
A GENETIC APPROACH TO EVOLVE
FINITE STATE AUTOMATA

A Dissertation
Submitted in Partial Fulfillment of the

Requirement for the Award of the Degree of

MASTER OF ENGINEERING
 IN

COMPUTER TECHNOLOGY AND APPLICATIONS

By

SHRADDHA SINGHAI
 (Roll No: 3012)

Under the Guidance

of
Mrs. RAJNI JINDAL

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

 DELHI 110042

Department of Computer Engineering
Delhi College of Engineering, Delhi

CERTIFICATE

This is to certify that the project report entitled

“A GENETIC APPROACH TO EVOLVE FINITE STATE AUTOMATA”

being submitted by Ms SHRADDHA SINGHAI (Roll No: 3012)

is a bonafide record of her own work carried under our guidance

and supervision in partial fulfillment for the award of the degree of

Master of Engineering in Computer Technology and Applications

from Delhi College of Engineering, Delhi.

 Mrs. Rajni Jindal Dr. D. Roy Choudhury
 Lecturer, Project Guide Professor & HOD
Delhi College of Engg, Delhi Delhi College of Engg, Delhi

 i

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude and veneration to my project guide

Mrs. Rajni Jindal, Lecturer, Department of Computer Engineering, Delhi College of

Engineering, Delhi, for her perpetual encouragement, constant guidance, valuable

suggestions and continuous motivation which has enabled me to complete this work.

I would like to express my sincere thanks to Dr. P. B. Sharma, Principal, Delhi

College of Engineering, to allow me to perform this study and for providing all the

necessary facilities to carry out this work.

I am deeply indebted to Dr. D. Roy Choudhury, HOD, Department of

Computer Engineering, Delhi College of Engineering, for his constant encouragement,

valuable guidance, resourceful suggestions and alignment evaluations throughout the

course of this project. I also thank all the teachers of Computer Engineering

department of Delhi college of Engineering for their kind co-operation and enormous

support.

I am also grateful to my parents, who have been a constant source of inspiration

for me throughout my life and enabled me to reach at this stage. A special appreciation

also goes to all my friends for their love and constant support.

(SHRADDHA SINGHAI)

 ii

ABSTRACT

Finite-state automata are one of the most pervasive models of computation, not

only theoretically, but also in all of its applications to real-life problems such as natural

and formal language processing, pattern recognition, control, etc. Automatically inferring

finite automata from sets of positive and negative data samples has been an important

problem in computer science and many schemes have been proposed for its solution. The

previous works in the evolution of finite state automata were limited to the evolution of

strictly non-modular FSA. In this dissertation, a modular architecture to develop FSA

accepting a particular regular language is proposed and a genetic programming procedure

for evolving such structures is presented. The results on the Tomita Language benchmark

indicate that the proposed procedure is able to evolve an NFA with less number of

generations explored and lesser amount of time taken than the earlier non-modular

evolution.

 iii

CONTENTS

 Page No

CERTIFICATE i

ACKNOWLEDGEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES ix

CHAPTER-1 INTRODUCTION 1

1.1 Objective 1

1.2 Contribution 1

1.3 Organization of the Dissertation 2

CHAPTER-2 BACKGROUND 4

2.1 Overview of Finite State Machines 4

2.1.1 Deterministic Finite Automata 4

2.1.2 Non-deterministic Finite Automata 5

2.1.3 Language of the Automata 5

2.2 Overview of Genetic Programming 5

 2.2.1 Genetic programming Process 6

2.3 Problem Statement 7

2.3.1 Problem Overview and Historical Background 7

2.3.2 Proposed Problem Solving Approach 8

CHAPTER-3 GENETIC PROGRAMMING 9

3.1 Introduction 9

3.2 Preparatory Steps of Genetic Programming 9

 iv

3.2.1 Function Set and Terminal Set 10

3.2.2 Fitness Measure 10

3.2.3 Control Parameters 11

3.2.4 Termination 11

3.3 Executional Steps of Genetic Programming 11

3.4 The Genetic Programming Algorithm in Action 14

3.4.1 Generate Random Initial Population 14

3.4.1.1 Grow Method 14

3.4.1.2 Full Method 15

3.4.1.3 Ramped-half-and-half Method 15

3.4.2 Measure Fitness of Population 16

3.4.2.1 Raw Fitness 16

3.4.2.2 Standardized Fitness 16

3.4.2.3 Adjusted Fitness 17

3.4.4.4 Normalized Fitness 17

3.4.2.5 Probability of Selection 17

3.4.3 Select Better Individuals From The Population 18

3.4.3.1 Fitness-Proportional Selection 18

3.4.3.2 Ranked Selection 18

3.4.3.3 Tournament Selection 19

3.4.3.4 Truncation Selection 19

3.4.4 Apply Genetic Operators to Generate

New Population 19

3.4.4.1 Reproduction 19

3.4.4.2 Crossover 20

3.4.4.3 Mutation 22

3.4.4.4 Permutation 23

3.4.4.5 Editing 24

3.4.4.6 Encapsulation 24

3.4.4.7 Decimation 24
3.4.5 Control Parameters 24

 v

3.4.6 Repeat Until Program Solves Problem or

 Time Runs Out 25

CHAPTER-4 EDGE ENCODING FOR FSA INDIVIDUALS 26

4.1 Introduction 26

4.2 Encoding an NFA 27

CHAPTER-5 PROBLEM AND SCHEME SPECIFICATIONS 30

5.1 Chromosomal Encoding 30

5.2 Generating the Initial Population 32

5.3 Tomita Languages 32

5.4 Fitness Assessment 34

5.5 Selections and Breeding 34

5.5.1 Selection Scheme 34

5.5.2 Crossover Scheme 35

5.5.3 Mutation Scheme 35

5.6 Control Parameters 37

CHAPTER-6 MODULAR ARCHITECTURE TO EVOLVE

FINITE STATE AUTOMATA 38

6.1 Proposed Evolution Model 38

6.2 Design Of Modular Architecture 39

6.3 Computational Algorithms 42

6.3.1 Basic Algorithm for NFA Evolution 42

6.3.2 Proposed Modular Algorithm 44

6.4 Example Evolution 44

6.5 Summary 45

 vi

CHAPTER-7 EXPERIMENTS AND RESULTS 46

7.1 Experimental Setup 46

7.1.1 Implementation 46

7.1.2 Test Data 46

7.1.3 Tomita Decomposition For The Modular Evolution 46

7.1.4 Fitness Metric 47

7.2 Experimental Results 48

7.2.1 Population-based Analysis 48

7.2.2 Timing Analysis 52

7.2.3 Performance Evaluation 52

CHAPTER-8 CONCLUSIONS AND FUTURE DIRECTIONS 54

8.1 Conclusions 54

8.2 Future Work 54

REFERENCES 56

APPENDIX A: OUTPUT 59

APPENDIX B: SOURCE CODE 72

 vii

LIST OF FIGURES
 Page No

Figure 3.1: Preparatory Steps 9

Figure 3.2: Flowchart of Genetic Programming 13

Figure 3.3: Crossover 21

Figure 3.4: Mutation 23

Figure 4.1: The Double Function 27

Figure 4.2: An Edge Encoding Genome, which Describes an NFA

that Reads the Regular Expression ((0|1)*101) 29

Figure 4.3: The Growth of the NFA from the Encoding in Figure 4.2 29

Figure 5.1: An edge encoding genome and its equivalent s-expression 31

Figure 5.2: Subtree Crossover 36

Figure 5.3: Subtree Mutation 36

Figure 6.1: Edge Encoding for 1* and (10)* 44

Figure 6.2: Encoding Tree and NFA for 1* and (10)* 45

Figure 6.3: Edge Encoding Tree and the NFA for 1*(10)* 45

Figure 7.1: Number of Generations Explored in the Best case for the

Tomita Languages 50

Figure 7.2: Number of Generations Explored in the Average case for the

Tomita Languages 50

Figure 7.3: Number of Nodes Evaluated in the Best case for the

Tomita Languages 51

Figure 7.4: Number of Nodes Evaluated in the Average case for the

Tomita Languages 51

Figure 7.5: Time Taken for finding the Solution in the Best case for the

Tomita Languages 53

Figure 7.6: Time Taken for finding the Solution in the Average case

for the Tomita Languages 53

 viii

LIST OF TABLES

 Page No

Table 4.1: Simple Topological Functions for Edge Encoding 28

Table 4.2: NFA Semantic Functions for Edge Encoding 28

Table 5.1: Description of function set and terminal set for edge encoding an NFA 31

Table 5.2: The Tomita Language Set 32

Table 5.3: Positive and Negative Training Examples 33

Table 7.1: Tomita Decomposition for the Modular Evolution 47

Table 7.2: Number of generations explored and the number of nodes

evaluated for the evolution of each Tomita language

using non-modular approach 49

Table 7.3: Number of generations explored and the number of nodes

evaluated for the evolution of each Tomita language using

 proposed modular approach 49

Table 7.4: Average elapsed time in milliseconds to learn the Tomita

languages for both non-modular and modular architecture 52

Table A.1: Positive and Negative Training Sets for Tomita 7 59

Table A.2: Positive and Negative Training Sets for Sub Expression 1 of Tomita 7 67

 ix

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-1

INTRODUCTION

Automatic programming has been the goal of computer scientists for a number

of decades. Scientists would like to be able to give the computer a problem and ask the

computer to build a program to solve it. Genetic Programming, a technique pioneered

by John Koza [15], shows the most potential way to automatically write computer

programs, via the core, but highly abstracted principles of natural selection.

GP begins with a population of randomly generated individuals (candidate

solutions). It then tests these individuals and assesses their quality. The better ones are

then selected to breed and create new individuals, which in turn are tested, selected, and

bred. This cycle continues until a sufficiently good solution is found for the problem, or

until time or other resources are exhausted. In a sentence, it is the compounded breeding

of (initially random) computer programs, where only the relatively more successful

individuals pass on genetic material to the next generation [3].

1.1 Objective

This dissertation focuses on the problem of automatic creation of finite state

automata accepting a particular regular language using the genetic programming

paradigm. The basic problem is, given a set of positive and negative example strings,

automatically infer corresponding automata, which generates or recognizes those

examples. The Finite Automata is evolved to induce the Tomita language Set [24], a

popular and nontrivial language induction benchmark.

1.2 Contribution

In this dissertation a modular architecture to evolve finite state automata is

proposed and a genetic programming procedure for evolving such structures is

presented. In the proposed modular architecture, the given regular expression is

Delhi College of Engineering, Delhi 1

 A Genetic Approach to Evolve Finite State Automata

decomposed into few smaller sub-expressions, the finite automata for each of these sub-

expressions are evolved using the genetic programming paradigm, and then the evolved

sub automata are combined to get the complete automata describing the given regular

expression as a whole.

Tomita Set results indicate that the proposed procedure is indeed capable of

successfully evolving modular finite state machines and that such modularity can result

in a significantly increased rate of optimization. It is also supported by the fact, that, a

difficult task when decomposed into simpler subtasks can be solved with lower

computational effort, and their solutions can be combined to give the overall solution to

the task. Further, already discovered solutions to subtasks may also be reused to

repeatedly solve similar sub problems.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows:

Chapter 2 starts with the brief background of the finite state machines and the

genetic programming process, and is followed by a brief overview to the problem,

previous work and to the proposed problem solving approach.

Chapter 3 comprises of learning about, understanding, and implementing the

concept of Genetic Programming.

Chapter 4 investigates the issue of chromosomal representation of an FSA

individual. The chapter describes Edge Encoding, a technique for evolving graph and

network structures via genetic programming. The FSA chromosomes are represented in

the form of Edge Encoding tree, which can develop into a directed graph when

evaluated.

Delhi College of Engineering, Delhi 2

 A Genetic Approach to Evolve Finite State Automata

 Chapter 5 provides the problem and scheme specifications for evolving finite

state automata for the Tomita Language Set using the Genetic Programming Process.

 Chapter 6 presents the proposed modular architecture to evolve finite state

automata. The design of architecture as well as the computational algorithm is

described. The chapter then concludes by explaining an example evolution using the

proposed architecture.

Chapter 7 examines the experimental setup and compares the results of evolving

NFA’s for the Tomita Languages using both the modular as well as the non-modular

approach.

Chapter 8 summarizes the main results of the research and presents some

conclusions. Some promising future research topics are described as a natural extension

of this work.

Delhi College of Engineering, Delhi 3

 A Genetic Approach to Evolve Finite State Automata

CHAPTER - 2

BACKGROUND

2.1 Overview of Finite State Automata

Finite state automata are one of the most important mathematical constructs

used in the construction of practical computer programs. They have applicability in

virtually every area of computer science, especially in language translators. They

involve states and transitions among states in response to inputs. They are useful for

developing several kinds of software components, including the lexical analysis

component of compilers and systems for verifying the correctness of circuits and

protocols.

Finite State automata consists of a set of states, a start state, set of final states, an

input alphabet, and a transition function that maps an input symbol and current state to

next state [1].

2.1.1 Deterministic Finite Automata

A Deterministic Finite Automata (DFA) is a finite automaton having a finite set

of states and a finite set of input symbols. One state is designated the start state, and one

or more states are accepting states. A transition function determines how the state

change each time an input symbol is processed [14].

A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F)

where, Q is finite nonempty set of states

 ∑ is a finite nonempty set of inputs called input alphabets

δ is a function which maps Q×∑ into Q

q0 ∈ Q is the initial state

F⊆ Q is the set of final states.

Delhi College of Engineering, Delhi 4

 A Genetic Approach to Evolve Finite State Automata

2.1.2 Non-deterministic Finite Automata

Non-deterministic Finite state automata differ from DFAs in that they allow for

an input bit to specify multiple possible next moves. Namely, in an NFA we may move

from state p to any of states q1, q2, …, qk , by seeing the same input. Hence we will not

have the same type of transition function as a DFA. Instead, our transition function will

take as input a state and an element of the alphabet but return some subset of states. In

an NFA, we also allow for multiple start states [14].

A Non-deterministic Finite State Automata is a model with 5-tuple (Q, ∑, δ, q0, F)

where, Q is finite nonempty set of states

 ∑ is a finite nonempty set of inputs called input alphabets

δ is a function which maps Q×∑ into 2Q

q0 ∈ Q is the initial state

F⊆ Q is the set of final states.

2.1.3 Language of the Automata

All automata accept strings. A string is accepted if, starting in the start state, the

transitions caused by processing the symbols of that string one at a time leads to an

accepting state. An algebraic notation called regular expressions can also describe the

language of a finite automaton [1]. We can convert any definition involving regular

expressions into an implement able finite automaton in two steps:

Regular expression NFA DFA

2.2 Overview of Genetic Programming

One of the central challenges of computer science is to get a computer to do

what needs to be done, without telling it how to do it. Genetic Programming addresses

this challenge by providing a method for automatically creating a working computer

program from a high-level program statement of the problem. It achieves this goal of

Delhi College of Engineering, Delhi 5

 A Genetic Approach to Evolve Finite State Automata

automatic programming by genetically breeding a population of computer programs,

using the principles of Darwinian natural selection and biologically inspired operations.

