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Abstract 
 
 

Image compression is now essential to reduce data volume. In Internet browsing the 

progressive transmission scheme is efficient. Here the user sees small size coarse image 

reconstructed from very few bits, then more bits received the image quality is 

successively refined. This scheme also provides the user the option to quit any time if 

image found is irrelevant. 

In this thesis I am implementing image compression in MATLAB using different wavelet 

filters and encoding the decomposed coefficients using Embedded Zero Tree Wavelet 

coding[1,3,9]. As Biorthogonal filters exhibits linear phase but not energy preserving[1,3]  

so I  have proposed a modification to Biorthogonal Wavelet Filter [1,4,5] Filter  which 

will become closer to orthogonal Wavelet Filters which are energy preserving. 
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CHAPTER1 

 

INTRODUCTION 

 

1.1 Introduction 

 

Image compression is essential for application such as representing high quality 

of images for transmission, reception, storage and display. For example, a nearly 

photographic image requires approximately 1,280 rows of 800 pixels each, with 24 bits 

for color information per pixel; that is a total of 3,072,000 bytes (3.07MB). The large 

data associated with images thus drive the need for extremely high compression ratios to 

make storage practical. Without compression, a CD with storage capacity 700 MB would 

only be able to store approximately 225 pictures like that above. 

The information contained in the images must, therefore be compressed by 

extracting only visible elements, which are then encoded. The quantity of data involved is 

thus reduced substantially. But at the same time, the quality of image should not be 

degraded beyond a certain limit.  Thus, the fundamental goal of image compression is to 

reduce the transmission bit rate or storage while maintaining the acceptable fidelity or 

image quality. 

For some application like progressive transmission and image browsing, image 

compression is not the complete solution. There is also a growing need of scalability.  

The term scalability refers to methods to which allow partial decodability by the decoder 

in order to meet certain requirements. In progressive transmission such as image / video 

database browsing, the user first sees a coarse version of an image reconstructed from 

few bits, and as the more bits are received, the image quality is successively refined until 

the end of bit stream reached. This allows fast retrieval of an intelligent image, and more 

important, it gives user the option to terminate the transmission at any time if image is 

found to be irrelevant. On the other hand non-progressive transmission will require the 

entire bit stream to be received before the image is viewable.  

 



Usual methods of compression are loss less coding techniques.  With loss less 

coding, we restore every detail of original data after decoding. Obviously it is necessity 

for numerical, financial documents. Our tolerance of image approximation and need for 

high compression opens the opportunity to exploit a new for of coding lossy coding. 

Lossy coding can be applied to a data such as images and audio for which humans will 

tolerate some loss of fidelity (faithfulness of our reproduction of an image after 

compression and decompression with the original image) .  

In images the neighboring pixels are correlated and therefore contain redundant 

information. Before we compress an image, we first find out the pixels, which are 

correlated. The fundamental components of compression are redundancy and irrelevancy 

reduction. Redundancy means duplication and Irrelevancy means the parts of signal that 

will not be noticed by the signal receiver, which is the Human Visual System (HVS).  

There are three types of redundancy can be identified: 

1. Spatial Redundancy i.e. correlation between neighboring pixel values. 

2. Spectral Redundancy i.e. correlation between different color planes or 

spectral bands. 

3. Temporal Redundancy i.e. correlation between adjacent frames in a 

sequence of images (in video applications).  

  

Image compression focuses on reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies. Since this project is about still 

image compression, therefore temporal redundancy is not relevant. 

 

 

1.2 Objective 
 

 The objective of lossy image compression is to store image data efficiently by 

reducing the redundancy of image content and discarding unimportant information while 

keeping the quality of image acceptable. Thus, the trade of lossy image compression is 

the number of bits required to represent an image and the quality of compressed image. 

This is usually known as rate of distortion tradeoff. However, The” closeness” between 



compressed and the original image is not a pure Objective measure, since human 

perception always plays an important role in determining the quality of the compressed 

image. At present, the most widely used objective distortion measure is MSE and related 

PSNR . It is very well known that MSE does not correlate very well with the visual 

quality perceived by human being .  This can easily can be explained by the fact that 

MSE is computed by adding the square difference of individual pixels without 

considering the visual interaction between adjacent pixel .   

  

 In this thesis I am analyzing  Biorthogonal wavelets Filters and its possible 

modification so that it can become more energy preserving, close to orthogonal wavelet 

filters. Further  I am implementing Embedded Zero Tree coding and decoding of 

decomposed wavelet coefficients using  MATLAB7.0(Release 14). 

 

1.3 Organization of thesis  

The thesis is organized as follows : 

• Chapter 2 performs the study of  various transform  techniques , brief 

introduction advantages and drawbacks and performance metrics. 

• Chapter 3 discusses wavelets, continuous and discrete  forms and 

multiresolution properties ,family of wavelets. Finally literature survey 

regarding image compression.  

• Chapter 4 explains concept of biorthogonal wavelets , multirate filters and 

perfect reconstruction filter design concepts. 

• Chapter 5 Introduces the problems of Biorthogonal wavelets its possible 

solution using weighting concepts. 

• Chapter 6 Explains the embedded zero tree wavelet coding , successive 

approximation entropy quantization ,encoding and decoding using 

example. 

• Chapter 7 Explains implementation test condition, flow charts, Result, 

conclusion and future scope. 

 
 



       CHAPTER 2 
 

VARIOUS TRANSFORM TECHNIQUES  
 

2.1 FOURIER TRANSFORM 

 For a continuous function of one variable f(t), the Fourier Transform F(f) will be 
defined as:  

 
And the inverse transform as  

 
Where j is the square root of -1 and e denotes the natural exponent  

 
DISCRETE  

Consider a complex series x(k) with N samples of the form  

 
Where x is a complex number  

 
Further, assume that that the series outside the range 0, N-1 is extended N-

periodic, that is, xk = xk+N for all k. The FT of this series will be denoted X(k), it will also 

have N samples. The forward transform will be defined as  

 
The inverse transform will be defined as  

 
Of course although the functions here are described as complex series, real valued 

series can be represented by setting the imaginary part to 0 . In general, the transform into 

the frequency domain will be a complex valued function, that is, with magnitude and 

phase.  



 
 

Fourier transforms are very useful at providing frequency information that cannot be seen 

easily in the time domain. However they do not suit brief signals, signals that change 

suddenly, or in fact any non-stationary signals.   The reason is that they show only what 

frequencies occur, not when these frequencies occur, so they are not much help when 

both time and frequency information is required simultaneously.  In stationary signals, all 

frequency components occur at all times, so Fourier Transforms are very useful.  

 

 

 SHORT-TIME FOURIER TRANSFORM 

In an effort to correct deficiency of Fourier transform, Dennis Gabor (1946) 

adapted the Fourier transform to analyze only a small section of the signal at a time a 

technique called windowing the signal (see Fig2.1). Gabor’s adaptation, called the Short-

Time Fourier 

Transform (STFT), maps a signal into a two-dimensional function of time and frequency. 

  Fig.2.1 Showing Short-Time Fourier Transform 
                                                                                         
                  

The following equation can be used to compute a STFT. It is different to the FT 

as it is computed for particular windows in time individually, rather than computing 

overall time (which can be alternatively thought of as an infinitely large window). x is the 

signal, and w is the window.   

 



This is an improvement as a time domain signal can be mapped onto a function of 

time and frequency, providing some information about what frequencies occur when.   

However using windows introduces a new problem; according to Heisenberg’s 

Uncertainty principle it is impossible to know exactly what frequencies occur at what 

time, only a range of frequencies can be found. This means that trying to gain more 

detailed frequency information causes the time information to become less specific and 

visa versa.  Therefore when using the STFT, there has to be  a  sacrifice  of  either  time  

or  frequency  information.  Having a big window gives good frequency resolution but 

poor time resolution small windows provide better time information, but poorer 

frequency information.  

  

2.2 THE KARHUNEN-LOEVE TRANSFORM (KLT) 
 
Originated from  the series expansions for random processes developed by karhunen and 

loeve in 1947 and 1949 based on the work of Hoteling in 1933 (the discrete version of the 

kl transform). Also known as Hoteling transform or method of principal component. It 

packs the maximum energy in first few samples. It minimizes the mean square error for 

any truncated series expansions. Errors vanishes in case there is no truncation. The idea is 

to transform a signal into a set of uncorrelated coefficients. 

 

 K.L. TRANSFORM OF IMAGES 
 
An N×N image is represented by a two dimensional random sequence v(m, m). it can be 

represented by matrix of order N×N .alternatively , a given N×N image can be viewed as 

an N2 ×1 column vector v. now just as one dimensional signal can be represented by an 

orthogonal series of basis function, an image can also be generated by unitary matrices. 

A general orthogonal series expansion for an n×n image v (m, n) is given as, 

 

General form: 

             N-1  N-1 
v(m,n)=∑ ∑u (k, 1)Ψ(k,1,m,n) m,n=0,…,n-1 
             K=0 1=0 



where the kernel Ψ(k,1,m,n) is given by the orthonormalized eigenvectors of the 

correlation matrix ,i.e. it satisfies 

     λiΨi= rΨi                                               i=0,..,n2-1 

R is the (N2×N2) covariance matrix of image mapped into an (N2×1) vector and  Ψi    is 

the ith column of Ψ 

If r is separable, i.e., 

R= R1⊗ R2 

Then the KL kernel is also separable,i.e., 

Ψ(k,l;m,n)=Ψ1(m,k)Ψ2(n,l) 

 

Or  

 

Ψ=Ψ1⊗ Ψ2 

 

For images, the eigen matrix of auto-correlation matrix r can be obtained using the 

separable property of auto correlation matrix R. in which we separate the n3× n3matrix 

into three n×n matrix and then find the eigen matrix of each. After that by taking the 

kronecker product of these eigen matrix we get the eigen matrix of auto correlation 

matrix R. 

 

Advantages of separability 

Reduce the computational complexity from o(n6)to o(n3) 

Recall that an n×n eigen value problem requires o(n3) computations 

 PROPERTIES OF THE KL TRANSFORM 

1. Decorrelation: 

The kl transform coefficients are uncorrelated and have zero mean, i.e., 

            e[v(k,1)]=0 for all k,1 



 

 

2.  It minimize the mse for any truncated series expansion  Error vanishes in case 

there is no truncation. 

