection is, by virtue of its dependence on a trained classifier, an ill-posed problem. 

Besides offering a way to control the curse of dimensionality, feature selection also 

provides insight into the properties of a classifier and the underlying classification 

problem. 

A problem that is especially important in applications such as medical image 

processing is how to ensure the transferability of a classifier. When trained to classify 

patterns obtained from one setting with a specific class distribution, P(ωj), a classifier 

will have a poorer and possibly unacceptably low performance when transferred to a 

novel setting with another class distribution P’(ωj). How to cope with varying prior class 

distributions is a subject for future research. Another problem related to transferability is 

how to account for changing underlying feature distributions, p(x|ωj) or p(y|x). In 

general, the parameters of the classifier or regression function need to be re-estimated 

from a data set that is representative for the novel distribution. This problem is intrinsic to 

all statistical models as they are based on inductive inference. Note that for a classifier 

that has been trained, e.g., to recognize objects appearing at a certain scale directly from 

pixel data, recognition of similar objects at a different scale is equivalent to classifying 
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patterns from a novel distribution p’(x|ωj). Classifiers or regression models that have not 

been retrained, should catch patterns occurring outside the space spanned by the training 

cases and leave these patterns unprocessed, thereby avoiding the assignment of “wild-

guess” class labels or unreliable prediction of the conditional mean (in regression). 

Moreover, the question of how to incorporate costs of different misclassifications (again, 

an important topic in, e.g., medical image processing) or the computational costs of 

features, is not yet fully answered. 

 

7.2.4.5   Obstacles for pattern recognition in image processing 

Besides fundamental problems within the field of pattern recognition, other problems 

arise because statistical techniques are used on image data. First, most pixel-based 

techniques consider each pixel as a separate random variable. A related problem is how 

one should incorporate prior knowledge into pattern recognition techniques. Also, the 

evaluation of image processing approaches is not always straightforward. A challenging 

problem in the application of pattern recognition techniques on images is how to 

incorporate context information and prior knowledge about the expected image content. 

This can be knowledge about the typical shape of objects one wants to detect, knowledge 

of the spatial arrangement of textures or objects, or prior knowledge of a good 

approximate solution to an optimization problem. The key to restraining the highly 

flexible learning algorithms for ANNs lies in the very combination with prior (geometric) 

knowledge. However, most pattern recognition methods do not even use the prior 

information that neighboring pixel/voxel values are highly correlated.  

This problem can be circumvented by extracting features from images first, by 

using distance or error measures on pixel data which do take spatial coherency into 

account, or by designing ANN relations between objects in mind. Context information 

can also be obtained from the pyramid and scale space approaches discussed in Section 

7.4.1. In most applications, prior knowledge is mainly used to identify local features 

(input level B) that can be used as input to neural classifiers. Fuzzy ANNs may play a 

special role because they can be initialized with (fuzzy) rules elicited from domain 

experts. Using prior knowledge to constrain the highly parameterized (neural) classifiers 

is a scientific challenge. There is a clear need for a thorough validation of image 
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processing algorithms. Validation and comparison of different algorithms are only 

possible when a reliable gold standard exists and meaningful (objective) quality measures 

are available. For example, for object recognition, a gold standard is in most cases easy to 

obtain. In other applications, different (human) observers may not fully agree about the 

gold standard (e.g., segmentation of medical images). Even with a reliable gold standard 

being available, it is clear that performance assessment entails much more than simply 

computing error rates on novel test images. 

Finally, in image processing, classification and regression problems quickly 

involve a very large number of input dimensions, especially when the algorithms are 

applied directly to pixel data. This is problematic, due to the curse of dimensionality 

already discussed. However, the most interesting future applications promise to deliver 

even more input. Whereas, in applications, ANNs are applied to two-dimensional images, 

e.g., (confocal) microscopy and CT/MR (medical) imaging are three-dimensional 

modalities. One way to cope with this increased dimensionality is by feature-based 

pattern recognition, another way would be to develop architecture that inherently down 

samples the original image. As it is already mentioned, the search for the optimal set of 

features that in concert gives the best class separability is a never-ending quest. To avoid 

such a quest for all kinds of features that capture certain specific aspects in a (sub) image, 

a general mapping (invariant to changes in position, rotation and scale) of a (sub) image 

to a manifold subspace should be developed. This will change the focus from selection of 

individual features to optimization of the sampling density in the invariant space. 
 
7.2.5   Image understanding 

Image understanding is a complicated area in image processing. It couples techniques 

from segmentation or object recognition with knowledge of the expected image content. 

For example, ANNs can be used in combination with background knowledge to classify 

objects such as chromosomes from extracted structures (input level C) and to classify 

ships, which were recognized from pixel data (input level A) by an advanced modular 

approach. In another application, ANNs can be used to analyze camera images for robot 

control from local features (input level B). Neural (decision) trees, semantic models 

based on extracted structures (input level C) or neural belief networks can be used to 
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represent knowledge about the expected image content. This knowledge is then used to 

restrict the number of possible interpretations of single objects as well as to recognize 

different configurations of image objects.  

A major problem when applying ANNs for high level image understanding is 

their black-box character. It is virtually impossible to explain why a particular image 

interpretation is the most likely one. An approach to coping with the black-box problem 

is to use the generic explanation facility developed for ANNs or to use rule extraction. 

Another problem in image understanding relates to the level of the input data. When, for 

instance, seldom occurring features (input level C) or object positions (input level E) are 

provided as input to a neural classifier, a large number of images are required to establish 

statistically representative training and test sets. In general, it can be said that image 

understanding is the most dubious application of ANNs in the image processing chain. 

 

7.2.6   Optimization 

Some image processing (sub) tasks such as graph and stereo-matching can best be 

formulated as optimization problems, which may be solved by Hopfield ANNs. In some 

applications, the Hopfield network obtains pixel-based input (input level A); in other 

applications the input consists of local features (input level B) or detected structures 

(typically edges, input level C). Hopfield ANNs have been applied to the following 

optimization problems:  

• segmentation of an image with an intensity gradient by connecting edge pixels 

(input level A); 

• thresholding images by relaxation (input level A); 

• two-dimensional and three-dimensional object recognition by (partial) graph 

matching (input level C); 

• establishing correspondence between stereo images based on features (landmarks) 

and stereo correspondence between line cameras from detected edges; 

• approximation of a polygon from detected edge points; 

• controlling Voronoi pyramids. 
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Hopfield ANNs have mainly been applied to segmentation and recognition tasks that are 

too difficult to realize with conventional neural classifiers because the solutions entail 

partial graph matching or recognition of three-dimensional objects. Matching and 

recognition are both solved by letting the network converge to a stable state while 

minimizing the energy function. It was also shown that iterating the Hopfield network 

can be interpreted as a form of probabilistic relaxation. 

 

8.   Edge recognition in shared weight networks 

This paper particularly discusses, in detail, the design and implementation of shared 

weight ANNs for the task of edge recognition. The problem of edge recognition is treated 

here as a classification problem: the goal is to train an ANN to give high output for image 

samples containing edges and low output for samples containing uniform regions. This 

makes it different from edge detection, in which localization of the edge in the sample is 

important as well. A data set is constructed by drawing edges at 0o, 15o,. . .   ,345o angles 

in a 16×16 pixel binary image. In total, 24 edge images are created. An equal number of 

images just containing uniform regions of background or foreground pixels are then 

added, giving a total of 48 samples.  

 

 

 

                              
 

Figure 7.2 the edge samples in the edge data set. 
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8.1   Network architecture 

To implement edge recognition in a shared weight ANN, it should consist of at least 3 

layers (including the input layer). The input layer contains 16×16 units. The 14×14 unit 

hidden layer will be connected to the input layer through a 3×3 weight receptive field, 

which should function as an edge recognition template. The hidden layer should then, 

using bias, shift the high output of a detected edge into the nonlinear part of the transfer 

function, as a means of thresholding. Finally, a single output unit is needed to sum all 

outputs of the hidden layer and rescale to the desired training targets. The architecture 

described here is depicted in figure 8.1.  