Genetic Programming (GP) searches for good solutions to problems by trying

large numbers of candidate solutions, selecting the “better” ones, modifying them, and

producing new candidate solutions to test [15].

Because it is inspired by natural selection and genetics, genetic programming

borrows much of its vernacular from genetics, cellular biology, and evolutionary theory.

In GP, a candidate solution is known as an individual. The pool of current individuals in

the system is collectively known as the population. This population may, depending on

the nature of the problem being solved, be broken into several subpopulations. The

actual encoding of an individual’s solution is known as its genome (occasionally

chromosome). The solution’s representation when undergoing modification is known as

the individual’s genotype. The way the solution operates when tested in the problem

environment is known as the individual’s phenotype. When individuals are modified to

produce new individuals, they are said to be breeding. During testing an individual

receives a grade, known as its fitness, which indicates how good a solution it is. The

period in which the individual is evaluated and assigned fitness is known as fitness

assessment. When a population has been entirely replaced by children, the new

population is known as the next generation. The whole process of finding an optimal

solution is known as evolving a solution [3].

2.2.1 Genetic programming Process

Initially a population is generated randomly. Each individual is evaluated using

the fitness measure given at the start. After this is done, a few individuals are selected to

perform mutation, crossover and reproduction. The selected individuals after applying

the genetic operations are copied to the next generation. The individuals in the next

generation undergo the same process of fitness evaluation, selection, and modification.

This is repeated until the termination condition is not satisfied. Termination condition,

Delhi College of Engineering, Delhi 6

 A Genetic Approach to Evolve Finite State Automata

generally, is either the maximum number of generations or discovery of an ideal

individual.

2.3 Problem Statement

This dissertation focuses on the problem of automatic creation of finite automata

accepting a particular regular language using the genetic programming paradigm. The

basic problem is, given a set of positive and negative data samples, automatically infer a

corresponding automaton, which generates or recognizes those samples.

2.3.1 Problem Overview and Historical Background

We evolve FSMs to recognize regular expressions. Regular expressions are used

to represent a subset of strings. FSM evolution can be beneficial because it requires no

human interaction. It can be used for data analysis, pattern matching or profiling. It can

also be used in an adaptive system. The FSM would adapt to its environment to improve

its fitness level.

The automatic creation of finite automata has long been a goal of the evolutionary

computation community. Fogel [8] was the first to propose the generation of

deterministic finite automata (DFAs) by means of an evolutionary process, and the

possibility of inferring languages from examples was initially established by Gold.

Since then, much work has been done in the induction of DFAs for language

recognition.

Gruau [10] has proposed a method called Cellular Encoding, where the GP tree

is a program, which builds a graph, often for use as a neural network and for developing

directed graph.

Scott Brave [4] presented a method for the evolution of deterministic finite

automata that combines genetic programming and cellular encoding. Luke and Spector

[18] have published a preliminary report on a significant variation to cellular encoding

Delhi College of Engineering, Delhi 7

 A Genetic Approach to Evolve Finite State Automata

called edge encoding. Their main change is that forests of trees are used to represent the

entire network, with the trees having the ability to recurse and to call other trees.

Therefore, the same structure may be represented once and used multiple times.

.

Chongstitvatana et al. [6] used genetic inferencing to synthesize FSMs using

multiple input/output sequences. Nippaman et al. [19] provided another FSM inference

method, one where only the state transitions were evolved. State outputs were

determined post-evolution.

Jason et al [13] presented a method to reduce the total number of generations

needed to evolve a finite state machine using genetic inferencing. The time required to

evolve a design is reduced, by only evolving, a small partition of the input-output

relationship.

2.3.2 Proposed Problem Solving Approach

 The previous works in the evolution of finite state machines were limited to the

evolution of strictly non-modular FSA In this dissertation, a modular FSA architecture

is proposed and a genetic programming procedure for evolving such structures is

presented.

 In this approach a regular expression is evolved, by decomposing the expression

into simpler subparts. These subparts may then be solved with lower computational

effort and their solutions can be combined to give the overall solution to the problem.

Further, already discovered solutions to subtasks may be reused to repeatedly solve

similar sub problems. Thus the total number of generations and the time required to

evolve a finite state automata is reduced.

 Results on the Tomita Language Set indicate that the proposed procedure is

indeed capable of successfully evolving modular FSA and that such modularity can

result in a statistically significantly increased rate of optimization.

Delhi College of Engineering, Delhi 8

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-3

GENETIC PROGRAMMING

3.1 Introduction

Genetic programming is a systematic method for getting computers to

automatically solve a problem starting from a high-level statement of what needs to be

done. It is a collection of methods for the automatic generation of computer programs

that solve carefully specified problems, via the core, but highly abstracted principles of

natural selection. In a sentence, it is the compounded breeding of (initially random)

computer programs, where only the relatively more successful individuals pass on

genetic material (programs and program fragments) to the next generation [15].

3.2 Preparatory Steps of Genetic Programming

Genetic programming starts from a high-level statement of the requirements of a

problem and attempts to produce a computer program that solves the problem. The

human user communicates the high-level statement of the problem to the genetic

programming system by performing certain well-defined preparatory steps [23].

Figure 3.1: Preparatory Steps

The five major preparatory steps for the basic version of genetic programming

require the human user to specify

Delhi College of Engineering, Delhi 9

 A Genetic Approach to Evolve Finite State Automata

(1) the set of terminals (e.g., the independent variables of the problem, zero argument

functions, and random constants) for each branch of the to-be-evolved program

(2) the set of primitive functions for each branch of the to-be-evolved program

(3) the fitness measure (for explicitly or implicitly measuring the fitness of individuals)

(4) certain parameters for controlling the run, and

(5) the termination criterion and method for designating the result of the run.

3.2.1 Function Set and Terminal Set

The individuals in the population are compositions of functions and terminals

appropriate to the particular problem domain. The set of functions used typically

includes arithmetic operations, mathematical functions, conditional logical operations,

and domain-specific functions. The set of terminals used typically includes inputs

appropriate to the problem domain and various constants [3].

The compositions of functions and terminals described above correspond

directly to the parse tree that is internally created by most compilers and to the

programs found in programming languages such as LISP (where they are called

symbolic expressions or S-expressions) [23]. In genetic programming, we view the

search for a solution to the problem as a search in the space of all possible compositions

of functions that can be recursively composed of the available functions and terminals.

3.2.2 Fitness Measure

The fitness measure specifies what needs to be done. The fitness measure is the

primary mechanism for communicating the high-level statement of the problem’s

requirements to the genetic programming system. The first two preparatory steps define

the search space whereas the fitness measure implicitly specifies the search’s desired

goal [15].

Delhi College of Engineering, Delhi 10

 A Genetic Approach to Evolve Finite State Automata

3.2.3 Control Parameters

The fourth preparatory step entails specifying the control parameters for the run.

The most important control parameter is the population size. In practice, the user may

choose a population size that will produce a reasonably large number of generations in

the amount of computer time we are willing to devote to a problem. Other control

parameters include the probabilities of performing the genetic operations, the maximum

size for programs, and other details of the run [23].

3.2.4 Termination

The fifth preparatory step consists of specifying the termination criterion and the

method of designating the result of the run. The termination criterion may include a

maximum number of generations to be run as well as a problem-specific success

predicate. In practice, one may manually monitor and manually terminate the run when

the values of fitness for numerous successive best-of-generation individuals appear to

have reached a plateau. The single best-so-far individual is then harvested and

designated as the result of the run [23].

3.3 Executional Steps of Genetic Programming

Genetic programming typically starts with a population of randomly generated

computer programs composed of the available programmatic ingredients. Genetic

programming iteratively transforms a population of computer programs into a new

generation of the population by applying analogs of naturally occurring genetic

operations. These operations are applied to individual(s) selected from the population.

The individuals are probabilistically selected to participate in the genetic operations

based on their fitness [23].

Delhi College of Engineering, Delhi 11

 A Genetic Approach to Evolve Finite State Automata

 The executional steps of genetic programming [23] are as follows:

1. Randomly create an initial population (generation 0) of individual computer

programs composed of the available functions and terminals.

2. Iteratively perform the following sub-steps (called a generation) on the

population until the termination criterion is satisfied:

a) Execute each program in the population and ascertain its fitness (explicitly or

implicitly) using the problem’s fitness measure.

b) Select one or two individual program(s) from the population with a

probability based on fitness (with reselection allowed) to participate in the

genetic operations in (c).

c) Create new individual program(s) for the population by applying the

following genetic operations with specified probabilities:

• Reproduction: Copy the selected individual program to the new

population.

• Crossover: Create new offspring program(s) for the new population by

recombining randomly chosen parts from two selected programs.

• Mutation: Create one new offspring program for the new population by

randomly mutating a randomly chosen part of one selected program.

• Architecture-altering operations: Choose an architecture altering

operation from the available repertoire of such operations and create one

new offspring program for the new population by applying the chosen

architecture-altering operation to one selected program.

3. After the termination criterion is satisfied, the single best program in the

population produced during the run (the best-so-far individual) is harvested and

designated as the result of the run. If the run is successful, the result may be a

solution (or approximate solution) to the problem.

Delhi College of Engineering, Delhi 12

 A Genetic Approach to Evolve Finite State Automata

Figure 3.2: Flowchart of Genetic Programming

Delhi College of Engineering, Delhi 13

 A Genetic Approach to Evolve Finite State Automata

3.4 The Genetic Programming Algorithm in Action

3.4.1 Generate Random Initial Population

Though genetic programming prints its individuals as s-expressions, it

represents them internally as trees of named nodes. In genetic programming parlance,

leaf nodes in the tree are known as terminals and non-leaf nodes are known as non-

terminals. Depending on the problem being solved, an individual may be a single tree,

or a forest of trees. The experimenter must provide the genetic programming system

with a primordial soup of basic tree nodes from which to build its program trees [15].

At the beginning of the evolution process, initial individuals must be generated

at random. Genetic programming creates these individuals’ trees by applying a tree

generation algorithm to each tree’s function set. Tree generation algorithms work by

selecting and copying nodes from the templates in the function set, then hanging the

copied nodes together to form the tree. The three traditional tree-generation algorithms

are FULL, GROW and RAMPED HALF-AND-HALF [15].

The full method selects nodes from F until the tree reaches a pre-determined

depth then it selects from T. This results in trees with uniform depth. The grow method

differs in that a node is selected from C if the depth is less than a predetermined

maximum; else a node is selected from T. A third method combining the full and grow

is called ramped half and half. Ramped half and half operates by creating an equal

number of trees with a depth between 2 and a pre-determined maximum. Then for each

depth, 50% of the trees are created using the full method and 50% using the grow

method.

3.4.1.1 Grow Method

With this first technique the entire population is created by using the grow

method which creates one individual at a time. An individual created with this method

may be a tree of any depth up to a specified maximum, m [15].

Delhi College of Engineering, Delhi 14

 A Genetic Approach to Evolve Finite State Automata

1. Starting from the root of the tree every node is randomly chosen as either a

function or terminal.

2. If the node is a terminal, a random terminal is chosen.

3. If the node is a function, a random function is chosen, and that node is given a

number of children equal to the arity (number of arguments) of the function. For

every one of the function’s children the algorithm starts again, unless the child is

at depth m, in which case the child is made a randomly selected terminal.

3.4.1.2 Full Method

The full method is very similar to the grow method except the terminals are

guaranteed to be a certain depth. This method requires a final depth, d [15].

1. Every node, starting from the root, with a depth less than d, is made a randomly

selected function. If the node has a depth equal to d, the node is made a

randomly selected terminal.

2. All functions have a number (equal to the arity of the function) of child nodes

appended, and the algorithm starts again. Thus, only if d is specified as one,

could this method produce a one-node tree.

3.4.1.3 Ramped-half-and-half Method

To increase the variation in structure both grow and full methods can be used in

creating the population. Only a maximum depth, md, is specified but the method

generates a population with a good range of randomly sized and randomly structured

individuals [15].

1. The population is evenly divided into parts: a total of md-1.

2. Half of each part of the population is produced by the grow method. The other

half is produced using the full method. For the first part, the argument for the

grow method, m, and the argument for the full method, d, is 2. For the second

part 3 is used. This continues to part md-1, where the number md is used. Thus a

population is created with good variation, utilizing both grow and full methods.

Delhi College of Engineering, Delhi 15

 A Genetic Approach to Evolve Finite State Automata

3.4.2 Measure Fitness of Population

Once the initial random population has been created, the individuals need to be

assessed for their fitness. In GP, the user-provided AssessFitness(pi) function usually

assesses the fitness of pi by directly executing it in some problem domain as if it were

an actual Lisp s-expression program, and then examining the result [11].

3.4.2.1 Raw Fitness

The definition of raw fitness depends on the problem. For many problems, raw

fitness can be defined as the sum of the distances (i.e. errors), taken over all the fitness

cases, between the point in the range space returned by the S-expression for the set of

arguments for the particular fitness case and the correct point in the range space for the

particular fitness case [11].

When raw fitness is error, the raw fitness raw(i) of an individual S-expression i

in the population of size M is

∑
=

−=
Ne

j
jCjiSiraw

1
)(),()(

where S(i,j) is the value returned by S-expression i for fitness case j (of Ne cases) and

C(j) is the correct value for fitness case j.

3.4.2.2 Standardized Fitness

The standardized fitness std(i) restates the raw fitness so that a lower numerical

value is better. If a lower value of raw fitness is better (e.g. when raw fitness represents

error), then standardized fitness

)()(irawistd =

If a higher value of raw fitness is better (e.g. when food is being eaten),

standardized fitness equals the maximum possible value of raw fitness rawmax minus the

observed raw fitness [11].

)()(max irawrawistd −=

Delhi College of Engineering, Delhi 16

 A Genetic Approach to Evolve Finite State Automata

3.4.2.3 Adjusted Fitness

The adjusted fitness measure adj(i) is computed from the standardized fitness

std(i). The adjusted fitness adj(i) is

))(1(
1)(

istd
iadj

+
=

where std(i) is the standardized fitness for individual i at time t. The adjusted fitness lies

between 0 and 1. The use of this adjustment is beneficial for separation of individuals

with standardized fitness values that approach zero [11].

3.4.2.4 Normalized Fitness

The normalized fitness norm(i) is computed from the adjusted fitness value

adj(i). The normalized fitness norm(i) is [11]

∑
=

= M

k

kadj

iadjinorm

1

)(

)()(

Normalized fitness has three desirable characteristics.

• It ranges between 0 and 1.

• It is larger for better individuals in the population.

• The sum of the normalized fitness values is one.

3.4.2.5 Probability of Selection

The probability of selection (sp) is:

∑
=

= M

K

knorm

inormisp

1

)(

)()(

 (a) Order the individuals in a population by their normalized fitness

(b) Chose a random number, r, from zero to one.