3. 3. Among all unitary transformations, KL packs the maximum average energy 

in the first few samples of v. 

 DRAWBACKS 

a) Unlike other transforms, the KL is image dependent. 

b) It is computationally very intensive. 

 

 

2.3 DISCREATE COSINE TRANSFORM (DCT) 
 

The discrete cosine transform (DCT) separates the image into spectral sub-bands of 

differing frequency. The DCT is similar to the discrete Fourier transform: it transforms a 

signal or image from the time domain to the frequency domain. DCT, in image 

compression can be defined as a block of 8x8 array, or 64 pixels. In general, most of the 

importance of signal lies at low frequencies; these appear in the upper left corner of the 

DCT. Calculated using following expression  

 

         7     7 

F(I,J)=1/4C(I)C(J) Σ      Σ    P(X,Y) COS (2X+1)Iπ/16 COS(2Y+1)Jπ/16 

                               I=0    J=0            

                      WHERE C(I)=C(J)=1/√2 FOR I,J=0 

       = 1 FOR OTHER VALUES OF I,J 

 

 

 



 

 

 

X↓=0         Y→=0 1        2       3       4        5        6      7 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • •  • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

• • • • • • • • 

                 

   

The square tiles are representing the pixels and the center of each represents the 

location of the sample that carries the value of pixel intensity. In DCT we apply 

horizontal analysis followed by vertical analysis. We can form a block of 64 intensity 

values into 64 coefficients. As wee move right the coefficients represent higher 

horizontal frequency, and as wee move down the coefficients represent higher vertical 

frequency. 

  

The inverse DCT  is given by following expression  
 
 
            7        7 
 P(X,Y)=1/4  Σ      Σ  C(I)C(J)F(I,J)Cos(2X+1)Iπ/16 Cos(2Y+1)Jπ/16 
            I=0    J=0 
 
 
  Where C(I)=C(J)=1/√2 for I,J=0 
        =1 for all other values of I,J 
    
 
 



Disadvantages  
 
 It creates blocking artifacts at higher compression ratios. 
 
 
 
2.4 WAVELET TRASFORM 
  
 
 The wavelet transform (WT) is multiresolution description of an image: the image 

decoding can be processed sequentially from a very low resolution, corresponding to a 

very compact code, to the highest resolution. Further more wavelet transform offers 

perfect reconstruction. 

 

 The wavelet transform is closer to the human visual system than DCT. The 

artifacts introduced by WT coding with high compression ratio and adequate perceptual 

quantization are less annoying than those introduced at the same bit rate by the DCT. 

 

 The WT of an image generates a data structure known as scale-space 

representation.  In this representation, the high frequency signals are precisely located 

pixel domain, while the low frequency signals are precisely located in frequency domain. 

The spatial resolution of WT increases linearly with frequency while that of DCT is 

constant. Sharp edges, which are well localized spatially and have significantly very high 

frequency component, can be represented more compactly in WT than with the DCT.    

 

  Advantages of wavelet based compression 

  

1.    Wavelet coding schemes at higher compression avoid blocking artifacts.  

2.  Wavelet-based coding is more robust under transmission and decoding errors,   

             and also facilitates progressive transmission of images.  

3. They are better matched to the HVS (Human Visual System) characteristics.  

4. Compression with wavelets is scalable as the transform process can be applied to    

      an image as many times as wanted and hence very high compression ratios can be     

      achieved. 



5.  They provide an efficient decomposition of signals prior to compression. 

6. Wavelet based compression allow parametric gain control for image softening and 

sharpening. 

7. Wavelet compression is very efficient at low bit rates. 

  

  

Disadvantages of wavelet based compression 

  

Wavelet compression does require more computational power than compression based on 

other techniques such as Discrete Cosine Transform (DCT). 

  

  

Practical uses of wavelet transforms 

• Progressive image compression (useful for low bit rate) 

• ECG (electrical activity of the heart, electrocardiograph) 

• EEG (electrical activity of the brain, electroencephalograph) 

• EMG (electrical activity of the muscles, electromyogram) 

  

 2.5 Performance Metrics 

  

The performance of Compression achieved is measured by two significant ratios. 

These ratios serve as an important variable for comparison of various techniques. 

1)       Mean Square Error (MSE) 

It is the Cumulative squared error between the compressed and the original image. 

                                                

                                                 M    N          2 

              MSE   = 1/ MN ∑    ∑  [I (x, y) –I’ (x, y)] 

             Y=1  X=1 

  

 I (x, y) = original image, 

 I’ (x, y)= approximation of decompressed image 



 M, N = dimensions of the images 

  

MSE lower the better, means lesser error. 

  

2)      Peak Signal to Noise Ratio (PSNR) 

         It is a measure of the peak error. 

  

            PSNR = 20 * log10 (255 / sqrt (MSE))  

  

PSNR higher the better means that the ratio of Signal to Noise is higher.   

  

'Signal’ is the original image,  

'Noise’ is the error in reconstruction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



  

      CHAPTER 3 

WAVELET THEORY 
3.1 Wavelets 
 

Wavelets (small waves) are functions defined over a finite interval and having an 

average value of zero see fig 3.1. The basic idea of the wavelet transform is to represent 

any arbitrary function ƒ (t) as a superposition of a set of such wavelets or basis functions. 

These basis functions are obtained from a single wave, by dilations or contractions 

(scaling) see figure 3.2 & 3.3and translations (shifts). For pattern recognition continuous 

wavelet transform is better. 

Consider a real or complex-valued continuos time function ψ(t) with following 

properties. 

1. The function integrates to zero: 

∞ 

∫ ψ(t) dt =0 
              -∞ 
 
        2.  It is square integrable or , equivalently have a finite energy: 
 
   ∞                   2 

   ∫  ⎪ψ(t) ⎪    dt < ∞ 
   -∞ 
      
 Fig. 3.1 Following figure shows Morlet wavelet ψ(t): 

 
 
 



 
 
Fig 3.2 Showing scaling of wavelet Bases at three levels 
 
 
 
 

 
 
 
Fig 3.3 showing shifting of wavelet  
 
 
 
 
 
 
3.2 Continuos Wavelet Transform 
 

The continuous wavelet transform was developed as an alternative approach to 

the short time Fourier transform to overcome the resolution problem. The wavelet 

analysis is done in a similar way to the STFT analysis, in the sense that the signal is f(t) 



multiplied with a function  ψ(t) {it the wavelet}, similar to the window function in the 

STFT, and the transform is computed separately for different segments of the time-

domain signal. However, there are two main differences between the STFT and the 

CWT:  

1. The Fourier transforms of the windowed signals are not taken, and therefore single 

peak will be seen corresponding to a sinusoid, i.e., negative frequencies are not 

computed.  

2. The width of the window is changed as the transform is computed for every single 

spectral component, which is probably the most significant characteristic of the wavelet 

transform.  

The continuous wavelet transform is defined as follows: 

 
         ∞ 

   W(a, b) ≡   ∫     f  (t)  1/√⎪a⎪  ψ*((t-b)/a) dt 
         -∞ 
 
  
The wavelet ψ(t) must satisfy the admissibility condition for inverse wavelet transform  
      ∞ 

 Cψ =     ∫   ⎪ψ(ω) ⎪2  / ⎪ω⎪  d ω  <      ∞ 
          
   -∞    
 The wavelets are functions generated from one single function ψ(t) by dilations and    
  translations : 
 
 
 ψa,b(t)  = ⎪a⎪1/2  ψ((t-b)/a)   
 
 
Where a and b are dilation and translation parameters respectively. 
 
 
 
3.3 Multiresolution: 
  
 The multiresolution property is inherent in the wavelet transform. The Wavelet 

transform decomposes a given image into a coarse approximation and details. In 

Multilevel decomposition, this approximation is decomposed further into lower 



resolution sub images and detail sub images .The simultaneous appearance of multiple 

scales is known as multiresolution. 

  
 The goal of multiresolution in continuos time is decomposition of the whole 

function space into subspaces. By decomposing a function f(t) , a piece wise of f(t) is 

present in each subspace .The signal is resolved at scales Δt = 1, ½ , ……….(½)j   . For 

audio signals these scales are essentially octaves. They represent higher and higher 

frequencies. The simultaneous appearance of multiple scales is known as 

multiresolution. 

  
 Multiresolution is described for the scaling spaces Vj and the wavelet space Wj. 

The wavelet space Wj is difference between Vj and Vj+1. The sum of Vj and Wj is Vj-1  . 

 

Scaling spaces: 

The scaling space Vj are decreasing. Each Vj is contend in the next subspace  

Vj-1. A function in one subspace is in all the higher (finer) subspaces.  

 
 V∞ ……⊂ V2 ⊂ V1  ⊂ V0   ⊂ V-1  ⊂  V-2  ⊂   ……. V-j  ⊂   V-j-1  ⊂ ……. 
 
 
 Detail Subspace: 
 
 Wj contains a new information Δfj (t) = fj-1 (t)- fj (t). This is detail at level j. 

The space Wj are differences between the Vj . 

  

  
             Vj   ⊕ Wj = Vj-1
 
The reconstruction of f(t) from its details Δfj can start at j =∞. 

           ∞ 
f(t) =   Σ   Δfj (t) . 
           -∞ 

 

 

 

 



 

 

 

3.4 Quadrature Mirror filter Bank 

 

  QMF bank applied to two band system, the analysis filters are linear phase filters 

and exact reconstruction is represented by the equation: 

  

  ⎪ Hl(ejw ) ⎪2 - ⎪Hu( ejw  )⎪2   = 2 

 

where Hl(ejw )  is low pass frequency response and  is the  Hu( ejw  ) high frequency 

response .  The response of Hu( ejw  )is mirror image of Hl(ejw ) with respect to π/2, which 

is quarter of sampling frequency .  The name Quadrature Mirror filter is derived from this 

fact. Frequency response of Hl(ejw )  and Hu( ejw  )is overlapping so that no frequency 

range is left out. To avoid distortion at π/2 , there should be 3 dB attenuation at π/2.See 

fig 3.4. 