This approach consists of two different subtasks. First, the image is convolved 

with a template (filter) which should give some high output values when an edge is 

present and low output values overall for uniform regions. Second, the output of this 

operation is (soft-) thresholded and summed, which is a nonlinear neighborhood 

operation. A simple summation of the convolved image (which can easily be 

implemented in a feed-forward ANN) will not do. Since convolution is a linear operation, 

for any template the sum of a convolved image will be equal to the sum of the input 

image multiplied by the sum of the template. This means that classification would be 

based on just the sum of the inputs, which (given the presence of both uniform 

background and uniform foreground samples, with sums smaller and larger than the sum 

of an edge image) is not possible. The data set was constructed like this on purpose, to 

prevent the ANN from finding trivial solutions.  

As the goal is to detect edges irrespective of their orientation, a rotation-invariant 

edge detector template is needed. The first order edge detectors known from image 

processing literature (Pratt, 1991; Young et al., 1998) cannot be combined into one linear 

rotation-invariant detector. However, the second order Laplacian edge detector can be. 

The resulting image processing operation is shown below the ANN in figure 8.1.  We 

have used the architecture just described with double sigmoid transfer functions in order 

to implement a rotation invariant edge recognizer. The training targets are set to t = 0.5 

for samples containing an edge and t = -0.5 for samples containing uniform regions. The 

first order edge detectors known from image processing literature (Pratt, 1991; Young et 
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al., 1998) cannot be combined into one linear rotation-invariant detector. However, the 

second order Laplacian edge detector can be.  

 
 

 
      Input layer (o)                                        Hidden layer (p)              Output layer (q) 
         16x16          14x14   1 
 
                     
                                                                                                                                   E             Edge 
    Input 
 
                                                                                                                                                  Uniform 
Figure 8.1: A sufficient ANN architecture for edge recognition. Weights and biases for 
hidden units are indicated by wpo and bp respectively. After the ANN architecture, the 
image processing operation is shown: convolution with the Laplacian template fL, pixel-
wise application of the sigmoid f(.), (weighted) summation and another application of the 
sigmoid. 
 
 
8.2    Training  

The network is trained using the conjugate gradient descent (CGD) training algorithm 

because this algorithm is less prone to finding local minima or diverging than back-

propagation, as it uses a line minimization technique to find the optimal step size in each 

iteration. The method has only one parameter, the number of iterations for which the 

directions should be kept conjugate to the previous ones and it is set to 10. In general, 

when an ANN is trained, the training algorithm should always take care of the danger of 

overtraining: instead of finding templates or feature detectors that are generally 

applicable, the weights are adapted too much to the training set at hand. However, here 

the artificial edge data set is constructed specifically to contain all possible edge 

orientations, so overtraining cannot occur. Therefore, no validation set is used. 

  f(.)   ∑   f(.)    fL
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8.3   Results  

When the network was trained, the MSE dropped below to 1 × 10-7 after 200 training 

cycles. After completing training, the network performance was tested and it was capable 

of recognizing any edge in an image regardless of its orientation. It is also observed that 

the sequence of presenting the sample data plays a crucial role in network convergence. 

That means we should not train the network completely with input vectors of one class, 

and then switch to another class: The network will forget the original training. 

 

8.4   Conclusion 

One of the major advantages of ANNs is that they are applicable to a wide variety of 

problems. There are, however, still caveats and fundamental problems that require 

attention. Some problems are caused by using a statistical, data-oriented technique to 

solve image processing problems; other problems are fundamental to the way ANNs 

work.  

 
Problems with data-oriented approaches: A problem in the application of data-oriented 

techniques to images is how to incorporate context information and prior knowledge 

about the expected image content. Prior knowledge could be knowledge about the typical 

shape of objects one wants to detect, knowledge of the spatial arrangement of textures or 

objects or of a good approximate solution to an optimization problem. According to 

(Perlovsky, 1998), the key to restraining the highly flexible learning algorithms ANNs 

are, lies in the very combination with prior knowledge. However, most ANN approaches 

do not even use the prior information that neighboring pixel values are highly correlated. 

The latter problem can be circumvented by extracting features from images first, by using 

distance or error measures on pixel data which do take spatial coherency into account 

(e.g. Hinton et al., 1997; Simard et al., 1993), or by designing an ANN with spatial 

coherency (e.g. Le Cun et al., 1989a; Fukushima and Miyake, 1982) or contextual 

relations between objects in mind. On a higher level, some methods, such as hierarchical 

object recognition ANNs can provide context information.  
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In image processing, classification and regression problems quickly involve a very large 

number of input dimensions, especially when the algorithms are applied directly on pixel 

data. This is problematic, as ANNs to solve these problems will also grow, which makes 

them harder to train. However, the most interesting future applications (e.g. volume 

imaging) promise to deliver even more input. One way to cope with this problem is to 

develop feature-based pattern recognition approaches; another way would be to design 

architecture that quickly adaptively down samples the original image. Finally, there is a 

clear need for thorough validation of the developed image processing algorithms 

(Haralick, 1994; De Boer and Smeulders, 1996). Unfortunately, only few of the 

publications about ANN applications ask the question whether an ANN really is the best 

way of solving the problem. Often, comparison with traditional methods is neglected.  

 

Problems with ANNs: Several theoretical results regarding the approximation 

capabilities of ANNs have been proven. Although feed-forward ANNs with two hidden 

layers can approximate any (even discontinuous) function to an arbitrary precision, 

theoretical results on, e.g., convergence, are lacking. The combination of initial 

parameters, topology and learning algorithm determines the performance of an ANN after 

its training has been completed. Furthermore, there is always a danger of overtraining an 

ANN, as minimizing the error measure occasionally does not correspond to finding a 

well-generalizing ANN. Another problem is how to choose the best ANN architecture. 

Although there is some work on model selection (Fogel, 1991; Murata et al., 1994), no 

general guidelines exist, which guarantee the best trade-off between model bias and 

variance for a particular size of the training set. Training unconstrained ANNs using 

standard performance measures such as the mean squared error might even give very 

unsatisfying results. This, we assume, is the reason why in a number of applications, 

ANNs were not adaptive at all or heavily constrained by their architecture. ANNs suffer 

from what is known as the black-box problem: the ANN, once trained, might perform 

well but offers no explanation on how it works. That is, given any input a corresponding 

output is produced, but it cannot be easily explained why this decision was reached, how 

reliable it is, etc. In some image processing applications, e.g., monitoring of (industrial) 

processes, electronic surveillance, biometrics, etc. a measure of the reliability is highly 
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necessary to prevent costly false alarms. In such areas, it might be preferable to use other, 

less well performing methods that do give a statistically profound measure of reliability.  

As it was mentioned, this paper specifically details the implementation of ANN 

based edge recognition, and the results show that ANNs can indeed be used as edge 

detectors. However, the presence of receptive fields in the architecture in itself does not 

guarantee that shift-invariant feature detectors will be found. Also, the mere fact that 

performance is good (i.e., the MSE is low) does not imply that such a feature extraction 

process is used. When the ANN was further restricted by sharing biases and other 

weights convergence became a problem. The explanation for this is that the optimal 

weight set is rather special in ANN terms, as the template has to have a zero DC 

component (i.e., its weights have to add up to zero). Although this seems to be a trivial 

demand, it has quite large consequences for ANN training. Optimal solutions correspond 

to a range of interdependent weights, which will result in long, narrow valleys in the 

MSE “landscape”. A small perturbation in one of the template weights will have large 

consequences for the MSE. Simple gradient descent algorithms such as back-propagation 

will fail to find these valleys, so the line-optimization step used by CGD becomes crucial. 