(c) From the top of the list, loop through every individual keeping a total of there

normalized fitness values. As soon as this total exceeds r, stop the loop and select the

current individual.

Delhi College of Engineering, Delhi 17

 A Genetic Approach to Evolve Finite State Automata

3.4.3 Select the Better Individuals from the Population

Once individuals have had their fitness’s assessed, they may be selected and

bred to form the next generation in the evolution cycle. This is done by selecting one or

two individuals from the old population, copying them, modifying them, and returning

the modified copies for addition to the new population. There are several common

selection strategies in use:

3.4.3.1 Fitness-Proportional Selection

This selection method, due to Holland, normalizes all the fitnesses in the

population. These normalized fitnesses then become the probabilities that their

respective individuals will be selected. Fitnesses may be transformed in some way prior

to normalization; for example, Koza [15] normalizes the adjusted fitness rather than the

standardized fitness.

3.4.3.2 Ranked Selection

One of the problems with fitness-proportional selection is that it is based directly

on the fitness. Assessed fitnesses are rarely an accurate measure of how “good” an

individual really is. Another approach, which addresses this issue, is to rank individuals

by their fitness, and use that ranking to determine selection probability. In linear

ranking individuals are first sorted according to their fitness values, with the first

individual being the worst and the last individual being the best. Each individual is then

selected with a probability based on some linear function of its sorted rank. This is

usually done by assigning to the individual at rank i a probability of selection [11]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−+−=

1||||
1)22(2

||||
1

P
icc

P
Pi

where ||P|| is the size of the population P, and 1≤c≤2 is the selection bias: higher

values of c cause the system to focus more on selecting only the better individuals. The

Delhi College of Engineering, Delhi 18

 A Genetic Approach to Evolve Finite State Automata

best individual in the population is thus selected with the probability
|||| P

c ; the worst

individual is selected with the probability
||||

2
P

c− .

.
3.4.3.3 Tournament Selection

In tournament selection [23], a pool of n individuals is picked at random from

the population. These are independent choices: an individual may be chosen more than

once. Then tournament selection selects the individual with the highest fitness in this

pool. Clearly, the larger the value n, the more directed this method is at picking highly

fit individuals. On the other hand, if n = 1, then the method selects individuals totally at

random. Popular values for n include 2 and 7.

3.4.3.4 Truncation Selection

In truncation selection [3], the next generation is formed from breeding only the

best individuals in the population. One form of truncation selection, (µ, λ) selection,

works as follows. Let the population size λ = kµ, where k and µ are positive integers.

The µ best individuals in the population are “selected”. Each individual in this group is

then used to produce k new individuals in the next generation. In a variant form, (µ + λ)

selection, µ individuals are “selected” from the union of the population and the µ

parents, which had created that population previously.

3.4.4 Apply Genetic Operators to Generate New Population

Once parents are selected, they are used as input into the child producing

algorithms known as genetic operators. There are many ways to produce children; the

three most common are reproduction, crossover and mutation.

3.4.4.1 Reproduction

Delhi College of Engineering, Delhi 19

 A Genetic Approach to Evolve Finite State Automata

Reproduction is where a selected individual copies itself into the new

population. It is effectively the same as one individual surviving into the next

generation. Koza [15] allowed 10% of the population to reproduce. If the fitness test

does not change, reproduction can have a significant effect on the total time required for

GP because a reproduced individual will have an identical fitness score to that of its

parent. Thus a reproduced individual does not need to be tested, as the result is already

known. For Koza [15], this represented a 10% reduction in the required time to fitness

test a population. However, a fitness test that has a random component, which is

effectively a test that does not initialize to exactly the same starting scenario, would not

apply for this increase in efficiency. The selection of an individual to undergo

reproduction is the responsibility of the selection function.

3.4.4.2 Crossover

Crossover takes two parents and replaces a randomly chosen part of one parent

with another. This is often very destructive to the structure and functionality of the child

program. It is, however, the means by which valuable code can be transferred between

programs and is also the theoretical reason why genetic programming is an efficient and

successful search strategy [23].

 Two parents are selected based on the fitness measure. Then, the algorithm

chooses a random point in each individual (this point can be either a function or a

terminal), and swaps the sub trees rooted at this point. Crossover can yield great

diversity in the resulting expressions, and therefore helps prevent premature

convergence of a population. It can swap functions with functions, functions with

terminals, terminals with terminals or entire individuals. If crossover will yield an

individual of unacceptable size then the algorithm will choose one of the parents for

reproduction. An interesting fact about crossover is that if the two parents are the same

individual, then it is likely that the resulting offspring will not be the same as the

parents.

Delhi College of Engineering, Delhi 20

 A Genetic Approach to Evolve Finite State Automata

Figure 3.3: Crossover

The various ways to do crossover are given below

(i) Subtree Crossover

Subtree Crossover [23] selects two genetic programs from the population and

selects one point on each. Each sub-tree from this point is swapped from the other. The

closure property of the genetic program ensures that these new genetic programs are

still `legal' possibilities within the domain.

(ii) Hoist

The hoist operator [25] creates a new individual entirely from a randomly chosen

subtree of an existing individual. The operator is useful for promoting parsimony.

(iii) Create

The create operator [25] is unique in that it does not require any existing

individuals. It generates an entirely new individual in the same way that an individual in

the initial population is generated. This operator is similar to Hoist in that it helps to

reduce the size of program trees.

(iv) Self-Crossover

The self-crossover [23] operator uses a single individual to represent both parents.

The single individual is itself can be selected using the standard fitness proportional

selection or tournament selection methods.

(v) Modular/Cassette-Crossover

One of the restrictions of the standard crossover operator is that is not possible to

swap blocks that occur in the middle of a tree path. The standard crossover operator

Delhi College of Engineering, Delhi 21

 A Genetic Approach to Evolve Finite State Automata

only allows entire subtrees to be swapped. One of the reasons for the success of ADFs

might be due to an effective relaxation of this restriction. This possibility lead Kinnear

and Altenberg to develop the Modular or Cassette crossover operator. One can best

view the operator as a module swap between two individuals. A module is defined in

the program tree of the first individual, and another in the program tree of the second

individual. The module in the first individual is then replaced by the one in the second

individual. The new module is then expanded. Clearly there is problem created by the

possible mismatch of the arguments passed to the module (actual parameters) and the

formal parameters defined by the module. There are two such possibilities, either the

number of formal parameters are greater than the number of actual parameters or vice-

versa. The former is resolved by extending the existing actual parameters with random

chosen copies of themselves. The latter is resolved by choosing at random a subset of

the existing actual parameters [25].

(vi) Context Preserving Crossover (SCPC/WCPC)

D'Haeseleer also inspired by the success of ADFs has suggested alternative genetic

operators called Strong Context Preserving Crossover (SCPC) and Weak Context

Preserving crossover (WCPC). Both of these operators require a system of coordinates

for identifying node positions in a tree. SCPC allows two subtrees to be exchanged

during crossover between two parents only if the points of crossover have the same

coordinates. WCPC relaxes this rule slightly by allowing crossover of any subtree of the

equivalent node in the other parent [25].

3.4.4.3 Mutation

Mutation takes one parent and replaces a randomly selected chunk of that parent

with a randomly generated sequence of code. One of the advantages of this operator is it

maintains diversity in the population, since any of the function/terminal set can be

inserted into the program, whereas crossover can only insert code present in the current

generation’s population. Mutation occurs by selecting a point at random, generating a

Delhi College of Engineering, Delhi 22

 A Genetic Approach to Evolve Finite State Automata

new expression, and inserting it into the individual at the specified point. Mutation also

helps prevent premature convergence [23].

Figure 3.4: Mutation

The various ways to do mutation are given below

(i) Allele Mutation

This comprises of genes within the genetic program being swapped with other

genes with certain constraints. Any terminal can be swapped with any other terminal

but functions can only be swapped with other functions with the same number of

arguments. This means that the mutation does not have to create new branches when

different function types are swapped which would probably slow any form of

convergence if the mutation rate has been set relatively high [3].

(ii) Shrink Mutation

Shrink mutation takes the child of a particular gene and moves that child into the

position of the parent. This means that genetic programs will 'shrink'. [3] This is a

particularly useful property when considering how long, some genetic programs get

as the evolutionary process continues.

3.4.4.4 Permutation

Permutation is another operation in which a parent is selected, and then the

algorithm chooses a function that composes part of the parent. The algorithm then

Delhi College of Engineering, Delhi 23

 A Genetic Approach to Evolve Finite State Automata

permutes each of the function's arguments and passes the new expression to the next

generation [15].

3.4.4.5 Editing

Editing does not create an individual that evaluates differently than the parent,

but forms expressions that are structurally different. Basically, editing simplifies

expressions. An editing procedure recursively examines an individual and evaluates all

functions that only contain terminals as arguments [15].

3.4.4.6 Encapsulation

 Encapsulation [23] takes a valuable sub expression and adds it to the function

list. This increases the number of times the expression occurs in a given population and

makes the expression atomic, so it cannot be mutated or changed during a crossover.

3.4.4.7 Decimation

Decimation is a servicing operator that is applied to the initial generation. It

removes all the programs that have least fitness. Upon creation of the initial generation

it can be noted that a majority of the population have a very poor fitness. Therefore, if

the desired population size is 1000 individuals then upon application of decimation of

10%, an initial population of 10,000 individuals (ten times the desired value) is created.

From this population the best 1000 individuals are selected.

3.4.5 Control Parameters

The user must specify a number of control parameters before the GP system may

begin. The control parameters that need to be set are:

1. Population size: A larger population allows for a greater exploration of the

problem space at each generation and increases the chance of evolving a

Delhi College of Engineering, Delhi 24

 A Genetic Approach to Evolve Finite State Automata

solution. In general, the more complex a problem the greater the population size

needed [15].

2. Maximum number of generations: The evolutionary process needs to be given

time; the greater the maximum number of generations the greater the chance of

evolving a solution. However, further evolution of a population does not

guarantee a solution will be found-it may be better to start again with a different

initial population [15]. So if, after a user-defined number of generations, a

sufficiently successful individual has not evolved then the process should halt.

3. Probability of crossover: What proportion of the population will undergo

crossover before entering the new population? Koza [15] does not change this

value from 0.90—90% of the population undergoes crossover.

4. Probability of reproduction: The proportion of individuals in a population that

will undergo reproduction. Throughout Koza’s [15] work this value stays

constant, at 0.10—10% of the population undergoes reproduction.

3.4.6 Repeat Until a Program Solves the Problem or Time Runs Out

At this point a new population is available to be evaluated for fitness. The cycle

will continue, until ether a single member of the population is found which satisfies the

problem within the level of error designated as acceptable by the success criteria, or the

number of generations exceeds the limit specified [23].

As discussed earlier, if a run does not succeed after a large number of

generations, it has probably converged onto a semi-fit solution and the lack of diversity

in the population is drastically slowing evolutionary progress. Statistically, the

likelihood of finding a successful individual is, at that point, most increased by starting

the entire run over again with a wholly new random population.

Delhi College of Engineering, Delhi 25

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-4

EDGE ENCODING FOR FSA INDIVIDUALS

Edge encoding is a technique for evolving graph and network structures via

genetic programming. It was introduced by Luke and Spector [18], and aimed to allow

more flexible control of the edge growth in the topology evolution. It is a genetic

programming tree, which produces a directed graph when evaluated. This graph is then

used in the problem domain as appropriate-as an electrical circuit, FSA, etc.

4.1 Introduction

 Edge encoding [18] uses a tree-structured chromosome, which can develop into

a directed graph when executed. Each node of the chromosome tree is an operator that

can act on the edges of a graph. An edge operator can accept from its parent node a

single edge in the graph, sometimes with additional data such as a stack of nodes. Edge

encoding operators are executed in a pre-ordered way, modifying a graph edge and

passing that edge (and any new edges) to its children for further modification. The

starting point of the development can be a graph with a single edge, which is fed to the

root node of the chromosome tree as the starting point for development.

For example, consider the double function shown in Figure 6.1. This function

has two children in the encoding tree. It receives from its parent a single edge E(a,b) in

the graph (where a is the tail of the edge E, and b is E’s head). From E(a,b), double

“grows” an additional edge F(a,b). These two edges are each passed to child functions

for additional modifications; E is passed to the double’s left child, and F is passed to its

right child.

Delhi College of Engineering, Delhi 26

 A Genetic Approach to Evolve Finite State Automata

Figure 4.1: The Double Function

Edge encoding’s graph-generation process begins with a graph consisting of a

single edge. This edge is passed to the root node in the edge-encoding tree, which

modifies the edge and passes resultant edges to its children, and so on. Terminals in the

edge-encoding tree have no children, and so stop the modification process for a

particular edge. After all nodes in the tree have made their modifications, the resultant

graph is returned.

The functions in a particular edge encoding are commonly of two forms. First,

there are functions, which change the topology of the graph, by adding or deleting edges

or vertices. Second, there are functions, which add semantics to the edges or vertices:

labeling edges, assigning transfer functions to vertices, etc.

4.2 Encoding an NFA

To encode an NFA we have simple set of basic functions, which are sufficient to

build all non-deterministic finite-state automata (NFA). These functions each take an

edge and no optional data from their parents, and pass on to children at most two

resultant edges. A nice property of these functions is that although they have side

effects (in the way of modifying the graph), these side effects are localized in such a

way that the functions are referentially transparent. Thus nodes can be executed in any

order, so long as parent functions are executed prior to child functions [18].

Delhi College of Engineering, Delhi 27

 A Genetic Approach to Evolve Finite State Automata

In this encoding, each individual consists of a single tree of functions. Assume

that each function is passed some edge E(a,b), which after processing is passed to the

left child. The functions, which describe the topology of the graph, are shown in Table

4.1. These functions are sufficient to develop the topology of an NFA, which recognizes

any regular expression. To develop the full NFA, some custom semantic functions are

necessary to define the starting and accepting states of the NFA and label the edges with

tokens, which are shown in Table 4.2.

Table 4.1: Simple Topological Functions for Edge Encoding

Table 4.2: NFA Semantic Functions for Edge Encoding

Figure 4.2 shows an edge encoding genome using these functions whose

phenotype is an NFA that reads the regular expression ((0|1)*101). Figure 4.3 shows the

development of the NFA from this genome. These basic sets of functions and terminals,

alone are sufficient to build all non-deterministic finite-state automata (NFA) of

interest.

Delhi College of Engineering, Delhi 28

 A Genetic Approach to Evolve Finite State Automata

Figure 4.2: An Edge Encoding Genome, which Describes an NFA that Reads the

Regular Expression ((0|1)*101)

Figure 4.3: The Growth of the NFA from the Encoding in Figure 4.2

Delhi College of Engineering, Delhi 29

 A Genetic Approach to Evolve Finite State Automata

CHAPTER 5

PROBLEM AND SCHEME SPECIFICATIONS

Finite state automata are well understood, and inherently efficient models of

simple languages. The basic problem is, given a set of positive and negative example

strings, automatically infer corresponding automata, which generates or recognizes

those examples. Genetic programming has been used for evolving such an automata for

the benchmark problem of Tomita Language Set [24]. The acceptable solution automata

should correctly recognize all positive test cases, and reject all negative ones.