 
 
 

 
 
 



 
 

Fig3.4 Typical Two Band Magnitude Response 
  
 
 
3.5 The Discrete Wavelet Transform 
 
 

Although the discretized continuous wavelet transform enables the computation 

of the continuous wavelet transform by computers, it is not a true discrete transform. As a 

matter of fact, the wavelet series is simply a sampled version of the CWT, and the 

information it provides is highly redundant as far as the reconstruction of the signal is 

concerned. This redundancy, on the other hand, requires a significant amount of 

computation time and resources. The discrete wavelet transform (DWT), on the other 

hand, provides sufficient information both for analysis and synthesis of the original 

signal, with a significant reduction in the computation time. 

 

The DWT is considerably easier to implement when compared to the CWT. The basic 

concepts of the DWT will be introduced in this section 
 
 

The continuous wavelet transform was computed by changing the scale of the 

analysis window, shifting the window in time, multiplying by the signal, and integrating 

over all times. In the discrete case, filters of different cutoff frequencies are used to 

analyze the signal at different scales. The signal is passed through a series of high pass 

filters to analyze the high frequencies, and it is passed through a series of low pass filters 

to analyze the low frequencies 

 

  The resolution of the signal, which is a measure of the amount of detail 

information in the signal, is changed by the filtering operations, and the scale is changed 

by upsampling and downsampling (subsampling) operations. Subsampling a signal 

corresponds to reducing the sampling rate, or removing some of the samples of the signal. 

For example, subsampling by two refers to dropping every other sample of the signal. 

Subsampling by a factor n reduces the number of samples in the signal n times. 



Upsampling a signal corresponds to increasing the sampling rate of a signal by adding 

new samples to the signal. For example, upsampling by two refers to adding a new 

sample, usually a zero or an interpolated value, between every two samples of the signal. 

Upsampling a signal by a factor of n increases the number of samples in the signal by a 

factor of n. 

 

The procedure starts with passing this signal (sequence) through a half band 

digital lowpass filter with impulse response h[n]. Filtering a signal corresponds to the 

mathematical operation of convolution of the signal with the impulse response of the 

filter. The convolution operation in discrete time is defined as follows 
 

   
A half band lowpass filter removes all frequencies that are above half of the 

highest frequency in the signal. For example, if a signal has a maximum of 1000 Hz 

component, then half band lowpass filtering removes all the frequencies above 500 Hz.  

The unit of frequency is of particular importance at this time. In discrete signals, 

frequency is expressed in terms of radians. Accordingly, the sampling frequency of the 

signal is equal to 2p radians in terms of radial frequency. Therefore, the highest 

frequency component that exists in a signal will be p radians, if the signal is sampled at 

Nyquist’s rate (which is twice the maximum frequency that exists in the signal); that is, 

the Nyquist’s rate corresponds to p rad/s in the discrete frequency domain. Therefore 

using Hz is not appropriate for discrete signals. However, Hz is used whenever it is 

needed to clarify a discussion, since it is very common to think of frequency in terms of 

Hz. It should always be remembered that the unit of frequency for discrete time signals is 

radians. 

` After passing the signal through a half band lowpass filter, half of the samples can 

be eliminated according to the Nyquist’s rule, since the signal now has a highest 

frequency of p/2 radians instead of p radians. Simply discarding every other sample will 

subsample the signal by two, and the signal will then have half the number of points. The 

scale of the signal is now doubled. Note that the lowpass filtering removes the high 

frequency information, but leaves the scale unchanged. Only the subsampling process 



changes the scale. Resolution, on the other hand, is related to the amount of information 

in the signal, and therefore, it is affected by the filtering operations. Half band lowpass 

filtering removes half of the frequencies, which can be interpreted as losing half of the 

information. Therefore, the resolution is halved after the filtering operation. Note, 

however, the subsampling operation after filtering does not affect the resolution, since 

removing half of the spectral components from the signal makes half the number of 

samples redundant anyway. Half the samples can be discarded without any loss of 

information. In summary, the lowpass filtering halves the resolution, but leaves the scale 

unchanged. The signal is then subsampled by 2 since half of the number of samples are 

redundant. This doubles the scale.  

This procedure can mathematically be expressed as 
    

 

   
 
 
Having said that, we now look how the DWT is actually computed: The DWT analyzes 

the signal at different frequency bands with different resolutions by decomposing the 

signal into a coarse approximation and detail information. DWT employs two sets of 

functions, called scaling functions and wavelet functions, which are associated with low 

pass and highpass filters, respectively. The decomposition of the signal into different 

frequency bands is simply obtained by successive highpass and lowpass filtering of the 

time domain signal. The original signal x[n] is first passed through a halfband highpass 

filter g[n] and a lowpass filter h[n]. After the filtering, half of the samples can be 

eliminated according to the Nyquist’s rule, since the signal now has a highest frequency 

of p /2 radians instead of p. The signal can therefore be subsampled by 2, simply by 

discarding every other sample. This constitutes one level of decomposition and can 

mathematically be expressed as follows:  

 



Where yhigh[k] and ylow[k] are the outputs of the highpass and lowpass filters, 

respectively, after subsampling by 2.  
 
 
 
 
 

 



Fig 3.5 Showing Discrete Wavelet transform at three levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 3.6   A general two band structure 
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Fig 3.7 Showing Image decomposition into 3levels 

3.6 Wavelet families  

 
Haar 
Any discussion of wavelets begins with Haar wavelet, the first and simplest.Haar wavelet 

is discontinuous, and resembles a step function. It represents the same wavelet as 

Daubechies db1. 

                                        

   
Fig. 3.8 Haar Wavelet. 

 

Daubechies 

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented 

what are called compactly supported orthonormal wavelets — thus making discrete 

wavelet analysis practicable. The names of the Daubechies family wavelets are written 

dbN, where N is the order, and db the “surname” of the wavelet. The db1 wavelet, as 

mentioned above, is the same as Haar wavelet. Here are the wavelet functions psi of the 

next nine members of the family: 



 
Fig3.9 Daubechies family wavelets. 

 

 

Biorthogonal 

This family of wavelets exhibits the property of linear phase, which is needed for signal 

and image reconstruction. By using two wavelets, one for decomposition (on the left 

side) and the other for reconstruction (on the right side) instead of the same single one, 

interesting properties are derived. 



 
Fig 3.10 Biorthogonal Wavelet Families 



 
Coiflets 
 
Built by I. Daubechies at the request of R. Coifman. The wavelet function has 

2N moments equal to 0 and the scaling function has 2N-1 moments equal to 0. 

The two functions have a support of length 6N-1. 

 

 
   Fig 3.11 Coiflets Wavelets. 

Symlets 
The symlets are nearly symmetrical wavelets proposed by Daubechies as 

modifications to the db family. The properties of the two wavelet families are 

similar. Here are the wavelet functions psi. 

 

 
 

Fig 3.12 Symlets 

 

 
 



3.7 Literature Survey 

There has been a particular interest in the past decade in the field of image 

compression. A lot of work has been reported on image compression technique using 

wavelet transform coding. 

   

We first review the history of wavelet theory briefly. It was in 1807 Josef Fourier 

came up with  a revolutionary idea that stirred pundits of signal analysis. The idea 

expressing the function as a weighted sum of sinusoids was a paradigm shift from the 

existing framework of signal analysis and it opened new vistas leading to evaluation of 

harmonic analysis. Wavelets, on the other hand, provide an elegant alternative to 

sinusoidal representation of local details of signal . Although techniques like Gabor 

Transform  (1940) or its generalization in form of Short Fourier transform (STFT) can 

also be used to analysis of local details, wavelets attract attention of researchers because 

of their inherent simplicity and flexibility. Development of wavelet is result of the 

merging of ideas from different fields. Actual consolidation of wavelet theory began in 

late 1970’s when J. Morlet ,a geophysical engineer , proposed an alternative to shot time 

Fourier transform by using a narrow time window for low frequency analysis Daubechies 

formalized the construction of compactly support orthonormal wavelet bases . 

 

Subband image coding has recently been shown to be an effective technique for 

high quality coding. Mark J. Smith proposed analysis/synthesis techniques for Subband 

coding based on FIR Quardrature Mirror Filters (QMF’s). The Subband coding system 

may be viewed as having two basic components: the Subband analysis/synthesis 

subsystem which is composed of filter banks; and the coding system may employ some 

form of quantization and entropy coding. Vetterli treated 2D subbands analysis/synthesis 

system using both separable and non-separable filter banks. The most computationally 

efficient approach is splitting and merging Subband images, which results from using 

separable filters. With separable filters the 2D filtering can be implemented as a set of 1D 

filtering operations. Filtering is performed on each row and then on each column of 

image.  



A new theory introduced by Mark Antonini [3] was for analyzing image 

compression methods that are based on compression of wavelet decompositions. It was 

shown that if picture can be characterized by their membership in smoothness then 

wavelet-based methods are near optimal within the larger class of stable, transform based 

nonlinear methods of image compression. 

 

Bryan E. Usevitch [1] explained Subband and wavelet coding as currently used in 

image processing standard. He gave the mathematical background and discussed practical 

implications. The article leads naturally to the standard that is originated from these 

ideas.  He also explained the use of biorthogonal wave filters rather than using orthogonal 

filters in the modern wavelet coders; since wavelet transform can use essentially a infinite 

number of possible linear phase biorthogonal filters where there is only one linear phase 

orthogonal filter that is Haar filter. 

 

JPEG 2000 is covered by A.Skodras, C.Christopoulos and T. Ebrahimi [2]. It is a 

comparative review of the standard, which was recently introduced and includes wavelet 

decomposition as a key ingredient. Beyond just compression performance, the article 

points out several features that are enabled by wavelet decomposition. The JPEG 

committee has recently released its new image coding standard JPEG 2000, which serve 

as a supplement for the original JPEG standard introduced in 1992. Rather than 

incrementally improving on the original standard, JPEG 2000 implements an entirely new 

way of compressing images based on wavelet transform, in contrast to Discrete Cosine 

Transform (DCT) used in the original JPEG standard. The state of wavelet based coding 

has improved significantly since the introduction of the original JPEG standard. 

 

A noble breakthrough was introduction of EZW coding algorithm, which is 

designed by J. Shapiro [9]. The EZW coding algorithm is able to exploit the multi-

resolution property of the wavelet transform to give a computationally simple algorithm 

with outstanding performance relative to block transform coders. As the result, wavelet 

based coding has been adopted as the underlying method to implement the JPEG 2000 

standard. 