Another important observation was that there is a trade-off between complexity 

and the extent to which experiments are true-to-life on the one hand, and the possibility 

of interpretation on the other. This effect might be referred to as a kind of ANN 

interpretability trade-off. If an unrestricted ANN is trained on a real-world data set, the 

setup most closely resembles the application of ANNs in everyday practice. However, the 

subtleties of the data set and the many degrees of freedom in the ANN prevent gaining a 

deeper insight into the operation of the ANN. On the other side, once an ANN is 

restrained, e.g. by sharing or removing weights, lowering the number of degrees of 

freedom or constructing architectures only specifically applicable to the problem at hand, 

the situation is no longer a typical one. The ANN may even become too constrained to 

learn the task at hand. The same holds for editing a data set to influence its statistics or to 

enhance more preferable features with regard to ANN.  
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Appendix 
 
 
 
//********************************************************************* 
//                       THE HEADER FILE                              *    
//********************************************************************* 
 
 
#define NEURONHIGH   1.0          //neuron's high output value 

#define NEURONLOW    0.0          //neuron's low output value 

#define TRUE         1 

#define FALSE        0 

#define MAXLAYERS        3 

#define ALPHA            0.7 

#define EPOCH_SIZE       48 

#define MAX_ITERATION    200 

#define ERROR_THRESHOLD  0.001 

#define EPSILON          1e-4 
 
struct WEIGHTIMAGE 
{ 
 double data;          //weight value 

 int sneuron;          //source neuron for this weight 

 int dneuron;          //destination neuron for this weight 

 WEIGHTIMAGE *next; 
}; 
 
struct NETRESULTS 
{ 
 int index;            //neurons identification number 

 double value;         //neurons output value 

 char character;       //char representation of digit 

}; 
 
class CNetFileData 
{ 
 private: 

  double temperature;      //neurons temperature 

  double threshold;        //neurons firing threshold 

  int Nlayers;             //number of layers in the net 

  int neurons[MAXLAYERS];  //stores the number of neurons for  

       //each layer 
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int status;                         //error status (0 = OK)   

  WEIGHTIMAGE* weights[MAXLAYERS-1];  //temp weight storage  

        //area 
  void ADDweights(int,int,int,double ); 

  double GETweights(int,int,int); 
 
 public: 
  CNetFileData(); 

  int setupNet(char*, int); 
 
  double GetTemp() 
  { 
   return temprature; 
  } 
 
  double GetThresh() 
  { 
   return threshold; 
  } 
 
  int GetNlayers() 
  { 
   return Nlayers; 
  } 
 
  int GetLayerSize(int layer) 
  { 
   return neurons[layer]; 
  } 
 
  double GetWeight(int l, int d, int s) 
  { 
   return GETweights(l-1,d,s); 
  } 
  int GetStatus() 
  { 
   return status; 
  } 
 
}; 
 
 
//********************************************************************* 
//                   THE CWeight CLASS                                *       
//********************************************************************* 
 
 
class CNeuron;                       //forward reference 
 
class CWeight     
{ 
private: 
 CNeuron* SCRneuron;              //source neuron for this weight 

 double WtVal;                    //magnitude of weight 
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 CWeight* next;                   //hook so weights can be list  

         //members 
public: 
     CWeight(double w, CNeuron* SN) 
 { 
  next = (CWeight*)NULL; 

  SCRneuron = SN; 

  WtVal = w; 
 } 
 
 CNeuron* GetSCRNeuron() 
 { 
  return SCRneuron; 
 } 

double getWeight() 
 { 
  return WtVal; 
 } 
 
 void SetNext(CWeight* W) 
 { 
  next = W; 
 } 
 CWeight* GetNext() 
 { 
  return next; 
 } 
 
 void UpdateWeight(double wgt) 
 { 
  WtVal = wgt; 
 } 
  
}; 
 
 
//********************************************************************* 
//                   THE CLeftWeight CLASS                            *       
//********************************************************************* 
 
 
class CLeftWeight 
{ 
private: 
 CNeuron* lSCRneuron;             //source neuron for this weight 

 double lWtVal;                   //magnitude of weight 

 CLeftWeight *lnext;              //hook so weights can be list  

         //members 
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public: 
     CLeftWeight(double w, CNeuron *SN) 
 { 
  lnext = (CLeftWeight*)NULL; 

  lSCRneuron = SN; 

  lWtVal = w; 
 } 
 

CNeuron* GetlSCRNeuron() 
 { 
  return lSCRneuron; 
 } 
 
 double getlWeight() 
 { 
  return lWtVal; 
 } 
 
 void SetLeftNext(CLeftWeight* W) 
 { 
  lnext = W; 
 } 
 CLeftWeight* GetLeftNext() 
 { 
  return lnext; 
 } 
 
 void lUpdateWeight(double wgt) 
 { 
  lWtVal = wgt; 
 } 
 
}; 
 
 
//********************************************************************* 
//                   THE CRightWeight CLASS                                 
//********************************************************************* 
 
 
class CRightWeight 
{ 
private: 
 CNeuron* rSCRneuron;             //source neuron for this weight 
 double rWtVal;                   //magnitude of weight 
 CRightWeight *rnext;             //hook so weights can be list  
         //members 
   
public: 
     CRightWeight(double w, CNeuron *SN) 
 { 
  rnext = (CRightWeight*)NULL; 
  rSCRneuron = SN; 
  rWtVal = w; 
 } 
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 CNeuron* GetrSCRNeuron() 
 { 
  return rSCRneuron; 
 } 
 
 double getrWeight() 
 { 
  return rWtVal; 
 } 
 
 void SetRightNext(CRightWeight* W) 
 { 
  rnext = W; 
 } 
 
 CRightWeight* GetRightNext() 
 { 
  return rnext; 
 } 
 
 void rUpdateWeight(double wgt) 
 { 
  rWtVal = wgt; 
 } 
 
}; 
 
 
//********************************************************************* 
//                         THE CNeuron CLASS                          *             
//********************************************************************* 
 
 
class CNeuron 
{ 
private: 
 static double temprature; //holds a single copy for all neurons 

 static double threshold;  //holds a single copy for all neurons 

 double NET;     //holds sum of products 

 double bsweight;    //holds the bias weight 

 double localgrad;    //holds value of the local gradient 

 double error;    //holds error value 

 int id;                   //holds a neuron identification No. 

 double out;               //holds  a neuron output value 

 double outprime;    //holds f'(x) 

 CWeight* weight1;         //pointer to list of weight(head)  

 CWeight* weightL;    //pointer to list of weight(tail)  

 CLeftWeight* lweight1;    //pointer to list of weight(head)  

 CLeftWeight* lweightL;    //pointer to list of weight(tail)  

 CRightWeight *rweight1;   //pointer to list of weight(head)  
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 CRightWeight *rweightL;   //pointer to list of weight(tail)  

 int BiasFlg;              //1 = Bias neuron, 0 otherwise   

 CNeuron *next;            //hook to allow neurons to be a list  

              //members 
 double r; 

 double s; 

 double rprev; 

 double eta; 

public: 
  
CNeuron() 
 { 
  id = 0; 

  out = 0; 

  outprime = 0; 

  NET = 0.0; 

  bsweight = 0.01; 

  localgrad = 0; 

  eta = 0; 

  error = 0; 

  weight1 = (CWeight*)NULL; 

  lweight1 = (CLeftWeight*)NULL; 

  rweight1 = (CRightWeight*)NULL; 

  next = (CNeuron*)NULL; 

 } 
 
 CNeuron(int ident, int bias=0) 
 { 
  id = ident; 

  out = 0; 

  outprime = 0; 

  NET = 0.0; 

  bsweight = 0.01; 

  localgrad = 0; 

  eta = 0; 

  error = 0; 

  BiasFlg = bias; 

  weight1 = (CWeight*)NULL; 
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lweight1 = (CLeftWeight*)NULL; 

  rweight1 = (CRightWeight*)NULL; 

  next = (CNeuron*)NULL; 

 } 
  

void calc(int); 

 double GetWeight(int); 

 double GetLeftWeight(int); 

 double GetRightWeight(int); 

 CNeuron* GetSRCNeuron(int); 

 CNeuron* GetlSRCNeuron(int); 