 The first step in building an NFA from a regular expression is to determine the

set of functions and terminals, which is used for the population initialization.

5.1 Chromosomal Encoding

Since edge encoding [18] is more suitable for evolving graphs with low

connectivity. So, for representing the FSA chromosomes we use edge encoding, as

explained in the previous chapter. Edge encoding uses a tree-structured chromosome,

which can develop into a directed graph when executed. Each node of the chromosome

tree is an operator that can act on the edges of a graph. An edge operator can accept

from its parent node a single edge in the graph, sometimes with additional data such as

a stack of nodes. Edge encoding operators are executed in a pre-ordered way, modifying

a graph edge and passing that edge (and any new edges) to its children for further

modification. The starting point of the development can be a graph with a single edge or

an embryo with many edges, but only one of them is fed to the root node of the

chromosome tree as the starting point for development.

To encode an NFA, the basic set of functions and terminals, which are sufficient

to build all non-deterministic finite-state automata (NFA) are provided here again in

Delhi College of Engineering, Delhi 30

 A Genetic Approach to Evolve Finite State Automata

Table 5.1, and Figure 5.1 shows an edge encoding genome tree created randomly using

those functions and terminals and its equivalent s-expression [18].

Function Syntax

Arity

Description

Double 2 Create an edge F(a,b).

Bud 2 Create a vertex c. Create an edge F(b,c).

Split 2 Create a vertex c. Modify E to be E(a,c). Create an edge F(c,b).

Loop 2 Create a self-loop edge F(b,b).

Reverse 1 Reverse E to be E(b,a).

Start 1 Assign the head of E(a,b) (vertex b) to be a starting state.

Accept 1 Assign the head of E(a,b) (vertex b) to be an accepting state.

 1

0

Label an edge with a “1”, that is, define it to be an edge which

can be traversed only on reading a 1.

 0 0

Label an edge with a “0”, that is, define it to be an edge which

can be traversed only on reading a 0.

 ∈

0

Label an edge with an “∈”, that is, define it to be an edge which

may be traversed without reading any token.

Table 5.1: Description of function set and terminal set for edge encoding an NFA

Figure 5.1: An edge encoding genome and its equivalent s-expression

Delhi College of Engineering, Delhi 31

 A Genetic Approach to Evolve Finite State Automata

5.2 Generating the Initial Population

Initialize(n) function forms a population by generating individuals at random

until it has collected n unique individuals. In this thesis, individuals’ trees are initially

generated with the Ramped Half and Half Tree Creation Algorithm, with a depth bound

range from 2 to 6 inclusive.

5.3 Tomita Languages

In our problem domain, the NFA is evolved to induce the Tomita language set,

shown in Table 5.2, a popular and nontrivial language induction benchmark (Tomita

[26]).

Table 5.2: The Tomita Language Set

The basic problem is, given a set of positive and negative example strings, from

the Tomita Language set, automatically infer corresponding automata, which generates

or recognizes those examples. The acceptable solution automata should correctly

recognize all positive test cases, and reject all negative ones. Afterwards, it is tested for

generality on the full population of binary strings of that expression.

Delhi College of Engineering, Delhi 32

 A Genetic Approach to Evolve Finite State Automata

The example positive and negative training sets used for the Tomita Languages

are shown in Table 5.3 below.

Table 5.3: Positive and Negative Training Examples.

Delhi College of Engineering, Delhi 33

 A Genetic Approach to Evolve Finite State Automata

5.4 Fitness Assessment

The fitness function is used to rank the individual solutions present in each

generation of the GP. The fitness criteria used here is the number of strings that the

particular finite state machine is able to correctly classify.

In this dissertation, the Hit Count gives the sum of the number of positive strings

accepted and the number of negative strings rejected.

The raw fitness Fraw, [4] is defined as a fitness parameter in the range [0,1),

where 0 represents the optimum and 1 worst possible fitness. In our case it is given by

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectFraw +

+
−= 1

The individual’s adjusted fitness Fadj, defined as
raw

adj F
F

+
=

1
1 , maps the fitness

into the interval (0,1], where 0 is worse than the worst fitness and 1 is the optimum.

5.5 Selection and Breeding

Once individuals have had their fitness’s assessed, they may be selected and

bred to form the next generation in the evolution cycle, through repeated application of

Breed(...). This function usually selects one or two individuals from the old population,

copies them, modifies them, and returns the modified copies for addition to the new

population.

5.5.1 Selection Scheme

The selection mechanism used here is tournament selection [15], as it is simple,

fast, and has well-understood statistical properties. In tournament selection, a pool of n

Delhi College of Engineering, Delhi 34

 A Genetic Approach to Evolve Finite State Automata

individuals is picked at random from the population. Then tournament selection selects

the individual with the highest fitness in this pool. Clearly, the larger the value n, the

more directed this method is at picking highly fit individuals. Tournament size of 7 is

used here in this dissertation, as it is the standard in the genetic programming literature,

and is highly selective.

5.5.2 Crossover Scheme

The crossover scheme used here is subtree crossover [15], which starts with two

individuals selected and copied from the old population. A random point is selected

within one tree of each copied individual with nonterminals selected 90% of the time

and terminals selected 10% of the time. Then crossover swaps the subtrees rooted at

these two nodes and returns the modified copies. If the crossover process results in a

tree greater than a maximum depth bound (17), then the modified child is discarded and

its parent (the tree into which a subtree was inserted to form the child) is simply copied

through reproduction. Crossover may only occur if two trees share the same function

set. This process is illustrated in Figure 5.2.

5.5.3 Mutation Scheme

The mutation scheme used is subtree mutation [15]. Subtree mutation starts with

a single individual selected and copied from the old population. One node is selected

from among of the copied individual’s trees, using the same node-selection technique as

described for subtree crossover. The subtree rooted at this node is removed and replaced

with a randomly generated subtree, using the GROW algorithm and the appropriate

function set for the tree. If mutation results in a tree greater than the maximum depth

(17), then the copy is discarded and its parent is reproduced instead. Subtree mutation is

illustrated in Figure 5.3.

Delhi College of Engineering, Delhi 35

 A Genetic Approach to Evolve Finite State Automata

Figure 5.2: Subtree Crossover

Figure 5.3 :Subtree Mutation

Delhi College of Engineering, Delhi 36

 A Genetic Approach to Evolve Finite State Automata

5.6 Control Parameters

The fourth preparatory step entails specifying the control parameters for the run.

The decisions are critically important as they have a limiting effect on the search space

of possible programs. Too great a limit may remove all chance of evolving an

acceptable individual.

The control parameters that need to be set are:

1. Population Size: Population size represents the number of chromosomes that

constitute the population at any given time. If there are too few chromosomes, the GP

has few possibilities to perform crossovers and only a small part of search space is

explored. On the other hand, if there are too many chromosomes, the GP slows down.

Here, the population size is taken to be 500.

2. Maximum number of generations: The evolutionary process needs to be given

time; the greater the maximum number of generations the greater the chance of

evolving a solution. However, further evolution of a population does not guarantee a

solution will be found - it may be better to start again with a different initial population.

So if, after a user-defined number of generations, a sufficiently successful individual

has not evolved then the process should halt. The maximum number of generations to

be evolved is chosen to be 50.

3. Probability of crossover: This specifies the proportion of the population that will

undergo crossover before entering the new population. It is taken to be 0.9.

4. Probability of reproduction: The proportion of individuals in a population that will

undergo reproduction. Following the Koza’s standard, 0.1 of the population will

undergo reproduction.

Delhi College of Engineering, Delhi 37

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-6

MODULAR ARCHITECTURE TO EVOLVE FINITE

STATE AUTOMATA

As we have seen in the previous chapters that the automatic creation of finite

automata has long been a goal of the evolutionary computation community. The

previous works in the evolution of finite state machines were limited to the evolution of

strictly non-modular FSA. Here, a modular FSA architecture is proposed and a genetic

programming procedure for evolving such structures is presented. Preliminary results

indicate that the proposed procedure is indeed capable of successfully evolving modular

FSA and that such modularity can result in a statistically significantly increased rate of

optimization.

Perhaps the most important attractive property of finite state automata is that

they can be combined in various interesting ways, with the guarantee that the result

again is a finite state automaton. This property is perhaps most clearly exploited here in

modular FSA architecture.

6.1 Proposed Evolution Model

The previous works in the evolution of finite automata accepting a particular

regular language comprises of, first generating the sample positive strings described by

the given regular expression and sample negative strings which are not described by the

given regular expression. And then, the finite state automaton is inferred, from these

sets of positive and negative data samples, thereby accepting a particular regular

language.

In the proposed Modular Architecture, we will first breakdown the given regular

expression into few smaller sub-expressions, and evolve the finite automata for each of

Delhi College of Engineering, Delhi 38

 A Genetic Approach to Evolve Finite State Automata

these sub-expressions, and then further combine each of the evolved automata to get the

complete automata describing the given regular expression as a whole.

The proposed architecture is also supported by the fact, that, a difficult task

when decomposed into simpler subtasks can be solved with lower computational effort,

with their solutions combined to give the overall solution. Further, already discovered

solutions to subtasks may also be reused to repeatedly solve similar sub problems.

Thus, the method reduces the total number of generations needed to evolve

finite state automata for a complex regular expression, as breaking it down into simpler

smaller sub-expressions reduces the complexity of the search space. Also, the time

required and the size of the edge encoding tree as well as the size of the evolved finite

automata is reduced.

6.2 Design Of Modular Architecture

The design of modular FSA roughly follows Thompson’s construction as

described in Aho, Sethi, and Ullman [1] and Thompson [22]. Thompson’s construction

first parses a regular expression into its subexpressions, and then builds an NFA

bottom-up by grouping smaller NFAs that represent those subexpressions.

By definition, for any regular expression r, one of the following is true.

• r is ε.

• r is a symbol σ ∈ ∑.

• r can be broken down into s t for some regular expressions s and t.

• r can be broken down into s|t for some regular expressions s and t.

• r can be broken down into s* for some regular expression s.

• r can be broken down into (s) for some regular expression s.

Delhi College of Engineering, Delhi 39

 A Genetic Approach to Evolve Finite State Automata

For each of these cases, the edge encoding which produces the appropriate NFA,

and also the NFA itself is given below. Each constructed NFA will have one start-state

and one accepting-state, indicated with an “S” and “A” respectively.

Case 1. r is ε. In this case, the edge encoding for r is simply ε. This produces the NFA

Case 2. r is a symbol σ ∈ ∑. In this case, the edge encoding for r is simply tσ, where tσ

is the terminal that corresponds with r as described above. This produces the NFA

Case 3. r can be broken down into s t. Let S and T be the edge encodings for s and t,

respectively, with NFAs

Then the edge encoding for r is (split S (split ε T)), which produces the NFA

Case 4. r can be broken down into s | t. Let S and T be the edge encodings for s and t,

respectively, with NFAs

Then the edge encoding for r is (double (split (split ε S) ε) (split (split ε T) ε)),

which produces the NFA

Delhi College of Engineering, Delhi 40

 A Genetic Approach to Evolve Finite State Automata

Case 5. r can be broken down into s*. Let S be the edge encoding for s, encoding the

NFA

Then the edge encoding for r is (double (split (split ε (double S (reverse ε))) ε) ε),

which produces the NFA

Case 6. r can be broken down into (s). Let S be the edge encoding for s, respectively,

encoding the NFA

Then the edge encoding for r is the same as S, producing the NFA

Labeling Start and Accepting States- The start-state vertex will have one or more

labeled edges leaving it, and the accepting-state vertex will have one or more labeled

edges entering it. When we have finished constructing our final NFA, we can indicate

its start state by finding the terminal function (call it A) responsible for labeling some

outgoing edge of the start-state vertex. We convert this terminal function into (reverse

(start (reverse A))), which labels the start-state vertex. To indicate the NFA’s accepting

Delhi College of Engineering, Delhi 41

 A Genetic Approach to Evolve Finite State Automata

state, we find the terminal function (B) responsible for labeling some incoming edge of

the accepting-state vertex. We convert this terminal function into (accept B), which

labels the accepting-state vertex.

6.3 Computational Algorithms

 The procedure to evolve a finite state automaton for a given regular expression

using the modular architecture is divided into two algorithms. The first one is the Basic

NFA Evolution Algorithm [18], which evolves an automaton for the whole expression,

by creating the positive and negative test samples of the regular expression and

representing the chromosomes as edge encoding tree.

The second one, Modular Algorithm, proposed in this dissertation, first,

decomposes the regular expression into simple smaller sub-expressions, and then, uses

the Basic NFA Evolution Algorithm for each of the sub-expressions. After this, the sub-

automata evolved for each of the sub-expressions is joined together using the modular

design described in Section 6.2 resulting in the complete automata for the initial whole

expression. The procedural steps for both the algorithms are given below.

6.3.1 Basic Algorithm for NFA Evolution

1. First of all create around 10-15 sample positive and negative test strings from

the regular expression for which the automata is to be evolved. Also the set of

all-positive strings described by the expression and the set of all-negative strings

not recognized by the expression is created to check the generalization score of

the final evolved automata.

2. Randomly create an initial population (generation 0), of 500 individual edge

encoding tree, composed of the available functions and terminals using ramped

half-and-half algorithm.

Delhi College of Engineering, Delhi 42

 A Genetic Approach to Evolve Finite State Automata

3. Iteratively perform the following sub-steps (called a generation) on the

population until the termination criterion is satisfied:

a. Execute each program in the population and ascertain its fitness by

testing the NFA against the positive and negative test examples.

b. Select one or two individual program(s) using tournament selection with

the tournament size 7, from the population with a probability based on

fitness (with reselection allowed) to participate in the genetic operations

in (c).

c. Create new individual program(s) for the population by applying the

following genetic operations with specified probabilities:

• Reproduction: Copy the selected individual program to the new

population.

• Crossover: Create new offspring program(s) for the new population

by recombining randomly chosen parts from two selected programs.

• Mutation: Create one new offspring program for the new population

by randomly mutating a randomly chosen part of one selected

program.

4. After the termination criterion is satisfied, the single best program in the

population produced during the run (the best-so-far individual) is harvested and

designated as the result of the run.

5. The Best Individual is checked for its generalization score by testing it against

all the positive and negative training strings of the given regular expression. The

generalization score of 1 results when the solution found accepts all the positive

strings and rejects all the negative ones.

6. If the run is successful and the generalization score is one, the result may be a

solution to the problem.