                                        

     CHAPTER 4 

BIOTHOGONALWAVELET  FILTER & PR 
 

4.1 WHY BIORTHGONAL  WAVELETS? 
 
    The use of symmetric extension and linear phase wavelets filter would seem to solve 

the problem of border effects in the wavelet transform. However, there is still one 

technical difficulty to overcome, which is illustrated by the following: 

   Fact : for real valued , compactly supported orthogonal wavelets, there is only one set 

of linear phase filter, and that set is the trivial haar filters , h=(1,1), g=(1,-1) 

Biorthogonal wavelets would allow for large number of linear phase filters. As the name 

implies, biorthogonal wavelets have same orthogonality relationship between there filter. 

 

    Biorthogonal wavelet differs from orthogonal in that the forward wavelet transform is 

equivalent to projecting the input signal on to non orthogonal basis function. The 

orthogonal and biorthogonal wavelets transform are analogous to orthogonal and non 

singular matrix transforms respectively. Both the orthogonal and nonsingular matrix 

transforms are invertible, but only the orthogonal matrix transform is energy preserving. 

 

     The main advantage in using the biorthogonal wavelets transform is that it permits the 

use of a much broader class of filters and this class includes symmetric filters. But the 

disadvantage that it is not energy preserving. The fact that biorthogonal wavelets are not 

energy preserving does not turn out to be a big problem, since there are linear phase 

biorthogonal filter coefficient which are “close” to being orthogonal. 

 

4.2 Multirate filter 
 
A Multirate filter is one which splits signal into multiple parts. One of the most important 

multirate filters is the one which splits a signal into two equal halves where one half has 

the lower frequency components. This is fundamental to the subband concept and leads to 

wavelets, multiresolution, and most of the other applications. Of course it is obvious that 



if we can split the band into two halves efficiently, we can continue doing so to any 

resolution we desire. 

4.3 Two-channel filter bank 

 

The two-channel filter bank is shown in Figure 4.1, where H o(z) is the low-pass analysis 

filter H 1 (z) is the  high – pass  analysis filter. As the output    signals υ 0(n) and υ1(n) 

have half the bandwidth of the original input signal, we can use decimation by 2 and still 

lose no information. The synthesis filter bank is also shown in Figure 4..1 and consist of 

two up-samplers and the low-pass synthesis filter G0(z) and the high-pass one G1(z).  

    
     v0(n)             f0(n)              y0(n) 

θ0 (n) 

         
                                                                                                                                           
X(n)                                                                                                                             ⊕     
          xR(n)           
           
                                               θ1 (n)  v1 (n)                   f1(n) 

H0(z) 

H1(z) 

   2

  2 

   2 

   2

G0(z) 

G1(z) 

 
         y1(n)  
 
Figure 4.1 Two channel filter-bank structure showing  analysis and synthesis stages. 
 
 
                             θ0(z)    =    H0(z)   .    X(z) 
  Y0 (z)    =    G0  (z)  .    F0  (z)  
   
  V0  (z)   =    ½  [θ0(z1/2) + θ0(-z1/2)]                  (4..1)  
   
  F0 (z)    =    V0 (z2) 
 
Substituting for  F0(z)  and V0 (z), we obtain 
   
  Y0(z)  =  ½  G0(z)  [H0(Z) X(z)  +  H0 (-z) X(-z)]         (4..2) 
 
 
And 
 
  Y1(z)  = ½  G1(z) [H1(z) X(z)  + H1(-z) X(-z)]       (4..3)     
 
Finally,  we obtain for the output  X (z),  
   
  X(z)  =  ½ X(z) [H0(z) G0(z)  +  H1 (z) G1(z)] 



    
   +  ½  X(-z)  [H0 (-z) G0(z)  +  H1(-z) G1(z)]    (4..4) 
 
 
 
Equation  4..4 can be simplified to  
 
  X(z)  =  T(z)X(z)  +  S(z) X(-z)      (4..5) 
 
Where we have defined 
 
  T(z)  =  ½  [H0(z)G0(z)  +  H1(z)G1(z)]  
           (4..6) 
  S(z)  =  ½  [H0(-z)G0(z)  +  H1(-z)G1(z) ] 
 
In order to have perfect reconstruction (PR) at the synthesis, we must impose that 
 
  X(z)  =  c  X(z)  z-no      (4..7)   

 
Where c is a constant and no is a fixed delay. 
 
Thus, the conditions for PR are  
 
 
  S(z)  =  0  =  H0 (-z) G0(z)  +  H1 (-z) G1(z)     (4..8) 
 
 
and 
 
 
  T(z)  =  H0(z)G0(z)  +  H1(z) G1(z)  =  cz-n

0    (4..9) 
 
 
From the above equations, we obtain  
 
  G0(z)/G1(z)  =  -H1(-z)/H0(z)     (4..10) 
 
 
 
Before we find the PR solution, it is of interest  to note that T(z) represents distortion and 

S(z)  represents aliasing.  

 

4.4 Biorthogonal Filters 

To avoid distortion, we must satisfy Eq4.9 



  T(z)  =  cz-n
0  

    H0(z)G0(z)  +  H1(z) G1(z)  =  cz-n
0 

To avoid aliasing errors, we must impose that : 

         S(z)  =  0        4.11 

 H0 (-z) G0(z)  +  H1 (-z) G1(z) =0   4.12 

 

The orthogonal case can be shown to give solutions which can never be linear 

phase. However that is not true in biorthogonal case. 

For this let us choose  

 G0(z)  = H1 (-z)  

 G1(z)= -H0 (-z) 

Which are the same conditions we imposed for orthogonal case except of sign changes. 

For this case T(z) becomes 

 T(z)= G0(z)  H0 (z) - G0(-z)  H0 (-z)=P0(z)- P0(-z) 4.13 

 

Where  P0(z)= G0(z)  H0 (z) 

 And P0(-z)= G0(-z)  H0 (-z) 

PR condition is given by  

 P0(z)- P0(-z)=z-l 

 

If we define P(z)= zl P0(z), then PR condition becomes  

 

P(z)+P(-z)=2 

This is the same condition for half band filter. 

 

 

 

 

 

 

 



      

    CHAPTER 5 

Analysis of Biorthogonal Wavelet Filter and proposed 

Modification 
 
5.1 Introduction 

  The biorthogonal wavelet transform is not an energy preserving transform. As a 

result, the MSF changes made in the wavelet coefficient will cause weighted MSE 

changes in the reconstructed output . Certain applications require knowledge of this 

weighted relationship between wavelet coefficient and reconstructed output. One such 

application is weighted based coding, which perform bit application and quantization in 

the wavelet domain, but measure performance based on the reconstructed output. 

    This correspondence details a method for computing the weights for both 1-

dimensional and 2-diomensional biorthogonal wavelet transform. The method 

involves only interpolating filtering, and taking the norms of wavelet filter 

coefficient , example weights are computed for two biorthogonal wavelet sets to 

illustrate the method. Weight Computation 

 

 
 

5.2 1D Weight Computation  
 
To introduce the biorthogonal weighting problem, first consider the 2-level biorthogonal 

wavelet transform shown in fig.-1 . In this system the analyses and synthesis filters are 

denoted by hij and gij respectively, and the subscript I and j denote the transform level and 

band respectively. The problem to be solved can be stated as follows. Given the subband 

variance σr
2   of the reconstructed output r(n). this question arises in coding application 

where the σij 
2 represent the quantizer error variance, and σr

2  represent the mean squared 

reconstructed error.  



 

 

For orthogonal system, the answer to the problem is simple, since input to output 

energy is conserved. In biorthogonal system, the answer is more difficult because 

of the weighting introduced by the biorthogonal filters. 

  To analyze the weighting effect of the biorthogonal filters, consider an 

input  x(n) upsampled by M to give  v(n) then filtered by h(n) to give y(n). the 

input/output  relation between x(n) and y(n) is given by following :  

                                             ∞ 

           Y(n)=   ∑     v(k)h(n-k) 
               k=-∞ 

                            ∞     
           =   ∑  x(k/M)h(n-k) 
               k=-∞ 

                    k mode M=0 

      
∞

           =  ∑ x(l)h(n-Ml)    (1) 
    t=-∞

 
 
 
Assuming x(n) to be a zero mean stationary process, equation  (1) can be used to 

compute the variance of y, σy
2  = E[y2(n)]. Because of the time varying nature of 

the interpolation operator, E[y2(n)] is cyclostationary, with M values 

corresponding to n mode M. averaging  over these M values given the following 

result 

 



    E[y2(n)]    =  1/M ∑ h2(n)    (2) 
 
 
 
Reconstruction from multiple levels of transform requires the coefficients to pass 

through multiple stages of interpolation and filtering. To characterize the effect of these 

cascaded interpolation and filtering blocks, consider an input x(n) upsampled by 2 and 

filter by h(n) to give y(n), then upsampled by 2 and filtered by g(n) to give z(n). Using 1, 

the output z (n) can written in terms of the input x(n)and Filters h and g as follows: 

 

    ∞

   Z(n) = ∑ y(k)g(n-2k) 
              k=-∞

 ∞          ∞

              = ∑    ( ∑ x(j)h(k-2j)) g(n-2k) 
 k=-∞   j=-∞
   
   ∞      ∞

             = ∑ x(j) ∑ h(l)g(n-4j-2l)           (3) 
  j=-∞           t=-∞
                                                   
  
Where the last step comes by substituting l=k-2j. Careful inspection of equation 

(3), while using (1) Shows that the two level cascade of filter blocks is equivalent to 

interpolating x (n) by 4 and filtering with the following equivalent filter  

     ∞

   F(n) = ∑ h(l)g(n-2l)                                     (4) 
    l=-∞
 
Generalizing the previous results shows that processing an input with L stages of 

interpolation by and filtering blocks is equivalent to interpolating by 2L and filtering by 

an equivalent filter. Equation (4) shows that this equivalent filter is computed by 

interpolation and convolving the filters in the chain of interpolator /filter blocks. For 

examples, referring to figure 1 and assuming 3 levels of reconstruction from the lowest 

frequency subband, the equivalent filter is given as  

 

  Geq = interp2 (interp2 (g30)* g20)* g10 
 
 



Where interp2 denotes the interpolation by 2 operator and * denotes convolution 

Using the previous results, the total reconstruction error from all the sub band,     

 for an L level wavelet recomposition is  
 
               L  
   σr

2=1/2LWLOσLO 2+∑1/2iWijσi1
2                     (5)                     

              i=1        

          

Where  σij
2 represents the variance in subband  ij and Wij  represents the weighting  

introduced by wavelet recomposition. From equation(2) the weights can be computed as   
 
Wij =∑ngeq,ij 2(n), where geq,ij 2(n) is equivalent filter from subband ij to the output. 
 