 CNeuron* GetrSRCNeuron(int); 
 
 void SetNext(CNeuron *N) 
 { 
  next = N; 
 } 
 
 void SetLocalgrad1(double err) 
 { 
  localgrad = outprime*err; 
 } 
 
 void SetLocalgrad(double grad) 
 { 
  localgrad = grad; 
 } 
 
 double GetOutPrime() 
 { 
  return outprime; 
 } 
 
 double GetLocalGrad() 
 { 
  return localgrad; 
 } 
 
 CNeuron* GetNext() 
 { 
  return next; 
 } 
 
 void SetWeight(double, CNeuron*); 

 void SetLeftWeight(double, CNeuron*); 

 void SetRightWeight(double, CNeuron*); 

 void CalcLocalgrad(); 

 void UpdateWeight(double, int); 

 void lUpdateWeight(double, int); 
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 void rUpdateWeight(double, int); 

 void ModifyWeights(int); 

 int GetId() 
 { 
  return id; 
 } 
 
 double GetOut() 
 { 
  return out; 
 } 
 
 double GetNET() 
 { 
  return NET; 
 } 
 
 void SetTemperature(double tmpr) 
 { 
  temprature = tmpr; 
 } 
 
 void SetThreshold(double thrsh) 
 { 
  threshold = thrsh; 
 } 
 
 void SetOut(double val) 
 { 
  out = val; 
 } 
 
 int IsBias() 
 { 
  return BiasFlg; 
 } 
 
 void InitializeRS(); 
 
 double GetR() 
 { 
  return r; 
 } 
 
 double GetRprev() 
 { 
  return rprev; 
 } 
 
 double GetS() 
 { 
  return s; 
 } 
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void UpdateR(); 
 
 void UpdateS(); 
}; 
 
double CNeuron::temperature = 0.0; 

double CNeuron::threshold = 0.0; 

 
 
//********************************************************************* 
//                    THE CLayer CLASS                                *             
//********************************************************************* 
 
 
class CLayer 
{ 
private: 
 int LayerID;          //0 for input layer,1 for 1st hidden, ...  

 unsigned int Ncount;  //number fo neurons in layer 

 CNeuron* Neuron1;     //pointer to first neuron in layer  

 CNeuron* NeuronL;     //pointer to last neuron in layer          

 CLayer* next;     //hook so layers can be list members 

 CLayer* left;     //hook so layers can be list members 

 CLayer* right;     //hook so layers can be list members 

 
public: 
 CLayer(int, CNetFileData*); 

 int SetWeights(CNeuron*, CNetFileData*); 

 int SetSharedWeights(CNeuron*, CNetFileData*); 

 int SetSharedLeftWeights(CNeuron*, CNetFileData*); 

 int SetSharedRightWeights(CNeuron*, CNetFileData*); 

 void CalcLocalgrad(); 

 void ModifyWeights(int); 

 void SetNext(CLayer* Nlayer) 
 { 
  next = Nlayer; 
 } 
 
 void SetLeftLayer(CLayer* Nlayer) 
 { 
  left = Nlayer; 
 } 
 
 void SetRightLayer(CLayer* Nlayer) 
 { 
  right = Nlayer; 
 } 
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int GetLayerID() 
 { 
  return LayerID; 
 } 
 
 CNeuron* GetFirstNeuron() 
 { 
  return Neuron1; 
 } 
 
 CLayer* GetNext() 
 { 
  return next; 
 } 
 
 CLayer* GetLeftLayer() 
 { 
  return left; 
 } 
 
 CLayer* GetRightLayer() 
 { 
  return right; 
 } 
 
 unsigned int getCount() 
 { 
  return Ncount; 
 } 
 

void calc(int); 
 
 void InitializeRS(); 
 
}; 
 
 
//********************************************************************* 
//               THE CNetwork CLASS                                           
//********************************************************************* 
 
 
class CNetwork 
{ 
private: 
 int Alive;    //true when weights are valid 

 int netID;    //network number 

 CNetFileData  netdata;  //class to load saved weights 

 CNetFileData  leftnetdata; //class to load saved weights 

 CNetFileData  rightnetdata; //class to load saved weights 

 int Nlayers;                  //number of layers in the network  

 CLayer* INlayer;              //pointer to the input layer 

 CLayer* OUTlayer;             //pointer to the output layer 
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 CNetwork* left;   //pointer to the next network 

 CNetwork* right;   //pointer to the next network 

 
public: 
 
 CNetwork() 
 { 
  Alive = 0;  

  netID = 0; 

  left = (CNetwork*)NULL; 

  right = (CNetwork*)NULL; 

 } 
 
 int Setup(int); 

 void ApplyVector(); 

 void RunNetwork(); 

 int RequestNthOutNeuron(int, NETRESULTS*); 

 double RequestTemp(); 

 double RequestThresh(); 

 int RequestLayerSize(int); 

int GetAlive() 
 { 
  return Alive; 
 } 
 
 CLayer* GetINlayer() 
 { 
  return INlayer; 
 } 
 
 CLayer* GetOUTlayer() 
 { 
  return OUTlayer; 
 } 
 
 int SetSharedWeights(); 

 int SetSharedLeftWeights(); 

 int SetSharedRightWeights(); 

 void CalcLocalgrad(); 

 void ModifyWeights(); 

 void SetLeftNet(); 

 void SetRightNet(); 
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CNetwork* GetLeftNet() 
 { 
  return left; 
 } 
 
 CNetwork* GetRightNet() 
 { 
  return right; 
 } 
 
 void InitializeRS(); 
  
}; 
 
 
//********************************************************************* 
//               THE CEdgeDetectingNetworkView CLASS                                   
//********************************************************************* 
 
 
class CEdgeDetectingNetworkView : public CView 
{ 
protected: 
 int m_Row;                  //holds no. of rows of the image 

 int m_Column;      //holds no. of columns of the image 

 double m_Bias;      //holds the bias weight of the output 

 double m_Out;               //holds the network response 

 double m_Outprime;          //holds f'(m_Out) 

 double m_Error;             //holds the error value 

 double m_Avg_Error;         //holds the average error 

 double m_Localgrad;     //holds local gradient  

      //of the output neuron 
 BITMAP m_BM; 

 CBitmap m_Bitmap; 

 byte* image;                //an array used to store pixel 

    //values of the image 
 double avg[16][16];     //holds average of the sample images 

 UINT imageIndex[50];        //holds identifiers of sample images 

 double outputIndex[50];     //holds expected result  

 int sequence[50];           //holds sequence of input 

 double r0; 

 double r; 

 double rprev; 

 double s; 

 double eta; 
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public: 
 void SetupNet(); 

 void ForwardPass(); 

 void BackwardPass(); 

 void ModifyWeights(); 

 void CalcOut(); 

 void CalcLocalgrad(); 

 void DrawNeurons(CDC*); 

 void DrawLinks(CDC*); 

 void ReadImage(int); 

 char TrainNetwork(); 

 void RandomizeSamples(); 

 void CalcSampleAvg(UINT); 

 void BackProp(int); 

 void LineSearch(int); 

 void InitializeRS(); 

 double CalcResidue(); 

 void CalcBeta(); 

 void UpdateR(); 

 void UpdateS(); 

  
}; 
 
 
//****************************************************************** 
//                  GLOBAL VARIABLES       * 
//****************************************************************** 
 
double beta; 

double desired_out; 

double currentImage[16][16]; 

CNetwork* netptr[16]; 

CNetwork  net[16]; 

 

*************************************************************** 
**                    THE SOURCE FILE                        ** 
*************************************************************** 
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//************************************************************* 
//        METHODS FOR THE CNetFileData CLASS                  * 
//************************************************************* 
 
CNetFileData::CNetFileData() 
{ 
 for(int i=0;i<MAXLAYERS-1;i++) 
  weights[i] = (WEIGHTIMAGE*)NULL; 
} 
 
int CNetFileData::setupNet(char* wgt_file_name, int ntkID) 
{ 
 FILE *wgt_file_ptr; 

 double AWeight; 
 
 if((wgt_file_ptr = fopen(wgt_file_name , "r")) == NULL) 
 { 
  AfxMessageBox(wgt_file_name); 
  return 1; 
 } 
  
 threshold = 0; 

 temprature = 1.0;       