Delhi College of Engineering, Delhi 43

 A Genetic Approach to Evolve Finite State Automata

6.3.2 Proposed Modular Algorithm

1. Given a regular expression, first break it down into 2-4 sub-expressions.

2. For each of the sub-expression, define the positive and negative test strings files.

3. Call the Basic NFA evolution Algorithm for each of the sub-expressions with

the test strings files as the input.

4. Recompose the final NFA, by grouping each of the evolved sub-automata from

step (3) using the procedure described in section 6.2.

5. The final NFA is checked for the generalization score, so that it may be a correct

solution to the expression.

6.4 Example Evolution

To gain a better understanding of the modular evolution, we will here step through

the growth of a simple automaton that recognizes the language 1* (10)*. In this, the

regular expression is divided into two sub-expression, as 1* and (10)* and for each of

the expressions the NFA is evolved using the Basic NFA Evolution Algorithm. The

evolved edge encoding tree and the NFA are shown in the Figure 6.1 and 6.2.

Figure 6.1: Edge Encoding for 1* and (10)*

Delhi College of Engineering, Delhi 44

 A Genetic Approach to Evolve Finite State Automata

Figure 6.2: Encoding Tree and NFA for 1* and (10)*

As we have seen earlier, the edge encoding for r when broken down into s t,

where S and T be the edge encoding for s and t respectively, is (split S (split ε T)). Thus,

the expression 1*(10)* after combining have the encoding tree and the NFA as shown

in Figure 6.3.

Figure 6.3: Edge Encoding Tree and the NFA for 1*(10)* using modular evolution

6.5 Summary

The modular architecture is developed to provide for some general mechanism

whereby a problem can be decomposed into distinct subtasks and to allow for the

preservation of elements of the representation that may be useful in solving the task at

hand.

Delhi College of Engineering, Delhi 45

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-7

EXPERIMENTS AND RESULTS

7.1 Experimental Setup

7.1.1 Implementation

The GP system, for the evolution of NFA using both modular and non-modular

architecture has been implemented in Java Programming Language. Java has been

extensively used for the implementation of GP system as it is portable and can be easily

replicated across platforms. It also provides distributed computation and is easily

extensible.

7.1.2 Test Data

To assess the performance of the proposed procedure it was tested on the Tomita

Language Set [24], a popular and nontrivial language induction benchmark. The Tomita

set results indicate that using modular architecture we can induce an automaton with far

fewer fitness evaluations than the previous non-modular methods.

7.1.3 Tomita Decomposition For The Modular Evolution

 Table 7.1 shows the decomposition of the Tomita languages into sub-

expressions for evolution using the modular architecture. For the Tomita 1 and Tomita

2, no further breakdown is possible, so the expression is evolved as a whole similar to

the non-modular approach. Tomita 3, Tomita 4 and Tomita 5 are decomposed further

into two sub-expressions respectively, and the NFA for the sub-expressions are evolved

separately, later the sub NFA’s are joined using the modular design. For the Tomita 6

and Tomita 7 only one NFA for the sub-expression 1 is evolved and the resulting NFA

can be used for the sub-expression 2, as they are similar. In the case of sub-expression 2

of Tomita 6, only the need is to change 1’s into 0’s and 0’s into 1’s in the NFA of sub-

Delhi College of Engineering, Delhi 46

 A Genetic Approach to Evolve Finite State Automata

expression 1, whereas in the case of Tomita 7 there’s no such need as the sub-

expressions are exactly same.

Non-modular Evolution

Modular Evolution

Tomita Languages

as a Whole

Tomita Languages

Sub expression 1

Tomita Languages

Sub expression 2

1* 1* -

(10)* (10)* -

(0 | 11)* (1* | (100 (00 | 1)*)) (0 | 11)* (1* | (100 (00 | 1)*))

1*((0 | 00) 11*)*(0 | 00 | 1*) 1*((0 | 00) 11*)* (0 | 00 | 1*)

(((1|0)(1|0))*(1|0)) | ((11|00)*((01|10)

(00|11)*(01|10)(00|11)*)*(11|00)*)

(((1|0)(1|0))*(1|0)) ((11|00)*((01|10)(00|11)*

(01|10)(00|11)*)*(11|00)*)

((0(01)*(1|00)) | (1(10)*(0|11)))* ((0(01)*(1|00)) (1(10)*(0|11)))*

0*1*0*1* 0*1* 0*1*

Table 7.1: Tomita Decomposition for the Modular Evolution

7.1.4 Fitness Metric

The standard experimental methodology for most Tomita language induction

experiments in the literature is to attempt to induce a mechanism, which properly

classifies all positive and negative examples in a limited training set. Afterwards, this

mechanism is tested for generality on the full population of binary strings of that length.

The same accuracy measurement, which was used by the other experiments for the raw

fitness metric is used here, namely:

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectFraw +

+
−= 1

After an evolutionary run is completed, the generalization accuracy of its

highest-fitness individual is measured. Generalization accuracy uses all possible strings

Delhi College of Engineering, Delhi 47

 A Genetic Approach to Evolve Finite State Automata

up to 15 symbols in length. The resultant score estimates how closely the NFA was able

to properly generalize to that particular Tomita language. Generalization score metric is:

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectAccuracyGen

+
+

=.

7.2 Experimental Results

7.2.1 Population-based Analysis

In this dissertation a procedure for evolving Finite Automata using modular

architecture is proposed. Two separate sets of experiments were performed to compare

the effectiveness of this approach against the existing non-modular approach, evolving

FSA for the Tomita Language Set. A total of 30 runs were carried out for each of the

Tomita Languages in both the experiment set. Each set of experiments used a

population size of 500 machines and evolution lasted for 50 generations or until a

solution was found which correctly classified all its training examples.

Table 7.2 summarizes the results, showing the number of generations needed, as

well as the number of nodes evaluated, in the best run and the average of the 30 runs,

for the Tomita Languages evolved using the non-modular approach. Similarly, Table

7.3 shows the results for each sub-expression evolution using the modular approach.

Figure 7.1 and Figure 7.2 compares the modular and non-modular approach on the basis

of number of generations explored for the Tomita Languages. Similarly, Figure 7.3 and

Figure 7.4 compares both the approaches on the basis of Number of Nodes Evaluated.

From the results it can be concluded that the proposed procedure is capable of

successfully evolving modular Finite Automata with significantly increased rate of

optimization, by reducing the number of generations evolved and the number of nodes

evaluated.

Delhi College of Engineering, Delhi 48

 A Genetic Approach to Evolve Finite State Automata

Best Average Tomita
No.

No. of
Generations

Needed

No. of
Nodes

Evaluated

No. of
Generations

Needed

No. of Nodes
Evaluated

1 1 10714 1.133 11068.2

2 1 10856 2.833 24174.4

3 7 179622 15.466 780046.7

4 8 223316 14.533 491532.6

5 14 1228148 38.866 5944380.2

6 17 942558 36.633 3564287.6

7 7 242900 13.57 611230.3

Table 7.2: Number of generations explored and the number of nodes evaluated for

the evolution of each Tomita language using non-modular approach

Best Average Tomita
No.

Sub-
Expressions

No. of
Generations

Needed

No. of
Nodes

Evaluated

No. of
Generations

Needed

No. of
Nodes

Evaluated
1 1 1 10714 1.133 11068.2

2 1 1 10856 2.833 24174.4

3 1 1 10624 3.166 46020.2

 2 2 27368 5.2 111626.1

4 1 2 73296 3.86 90664.3

 2 1 3405.55 3.2 52238.4

5 1 3 45580 6.5 159616.3

 2 5 109414 9.06 344836.4

6 1 8 557904 16.43 1050733.1

7 1 1 11090 2.16 28544.6

Table 7.3: Number of generations explored and the number of nodes evaluated for

the evolution of each Tomita language using proposed modular approach

Delhi College of Engineering, Delhi 49

 A Genetic Approach to Evolve Finite State Automata

Generations Explored (Best)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7
Tomita Languages

N
um

be
r

of
 G

en
er

at
io

ns

Modular Non-modular

Figure 7.1: Number of Generations Explored in the Best case for the

Tomita Languages

Generations Explored (Average)

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7
Tomita Languages

N
um

be
r

of
 G

en
er

at
io

ns

Modular Non-modular

Figure 7.2: Number of Generations Explored in the Average case for the

Tomita Languages

Delhi College of Engineering, Delhi 50

 A Genetic Approach to Evolve Finite State Automata

Nodes Evaluated (Best)

0

100

200

300
400

500

600

700

800

900
1000

1100

1200

1300

1 2 3 4 5 6 7

T
ho

us
an

ds

Tomita Languages

N
od

es
 E

va
lu

at
ed

Modular Non-modular

Figure 7.3: Number of Nodes Evaluated in the Best case for the Tomita Languages

Nodes Evaluated (Average)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

1 2 3 4 5 6

T
ho

us
an

ds

7
Tomita Languages

N
od

es
 E

va
lu

at
ed

Modular Non-modular

Figure 7.4: Number of Nodes Evaluated in the Average case for the

Tomita Languages

Delhi College of Engineering, Delhi 51

 A Genetic Approach to Evolve Finite State Automata

7.2.2 Timing Analysis

Table 7.4 shows the average elapsed time for the evolution of Tomita Language

Sets both using modular and non-modular approach. Also Figure 5.5 and Figure 5.6

compares both the approaches on the basis of Time Taken for finding the solution for

the Tomita Languages in the best and the average case. All timings are based on Java

implementations running on a 706 MHz Pentium processor.

Non-modular
Evolution

Modular Evolution

Total Time taken
(ms)

Time taken by sub
expression 1 (ms)

Time taken by sub
expression 2 (ms)

Total Time taken
(ms)

Tomita
Number

Best Average Best Average Best Average Best Average

1 1650 1808.16 1650 1808.16 - - 1650 1808.16

2 1700 2297.76 1700 2297.76 - - 1700 2297.76

3 8010 25665.2 1760 3240.13 2470 5667.16 4230 8907.29

4 9170 16974.5 3720 5088.57 1980 3405.55 5700 8494.12

5 38950 182420 3830 6920.4 5160 10450.2 8990 17370.6

6 31970 116053 8140 23041.4 - - 8140 23041.4

7 8900 20920.7 1700 2520.2 - - 1700 2520.2

Table 7.4: Average elapsed time in milliseconds to learn the Tomita languages for

both non-modular and modular architecture

7.2.3 Performance Evaluation

The performance over the seven Tomita targets indicates that the proposed

modular approach evolves an automaton with statistically increased rate of optimization

as compared to the non-modular approach. Furthermore, inspection of the evolved

automata showed that all solutions were fully generalizable. Thus, modular approach is

able to evolve an NFA with lesser number of generations explored and fewer number of

nodes evaluated in a significantly reduced amount of time.

Delhi College of Engineering, Delhi 52

 A Genetic Approach to Evolve Finite State Automata

Time Taken (Best)

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7
Tomita Languages

T
im

e
(in

 se
c)

Modular Non-modular

Figure 7.5: Time Taken for finding the Solution in the Best case for the

Tomita Languages

Time Taken (Average)

0

25

50

75

100

125

150

175

200

225

1 2 3 4 5 6
Tomita Languages

T
im

e
(in

 se
c)

7

Modular Non-modular

Figure 7.6: Time Taken for finding the Solution in the Average case for the

 Tomita Languages

Delhi College of Engineering, Delhi 53

 A Genetic Approach to Evolve Finite State Automata

CHAPTER-8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

In this dissertation, finite state automata for the Tomita Languages are evolved

using the genetic programming paradigm. A modular architecture to evolve finite state

automata is proposed. The method is simple to understand, easy to implement, and is

potentially a powerful tool for evolving complex automata. The procedure is evaluated

on the Tomita languages, which evolved an NFA consistent with the given training set.

The experimental results obtained indicate that the modular architecture is able

to evolve finite state machines typically in lesser number of generations and many

fewer nodes evaluations than previous non-modular approach. Also, the average time

taken to learn a Tomita language with modular method is 9205.64 ms, which compares

very favorably with the non-modular method where it is 52305.6 ms. Thus, it can be

concluded that the proposed procedure is capable of successfully evolving modular

finite state automata and that such modularity can result in a significantly increased rate

of optimization.

8.2 Future Work

The present work can be extended in several directions. One possible

improvement of the fitness function might be to rate smaller automata higher than larger

ones, to stimulate the search towards a minimal, parsimonious solution. The next step

consists of refining the design by using Automatically Defined Functions and

Modular/Cassette Crossover to swap blocks that occur in the middle of a tree.

Delhi College of Engineering, Delhi 54

 A Genetic Approach to Evolve Finite State Automata

In the experiments, the wide degree of qualitative variations between runs

indicates that, some times evolution quickly gets stuck at sub optimal solutions. Parallel

subpopulations may help in this regard. Also, during evolution the Tomita languages

can be further modularized depending upon the requirement.

The evolution of finite state machines using both the basic architecture and the

modular architecture can be extended in several areas like, they can be used in the field

of grammatical inference (GI), or can be used to encode computations, recognize

events, or can be used to solve more real world applications like developing several

kinds of software components, including the lexical analysis component of compilers

and systems for verifying the correctness of circuits and protocols.

Delhi College of Engineering, Delhi 55

 A Genetic Approach to Evolve Finite State Automata

REFERENCES

[1] Aho, A. V., Sethi, R. and Ullman, J. D. “Compilers: Principles, Techniques, and

Tools”. Addison-Wesley, 1988.

[2] Andre and Teller. “A Study In Program Response And The Negative Effects Of

Introns In Genetic Programming”. Genetic Programming: Proceedings of the First

Annual Conference, 12–20. Stanford University, CA, USA: MIT Press.1996

[3] Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D. “Genetic Programming –

An Introduction; On the Automatic Evolution of Computer Programs and its

Applications”. Morgan Kaufmann.1998.

[4] Brave. S. “Evolving Deterministic Finite Automata Using Cellular Encoding”. In

Genetic Programming, pages 39-44 1996.

[5] Chellapilla. K. and Czarnecki. D. “A Preliminary Investigation into Evolving

Modular Finite State Machines”. In Congress on Evolutionary Computation, pages

1349-1356, 1999.

[6] Chongstitvatana. P. and Aporntewan. C. “Improving Correctness of Finite-State

Machine Synthesis from Multiple Partial Input/Output Sequences”. In Workshop on

Evolvable Hardware, 1999.

[7] Dupont. P. “Regular Grammatical Inference from positive and negative samples by

genetic search: the GIG method”. Proceedings of the International Colloquium on

Grammatical Inference ICGI-94. Springer-Verlag Series in Artificial Intelligence, 1994

[8] Fogel, L.J., A.J. Owens, and M.J. Walsh. “Artificial Intelligence through Simulated

Evolution”. New York: John Wiley.1966

Delhi College of Engineering, Delhi 56

 A Genetic Approach to Evolve Finite State Automata

[9] Gruau, F., Whitley D., and Pyeatt, L. “A Comparison Between Cellular Encoding

And Direct Encoding For Genetic Neural Networks”. Proceedings of the First Genetic

Programming Conference, 1996.