 
          For orthogonal filters, all the Wij equal to one, and the error energy in the output 

equals the error energy in the subtends. As the weights differ from one, the error energy 

differs according to Equation (5). Thus, the weights can be used as a measure of the 

deviation of biorthogonal wavelets from being orthogonal. Table 1 shows an example of 

the 1-dimentional weights computed for two examples biorthogonal filter sets (3,4).The 

table includes all possible weights for up to four levels of the re-composition and assumes 

the same filters at each level. These weight values show that the 9/7 biorthogonal wavelet 

filters are reasonable close to being orthogonal. 

 

 

 

5.3 2D Weight Computation 

 

          Deriving the weighting for the 2-Dimensional case from the 1-dimensional 

case is straight-forward. This paper will only illustrate the derivation for the more 

common separable filter case. Using the subband weight structure shown in figure 2, the 

two-dimensional reconstruction error formulae, equivalent to Equation (5) , can be shown 

to be  

                                                       3  L 
   σr

2=1/4LSLOσLO 2+∑ ∑1/4isijσij
2 

                                                                                    j=1 i=1 



Note in particular that subband index j is valid in the {0,…,3}for the 2-dimensional 

case. The weights sij can be computed as a product of 2 “one-dimensional” weights 

 

                      Sij=tij
Htij

V,  j∈{0,…,3},i∈{1,…,L} 
 
Where tij

H represents the weight resulting from all the horizontal filters from 

subband ij to the output, and tij
V represents all the vertical filters from subband ij to the 

output. Both tij
H and tij

V are computed exactly the same as in the 1-dimentional case. 

          As an example, consider computing the weight s21. In the horizontal 

direction, the s21 is reconstructed through a highpass filter followed by lowpass filter. 

Thus t21
H = w21 where  w21 is the one-dimensional weight. In the vertical direction, the s21 

passes through two lowpass filters and t21
V = w20 . The resulting weight is s21 = t21

H t21
V= 

w21 w20 . 
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Figure 2;Wieghts representation for two dimensional, two level wavelet transform. 

The axes also show the lowpass / highpass frequency designation for horizontal and 

vertical orientations.  

 
 



 
 
 
 
 
 
 

Table 1: All possible weights for up to 4 levels of the one-dimensional transform, 
tabulated for two wavelet coefficient sets shown in the right half of the table. 
 
 
 
   9/7 filter coerf. 5/3 filter coef. filter 

weight 9/7 5/3 ho go ho 90 index 

W10 0.98295 0.75000 0.852699 0.788486 1.060660 0.707107 0 

W11 1.04043 1.43750 0.377402 0.418092 0.353553 0.353553 -1, 1 

W20 1.03060 0.68750 -0.110624 -0.040689 -0.176777  -2, 2 

W21 0.96721 0.92187 -0.023849 -0.064539   -3, 3 

W30 1.05209 0.67187 0.037828    -4,4 

W31 1.03963 0.79297      

W40 1.05848 0.66797      

W41 1.07512 0.76074      
 

 
 
 
 
5.4 Proposed Modification 
 
 Tree structured subband coding is an increasing  and flexible alternative to other 

subband coding techniques based on block orthogonal transform ,which exhibits 

annoying blocky artifacts at low bit rates. The main building block of tree structured 

subband coder is the two channel subband coder. Given a number of levels of 

decomposition , L, the corresponding subband transform is a function of the analysis low 

pass and high pass filters , Ho(z)and H1(z),and the synthesis low pass filters G0(z)and 

G1(z)(see figure). 



Ho(z) 

H1(z) G1(z) 

G0(z)    
  2 

 
  2 

 
  2 

 
  2 

X(z) 
Y(z) 

 
Figure 3 Analysis and Synthesis section for a maximally decimated two band filter bank 
 

The following theorem as well as proof from [   ];it parameterizes all filters H’1(z) that 

are complementary to a prototype filter H0(z). 
Y(z) 

 

Theorem: If the length of │h0│and│ h1│of two complementary filters H0(z) and 

H1(z)are odd two satisfy │h0│=│ h1│+2 and if H0(z)=0, then all high pass analysis filters 

H’1(z) complementary of H0(z)are of the form 

: 

 H’1(z) = z-2m H1(z)+E(z2) H0(z) 

Where m 

 E(z2)=∑ αi (z-2(i-1)+z-2(2m-i)) 

  i=1 

 

 The length of H’1(z) is clearly │ h’1│=│ h1│+4m.It some time appropriate to 

impose zeroes at π for low pass filter (H1(e-jπ)= H0(-1)=0)zeros at dc frequency for high 

pass filter (H1(e=jπ) = H1(1)=0) . Since  

  m  
E(1)=2∑ αi  is nonzero in general, H0(-1)=0 is the only way to ensure that  
 i=1 

 

H’1(-1)= H1(-1)=√2. Finally the requirement that H1(1)=0( which will find important later 

) translates into a constraint on coefficients αi : 



              m 
H’1(1)= H1(1)+E(1) H0(1)= H1(1)+2 H0(1) ∑ αi  
              i=1 
 
Therefore to ensure that H’1(1) has zero at dc frequency, we must have  
 
m 
∑ αi  =- H1(1)/2 H0(1) 
i=1 

 
            

   m 
If  H1(1)=0,then we must have ∑ αi  =0. 
      i=1 
 
FIR filter banks will be referred as │h0│/│h1│. In this thesis I am trying to construct 

Biorthogonal filter with PR linear phase filter pair in such away that resulting filters are 

more close to orthogonal by choosing the coefficient of filter such away that weights 

generated are close to 1(as in orthogonal case). 

 Consider an arbitrary linear phase low pass filter of length of length 9  H0(z)=[a b 

c d e d c b a] andH1(z)=[x y z w z y x ] satisfying all biorthogonal PR filter conditions 

.Here m=2,so 

H’1(z)=z-4 H1(z)+E(z2) H0(z). 

Where  

    m 
   E(z2) =∑ αi (z-2(i-1)+z-2(2m-i))     &     m=2 
    i=1 
   2 
Here   H1(z)=0, so ∑ αi   =0,  α1+ α2=0 hence 
   i=1 

 
E(z2)= α1(1- z--2- z--4+ z-6) 

 
Putting values of E(z2), H0(z)and H1(z). 
 
 H’1(z)= α1a+  α1 b z-1+ α1 (c-a)z--2  + α1  (d-b)z –3+(x+ α1 (e-c-a))  z--4  + 
 
( y-α1b) z--5 + (z+ α1(a-e))  ) z—6 + (w+2  α1 (b-d))z--7+ (z+ α1 (a-e))z—8+ 
  
(y-b α1  )z—9+   (x+α1(e-c-a))   z—10 + α1  (d-b) z—11+ α1  (c-a) z—12+ α1bz—13+  
 
α1az—14



 

 
Now we can choose the values of a , b, c , d ,e, x, y, z ,w and α1such that weights 

of new 9/15  linear phase biorthogonal filter close to orthogonal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 6 

EMBEDDED ZEROTREE WAVELET ALGORITHM 
 
 

6.1 EMBEDDED CODING : 

 

       An embedded code represents a sequence of binary decisions that distinguish an image 

from an image from the ‘null’ or ‘all gray’ image. Since the embedded code contains all lower 

rate codes “embedded” at the beginning of the bit stream, effectively, the bits are “ordered in 

importance”. Using an embedded code, an encoder can terminate the encoding at any point 

thereby allowing a target rate or distortion metric to be met exactly. Some target parameter, 

such as bit count, is monitored in the encoding process. When the target is met, the encoding 

stops. Similarly, given a bit stream, the decoder can cease decoding at any point and can 

produce reconstructions corresponding to all lower-rate encodings.  

 

FEATURES OF THE EMBEDDED CODER: 

  

The EZW algorithm contains the following features: 

 A discrete Wavelet transform which provides a compact multiresolution  representation of 

the image. 

 Zerotree coding which provides the compact multiresolution representation of 

significance maps, which are binary maps indicating  the position of significant coefficients. 

Zerotree  successfully predicts insignificant coefficients across scales to be efficiently 

represented as part of growing trees. 

 Successive Approximation which provides a compact multiprecision representation of the 

significant coefficients and facilitates the embedded algorithm. 

 A prioritization protocol whereby the ordering of importance is determined, in order by 

the precision, magnitude, scale and spatial location of the wavelet coefficients.  The larger 

coefficients are deemed more important than smaller coefficients. 

 Adaptive multilevel arithmetic coding which provide a fast and efficient method for 

entropy coding string of symbols and requires no training or prestored tables 



 The algorithm run sequentially and stops whenever a target bit rate or distortion metric is 

met.   

 

6.2 ZEROTREES OF WAVELET COFFICIENTS: 

              

       The important aspect of low bit rate image coding is coding of the positions of those 

coefficients that will be transmitted as nonzero values. A large fraction of the bit budget must 

be spent on encoding the significance map, or the binary decision as to whether a coefficient of 

a 2-D discrete wavelet transform, has a zero or nonzero quantized values. This encoding of 

significance map results a significant improvement in compression ratio. 

       Compression of significance map can be improved by a data structure called zerotree. A  

wavelet coefficient x is said to be insignificant with respect to a given threshold T if |x| < 

T.The zerotree is based on the hypothesis that if a wavelet coefficient at a coarse scale is in 

significant with respect to a given threshold T, then all wavelet coefficients of the same 

orientation in the same spatial location in finer scales are likely to be insignificant with respect 

to T.  

       In hierarchical subband system, with the exception highest frequency subbands, every 

coefficient at a given scale can be related to a set of coefficients at the next finer scale of 

similar orientation. The coefficient at the coarse scale is called the parent, and all coefficients 

corresponding to same spatial location at the next finer scale of similar orientation are called 

children. For a given parent, the set of all coefficients at all finer scales of similar orientation 

corresponding to the same location are called descendants. Similarly for given child, the set of 

coefficient at all coarse scales of similar orientation corresponding to the same location are 

called ancestor. With the exception of the lowest frequency subband, all parents have four 

children. For a QMS-pyramid subband decomposition, the parent-child dependencies are 

shown in figure 6.1. 