      Nlayers = 3;                   
 
 for(int i=0;i<MAXLAYERS;i++) 
  neurons[i] = 0; 
 
 neurons[0] = 16;   

 neurons[1] = 14;       

 neurons[2] = 1; 

 long offset = 56*ntkID*(sizeof(float)+sizeof(char));  
 
 if(ntkID>12) 
  offset+= 2*sizeof(char); 
  
 fseek(wgt_file_ptr,offset,0); 
     
 for(int lyr=1;lyr<Nlayers;lyr++) 
 { 
  if(lyr == 1) 
  { 
   int x = 0; 
   for(int dn=0; dn<neurons[lyr];dn++) 
   { 
     for(int sn=x; sn<x+3;sn++) 
     { 
     fscanf( wgt_file_ptr, "%lg", &AWeight ); 
     ADDweights(lyr-1,dn,sn,AWeight); 
     } 
     x++; 
   } 
  } 
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  else 
  { 
   for(int dn=0; dn<neurons[lyr];dn++) 
   { 
    for(int sn=0; sn<neurons[lyr-1];sn++) 
    { 
     fscanf( wgt_file_ptr, "%lg", &AWeight ); 
     ADDweights(lyr-1,dn,sn,AWeight); 
    } 
   } 
  } 
 } 
 
 fclose(wgt_file_ptr); 
 return 0; 
} 
 
void CNetFileData::ADDweights(int l,int d, int s, double w) 
{ 
 WEIGHTIMAGE *Wl = weights[l], 
  *Wnew = new WEIGHTIMAGE, 
  *cursor, 
  *trailer; 
 Wnew->data = w; 
 Wnew->dneuron = d; 
 Wnew->sneuron = s; 
 Wnew->next = (WEIGHTIMAGE*)NULL; 
 if(Wl) 
 { 
  cursor = Wl; 
  trailer = (WEIGHTIMAGE*)NULL; 
   

while(cursor) 
  { 
   trailer = cursor; 
   cursor = cursor->next; 
  } 
 
  trailer->next = Wnew; 
 } 
 
 else 
  weights[l] = Wnew; 
} 
 
double CNetFileData::GETweights(int l, int d, int s) 
{ 
 WEIGHTIMAGE *Wl = weights[l]; 
 while(Wl) 
 { 
  if((Wl->sneuron == s) && (Wl->dneuron == d)) 
  { 
   status = 0; 
   return Wl->data; 
  } 
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Wl = Wl->next; 
 } 
 status = 1; 

 return 0.0; 
} 
 
 
//*************************************************************** 
//    METHODS FOR THE CNeuron CLASS                             * 
//*************************************************************** 
 
 
void CNeuron::SetWeight(double Wght, CNeuron* ScrPtr) 
{ 
 CWeight* W = new CWeight(Wght,ScrPtr); 

 if(weight1 == NULL) 

  weight1 = weightL = W; 

 else 
 { 
  weightL->SetNext(W); 

  weightL = W; 
 } 
} 
 
void CNeuron::SetLeftWeight(double lWght, CNeuron* lScrPtr) 
{ 
  
 CLeftWeight *lW = new CLeftWeight(lWght, lScrPtr); 
  
 if(lweight1 == NULL) 
  lweight1 = lweightL = lW; 
  
 else 
 { 
  lweightL->SetLeftNext(lW); 
  lweightL = lW; 
   
 } 
} 
 
void CNeuron::SetRightWeight(double rWght, CNeuron* rScrPtr) 
{ 
 CRightWeight *rW = new CRightWeight(rWght, rScrPtr); 
 if(rweight1 == NULL)  
  rweight1 = rweightL = rW; 
 else 
 { 
  rweightL->SetRightNext(rW); 
  rweightL = rW; 
 } 
} 
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double CNeuron::GetWeight(int pos) 
{ 
 CWeight *W = weight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetNext(); 
 
 return W->getWeight(); 
} 
 
double CNeuron::GetLeftWeight(int pos) 
{ 
 CLeftWeight *W = lweight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetLeftNext(); 
   
 return W->getlWeight(); 
} 
 
double CNeuron::GetRightWeight(int pos) 
{ 
 CRightWeight *W = rweight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetRightNext(); 
 
 return W->getrWeight(); 
} 
 
CNeuron* CNeuron::GetSRCNeuron(int pos) 
{ 
 CWeight *W = weight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetNext(); 
 
 return W->GetSCRNeuron(); 
} 
 
CNeuron* CNeuron::GetlSRCNeuron(int pos) 
{ 
 CLeftWeight *W = lweight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetLeftNext(); 
 
 return W->GetlSCRNeuron(); 
} 
 
CNeuron* CNeuron::GetrSRCNeuron(int pos) 
{ 
 CRightWeight *W = rweight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetRightNext(); 
 
 return W->GetrSCRNeuron(); 
} 
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void CNeuron::calc(int outlayer) 
{ 
 int counter; 
 if(outlayer) 
  counter = 14; 
 else 
  counter = 3; 
  
 for(int src=0; src < counter; src++) 
 { 
  NET+= GetWeight(src)*GetSRCNeuron(src)->GetOut(); 
 
  if(!outlayer) 
  { 

NET+= GetLeftWeight(src)*GetlSRCNeuron(src)-  
 >GetOut()+ 

      GetRightWeight(src)*GetrSRCNeuron(src)- 
    >GetOut(); 
  } 
 
 } 
 
 //add bias 
 if(!outlayer) 
  NET+= bsweight; 
   
 out = 2/(1+exp(-(NET + threshold)/temprature)); 
   
 outprime = 2*out*(1-out)/temprature; 
} 
 
void CNeuron::CalcLocalgrad() 
{ 
 //calc localgrads of neurons of the middle layer 
 for(int src=0;src<14;src++) 
  GetSRCNeuron(src)->SetLocalgrad1(localgrad*GetWeight(src)); 
} 
 
void CNeuron::UpdateWeight(double wnew, int pos) 
{ 
 CWeight* W = weight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetNext(); 
 W->UpdateWeight(wnew); 
} 
 
void CNeuron::lUpdateWeight(double wnew, int pos) 
{ 
 CLeftWeight* W = lweight1; 
 for(int i=0;i<pos;i++) 
  W = W->GetLeftNext(); 
 W->lUpdateWeight(wnew); 
} 
 
void CNeuron::rUpdateWeight(double wnew, int pos) 
{ 
 CRightWeight* W = rweight1; 
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 for(int i=0;i<pos;i++) 
  W = W->GetRightNext(); 
 W->rUpdateWeight(wnew); 
} 
 
void CNeuron::ModifyWeights(int outlayer) 
{ 
 int counter; 
 
 if(outlayer) 
 { 
  eta = 0.07; 
  counter = 14; 
 } 
 else 
 { 
  counter = 3; 
  eta = 0.58; 
 } 
 
 double wnew, deltaweight; 

 double lwnew, ldeltaweight; 

 double rwnew, rdeltaweight, bdeltaweight; 

 static double deltaprev, ldeltaprev, rdeltaprev, bdeltaprev; 

 deltaprev = ldeltaprev = rdeltaprev = bdeltaprev = 0.0; 

for(int src=0;src<counter;src++) 
 { 
  //update weight 

  deltaweight = ALPHA*deltaprev +  

  eta*localgrad*GetSRCNeuron(src)->GetOut(); 

  wnew = GetWeight(src) + deltaweight; 

  //wnew = GetWeight(src) + s*eta; 

  UpdateWeight(wnew, src); 

  deltaprev = deltaweight; 
   
  if(!outlayer) 
  { 
   //update left weight 

   ldeltaweight = ALPHA*ldeltaprev +  

   eta*localgrad*GetlSRCNeuron(src)->GetOut(); 

   lwnew = GetLeftWeight(src) + ldeltaweight; 

   //lwnew = GetLeftWeight(src) + s*eta; 

   lUpdateWeight(lwnew, src); 

   ldeltaprev = ldeltaweight; 

   //update right weight 
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rdeltaweight = ALPHA*rdeltaprev +  

   eta*localgrad*GetrSRCNeuron(src)->GetOut(); 

   rwnew = GetRightWeight(src) + rdeltaweight; 

   //rwnew = GetRightWeight(src) + s*eta; 

   rUpdateWeight(rwnew, src); 

   rdeltaprev = rdeltaweight; 

   //update the bias weight 

   bdeltaweight = ALPHA*bdeltaprev + eta*localgrad; 

   bsweight += eta*localgrad; 

   bdeltaprev = bdeltaweight; 

   //bsweight+= eta*s; 

  } 
     
 } 
 
} 
 
void CNeuron::InitializeRS() 
{ 
 r = rprev = -localgrad; 
 s = -localgrad; 
} 
 
void CNeuron::UpdateS() 
{ 
 s = r + beta*s; 
 
 rprev = r; 
 