[10] Gruau, F. “Automatic Definition Of Modular Neural Networks”. Adaptive

Behaviour, vol. 3, 1994.

[11] Goldberg, D. “Genetic Algorithms in Search, Optimization, and Machine

Learning”. Reading:Addison-Wesley. 1989.

[12] Hornby, G. S. “Shortcomings with Tree-structured Edge Encodings for Neural

Networks. Genetic and Evolutionary Computation Conference”. Springer-Verlag, 2004.

[13] Jason W.H., and Lu Y.H. “Improving FSM evolution with progressive fitness

functions”. Proceedings of the 14th ACM Great Lakes symposium on VLSI. 2004

[14] John E. Hopcroft, Rajeev Motwani and J.D. Ullman: “Introduction to Automata

Theory, Language, and Computation”. Pearson Education. 2001.

[15] Koza, J. R. “Genetic Programming: On the Programming of Computers by Means

of Natural Selection”. Cambridge,MA, USA: MIT Press. 1992.

[16] Lankhorst.M. “A Genetic Algorithm for Induction of Nondeterministic Pushdown

Automata”. Technical report, University of Groningen, Computer Science, CS-R 9502.

[17] Lucas. S. M. and Reynolds. T. J. “Learning DFA: Evolution Versus Evidence

Driven State Merging”. In Proceedings of the Congress on Evolutionary Computation,

2003.

Delhi College of Engineering, Delhi 57

 A Genetic Approach to Evolve Finite State Automata

[18] Luke, S. & Spector, L. “Evolving Graphs And Networks With Edge Encoding:

Preliminary Report”. Late-Breaking Papers of the Genetic Programming 1996

Conference. Available at www.cs.umd.edu/~seanl/papers/graph-paper.ps

[19] Nipaman. N. and Chongstivatana. P. “An Improved Genetic Algorithm for The

Inference of Finite State Machine”. In IEEE International Conference on Systems, Man

and Cybernetics, pages 1-5, 2002.

[20] Pitt. L. “Inductive Inference, DFAs and Computational Complexity”. Proceedings

of the International Workshop on Analogical and Inductive Inference. Lecture Notes in

Artificial Intelligence 397, Springer-Verlag. 1989.

[21] Svingen. B. “Learning Regular Languages Using Genetic Programming”. In Proc.

Genetic Programming. 1998.

[22] Thompson, K. “Regular Expression Search Algorithm”. Communications of the

ACM 11(6):419–422. 1968.

[23] "The GP Tutorial" http://www.geneticprogramming.com/Tutorial/index.html

[24] Tomita, M. “Dynamic Construction Of Finite Automata From Examples Using

Hill-Climbing”. In Proceedings of the Fourth Annual Conference of the Cognitive

Science Society, 105–108. 1982.

[25] William M. Spears and Vic Anand “A Study Of Crossover Operators In Genetic

Programming”.

[26] Zomorodian, A. “Context-Free Language Induction By Evolution Of Deterministic

Push-Down Automata Using Genetic Programming”. In Koza, J. R., ed., Genetic

Algorithms at Stanford, California, 1994.

Delhi College of Engineering, Delhi 58

 A Genetic Approach to Evolve Finite State Automata

APPENDIX A: OUTPUT

As this dissertation evolves the finite state automata for the Tomita Language Sets

using both modular and non-modular architecture, a brief implementation overview for evolving

Tomita 7, is provided here in this section.

A.1 Non-modular Evolution

The positive and negative training sets used for Tomita 7 are shown in Table A.1.

Tomita 7 Positive Set Negative Set

0*1*0*1*

e, 1, 0, 10, 01, 11111, 000,

0101, 00110011,

0000100001111, 00, 00100,

011111011111

1010, 00110011000,

0101010101, 1011010,

10101, 010100, 101001,

100100110101

Table A.1: Positive and Negative Training Sets for Tomita 7

A.1.1 Example Run

An experimental run with the training set of Tomita 7, evolved the ideal individual in

the 8th generation. The population size used was 500. Below, are the few sample chromosomes

generated during the run and the best individual of the run. Also the NFA generated for the best

individual has been shown.

GENERATION 0

================

Individual : 0

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (s e)

Delhi College of Engineering, Delhi 59

 A Genetic Approach to Evolve Finite State Automata

Individual : 1

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (reverse (split e 0))

Individual : 2

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (reverse (s (reverse 1)))

Individual : 3

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (s (bud e 1))

Individual : 4

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 1

Individual : 5

Evaluated: true

Fitness: Raw=0.47619048 Adjusted=0.67741936 Hits=11

TREE

 (a (a (loop (split (reverse 1) (double 0 e)) (s (split 1 e)))))

Individual : 6

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

Delhi College of Engineering, Delhi 60

 A Genetic Approach to Evolve Finite State Automata

 (a 1)

Individual : 7

Evaluated: true

Fitness: Raw=0.3809524 Adjusted=0.72413796 Hits=13

TREE

 (double (split (split (a 1) (a 0)) (loop (loop 1 1) (a 0))) (double (s (loop e 1))

 (s (double 0 0))))

Individual : 8

Evaluated: true

Fitness: Raw=0.5714286 Adjusted=0.6363636 Hits=9

TREE

 (split (split (a (s 0)) (bud (a e) (split 0 0))) (reverse (loop (split e 1)

(reverse 0))))

Individual : 9

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (bud (bud (double (bud (split e e) (loop 1 0)) (loop 1 1)) (split (split (a 1) (reverse e)) (bud 0

(double 0 e)))) (split (split (split (double 1 e) (s e)) (loop (double 1 e) (bud 1 e))) 0))

…

…

…

…

…

GENERATION 7

================

Individual : 0

Evaluated: true

Delhi College of Engineering, Delhi 61

 A Genetic Approach to Evolve Finite State Automata

Fitness: Raw=0.14285715 Adjusted=0.87499994 Hits=18

TREE

 (bud (loop (s (bud (double 1 1) (loop (bud (a e) (a 1)) (bud 0 1)))) 0) (reverse (reverse (a (split

(s (loop 0 1)) (loop (double (double (bud (double e 1) (a 1)) (loop (loop 1 0) (s (a e)))) (double

(double (a 1) (split 0 0)) (bud (bud 1 1) (a 0)))) (loop 0 0)))))))

Individual : 1

Evaluated: true

Fitness: Raw=0.2857143 Adjusted=0.7777778 Hits=15

TREE

 (split (double (s (split (split e 1) (double (double (bud e 1) (reverse e)) 1))) (loop 1 e)) (loop

(double (s (split 1 (s (double (double (a 1) (split 0 0)) (bud (bud 1 1) (a 0)))))) (bud (s 1) (s (a

(loop (a 1) (s 0)))))) (a (reverse (reverse 1)))))

Individual : 2

Evaluated: true

Fitness: Raw=0.3809524 Adjusted=0.72413796 Hits=13

TREE

 (split (double (s (bud (reverse (double (split 0 1) (a (split (s (loop 0 1)) (loop (double (double

(bud (double e 1) (a 1)) (loop (loop 1 0) (s (a e)))) (loop (bud (loop 0 0) (a 1)) (double (loop 0

e) (reverse (reverse 0))))) (loop 0 0)))))) (reverse (reverse (double (split 0 1) (a (split (s (loop 0

1)) (loop (double (double (bud (double e 1) (a 1)) (loop (loop 1 0) (s (a e)))) (loop (s (double (a

1) (split 0 0))) (double (loop 0 e) (reverse (s e))))) (loop 0 0))))))))) (loop (bud (a e) (a 1)) (bud

0 1))) (loop (double (s (split (split (double (s 0) (double 0 e)) (loop (loop 0 0) (a 1))) (s (double

(double (a 1) (split 0 0)) (bud (double 1 1) (loop 1 e)))))) (bud (s 1) (s 0))) (a (bud (s 1)

(reverse 1)))))

Individual : 3

Evaluated: true

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8

TREE

 (bud (loop (s (bud (double 1 1) (loop 1 e))) 0) (reverse (loop (s (bud (double 1 1) (loop 1 e)))

0)))

Delhi College of Engineering, Delhi 62

 A Genetic Approach to Evolve Finite State Automata

Individual : 4

Evaluated: true

Fitness: Raw=0.33333334 Adjusted=0.75 Hits=14

TREE

 (bud (loop (s (bud (double 1 1) (loop (bud (a (loop (reverse 0) (s 0))) (a 1)) (bud 0 1)))) 0)

(reverse (bud (bud 1 1) (a 0))))

…

…

…

…

…

Individual : 495

Evaluated: true

Fitness: Raw=0.04761905 Adjusted=0.9545454 Hits=20

TREE

 (split (double (s (split (split (a (split (s (bud (loop (s (double (loop 0 e) (reverse (reverse 0))))

0) (reverse (reverse (double (split 0 1) (a (split (s (loop 0 1)) (loop (s e) (loop 0 0))))))))) (loop (s

e) (loop 0 0)))) 1) (double e 1))) (loop (bud (a e) (a 1)) (bud 0 1))) (loop (double (s (split e 1))

(bud (s 1) (s 0))) (a (bud (s 1) (reverse 1)))))

Individual : 496

Evaluated: true

Fitness: Raw=0.1904762 Adjusted=0.84000003 Hits=17

TREE

 (split (s (a (loop (a 1) (s 0)))) (loop (split (bud (double e 1) (a 1)) (s 0)) (a 1)))

Individual : 497

Evaluated: true

Fitness: Raw=0.14285715 Adjusted=0.87499994 Hits=18

TREE

Delhi College of Engineering, Delhi 63

 A Genetic Approach to Evolve Finite State Automata

 (bud (loop (s (bud (double 1 1) (bud (double e 1) (a 1)))) 0) (reverse (reverse (double (split

0 1) (a (split (s (loop 0 1)) (loop (double (double (s (s (a (loop (bud (bud 1 1) (a 0)) (s 0)))))

(loop (loop 1 0) (s (a e)))) (loop (bud (loop 0 0) (a 1)) (double (loop 0 e) (reverse (s e))))) (loop

0 0))))))))

Individual : 498

Evaluated: true

Fitness: Raw=0.0952381 Adjusted=0.9130435 Hits=19

TREE

 (split (s (a (loop (a 1) (s 0)))) (loop (split (s (s (a (loop (s (a (loop (a 1) (s 0)))) (s 0))))) (s 0)) (a

1)))

Individual : 499

Evaluated: true

Fitness: Raw=0.1904762 Adjusted=0.84000003 Hits=17

TREE

 (bud (a (split (split (s (bud (bud 1 1) (a 0))) (a (a (split (s (loop 0 1)) (loop (s e) (loop 0 0))))))

(loop (s e) (loop (split 0 0) 0)))) (a (loop 1 e)))

Best Individual of Generation 7:

=============================

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=21

TREE

 (double (loop (a e) (s e)) (double (a (bud (a (reverse e)) (loop 1 1))) (reverse (bud (s 0) (bud (a

(split (s (loop 0 1)) (loop (s (double 1 0)) (a (loop (a e) (s 0)))))) (a (double (loop 1 1) (split 0 (s

0)))))))))

--

Final Statistics

================

Total Individuals Evaluated: 4000

Delhi College of Engineering, Delhi 64

 A Genetic Approach to Evolve Finite State Automata

Best Individual of Run:

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=21

TREE

(double (loop (a e) (s e)) (double (a (bud (a (reverse e)) (loop 1 1))) (reverse (bud (s 0) (bud (a

(split (s (loop 0 1)) (loop (s (double 1 0)) (a (loop (a e) (s 0)))))) (a (double (loop 1 1) (split 0 (s

0)))))))))

Best Individual's Generalization Score...

Pos: 1940/1940 Neg: 30827/30827

(pos+neg)/(allpos+allneg): 1.0

Best Individual's NFA

=====================

States Transitions

0 S => (0:5) (e:1)

1 SA => (0:0) (1:2) (e:0,1)

2 => (1:2)

3 SA => (0:3,6) (1:4) (e:3)

4 SA => (1:4)

5 S => (0:3) (1:3,5)

6 => (0:4)

A.2 Modular Evolution

The modular evolution of Tomita 7 involves the decomposition of the expression into

two smaller sub-expressions, and then evolving the automata for both the sub-expressions. The

sub automata generated are further combined to give the resultant automata for the language.

Delhi College of Engineering, Delhi 65

 A Genetic Approach to Evolve Finite State Automata

The decomposition of Tomita 7 (0*1*0*1*) into two sub expressions can be done as

(0*1*) and (0*1*), where, only the automata for sub expression 1 is evolved and the same

results can be used for the sub expression 2, thereby reducing the time as well as the resources

for evolving sub expression 2. The encoding tree for the sub expression 1 is concatenated with

itself using the property (split X (split ε X)) (where X is the encoding tree for the sub expression

1), to get the complete automata for the Tomita 7 language.

The positive and negative training sets used for the sub expression 1 of the Tomita 7 are shown

in Table A.2.

Tomita 7 Positive Set Negative Set

0*1*

e, 0, 00, 1, 11, 01, 0011, 0001,

0111, 000000011111,

000011111111

10, 010, 100, 101, 00110

111100000, 10000

0001111000

Table A.2: Positive and Negative Training Sets for Sub Expression 1 of Tomita 7

A.2.1 Example Run

An experimental run with the training set for the sub expression 1 of the Tomita 7,

evolved the ideal individual in the 2nd generation. The population size used was 500. Below, are

the few sample chromosomes generated during the run and the best individual of the run. Also

the NFA generated for the best individual has been shown.

GENERATION 0

================

Individual : 0

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

Delhi College of Engineering, Delhi 66

 A Genetic Approach to Evolve Finite State Automata

 (a (bud (a (double (double 1 e) (reverse 0))) (double (loop (double 0 1) (reverse e)) (double

(bud 0 e) (loop 1 e)))))

Individual : 1

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 1

Individual : 2

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (a (double e (a (split (a 0) e))))

Individual : 3

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (bud (a (reverse e)) (a (split 1 0)))

Individual : 4

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (bud e e)

Individual : 5

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (loop (bud (double 1 (split 1 1)) e) e)

…

Delhi College of Engineering, Delhi 67

 A Genetic Approach to Evolve Finite State Automata

…

…

…

…

GENERATION 1

================

Individual : 0

Evaluated: true

Fitness: Raw=0.44444445 Adjusted=0.6923077 Hits=10

TREE

 (s (bud (double (bud e (double 1 0)) 1) (s

 (double (a 1) (loop 1 1)))))

Individual : 1

Evaluated: true

Fitness: Raw=0.3888889 Adjusted=0.72 Hits=11

TREE

 (a (s (loop (reverse (reverse e)) (a (s (split 0 (loop 1 0)))))))

Individual : 2

Evaluated: true

Fitness: Raw=0.5555556 Adjusted=0.64285713 Hits=8

TREE

 (s (a 0))

Individual : 3

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (s (s (loop e e)))

Delhi College of Engineering, Delhi 68

 A Genetic Approach to Evolve Finite State Automata

…

…

…

…

…

Individual : 497

Evaluated: true

Fitness: Raw=0.44444445 Adjusted=0.6923077 Hits=10

TREE

 (s (split (a (s (double 1 1))) (bud (bud (bud (loop (bud (reverse (s (double 1 1))) (double (a

(split 1 e)) (a (loop 1 e)))) (a (s (a (loop e e))))) 0) (a 0)) (a (reverse e)))))

Individual : 498

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 e

Individual : 499

Evaluated: true

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7

TREE

 (s 1)

Best Individual of Generation:

=============================

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=18

TREE

 (loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e)))))

--

Delhi College of Engineering, Delhi 69

 A Genetic Approach to Evolve Finite State Automata

Final Statistics

================

Total Individuals Evaluated: 1000

Best Individual of Run:

Evaluated: true

Fitness: Raw=0.0 Adjusted=1.0 Hits=18

TREE

 (loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e)))))

Best Individual's Generalization Score...