       A scanning of the coefficients is performed in such a way that no child node is scanned 

before its parent. For an N-scale transform, the scan begins at  the lowest frequency subband, 

denoted as LLN, and scans subbans HLN, LNN, HHN, at which point it moves on to scale an N-

1 scale, etc. scanning pattern is shown in fig.6.2. 



      A coefficient x is said to be an element of a zerotree for threshold T if it self and of its 

descendents are insignificant with respect to T. an element of a zerotree for threshold T is 

zerotree root if it is not the descendant of a previously found zerotree root. All the descendents 

of zerotree root are predictably insignificant .The significance map can be efficiently 

represented as string of symbol from a 4-symbol alphabet. The three alphabets are following. 

 

 

1) Zerotree root: Coefficient is the root of zerotree. 

2) Isolated zero: Coefficient itself is insignificant but has significant descendant. 

3) Positive significant: Coefficient is significant having positive sign. 

4) Negative significant : Coefficient is significant having negative sign.     

           

 

   
 
       
 
  
     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Fig 6.1 
 
 
 
 

  (a)       (b) 
 
Fig6.2 (a) Raster scan order (b) Morton scan order   
 
 
 



6.3 SUCCESSIVE – APPROXIMATION ENTROPY – CODED QUANTIZATION: 
 
           The successive –approximation (SAQ) sequentially applies a sequence of 

thresholds T0, T1,….TN-1 to determine significance, where the thresholds are chosen so 

that Ti= Ti-1/2. The initials thresholds is chosen so that | x |< 2T0 for all transform 

coefficients xj.  

           During the encoding, two separate lists of Wavelet coefficients are maintained. 

1) dominant list 

2) subordinate list 

          A dominant list contains the coordinates of those coefficients that have not yet 

been found to be significant. The subordinate list contains the magnitude of those 

coefficients that have been found to be significant. For each thresholds each list is 

scanned once. 

           During a dominant pass, coefficients in the dominant list are compared to the 

thresholds T1 to determine their significance, and if significant, their sign. This 

significance map is then zerotree coded. If the coefficient is significant, its magnitude is 

appended to the subordinate list, and the coefficient in the Wavelets transform array is sit 

to zero so that it does not prevent the occurrence of a zerotree on future dominant passes 

at smaller thresholds. 

           In a subordinate pass, all coefficients in the subordinate list are scanned and the 

magnitude available to the decoder are refined to an additional bit of precision. The width 

of the effective quantizer  step size. Which defines an uncertainty interval is cut in half. 

This refinement is encoded with a “1”indicating that the true value falls in the upper half 

of the old uncertainty level, and a “0” indicating the lower half. The string of symbols 

from this binary alphabet that is generated during the subordinate on the subordinate list 

sorted in decreasing, to the extent that the decoder has the information to perform the 

same sort. 

          The process continues to alternate between dominant passes and subordinate passes 

where the threshold is halved before each dominant pass. The encoding stops when the 

bit budget is exhausted or a target distortion metric is met. 

 

 



 

 

6.4 DECODING: 

          In the decoding operation, each symbol, both during dominant pass and a 

subordinate pass, refines and reduces the width of uncertainty interval in which the  true 

of the coefficient(s) may occur. The reconstruction value can be anywhere in the 

uncertainty interval. To minimize the mean square error centroid of the uncertainty 

interval should be used using some model of probability density function of the 

coefficients. For practical purpose center of uncertainty interval can also be used. 

         Encoding can cease at any time and the resulting bit stream contains all lower rate 

encoding. Similarly decoding can also be terminated at any point. Terminating the 

decoding of an embedded bit stream at a specific point in bit stream produces the exactly 

same image that would have resulted had that point been that initial target rate. This 

ability to cease encoding and anywhere is extremely useful in system that are either rate-

constrained or distortion –constrained. 

         Coding and decoding can be explained by following example. Consider the simple 

3- scale wavelet transform of an 8x8 image. The array of values in shown in table6.1. 

Here the largest coefficient is 63, so initial threshold can be chosen as 32. Table I shows 

the processing on the first dominant pass. The following comments refer to the Table 6.1.  

 The coefficient has magnitude 63 which is greater than the threshold 32, and is 

positive so a positive symbol is generated. After decoding decoder will decode it as 

the center value of the interval [32,64], which is 48. 

 The coefficient –31is significant with respect to 32, and has a significant descendant 

two generation down in subband LH1 with magnitude 47. Thus, isolated zero symbol 

is generation for this coefficient. 

 The coefficient 23 is insignificant with respect to 32 having all insignificant 

descendants (3, -12, -14, 8). A zerotree symbol is generated for this coefficient. 

 The magnitude 10 is less than 32 and all descendants (-12, 7, -3, 2) also have 

magnitude less than 32. Thus a zerotree symbol is generated for it. 

 The coefficient 14 is significant with respect to 32. Its children are (-1, 37, -3, 2). 

Since its child 47 is significant, an isolated zero is generated for this coefficient. 



 No symbols are generated from subband HH2 because all coefficients in this band are 

members of zerotree. 

 The magnitude is significant with respect to32 and is positive so a positive symbol is 

generated for it. 

 

       During the first dominant pass, four significant coefficients are 

generated. These coefficients are refined in the first subordinate pass. Prior to 

this subordinate pass, the uncertainty interval for the magnitudes of all of the 

significant coefficient is the interval [32,64]. The first subordinate pass refine 

these magnitudes and identify them as being either in the interval [32,48] which 

will encode with the “0”, or in the interval [48,32]. Which will be encoded with 

the symbol “1”. Table 6.2 shows the symbols generated during first subordinate 

pass. The coefficient which fall in the interval [32,48] are decoded 40, which is 

center of the interval [32,48] and the coefficient which fall in the interval 

[48,63]are decoded as 56, which is the center of the interval [48,63].     

             The process continues on to the second dominant pass at the new threshold of 

16.during this pass, only those coefficient not yet found to be significant are scanned. 

Additionally those coefficient previously found to be significant are treated as zero. Thus, 

the second dominant pass consists of encoding the coeffints –31 in subband LH3 as 

negative coefficient, the coefficient 23 in subband HH3 as positive coefficient, the 

coefficient in the subband HL2 that have not being previously found to be significant (10, 

14, -13) are encoded as zerotree roots, as are all four coefficients in subband LH2 and all 

four coefficient in subband HH2. 

                 The subordinate list contains the magnitude (63, 34, 49, 47, 31, 23). Prior to the 

second subordinate pass. There are three uncertainty intervals ([16, 32], [32, 48] and 

[48,64]), each having width 16. The processing will refine each magnitude by creating 

two new uncertainty intervals for each of the previous intervals. Using the center of the 

uncertainty interval as the reconstructed( seeTable3).  

 

 
 



 
 
 
 

 
 
Table 6.1 Wavelet coefficient of a 8*8 image 
 
 
Coefficient Magnitude Symbol Reconstruction Magnitude 

63 1 56 

34 0 40 

49 1 56 

47 0 40 

 
 
Table 6.2 Processing of subordinate pass 
 
 
 
 
 
 
 



 
 
 
Table 6.3 Encoded output 
 
D 1 :  p n z t p t t t t z t t t t t t t p t t  

S 1 :  1 0 1 0  

D 2 :  z t n p t t t t t t t t  

S 2 :  1 0 0 1 1 0  

D 3 :  z z z z z p p n p p n t t n n p t p t t n t t t t t t t t p t t t p t t t t t t t t t p t t t t t t t t t t t t  

S 3 :  1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0  

D 4 :  

z z z z z z z t z t z n z z z z p t t p t p p t p n p t n t t t t t p t p n p p p p t t t t t p t p t t t p n p  

S 4 :  1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0  

D 5 :  z z z z z t z z z z z t p z z z t t p t t t t n p t p p t t p t t t n p p n t t t t p n n p t t p t t p p t t t  

S 5 :  

1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0

0 1 1 0 0 0 1 1 1  

D 6 :  z z z t t z t t t z t t t t t n n t t t   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



CHAPTER 7 
 
IMPLEMENTATION, RESULTS AND CONLCUSION 
 
 
 
7.1 Implementation 
 
 
 The image compression technique using discrete wavelet transform is 

implemented using MATLAB (version 7release 14). Different wavelet filters used for 

decomposition and reconstruction purpose.  

 

1.  The source image is decomposed into approximation coefficients and detail      

      Coefficients using multiple  levels of DWT. 
 

 2.  The image is reconstructed using approximation, horizontal detail, vertical   

                  detail and diagonal details.    
 

3.  The  image compression is analyzed for different wavelet filter viz. ‘Haar’,     

     ‘Daubechies’, ‘Biorthogonal’, ‘Symlets’. 

 

4. The subband coefficients are quantized and coded using Embedded Zerotree 

Wavelet coder.  

5. Decoder is the reverse of encoder .EZW decoder first decodes the coded     

       stream, de-quantized and inverse discrete transform is applied to get the    

       reconstructed image.  
 
 
7.2 Flow charts 

 

 Flow charts for the major steps involved for decomposition , re-composition, 

EZW coding(including dominant pass and subordinate pass)  and decoding algorithm is 

shown in following figures(7.1,7.2,7.3,7.4).       
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Fig  7.2Flowchart for Dominance pass 
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Fig. 7.3 Flow chart for subordinate pass 

 
Is Magn> Ti/2 
 

        Stop 

       Is  
End of list 

Magn=⎜Magn⎜- Ti

Reduce the 
uncertainty level by 
two 

Encode it as ‘0’ 

Start 

Input the modified 
subordinate list and 
the value of 
threshold Ti

Encode it as ‘1’ 

Go to the next 
element 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Put zero in  all its 
descendants position 
Wavelet array 

  Start 

     Input 
The dominant 
pass output file 

Take the symbol in proper 
scanning order 

   Is the end  
Of dominant      
       pass

Is the symbol 
significant 

    Stop

Is the end of 
all  passes 

 Is it end  
Of the 
subordinate   

pass

Is it ‘z’ 

Refine value of  

Yes 

The element 

Take 
coordinate 
from list 

Take the symbol from 
Subordinate pass o/p file 

Start 
subordinate  
pass 

Store the coordinate 
In the list 

Put the uncertainty 
Internal as its value  

1 

Fig 7.4 Flow chart for decoding 

Yes 

1

No 

No 
Yes 

No 

Put zero  
At the 
coordinate 
position 



7.3 Result 
 
 The images used are 256 by 256  and 128 by 128 black and white images each 

pixel is coded up to 256 gray levels(8bpp). The evaluation has been done by computing 

PSNR and MSE between original and the coded images. Table 7.1and 7.2 gives the 

comparison. An image decomposition up to two  levels has been shown in fig 7.1 and 7.2. 