} 
 
void CNeuron::UpdateR() 
{ 
 r = -localgrad; 
} 
 
 
//**************************************************************** 
//                   METHODS FOR THE CLayer CLASS                * 
//**************************************************************** 
 
 
CLayer::CLayer(int layer_id, CNetFileData* netdata) 
{ 
 CNeuron* Nptr; 

 LayerID = layer_id; 

 Neuron1 = (CNeuron*)NULL; 

 NeuronL = (CNeuron*)NULL; 

 next = (CLayer*)NULL; 
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 left = (CLayer*)NULL; 

 right = (CLayer*)NULL; 

 //Get # of neurons in #layer_id 

 Ncount = netdata->GetLayerSize(layer_id); 
  
 for(unsigned int i=0; i<Ncount;i++)   
 { 
  if(i == Ncount) 
  { 
   Nptr = new CNeuron(i, TRUE); 
  } 
  else 
  { 
   Nptr = new CNeuron(i); 
  } 
 
  //attach neuron to the list 
  if(Neuron1 == NULL) 
  { 
   Neuron1 = NeuronL = Nptr; 
  } 
   

else 
  { 
   NeuronL->SetNext(Nptr); 
   NeuronL = Nptr; 
  } 
 
 } 
 
} 
 
void CLayer::calc(int outlayer)    
{ 
 CNeuron* Nptr = Neuron1; 

 while(Nptr) 
 { 
  Nptr->calc(outlayer);   

  Nptr = Nptr->GetNext(); 
   
 } 
} 
 
int CLayer::SetSharedWeights(CNeuron* PrevNeuron, CNetFileData*  
netdata) 
{ 
 CNeuron* CurNeuron = Neuron1, *PrevPtr; 

 double ZWeight = 0.0; 

 int curx = 0, 

  prevx =0, 
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status = 0, 

  counter; 

 while(CurNeuron != NULL) 
 { 
  if(!CurNeuron->IsBias()) 
  { 
   PrevPtr = PrevNeuron; 

   counter = 0; 

   while(PrevPtr && (counter < 3)) 
   { 
    ZWeight = netdata->GetWeight(LayerID, curx,  

         prevx++); 

    status = netdata->GetStatus(); 

    if(status > 0) 

     return status; 

    CurNeuron->SetWeight(ZWeight, PrevPtr); 

    PrevPtr = PrevPtr->GetNext(); 

    counter++; 
   } 
  } 
 

curx++; 

  prevx = prevx-3; 

  prevx++; 

  CurNeuron = CurNeuron->GetNext(); 

  PrevNeuron = PrevNeuron->GetNext(); 
 } 
 return status; 
} 
 
int CLayer::SetWeights(CNeuron* PrevNeuron, CNetFileData* netdata) 
{ 
 CNeuron* CurNeuron = Neuron1, *PrevPtr; 

 double ZWeight = 0.0; 

 int curx = 0, 

  prevx, 

  status = 0; 
  

while(CurNeuron != NULL) 
 { 
  if(!CurNeuron->IsBias()) 
  { 
   PrevPtr = PrevNeuron; 

   prevx = 0; 
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while(PrevPtr) 
   { 
    ZWeight = netdata->GetWeight(LayerID, curx,  

         prevx++); 

    status = netdata->GetStatus(); 

    if(status > 0) 

     return status; 

    CurNeuron->SetWeight(ZWeight, PrevPtr); 

    PrevPtr = PrevPtr->GetNext(); 
   } 
  } 
  curx++; 
  CurNeuron = CurNeuron->GetNext(); 
 } 
 return status; 
} 
 
int CLayer::SetSharedLeftWeights(CNeuron* lPrevNeuron, CNetFileData* 
leftnetdata) 
{ 
 CNeuron* CurNeuron = Neuron1, *lPrevPtr; 

 double ZWeight = 0.0; 

 int curx = 0, 

 lprevx =0, 

 status = 0, 

 counter; 

 while(CurNeuron != NULL) 
 { 
  if(!CurNeuron->IsBias()) 
  { 
   lPrevPtr = lPrevNeuron; 

   counter = 0; 

   while(lPrevPtr && (counter < 3)) 

   { 

    ZWeight = leftnetdata->GetWeight(LayerID, curx,  

         lprevx++); 

    status = leftnetdata->GetStatus(); 

    if(status > 0) 

     return status; 

    CurNeuron->SetLeftWeight(ZWeight, lPrevPtr); 

    lPrevPtr = lPrevPtr->GetNext(); 

    counter++; 

   } 
  } 
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     curx++; 

  lprevx = lprevx-3; 

  lprevx++; 

  CurNeuron = CurNeuron->GetNext(); 

  lPrevNeuron = lPrevNeuron->GetNext(); 

 } 
 return status; 
} 
 
int CLayer::SetSharedRightWeights(CNeuron* rPrevNeuron, CNetFileData* 
rightnetdata) 
{ 
 CNeuron* CurNeuron = Neuron1, *rPrevPtr; 

 double ZWeight = 0.0; 

 int curx = 0, 

  rprevx =0, 

  status = 0, 

  counter; 

 while(CurNeuron != NULL) 
 { 
  if(!CurNeuron->IsBias()) 
  { 
   rPrevPtr = rPrevNeuron; 

   counter = 0; 

   while(rPrevPtr && (counter < 3)) 
   { 
    ZWeight = rightnetdata->GetWeight(LayerID,  

         curx, rprevx++); 

    status = rightnetdata->GetStatus(); 

    if(status > 0) 

     return status; 

    CurNeuron->SetRightWeight(ZWeight, rPrevPtr); 

    rPrevPtr = rPrevPtr->GetNext(); 

    counter++; 

   } 
  } 
  curx++; 

  rprevx = rprevx-3; 

  rprevx++; 

  CurNeuron = CurNeuron->GetNext(); 

  rPrevNeuron = rPrevNeuron->GetNext(); 

 } 
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return status; 
} 
 
void CLayer::CalcLocalgrad() 
{ 
 Neuron1->CalcLocalgrad(); 
} 
 
void CLayer::ModifyWeights(int outlayer) 
{ 
 CNeuron* Nptr = Neuron1; 
  

while(Nptr) 
 { 
  Nptr->ModifyWeights(outlayer); 
  Nptr = Nptr->GetNext(); 
 } 
} 
 
void CLayer::InitializeRS() 
{ 
 CNeuron* Nptr = GetFirstNeuron(); 

 while(Nptr) 

 { 

  Nptr->InitializeRS(); 

  Nptr = Nptr->GetNext(); 

 } 
} 
 
 
//**************************************************************** 
//                 METHODS FOR THE CNetwork CLASS                * 
//**************************************************************** 
 
 
int CNetwork::Setup(int n)   
{ 
 char* wgt_file_name = "weights.wgt"; 

 char* lwgt_file_name = "lweights.wgt"; 

 char* rwgt_file_name = "rweights.wgt"; 

 netID = n; 

 int status = 0; 

 int lstatus = 0; 

 int rstatus = 0; 

 status = netdata.setupNet(wgt_file_name, n); 

 lstatus = leftnetdata.setupNet(lwgt_file_name, n); 

 rstatus = rightnetdata.setupNet(rwgt_file_name, n); 
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if((status > 0)||(lstatus > 0)||(rstatus > 0)) 
  return 1; 
 
 CLayer *Lptr; 

 CNeuron N; 

 Nlayers = netdata.GetNlayers(); 

 N.SetTemperature(netdata.GetTemp());   

 N.SetThreshold(netdata.GetThresh());   
  
 for(int i=0; i<Nlayers; i++) 
 { 
  Lptr = new CLayer(i,&netdata); 
  if(i == 0) 
  { 
   INlayer = OUTlayer = Lptr; 
 
  } 
   
  else 
  { 
   OUTlayer->SetNext(Lptr);  
 
   //assuming there are only three layers 
 
   OUTlayer->SetRightLayer(Lptr); 
 
   if(i == 1) 

    Lptr->SetLeftLayer(INlayer); 

   else if(i == 2) 

    Lptr->SetLeftLayer(INlayer->GetRightLayer()); 