Pos: 15/15 Neg: 32752/32752

(pos+neg)/(allpos+allneg): 1.0

Best Individual's NFA

=====================

States Transitions

0 => (0: 1)

1 SA => (0: 1,1) (1: 2) (e: 1,1)

2 A => (1: 2)

A.2.2 Combining Sub Automata

After the automata for each of the sub expressions are evolved, the encoding tree of the

sub automata’s are joined using the design as explained in Section 6.2, depending upon the

joining conditions. Here, sub automata 1 is concatenated with itself using the condition (split X

(split ε X)).

The resulting encoding tree for the Tomita 7 using the above procedure is:

Delhi College of Engineering, Delhi 70

 A Genetic Approach to Evolve Finite State Automata

(split (loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e))))) (split e

(loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e)))))))

And, the NFA generated for the above encoding is:

Complete NFA for Tomita 7 using modular approach

===

States Transitions

0 => (0: 1)

1 SA => (0: 1,1) (1: 2) (e: 1,1)

2 A => (1: 2)

3 => (0: 4)

4 SA => (0: 4,4) (1: 5) (e: 4,4)

5 A => (1: 5)

Delhi College of Engineering, Delhi 71

 A Genetic Approach to Evolve Finite State Automata

APPENDIX B: SOURCE CODE

package fsa

Breeder.java

package fsa;

public class Breeder
 {

 public abstract Population breedPopulation(final EvolutionState state) throws
CloneNotSupportedException;

 }

BreedingSource.java

package fsa;
import fsa.util.*;

public abstract class BreedingSource implements Prototype, RandomChoiceChooser
 {
 public static final String P_PROB = "prob";
 public static final float NO_PROBABILITY = -1.0f;
 public static final int UNUSED = -1;
 public static final int CHECKBOUNDARY = 8;
 public static final int DEFAULT_PRODUCED = 1;

 public float probability;

 public void setup(final EvolutionState state, final Parameter base)
 {

 Parameter def = defaultBase();

 if (!state.parameters.exists(base.push(P_PROB),def.push(P_PROB)))
 probability = NO_PROBABILITY;
 else
 {
 probability = state.parameters.getFloat(base.push(P_PROB),def.push(P_PROB),0.0);

Delhi College of Engineering, Delhi 72

 A Genetic Approach to Evolve Finite State Automata

if (probability<0.0) state.output.error("Breeding Source's probability must be a
floating point value >= 0.0, or empty, which represents NO_PROBABILITY.",
base.push(P_PROB),def.push(P_PROB));

 }
 }

 public final float getProbability(final Object obj)
 {
 return ((BreedingSource)obj).probability;
 }

 public final void setProbability(final Object obj, final float prob)
 {
 ((BreedingSource)obj).probability = prob;
 }

 public static int pickRandom(final BreedingSource[] sources,final float prob)
 {
 return RandomChoice.pickFromDistribution(sources,sources[0],
 prob,CHECKBOUNDARY);
 }

 public static void setupProbabilities(final BreedingSource[] sources)
 {
 RandomChoice.organizeDistribution(sources,sources[0],true);
 }

 public abstract int typicalIndsProduced();

 public abstract boolean produces(final EvolutionState state, final Population newpop,
 final int subpopulation, int thread);

 public abstract void prepareToProduce(final EvolutionState state, final int subpopulation,
 final int thread);

 public abstract void finishProducing(final EvolutionState s, final int subpopulation,
 final int thread);

 public abstract int produce(final int min, final int max, final int start, final int subpopulation,
 final Individual[] inds, final EvolutionState state,
 final int thread) throws CloneNotSupportedException;

 public Object protoClone() throws CloneNotSupportedException
 {
 return super.clone();
 }

 public final Object protoCloneSimple()
 {
 try { return protoClone(); }

Delhi College of Engineering, Delhi 73

 A Genetic Approach to Evolve Finite State Automata

 catch (CloneNotSupportedException e)
 { throw new InternalError(); }
 }

 public abstract void preparePipeline(final Object hook);
 }

Fitness.java

package fsa;
import java.io.*;

public interface Fitness extends Prototype
 {
 public static final String P_FITNESS = "fit";

 public abstract float fitness();

 public abstract boolean isIdealFitness();

 public abstract boolean equivalentTo(Fitness _fitness);

 public abstract boolean betterThan(Fitness _fitness);

 public abstract void printFitness(EvolutionState state, int log,
 int verbosity);

 public abstract void printFitness(final EvolutionState state,
 final PrintWriter writer);

 public abstract void readFitness(final EvolutionState state,
 final LineNumberReader reader)
 throws IOException, CloneNotSupportedException;
 }

FsaEvolution.java

package fsa;
import java.io.IOException;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.OptionalDataException;
import java.io.PrintWriter;

Delhi College of Engineering, Delhi 74

 A Genetic Approach to Evolve Finite State Automata

public class FsaEvolution
 {

 public static long inittime;
 public static long exittime;
 public static long tottime;

 public static final String A_FILE = "-file";

 public static final String P_EVALTHREADS = "evalthreads";

 public static final String P_BREEDTHREADS = "breedthreads";

 public static final String P_SEED = "seed";

 public static final String V_SEED_TIME = "time";

 public static final String P_STATE = "state";

 public static void main(String[] args)
 {

 EvolutionState state=null;
 ParameterDatabase parameters=null;
 Output output;
 MersenneTwisterFast[] random;
 int[] seeds;
 int breedthreads = 1;
 int evalthreads = 1;
 int x;

 if (state==null)
 {

 for(x=0;x<args.length-1;x++)
 if (args[x].equals(A_FILE))
 {
 try
 {
 parameters=new ParameterDatabase(
 new File(new File(args[x+1]).getAbsolutePath()),
 args);
 break;
 }
 catch(FileNotFoundException e)
 { Output.initialError(
 "A File Not Found Exception was generated upon" +
 "reading the parameter file \"" + args[x+1] +
 "\".\nHere it is:\n" + e); }

Delhi College of Engineering, Delhi 75

 A Genetic Approach to Evolve Finite State Automata

 catch(IOException e)
 { Output.initialError(
 "An IO Exception was generated upon reading the" +
 "parameter file \"" + args[x+1] +
 "\".\nHere it is:\n" + e); }
 }
 if (parameters==null)
 Output.initialError(
 "No parameter file was specified.");

 breedthreads = parameters.getInt(
 new Parameter(P_BREEDTHREADS),null,1);

 if (breedthreads < 1)
 Output.initialError("Number of breeding threads should be an integer >0.",
 new Parameter(P_BREEDTHREADS));

 evalthreads = parameters.getInt(
 new Parameter(P_EVALTHREADS),null,1);

 if (evalthreads < 1)
 Output.initialError("Number of eval threads should be an integer >0.",
 new Parameter(P_EVALTHREADS));

 random = new MersenneTwisterFast[breedthreads > evalthreads ?
 breedthreads : evalthreads];
 seeds = new int[breedthreads > evalthreads ?
 breedthreads : evalthreads];

 int time = (int)System.currentTimeMillis();
 String seed_message = "Seed: ";

 for (x=0;x<random.length;x++)
 {
 int seed = 1;
 String tmp_s = parameters.getString(
 new Parameter(P_SEED).push(""+x),null);
 if (tmp_s==null)
 {
 Output.initialError("Seed should be an integer.",
 new Parameter(P_SEED).push(""+x));

 }
 else if (tmp_s.equalsIgnoreCase(V_SEED_TIME))
 {
 seed = time++;
 }
 else
 {
 try

Delhi College of Engineering, Delhi 76

 A Genetic Approach to Evolve Finite State Automata

 {
 seed = parameters.getInt(new Parameter(P_SEED).push(""+x),null);
 }
 catch (NumberFormatException e)
 {
 Output.initialError("Invalid Seed Value (must be an integer):\n" + e);
 }
 seed_message = seed_message + seed + " ";
 }

 seeds[x] = seed;
 }

 for (x=0;x<random.length;x++)
 {
 for (int y=x+1;y<random.length;y++)
 if (seeds[x]==seeds[y])
 {

Output.initialError(P_SEED+"."+x+" ("+seeds[x]+") and
"+P_SEED+"."+y+" ("+seeds[y]+") should not be the same seed.");

 }
 random[x] = new MersenneTwisterFast(seeds[x]);
 }

 state = (EvolutionState)
 parameters.getInstanceForParameter(new Parameter(P_STATE),null,
 EvolutionState.class);
 state.parameters = parameters;
 state.random = random;
 state.output = output;
 state.evalthreads = evalthreads;
 state.breedthreads = breedthreads;

 output.systemMessage("Threads: breed/" + breedthreads + " eval/" + evalthreads);
 output.systemMessage(seed_message);

 try
 {
 inittime= System.currentTimeMillis();

 state.run(EvolutionState.C_STARTED_FRESH);

 System.out.println("\n time=" + inittime);
 extime=System.currentTimeMillis();
 System.out.println("\n time=" + extime);
 tottime= System.currentTimeMillis()-inittime;
 System.out.println("\n time=" + tottime);
 }
 catch (IOException e)

Delhi College of Engineering, Delhi 77

 A Genetic Approach to Evolve Finite State Automata

 {
 Output.initialError(
 "An IO Exception generated " + e);
 }

 output.flush();

 PrintWriter pw = new PrintWriter(System.err);

 pw.flush();

 System.err.flush();
 System.out.flush();

 output.close();
 }
 }

 }

Group.java

package fsa;
import fsa.util.Parameter;

public interface Group extends Setup, Cloneable
 {
 public Group emptyClone() throws CloneNotSupportedException;
 }

Individual.java

package fsa;
import java.io.*;

public abstract class Individual implements Prototype
 {
 public Fitness fitness;

 public Species species;

 public boolean evaluated;

 public Individual deepClone()

Delhi College of Engineering, Delhi 78

 A Genetic Approach to Evolve Finite State Automata

 {
 return (Individual) protoCloneSimple();
 }

 public Object protoClone() throws CloneNotSupportedException
 {
 Individual myobj = (Individual) (super.clone());

 if (myobj.fitness!=null) myobj.fitness = (Fitness)(fitness.protoClone());
 return myobj;
 }

 public final Object protoCloneSimple()
 {
 try { return protoClone(); }
 catch (CloneNotSupportedException e)
 { throw new InternalError(); }
 }

 public abstract void setup(final EvolutionState state, final Parameter base);

 public abstract void printIndividual(final EvolutionState state,
 final int log,
 final int verbosity);

 public abstract void printIndividual(final EvolutionState state,
 final PrintWriter writer);

 public abstract void readIndividual(final EvolutionState state, final LineNumberReader
reader)
 throws IOException, CloneNotSupportedException;

 public long size() { return 0; }
 }

Initializer.java

package fsa;
import fsa.util.Parameter;

public abstract class Initializer implements Singleton
 {

 public static final String P_POP = "pop";

Delhi College of Engineering, Delhi 79

 A Genetic Approach to Evolve Finite State Automata

 public abstract Population initialPopulation(final EvolutionState state);
 }

Population.java

package fsa;
import fsa.util.Parameter;

public class Population implements Group
 {
 public Subpopulation[] subpops;
 public static final String P_SIZE = "subpops";
 public static final String P_SUBPOP = "subpop";

 public Group emptyClone()
 {
 try
 {
 Population p = (Population)clone();
 p.subpops = new Subpopulation[subpops.length];
 for(int x=0;x<subpops.length;x++)
 p.subpops[x] = (Subpopulation)(subpops[x].emptyClone());
 return p;
 }
 catch (CloneNotSupportedException e) { throw new InternalError(); }
 }

 public void setup(final EvolutionState state, final Parameter base)
 {

 Parameter p;

 p = base.push(P_SIZE);
 int size = state.parameters.getInt(p,null,1);
 if (size==0)
 state.output.fatal("Population size must be >0.\n",base.push(P_SIZE));
 subpops = new Subpopulation[size];

 for (int x=0;x<size;x++)
 {
 p = base.push(P_SUBPOP).push(""+x);

subpops[x] = (Subpopulation)(state.parameters.getInstanceForParameterEq
(p,null,Subpopulation.class));

 subpops[x].setup(state,p);
 }

Delhi College of Engineering, Delhi 80

 A Genetic Approach to Evolve Finite State Automata

 }

 public void populate(EvolutionState state)
 {
 // let's populate!
 for(int x=0;x<subpops.length;x++)
 subpops[x].populate(state);
 }

 }

Problem.java

package fsa;

public abstract class Problem implements Prototype
 {
 public static final String P_PROBLEM = "problem";

 public Parameter defaultBase()
 {
 return new Parameter(P_PROBLEM);
 }

 public void setup(final EvolutionState state, final Parameter base)
 { }

 public Object protoClone() throws CloneNotSupportedException
 {
 return clone();
 }

 public Object protoCloneSimple()
 {
 try { return protoClone(); }
 catch (CloneNotSupportedException e) { }
 return null;
 }
 }

Prototype.java

package fsa;

public interface Prototype extends Cloneable

{

Delhi College of Engineering, Delhi 81

 A Genetic Approach to Evolve Finite State Automata

 public Object protoClone() throws CloneNotSupportedException;

 public Object protoCloneSimple();

 public void setup(final EvolutionState state, final Parameter base);

 public Parameter defaultBase();

 }

SelectionMethod.java

package fsa

public abstract class SelectionMethod
 {
 public static final int INDS_PRODUCED = 1;

 public int typicalIndsProduced() { return INDS_PRODUCED; }

 public abstract int produce(final int subpopulation, final EvolutionState state, final int
thread);

public boolean produces(final EvolutionState state, final Population newpop, final int
subpopulation,
 final int thread)
 {
 return true;
 }

public void prepareToProduce(final EvolutionState s, final int subpopulation, final int thread)
 { return; }

public void finishProducing(final EvolutionState s, final int subpopulation, final int
thread)
 { return; }

public int produce(final int min, final int max, final int start, final int subpopulation, final
Individual[] inds, final EvolutionState state, final int thread) throws
CloneNotSupportedException
 {
 int n=INDS_PRODUCED;
 if (n<min) n = min;
 if (n>max) n = max;