Further the same image is compressed using different wavelet filters and best result at 

level 4and 5 has been shown in fig. 7.3 and 7.4. 

 To see the EZW encoder and decoder performances an image 128 by 128 has 

been taken and first decomposed at one level and its approximation coefficients are 

encoded using encoder and decoded by decoder . Reconstructed directly from single 

coefficient   

by taking inverse DWT. The different pass reconstruction image is shown in fig7.5-7.9. 

A table showing the symbols generated during dominant pass and subordinate pass is 

listed in table 7.3. 

 



Fig 7.1One level decoposition  
 
 
 
 
 



Fig 7.2 Two level decomposition
 

 
Table 7.1 Showing the compression scores, Norm. Recovery, PSNR of Wbarb by    
                different wavelet filters on global threshold=45. 
 
 
 Norm Recovery  Compression score PSNR(db)  



Wavelet type  Haar   
    
Level     

1 99.064 73.9731 28.706
2 98.6945 91.4749 27.2606
3 98.568 94.9493 26.8612
4 98.541 95.3964 26.7792
5 98.5383 95.4422 26.7697

    
 db2   
    

1 99.19 74.19 29.338
2 98.9117 91.7093 27.9108
3 98.8433 95.4389 27.4267
4 98.927 95.956 27.3206
5 99.101 95.9679 27.3045

    
 bior4.4   
    

1 99.27 74.1936 29.6532
2 99.0643 91.5169 28.2967
3 99.11 95.1654 27.7636
4 99.352 95.6947 27.6214
5 99.6054 95.6507 27.6088

    
 sym4   
    

1 99.2551 74.1857 29.6803
2 99.04 91.4416 28.3156
3 99.068 95.0435 27.8139
4 99.2518 95.4896 27.7036
5 99.5063 95.4337 27.6928
6 99.7406 95.31 27.691

 
 
 
Table 7.2 Showing the compression scores, Norm. Recovery, PSNR of Wbarb by    
                different wavelet filters on level threshold. 
 
 
 



 
 Norm Recovery Compression score PSNR(db) 
Wavelet type Haar   
    
Level    

1 100 2.99 318.6247
2 99.645 67.9047 32.9248
3 98.818 90.79 27.695
4 97.5118 97.4867 24.4595

    
 db2   
    

1 100 0 263.987
2 99.7516 66.659 34.2835
3 99.188 89.9046 28.9187
4 98.4772 96.9128 25.8068

    
 bior4.4   
    

1 100 0 259.97
2 99.827 64.857 35.4034
3 99.467 87.706 29.829
4 99.2661 94.9756 27.0336

    
 sym4   
    

1 100 0 264.88
2 99.81 65.202 35.32
3 99.4235 88.08 29.732
4 99.0534 95.6715 26.665
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Fig 7.3 Showing Original and reconstructed images using level threshold and global   
             threshold at level 5 with PSNR 24.6013 and 27.6088 respectively. 
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Fig. 7.4 Showing Original and reconstructed images using level threshold and global   
             threshold at level 4 with PSNR 27.033and 27.6214 respectively. 
 



 
 
 
 
 

 
 
Fig 7.5 Reconstructed image (Approximation coefficient only)   at decoder on  threshold   
            256 and 128 respectively. 



 
 
             
 

 
Fig 7.6 Reconstructed images (Approximation coefficient only)   at decoder on threshold   
            64and 32 respectively. 
 
 



        
 
 

 
 

 
Fig 7.7 Reconstructed image (Approximation coefficient only)   at decoder on  threshold   
            16 and 8 respectively. 
 



    
    

 
 
 

 
 Fig 7.8 Reconstructed image (Approximation coefficient only)   at decoder on  threshold   
            4 and 2 respectively. 



    
 

 Fig 7.9 Reconstructed image (Approximation coefficient only)   at decoder on threshold   
            1. 
  
     
 
Table7.3 Showing No. of symbols generated during dominant pass and subordinate pass 
 
No of passes  Threshold Dominant pass 

Symbol 
Subordinate pass 
Symbol 

1 256 3616 1949

2 128 3164 3462

3 64 1484 3889

4 32 608 4041

5 16 220 4096

6 8 4 4096

7 4 4 4096

8 2 4 4096
9 1 4 4096



 
7.4 CONCLUSION: 
 
 
 In this thesis I have implemented image compression using MATLAB (7.0, 

REL.14) and developed software for Embedded Zero Tree wavelet coding and decoding. 

EZW is easier to implement and achieve good performance with relatively simple 

algorithm. EZW does not require any prior  knowledge and complicated bit allocation 

scheme like JPEG and vector quantization does. 

 

 The importance of biorthogonal filters has been shown. I have proposed a new 

wavelet filter derived from bior9.7 , the coefficient may be chosen to keep the  wavelet 

filter closer to orthogonal , which will become more energy preserving. 
 
 EZW coding algorithm has a problem is that it performs poorly when error 

introduced into coded data. This is because of embedded nature of coding causes errors to 

propagate from the point they introduced to the end of data. So, it will not be advisable to 

use it where error rates are quite high. 

 

 
 
FUTURE SCOPE OF WORK: 
 
The work presented in this thesis opens up varies new possibilities .Here is the list of few 

of them: 

 
• Arithmetic coding phase can be introduced to code the symbols generated by the 

EZW encoder for better performance. 

• EZW coding may be extended for selective spatial decoding to increase resolution 

in certain portion of image. 

• Color image compression can be implemented using EZW coding. 

• We can find different sets of coefficients to make the biorthogonal Wavelet filters  

better energy preserving. 
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Appendix 

 
 

 

 

 

 



 

%  The following program shows the decomposition of an image  

clear; 

close; 

% loading the image  

load wbarb; 

% the following command shows the image variable loaded  

whos 

% a single-level wavelet decomposition using Haar.  

[ca1,ch1,cv1,cd1] = dwt2(X,'haar'); 

% The variable  ca1  is approximation coefficient  

%The variable  ch1,cv1,cd1 is detail  coefficients   at level 1 

% following 2nd level coefficients  

[ca2,ch2,cv2,cd2]=dwt2(ca1,'haar'); 

%  following 3rd level coefficients  

[ca3,ch3,cv3,cd3]=dwt2(ca2,'haar'); 

% level-one approximation and details (A1, H1, V1, and D1) from 

% the coefficients ca1, ch1, cv1, and cd1, type 

A1 = upcoef2('a',ca1,'haar',1); 

H1 = upcoef2('h',ca1,'haar',1); 

V1 = upcoef2('v',cv1,'haar',1); 



D1 = upcoef2('d',cd1,'haar',1); 

A=upcoef2('a',ca2,'haar',1); 

H2=upcoef2('h',ch2,'haar',1); 

V2=upcoef2('v',cv2,'haar',1); 

D2=upcoef2('d',cd2,'haar',1); 

A3=upcoef2('a',ca3,'haar',1); 

H3=upcoef2('a',ch3,'haar',1); 

V3=upcoef2('a',cv3,'haar',1); 

D3=upcoef2('a',cd3,'haar',1); 

r=[A3 H3;V3 D3]; 

q=[r H2; V2 D2]; 

p=[q H1; V1 D1]; 

figure 

imshow(p,map); 

q=[A2 H2;V2 D2]; 

p=[q H1;V1 D1]; 

figure 

imshow(p, map); 

p=[A1 H1; V1 D1]; 

figure 

imshow(p,map); 



 

 

% This is a EZW encoder 

% This function calls following functios 

 

%    dominantpass.m 

 

%    subordinatepass.m 

 

%    checkdescents1.m 

 

%    checkchildren.m 

 

%    mapping.m 

 

 

 

 

 

 

 



 

clear; 

close all; 

load woman2 

[a,h,v,d]=dwt2(X,'db1'); 

Xdec=a; 

X0=Xdec; 

Y0=max(X0); 

 Y1=max(Y0);  

 for i=0:20; 

 

 if 2^i<=Y1 & 2^i>0.5*Y1; 

 

 threshold=2^i;   % get initial threshold T0; 

 

  initialthreshold=threshold; % get initial threshold T0; 

 

   laststeplevel=i+1;% last step level 

    break; 

     end; 

     end; 



 

 sublist=[]; 

 sub_list=[]; 

 [xx,yy]=size(Xdec); 

A=mapping(xx); 

[m,n]=size(A); 

global N;      % Let Morton scanorder vector as a global variable 

 N=zeros(m*n,2); 

     for i=1:m, 

             for j=1:n, 

                           N(A(i,j),1)=i; 

                   N(A(i,j),2)=j; 

          

               end 

     end 

 order=1;   

while threshold ~= 0.5,  % if threshold~=1, do dominantpass and subordinatepass. 

 threshold 

 

 

 



 

   %Dominant Pass 

 

   [D,Xdec,sublist,sub_list] = dominantpass(Xdec,threshold,sublist,sub_list);  

 

   DD{order}=D 

   significantlist{order}=sub_list; 

    %Subordinate pass 

    threshold=threshold/2; 

    if threshold ==0.5, 

     break; 

     end 

   S = subordinatepass(sublist,threshold); 

   SS{order}=S 

   order=order+1; 

    end 

 

 

 

 

 



 

% EZW decoder 

global N; 

 [m,n]=size(N);% the size of initial image 

               % m is the pixels of initial image 

 XX=zeros(sqrt(m)); % initialize the reconstructured image to zero; 

 threshold=initialthreshold; % initial theshold ; 

  

 sublist=[]; % sublist is the new position matrix  

             % for all significant coefficients 'p' and 'n'; 

            

Xezw=zeros(xx,xx,laststeplevel); 

for level=1:laststeplevel,  

            RR=zeros(size(XX)); % reference matrix RR; 

     [a,b]=size(DD{level}); % ?     