   OUTlayer = Lptr; 
  } 
 } 
 
 status = SetSharedWeights();     

 Alive = 1; 

 return 0; 

} 
 
int CNetwork::SetSharedWeights() 
{ 
 CLayer *L1ptr = INlayer, 

    *L2ptr = INlayer->GetNext();   

 int status =0; 

      status = L2ptr->SetSharedWeights(L1ptr->GetFirstNeuron(),  

   &netdata); 
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L1ptr = L1ptr->GetNext();     

 L2ptr = L2ptr->GetNext();  

 status = L2ptr->SetWeights(L1ptr->GetFirstNeuron(), &netdata); 

 return status; 

} 
 
int CNetwork::SetSharedLeftWeights() 
{ 
 int status = 0; 

 if(netID!=0) 
 { 
  CLayer* L2ptr = INlayer->GetRightLayer();   

  CNetwork* netptr = GetLeftNet(); 

  CLayer* L1ptr = netptr->GetINlayer(); 

  status = L2ptr->SetSharedLeftWeights(L1ptr- 

      >GetFirstNeuron(), &leftnetdata); 

 } 
  

return status; 
} 
 
int CNetwork::SetSharedRightWeights() 
{ 
 int status = 0; 

 if(netID!=15) 
 { 
  CLayer *L2ptr = INlayer->GetRightLayer();  

  CNetwork* netptr = GetRightNet(); 

  CLayer *L1ptr = netptr->GetINlayer(); 

       status = L2ptr->SetSharedRightWeights(L1ptr-  

                    >GetFirstNeuron(), &rightnetdata); 

 } 

 return status; 

} 
 
void CNetwork::CalcLocalgrad() 
{ 
 OUTlayer->CalcLocalgrad(); 
} 
 
void CNetwork::ModifyWeights() 
{ 
 CLayer* Lptr = OUTlayer; 

 int outlayer = 1; 
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while(Lptr && (Lptr!=INlayer)) 

 { 

  if(Lptr->GetLeftLayer() == INlayer) 

   outlayer = 0; 

  Lptr->ModifyWeights(outlayer); 

  Lptr = Lptr->GetLeftLayer(); 

 } 
} 
 
void CNetwork::ApplyVector() 
{ 
 double InpVect[16];   

 for(int i=0;i<16;i++) 

  InpVect[i] = currentImage[netID][i]; 

 CLayer* Lptr =  INlayer;    

 CNeuron* Nptr = Lptr->GetFirstNeuron(); 

 i = 0; 

 while(Nptr&&!(Nptr->IsBias()))  

 { 

  Nptr->SetOut(InpVect[i]); 

  Nptr = Nptr->GetNext(); 

  i++; 

 } 

} 
 
void CNetwork::RunNetwork() 
{ 
 CLayer *Lptr = INlayer->GetNext();  

 int out_layer = 0; 

 while(Lptr) 

 { 

  if(Lptr->GetNext() == NULL) 

   out_layer = 1; 

    Lptr->calc(out_layer); 

  Lptr = Lptr->GetNext(); 

 } 

} 
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void CNetwork::SetLeftNet() 
{ 
 if(netID == 0) 

  left = (CNetwork*)NULL; 

 else 

  left = netptr[netID-1]; 

 
} 
 
void CNetwork::SetRightNet() 
{ 
 if(netID == 15) 

  right = (CNetwork*)NULL; 

 else 

  right = netptr[netID+1]; 

 
} 
 
void CNetwork::InitializeRS() 
{ 
 CLayer* Lptr = INlayer->GetNext(); 
 while(Lptr) 
 { 
  Lptr->InitializeRS(); 
  Lptr = Lptr->GetRightLayer(); 
 } 
 
} 
 
 
//**************************************************************** 
//      METHODS FOR THE CEdgeDetectingNetworkView CLASS          * 
//**************************************************************** 
 
 
void CEdgeDetectingNetworkView::OnNetworkOutput()  
{ 
 CNetResponse responsedlg; 

 responsedlg.m_Desired_Out = desired_out; 

 responsedlg.m_Output = m_Out; 

 responsedlg.m_Error = m_Error; 

 responsedlg.m_AvgError = m_Avg_Error; 

 responsedlg.DoModal(); 
  
} 
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void CEdgeDetectingNetworkView::OnNetworkTrain()  
{ 
 char ch = TrainNetwork(); 

 if(ch == ‘s’) 

      AfxMessageBox("Successful Training : The Error did Converge ");          

 else 

  AfxMessageBox("UnSuccessful Training  : The Error did not  

       Converge"); 

} 
 
void CEdgeDetectingNetworkView::OnNetworkTest()  
{ 
 ReadImage(49); 

 ForwardPass(); 

 CTestNetwork testdlg; 

 testdlg.m_ExpectedOutPut = desired_out; 

 testdlg.m_NetworkOutPut = m_Out; 

 testdlg.DoModal(); 

} 
 
void CEdgeDetectingNetworkView::SetupNet() 
{ 
 //create 16 independent nets 

 for(int i=0;i<16;i++) 
 { 
  net[i].Setup(i); 

  netptr[i] = &net[i]; 

 } 
 
 //hook up nets to their left and right neighbors 

 for(i=0;i<16;i++) 
 { 
  netptr[i]->SetLeftNet(); 

  netptr[i]->SetRightNet(); 

 } 
 
 for(i=1;i<15;i++) 
 { 
  netptr[i]->SetSharedLeftWeights(); 

  netptr[i]->SetSharedRightWeights(); 

 } 
} 
 

 109



void CEdgeDetectingNetworkView::ForwardPass() 
{ 
 //apply input vector 

 for(int i=0;i<16;i++) 

  netptr[i]->ApplyVector(); 

 //calculate output of each network  

 for(i=1;i<15;i++) 

  netptr[i]->RunNetwork(); 

 CalcOut(); 

} 
 
void CEdgeDetectingNetworkView::CalcOut() 
{ 
 double sum_of_prod = 0.0; 

 CNeuron* Nptr; 

 for(int i=1;i<15;i++) 

 { 

  Nptr = netptr[i]->GetOUTlayer()->GetFirstNeuron(); 

  sum_of_prod += Nptr->GetNET(); 

 } 

 //add bias weight 

 sum_of_prod+= m_Bias; 

 m_Out = 2/(1+exp(-(sum_of_prod)));  

 m_Outprime = 2*m_Out*( 1 - m_Out); 

 m_Error = desired_out - m_Out; 

 //update the bias weight 

 //m_Bias += eta*s;  

} 
 
void CEdgeDetectingNetworkView::BackProp(int n) 
{ 
 ReadImage(sequence[n]); 

 ForwardPass(); 

 CalcLocalgrad(); 

} 
 
void CEdgeDetectingNetworkView::ModifyWeights() 
{ 
 static double deltaprev = 0.0; 

 double deltaweight = ALPHA*deltaprev + eta*m_Bias; 

 m_Bias+= deltaweight; 
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deltaprev = deltaweight; 

 for(int i=1;i<15;i++) 

 netptr[i]->ModifyWeights(); 

} 
 
void CEdgeDetectingNetworkView::InitializeRS() 
{ 
 s = -m_Localgrad; 

 r = rprev = -m_Localgrad; 

 for(int i=1;i<15;i++) 

  netptr[i]->InitializeRS(); 

} 
 
double CEdgeDetectingNetworkView::CalcResidue() 
{ 
 double residue = 0.0; 

 for(int i=1;i<15;i++) 
 { 
  CLayer* Lptr = netptr[i]->GetINlayer()->GetNext(); 

  while(Lptr) 
  { 
   CNeuron* Nptr = Lptr->GetFirstNeuron(); 

   while(Nptr) 
   { 
    residue+= (Nptr->GetR())*(Nptr->GetR()); 

    Nptr = Nptr->GetNext(); 

   } 
   Lptr = Lptr->GetNext(); 
 