 

 

 

 

 

 



 

 % dominant pass 

        i=1; j=1; 

     while j<=b, 

         if RR(N(i,1),N(i,2))==0 

 

              if DD{level}(j)=='p' 

                  if threshold==1 

                     XX(N(i,1),N(i,2))=threshold;  

                 else 

                     XX(N(i,1),N(i,2))=1.5*threshold; 

                 end 

             end 

 

                 if DD{level}(j)=='n' 

                 if threshold==1 

                     XX(N(i,1),N(i,2))=-threshold;  

                 else 

                     XX(N(i,1),N(i,2))=-1.5*threshold; 

                 end 

                 end 



 

              if DD{level}(j)=='t'& A(N(i,1),N(i,2))<=m/4 

                 RR=checkchildren(i,RR);% all zerotree's descendants are set to 1. 

              end 

              RR(N(i,1),N(i,2))=1; %reference matrix =1; 

              i=i+1; 

              j=j+1; 

              else i=i+1; 

        end 

 

    end 

 

  

 

  

 

 

 

 

 

 



 

 % subordinate pass 

 

 [xx,yy]=size(significantlist{level}); 

 

 threshold=threshold/2; 

 

   for i=1:xx, 

 

       if level==laststeplevel|threshold==0.5 

 

           break 

       end 

 

      if SS{level}(i)==1 

 

         if XX(sub_list(i,1),sub_list(i,2))>0; 

          XX(sub_list(i,1),sub_list(i,2))= fix(XX(sub_list(i,1),sub_list(i,2))+ threshold/2); 

         

 else  

 



              

 

            XX(sub_list(i,1),sub_list(i,2))= fix(XX(sub_list(i,1),sub_list(i,2))-threshold/2); 

         end 

      end 

 

      if SS{level}(i)==0 

 

         if XX(sub_list(i,1),sub_list(i,2))>0; 

 

            XX(sub_list(i,1),sub_list(i,2))= fix(XX(sub_list(i,1),sub_list(i,2))-threshold/2); 

 

         else  

  

            XX(sub_list(i,1),sub_list(i,2))= fix(XX(sub_list(i,1),sub_list(i,2))+threshold/2); 

         end 

 

      end 

 

   end 

 



    

 

      threshold 

      level 

  Xezw(:,:,level)=XX; 

   

end 

 

 for p=1:laststeplevel, 

R = upcoef2('a',Xezw(:,:,p),'haar',1); 

 figure  

 imshow(R,map); 

 end 

                                                                                                                                                                              

          

 

 

 

 

 

 



 

 

function [D,X,sublist,sub_list] = dominantpass(X,threshold,sublist,sub_list)  

 

% Dominant pass function 

 

D=[]; 

 

global N; 

 

[m,n]=size(X); 

 

% X is the coefficients matrix 

 

R=zeros(m); % matrix R is a reference matrix, same size as X; '0' means 

 

  %this coefficient is not a descendant from zerotree root; 

 

[a,b]=size(N); 

 

   if abs(X(1,1))>=threshold % X(1,1) is DC coefficient 



 

   sublist=[sublist, abs(X(1,1))]; % put significant coefficients's value to sublist 

 

    sub_list=[sub_list;N(1,1),N(1,2)] 

% put the significant coefficients' position in sub_list 

 

                  if X(1,1)>0; 

 

                     D=[D,'p'];  

 

                  else D=[D,'n']; 

 

                  end   

 

                  X(1,1)=0; 

 

               else D=[D,'z']; 

 

              end  

 

                        for k=2:4, 



 

                if abs(X(N(k,1),N(k,2)))>=threshold,  

 

                    sublist=[sublist, abs(X(N(k,1),N(k,2)))];  

 

                  % append this significant coefficient to the subordinate list; 

 

                    sub_list=[sub_list;N(k,1),N(k,2)]; 

 

                                 if X(N(k,1),N(k,2))>0 % determine the sign 

 

                                    D=[D,'p']; % >0,assign a "p" 

 

                                 else D=[D,'n'];% <0,assign a "n" 

 

                                 end 

 

                                 X(N(k,1),N(k,2))=0;  

 

      % the significent coefficients is replaced by a '0' in the coefficients matrix   

 



               else 

 

                  % 2,3,4 has no parents,just check its descendants. 

 

                                 result = checkdescendants1( k,X,threshold,0);  

 

                                 if result==1 

 

                                     D=[D,'z']; 

 

                                 else 

 

                                     D=[D,'t']; 

 

                                     R(N(k,1),N(k,2))=1;   % Zerotree, make all its descendants 

 

                                     R=checkchildren(k,R); % refference matrix component to 1. 

                                 end     

 

               end 

 



           end 

 

           for k=5:a, 

 

                   if abs(X(N(k,1),N(k,2)))>=threshold,  

 

                      sublist=[sublist, abs(X(N(k,1),N(k,2)))];  

 

                      sub_list=[sub_list;N(k,1),N(k,2)]; 

 

                                 if X(N(k,1),N(k,2))>0, % determine the sign 

 

                                    D=[D,'p']; % >0,assign a "p" 

 

                                 else D=[D,'n'];% <0,assign a "n" 

 

                                 end 

 

                                 X(N(k,1),N(k,2))=0;  

 

                              



 

                   elseif R(N(k,1),N(k,2))==0 

 

                                 result = checkdescendants1( k,X,threshold,0);  

 

                      % Check its has significant descendants?                

 

                                 if result==1, 

 

                                     D=[D,'z']; % isolated zero 

 

                                 else D=[D,'t'];% zerotree 

 

                                     R(N(k,1),N(k,2))=1;   

 

                                     R=checkchildren(k,R); 

 

                                 % if zerotree, reference matrix coefficients=1 

 

                                 end 

                   end 



           end 

 

function S = subordinatepass(sublist,threshold)  

 

S=[]; 

 

 [m,n]=size(sublist); 

 

 for i=1:n; 

 

          if bitand(uint8(sublist(1,i)),threshold)==threshold, 

 

%      if sublist(1,i)>=threshold, 

         S=[S,1]; 

         %sublist(1,i)=sublist(1,i)-threshold; 

     else S=[S,0];  

     end 

 

end 

 

  



 

function   RR=checkchildren(j,RR) 

 

% if a symbol 't' is encounted, then make all its descendants in reference   

 

% matrix RR's components equal 1---ZEROTREES 

 

global N 

 

[m,n]=size(N); 

 

for i=(4*j-3):4*j; 

 

      if  i<=m,  

  

         RR(N(i,1),N(i,2))=1; 

 

         RR=checkchildren(i,RR); 

          end 

     

end; 



 

    

function   result = checkdescendants1(j,X,threshold,result) 

 

% initial set result=0 

 

% if the result=1, means that a coefficient has at least  

 

% 1 significant descendant. 

 

global N 

 

[m,n]=size(N); 

 

for i=(4*j-3):4*j; 

 

      if result==1 | i > m 

 

         break; 

 

      end; 



 

              if abs(X(N(i,1),N(i,2)))>=threshold      

 

        result=1; 

 

        break;  

 

     else  

     

 

     result=checkdescendants1(i,X,threshold,result); 

 

     end; 

 

end; 

 

    

 

 

 

 



      

                 

  function A = mapping(n) 

 

if n == 2 

 

   A = [1 2; 3 4]; 

 

else 

 

   B = mapping(n/2); 

 

   A = [B B+(n/2)^2; B+(n/2)^2*2 B+(n/2)^2*3]; 

 

end 

 

 

 

 

 

 



 

 

 function PSNR= psnr2(cimg, oimg) 

%psnr2 Comput the PSNR of the compressed image cimg and original oimg 

 

[m,n]=size(cimg); 

 

%calculate MSE 

eimg=cimg-oimg; 

mse=sum(sum(eimg.^2))/(m*n); 

 

%calculate RMSE 

RMSE=sqrt(mse); 

 

%calculate PSNR 

PSNR=20*log10(255/RMSE) 

 

 

 

 

 



 

function MSE= mse2(cimg, oimg) 

%  compressed image cimg and original oimg 

 

[m,n]=size(cimg); 

 

%calculate MSE 

eimg=cimg-oimg; 

MSE=sum(sum(eimg.^2))/(m*n)       

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 clear; 

close all; 

 

% Load original image. 

 

load wbarb;  

 

nbc = size(map,1); 

 

% Perform a wavelet decomposition of the image 

 

wname = 'bior4.4'; lev =5; 

 

[c,s] = wavedec2(X,lev,wname); 

 

% for image compression using the adviced parameters. 

 

alpha = 1.5; m = 6*prod(s(1,:)); 



 

[thr,nkeep] = wdcbm2(c,s,alpha,m); 

 

%nkeep is Level of coeficient at level i 

% thresholds with hard thresholding. 

 

[xd,cxd,sxd,perf0,perfl2] = ... 

                  wdencmp('lvd',c,s,wname,lev,thr,'h'); 

               

%xd compressed matrix 

 

%cxd  vector norm coeficient 

 

% Plot original and compressed images. 

 

 

colormap(pink(nbc)); 

 

subplot(221), image(wcodemat(X,nbc)), 

 

title('Original image') 



 

subplot(222), image(wcodemat(xd,nbc)), 

 

title('Compressed Image Level Thres') 

 

%cal of PSNR and MSE 

psnr2(xd,X); 

 

mse2(xd,X); 

 

% xlabel display 

 

xlab1 = ['R energy',num2str(perfl2),'%']; 

 

xlab2 = ['compression score',num2str(perf0),'%']; 

 

xlabel([xlab1           xlab2 ]); 

 

% user given global threshold  

 

th=45; 



 

[xc,cxd,sxd,perf0,perfl2] = ... 

                  wdencmp('gbl',c,s,wname,lev,th,'h',1); 

               

subplot(223), image(wcodemat(xc,nbc)), 

 

title(['Compressed image at THR=',num2str(th)]) 

 

xlab1 = ['R energy',num2str(perfl2),'%']; 

 

xlab2=['compression score',num2str(perf0),'%']; 

 

xlabel([xlab1           xlab2 ]); 

 

%cal of PSNR and MSE 

 

psnr2(xc,X); 

 

mse2(xc,X);       
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