  } 
 } 
 
 return sqrt(residue); 
} 
 
void CEdgeDetectingNetworkView::CalcBeta() 
{ 
 double r = 0, rsqr = 0; 

 for(int i=1;i<15;i++) 
 { 
  CLayer* Lptr = netptr[i]->GetINlayer()->GetNext(); 

  while(Lptr) 
  { 
   CNeuron* Nptr = Lptr->GetFirstNeuron(); 
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while(Nptr) 
   { 
    double tmp1 = Nptr->GetR(); 

    double tmp2 = Nptr->GetRprev(); 

    r+= tmp1*(tmp1 - tmp2); 

    rsqr+= tmp2*tmp2; 

    //r+= Nptr->GetR()*(Nptr->GetR() - Nptr- 

          >GetRprev()); 

    //rsqr+= Nptr->GetR()*Nptr->GetR(); 

    Nptr = Nptr->GetNext(); 

   } 

   Lptr = Lptr->GetNext(); 

  } 
 
 } 
 
 beta = r/rsqr; 

 if(beta<0) 

  beta = 0; 

} 
 
void CEdgeDetectingNetworkView::LineSearch(int n) 
{ 
 double sm, psp, psm; 

 double g, g_1stderiv, g_2nderiv, h, h_1stderiv, h_2nderiv; 

 double G,G_1stderiv, H, H_1stderiv, firstderiv, seconderiv; 

 eta = -10; 

 for(int i=0;i<n;i++) 
 { 
  for(int j=0;j<EPOCH_SIZE; j++) 
  { 
   ForwardPass(); 

 

   for(int k=0;k<15;k++) 
   { 
    CNeuron* Nptr = netptr[i]->GetOUTlayer()- 
                    >GetFirstNeuron(); 

    psp+= Nptr->GetNET(); 

    Nptr = netptr[i]->GetINlayer()->GetNext()- 

      >GetFirstNeuron(); 
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while(Nptr) 
    { 
     sm+= Nptr->GetOut()*Nptr->GetS(); 
     Nptr = Nptr->GetNext(); 
    } 
   } 
 
   psp+= m_Bias; 

   psm = psp/sm; 

   double tmp1 = exp(-sm*(eta + psm)); 

   g = 4-desired_out*(1 + tmp1); 

   g_1stderiv = 4*sm*desired_out*tmp1; 

   g_2nderiv = -4*sm*sm*desired_out*tmp1; 

   h = pow(1+tmp1, 2); 

   h_1stderiv = -2*sm*(1 + tmp1)*tmp1; 

   double tmp2 = exp(-2*sm*(eta + psm)); 

   h_2nderiv = 2*sm*sm*(2 + tmp2 + tmp1); 

   G = g_1stderiv*h - g*h_1stderiv; 

   G_1stderiv = g_2nderiv*h - g*h_2nderiv; 

   H = h*h; 

   H_1stderiv = 2*h*h*h_1stderiv; 

   firstderiv += (G/H); 

   seconderiv += (G_1stderiv*H - G*H_1stderiv)/(H*H); 

  } 

 
  firstderiv/= 96; 

  seconderiv/= 96; 

  eta = eta - (firstderiv/seconderiv); 
 
 } 
} 
 
void CEdgeDetectingNetworkView::UpdateR() 
{ 
 r = -m_Localgrad; 

 for(int i=1;i<15;i++) 
 { 
  CLayer* Lptr = netptr[i]->GetINlayer()->GetNext(); 

  while(Lptr) 
  { 
   CNeuron* Nptr = Lptr->GetFirstNeuron(); 
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while(Nptr) 
   { 
    Nptr->UpdateR(); 

    Nptr = Nptr->GetNext(); 
   } 
   Lptr = Lptr->GetNext(); 
  } 
 } 
 
} 
 
void CEdgeDetectingNetworkView::UpdateS() 
{ 
 s = r + beta*s; 
 rprev = r; 
 for(int i=1;i<15;i++) 
 { 
  CLayer* Lptr = netptr[i]->GetINlayer()->GetNext(); 
  while(Lptr) 
  { 
   CNeuron* Nptr = Lptr->GetFirstNeuron(); 

   while(Nptr) 
   { 
    Nptr->UpdateS(); 
    Nptr = Nptr->GetNext(); 
   } 
 
   Lptr = Lptr->GetNext(); 
  } 
 } 
} 
 
void CEdgeDetectingNetworkView::BackwardPass() 
{ 
 CalcLocalgrad(); 

 for(int i=1;i<15;i++) 

  netptr[i]->ModifyWeights(); 

} 
 
void CEdgeDetectingNetworkView::CalcLocalgrad() 
{ 
 m_Localgrad = m_Outprime*m_Error; 
 for(int i=1;i<15;i++) 
 { 
  netptr[i]->GetOUTlayer()->GetFirstNeuron() 
                          ->SetLocalgrad(m_Localgrad); 
  netptr[i]->CalcLocalgrad(); 
 } 
} 
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void CEdgeDetectingNetworkView::ReadImage(int offset) 
{ 
 UINT nResource = imageIndex[offset]; 

 desired_out = outputIndex[offset]; 

 m_Bitmap.LoadBitmap(nResource); 

 m_Bitmap.GetObject(sizeof(m_BM),&m_BM); 

 m_Row = m_BM.bmHeight; 

 m_Column = m_BM.bmWidth; 

 image = new byte[m_Row*m_Column]; 

 m_Bitmap.GetBitmapBits(m_Row*m_Column, image); 

 //copy array to currentImage, eqn used is y = 2x/255 - 1. 

 //and subtract its mean from it 

 //double mean = 0; 

 for(int i=0;i<m_Row;i++) 
 { 
  for(int j=0;j<m_Column;j++) 
  { 
   currentImage[i][j] =  (image[i*m_Column+j] –  
           127.5)/255.0;  
  } 
 } 
  
 m_Bitmap.DeleteObject(); 
 
} 
 
void CEdgeDetectingNetworkView::CalcSampleAvg(UINT nResource) 
{ 
 m_Bitmap.LoadBitmap(nResource); 

 m_Bitmap.GetObject(sizeof(m_BM),&m_BM); 

 m_Row = m_BM.bmHeight; 

 m_Column = m_BM.bmWidth; 

 image = new byte[m_Row*m_Column]; 

 m_Bitmap.GetBitmapBits(m_Row*m_Column, image); 
 
 for(int i=0;i<m_Row;i++) 
  for(int j=0;j<m_Column;j++) 

   avg[i][j]+= ((2.0*image[i*m_Column+j] –  
      255)/255.0)/48;  
 
 m_Bitmap.DeleteObject(); 
    
} 
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char CEdgeDetectingNetworkView::TrainNetwork() 
{ 
 char ch = 'f'; 

 int n = 10, m = 0, i = 0; 

 double r_abs, r0_abs; 

 BackProp(0); 

 InitializeRS(); 

 r0_abs = CalcResidue(); 

 do 
 { 
  LineSearch(n); 

  r_abs = CalcResidue(); 

  if(r_abs < EPSILON*r0_abs) 
  { 
   ch = 's'; 

   break; 
  } 
 
  ModifyWeights(); 
 
  if(m >= EPOCH_SIZE) 
  { 
   m = 0; 
   RandomizeSamples(); 
  } 
 
  BackProp(m); 

  UpdateR(); 

  CalcBeta(); 

  UpdateS(); 

  m++, n++ ,i++; 
   
 }while(i < MAX_ITERATION); 
 
 return ch; 
 
} 
 
void CEdgeDetectingNetworkView::RandomizeSamples() 
{ 
 int i,j; 

 for(i=0;i<48;i++) 
 { 
  do 
  { 
   j = int((double(rand())/RAND_MAX)*47); 
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for(int k=0;k<i;k++) 
   { 
    if(sequence[k] == j) 
    { 
     j = 48; 

     break; 
    } 
   } 
     
  }while(j == 48); 

  sequence[i] = j; 
 } 
 
 UINT* ptr1 = new UINT[48]; 

 double* ptr2 = new double[48]; 

 for(i=0;i<48;i++) 
 { 
  ptr1[i] = imageIndex[sequence[i]]; 

  ptr2[i] = outputIndex[sequence[i]]; 

 } 
 
 for(i=0;i<48;i++) 
 { 
  imageIndex[i] = ptr1[i]; 

  outputIndex[i] = ptr2[i]; 

 } 
 
 delete ptr1; 

 delete ptr2; 

} 
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