Delhi College of Engineering, Delhi 82

 A Genetic Approach to Evolve Finite State Automata

 for(int q=0;q<n;q++)
 inds[start+q] = state.population.subpops[subpopulation].
 individuals[produce(subpopulation,state,thread)];
 return n;
 }

 public void preparePipeline(Object hook)
 {

 }
 }

Setup.java

package fsa;
import java.io.Serializable;

public interface Setup extends Serializable
 {

 public void setup(final EvolutionState state, final Parameter base);
 }

package fsa.edge.func

Accept.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class Accept extends GPNode
 {
 public String toString() { return "a"; }

public void checkConstraints(final EvolutionState state, final int tree, final GPIndividual
typicalIndividual, final Parameter individualBase)

 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=1)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

Delhi College of Engineering, Delhi 83

 A Genetic Approach to Evolve Finite State Automata

 public void eval(final EvolutionState state, final int thread, final GPData input,
final ADFStack stack, final GPIndividual individual, final Problem
problem)

 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 prob.accept[prob.to[edge]] = true;

 children[0].eval(state,thread,input,stack,individual,problem);
 }
 }

Bud.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class Bud extends GPNode
 {
 public String toString() { return "bud"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual, final Parameter
individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)

state.output.error("Incorrect number of children for node " + toStringForError() + " at "
+ individualBase);

 }

 public void eval (final EvolutionState state, final int thread, final GPData input,

final ADFStack stack, final GPIndividual individual, final Problem
problem)

 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 if (prob.from.length==prob.numEdges)
 {
 int[] from_ = new int[prob.numEdges*2];
 int[] to_ = new int[prob.numEdges*2];
 int[] reading_ = new int[prob.numEdges*2];
 System.arraycopy(prob.from,0,from_,0,prob.from.length);
 System.arraycopy(prob.to,0,to_,0,prob.to.length);

Delhi College of Engineering, Delhi 84

 A Genetic Approach to Evolve Finite State Automata

 System.arraycopy(prob.reading,0,reading_,0,prob.reading.length);
 prob.from = from_;
 prob.to = to_;
 prob.reading = reading_;
 }

 if (prob.start.length==prob.numNodes)
 {
 boolean[] start_ = new boolean[prob.numNodes*2];
 boolean[] accept_ = new boolean[prob.numNodes*2];
 System.arraycopy(prob.start,0,start_,0,prob.start.length);
 System.arraycopy(prob.accept,0,accept_,0,prob.accept.length);
 prob.start = start_;
 prob.accept = accept_;
 }

 int newedge = prob.numEdges;
 prob.numEdges++;
 int newnode = prob.numNodes;
 prob.numNodes++;

 prob.accept[newnode] = false;
 prob.start[newnode] = false;

 prob.from[newedge] = prob.to[edge];
 prob.to[newedge] = newnode;
 prob.reading[newedge] = prob.reading[edge];

 children[0].eval(state,thread,input,stack,individual,problem);

 ((EdgeData)(input)).edge = newedge;

 children[1].eval(state,thread,input,stack,individual,problem);
 }
 }

Double.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class Double extends GPNode
 {
 public String toString() { return "double"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual, final Parameter individualBase)

Delhi College of Engineering, Delhi 85

 A Genetic Approach to Evolve Finite State Automata

 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

public void eval(final EvolutionState state, final int thread, final GPData input, final
ADFStack stack, final GPIndividual individual, final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 if (prob.from.length==prob.numEdges)
 {
 int[] from_ = new int[prob.numEdges*2];
 int[] to_ = new int[prob.numEdges*2];
 int[] reading_ = new int[prob.numEdges*2];
 System.arraycopy(prob.from,0,from_,0,prob.from.length);
 System.arraycopy(prob.to,0,to_,0,prob.to.length);
 System.arraycopy(prob.reading,0,reading_,0,prob.reading.length);
 prob.from = from_;
 prob.to = to_;
 prob.reading = reading_;
 }

 int newedge = prob.numEdges;
 prob.numEdges++;
 prob.from[newedge] = prob.from[edge];
 prob.to[newedge] = prob.to[edge];
 prob.reading[newedge] = prob.reading[edge];

 children[0].eval(state,thread,input,stack,individual,problem);

 ((EdgeData)(input)).edge = newedge;

 children[1].eval(state,thread,input,stack,individual,problem);
 }
 }

Epsilon.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class Epsilon extends GPNode
 {
 public String toString() { return "e"; }

Delhi College of Engineering, Delhi 86

 A Genetic Approach to Evolve Finite State Automata

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 prob.reading[edge] = Edge.EPSILON;
 }
 }

Loop.java

package fsa.edge.func;
import fsa.*;
import fsa.app.edge.*;

public class Loop extends GPNode
 {
 public String toString() { return "loop"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;

Delhi College of Engineering, Delhi 87

 A Genetic Approach to Evolve Finite State Automata

 Edge prob = (Edge)problem;

 if (prob.from.length==prob.numEdges)
 {
 int[] from_ = new int[prob.numEdges*2];
 int[] to_ = new int[prob.numEdges*2];
 int[] reading_ = new int[prob.numEdges*2];
 System.arraycopy(prob.from,0,from_,0,prob.from.length);
 System.arraycopy(prob.to,0,to_,0,prob.to.length);
 System.arraycopy(prob.reading,0,reading_,0,prob.reading.length);
 prob.from = from_;
 prob.to = to_;
 prob.reading = reading_;
 }

 int newedge = prob.numEdges;
 prob.numEdges++;
 prob.from[newedge] = prob.to[edge];
 prob.to[newedge] = prob.to[edge]; // same
 prob.reading[newedge] = prob.reading[edge];

 children[0].eval(state,thread,input,stack,individual,problem);

 ((EdgeData)(input)).edge = newedge;

 children[1].eval(state,thread,input,stack,individual,problem);
 }
 }

One.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class One extends GPNode
 {
 public String toString() { return "1"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

Delhi College of Engineering, Delhi 88

 A Genetic Approach to Evolve Finite State Automata

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;
 prob.reading[edge] = Edge.READING1;
 }
 }

Reverse.java

package fsa.edge.func;
import fsa.*;
import fsa.edge.*;

public class Reverse extends GPNode
 {
 public String toString() { return "reverse"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=1)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 int swap = prob.from[edge];
 prob.from[edge] = prob.to[edge];
 prob.to[edge] = swap;

 children[0].eval(state,thread,input,stack,individual,problem);
 }
 }

Delhi College of Engineering, Delhi 89

 A Genetic Approach to Evolve Finite State Automata

Split.java

package fsa.edge.func;
import fsa.*;
import fsa.app.edge.*;

public class Split extends GPNode
 {
 public String toString() { return "split"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 if (prob.from.length==prob.numEdges)
 {
 int[] from_ = new int[prob.numEdges*2];
 int[] to_ = new int[prob.numEdges*2];
 int[] reading_ = new int[prob.numEdges*2];
 System.arraycopy(prob.from,0,from_,0,prob.from.length);
 System.arraycopy(prob.to,0,to_,0,prob.to.length);
 System.arraycopy(prob.reading,0,reading_,0,prob.reading.length);
 prob.from = from_;
 prob.to = to_;
 prob.reading = reading_;
 }

 if (prob.start.length==prob.numNodes)
 {
 boolean[] start_ = new boolean[prob.numNodes*2];
 boolean[] accept_ = new boolean[prob.numNodes*2];
 System.arraycopy(prob.start,0,start_,0,prob.start.length);
 System.arraycopy(prob.accept,0,accept_,0,prob.accept.length);
 prob.start = start_;
 prob.accept = accept_;
 }

Delhi College of Engineering, Delhi 90

 A Genetic Approach to Evolve Finite State Automata

 int newedge = prob.numEdges;
 prob.numEdges++;
 int newnode = prob.numNodes;
 prob.numNodes++;

 // set up new node
 prob.accept[newnode] = false;
 prob.start[newnode] = false;

 // set up new edge
 prob.from[newedge] = newnode;
 prob.to[newedge] = prob.to[edge];
 prob.reading[newedge] = prob.reading[edge];
 // modify old edge
 prob.to[edge] = newnode;

 // pass the original edge down the left child

 children[0].eval(state,thread,input,stack,individual,problem);

 // reset input for right child
 ((EdgeData)(input)).edge = newedge;

 // pass the new edge down the right child

 children[1].eval(state,thread,input,stack,individual,problem);
 }
 }

Start.java

package fsa.edge.func;
import fsa.*;
import fsa.app.edge.*;

public class Start extends GPNode
 {
 public String toString() { return "s"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=1)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

Delhi College of Engineering, Delhi 91

 A Genetic Approach to Evolve Finite State Automata

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 prob.start[prob.to[edge]] = true;

 // pass the edge down

 children[0].eval(state,thread,input,stack,individual,problem);
 }
 }

Zero.java

package fsa.edge.func;
import fsa.*;
import fsa.app.edge.*;

public class Zero extends GPNode
 {
 public String toString() { return "0"; }

 public void checkConstraints(final EvolutionState state, final int tree,
 final GPIndividual typicalIndividual, final Parameter
individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state, final int thread, final GPData input,
 final ADFStack stack, final GPIndividual individual,
 final Problem problem)
 {
 int edge = ((EdgeData)(input)).edge;
 Edge prob = (Edge)problem;

 prob.reading[edge] = Edge.READING0;
 }
 }

Delhi College of Engineering, Delhi 92

 A Genetic Approach to Evolve Finite State Automata

package fsa.edge

EdgeData.java

package fsa.edge;
import fsa.util.*;
import fsa.*;

public class EdgeData extends GPData
 {

 public int edge;

 public GPData copyTo(final GPData gpd)
 {

((EdgeData)gpd).edge = edge; return gpd;
}

 }

EdgeStatistics.java

package fsa.app.edge;
import fsa.*;
import fsa.util.*;

public class EdgeStatistics extends KozaStatistics
 {
 public void finalStatistics(final EvolutionState state, final int result)
 {
 super.finalStatistics(state,result);

 ((SimpleProblemForm)(state.evaluator.p_problem.protoCloneSimple())).describe(
 best_of_run[0], state, 0, statisticslog,Output.V_NO_GENERAL);
 }

 }

Edge.java

package fsa.edge;
import java.io.*;
import java.util.*;
import fsa.*;
import fsa.gp.*;

Delhi College of Engineering, Delhi 93

 A Genetic Approach to Evolve Finite State Automata

public class Edge extends GPProblem implements SimpleProblemForm
 {
 public static final String P_DATA = "data";
 public static final String P_GENERALIZE = "generalize";
 public static final String P_ALLPOS = "allpos";
 public static final String P_ALLNEG = "allneg";
 public static final String P_TESTPOS = "testpos";
 public static final String P_TESTNEG = "testneg";
 public static final String P_MAXTEST = "maxtest";

 public static final int MIN_ARRAY_SIZE = 64;

 public static final int BAD = 0;
 public static final int READING0 = 1;
 public static final int READING1 = 2;
 public static final int EPSILON = 3;

 public EdgeData input;

 public boolean[] start;
 public boolean[] accept;
 public int numNodes;
 public int[] from;
 public int[] to;
 public int[] reading;
 public int numEdges;

 public int[][] reading1;
 public int[] reading1_l;
 public int[][] reading0;
 public int[] reading0_l;
 public int[][] epsilon;
 public int[] epsilon_l;

 public boolean[][] posT;
 public boolean[][] negT;
 public boolean[][] posA;
 public boolean[][] negA;

 public boolean[] state1;
 public boolean[] state2;

 public boolean generalize;

 public Object protoClone() throws CloneNotSupportedException
 {

 Edge myobj = (Edge) (super.protoClone());
 myobj.input = (EdgeData)(input.protoClone());

Delhi College of Engineering, Delhi 94

 A Genetic Approach to Evolve Finite State Automata

 return myobj;
 }

 public static String fill(int num, char c)
 {
 char[] buf = new char[num];
 for(int x=0;x<num;x++) buf[x]=c;
 return new String(buf);
 }

 public String printCurrentNFA()
 {
 int strsize = String.valueOf(numNodes).length();
 String str = "";
 for(int x=0;x<numNodes;x++)
 {
 str += justify(String.valueOf(x),strsize,J_RIGHT) + " " +
 (start[x] ? "S" : " ") + (accept[x] ? "A" : " ") +
 "=> ";

 if (reading0_l[x]>0)
 {
 str += "(0:";
 for(int y=0;y<reading0_l[x];y++)
 str += ((y>0 ? "," : "") + String.valueOf(reading0[x][y]));
 str += ") ";
 }

 if (reading1_l[x]>0)
 {
 str += "(1:";
 for(int y=0;y<reading1_l[x];y++)
 str += ((y>0 ? "," : "") + String.valueOf(reading1[x][y]));
 str += ") ";
 }

 if (epsilon_l[x]>0)
 {
 str += "(e:";
 for(int y=0;y<epsilon_l[x];y++)
 str += ((y>0 ? "," : "") + String.valueOf(epsilon[x][y]));
 str += ")";
 }
 str += "\n";
 }
 return str;
 }

 public boolean[][] restrictToSize(int size, boolean[][]cases, EvolutionState state, int thread)

Delhi College of Engineering, Delhi 95

 A Genetic Approach to Evolve Finite State Automata

 {
 int csize = cases.length;
 if (csize < size) return cases;

 Hashtable hash = new Hashtable();
 for(int x=0;x<size;x++)
 {
 while(true)
 {
 boolean[] b = cases[state.random[thread].nextInt(csize)];
 if (!hash.contains(b)) { hash.put(b,b); break; }
 }
 }

 boolean[][] newcases = new boolean[size][];
 Enumeration e = hash.keys();
 for(int x=0;x<size;x++)
 {
 newcases[x] = (boolean[])(e.nextElement());
 }

 QuickSort.qsort(newcases,
 new SortComparator()
 {
 public boolean lt(Object a, Object b)
 {
 boolean[] aa = (boolean[])a;
 boolean[] bb = (boolean[])b;
 for(int x=0;x<Math.min(aa.length,bb.length);x++)
 if (!aa[x] && bb[x]) return true;
 else if (aa[x] && !bb[x]) return false;
 if (aa.length<bb.length) return true;
 return false;
 }

 public boolean gt(Object a, Object b)
 {
 boolean[] aa = (boolean[])a;
 boolean[] bb = (boolean[])b;
 for(int x=0;x<Math.min(aa.length,bb.length);x++)
 if (!aa[x] && bb[x]) return false;
 else if (aa[x] && !bb[x]) return true;
 if (aa.length>bb.length) return true;
 return false;
 }
 });
 return newcases;
 }

Delhi College of Engineering, Delhi 96

 A Genetic Approach to Evolve Finite State Automata

 public boolean[][] slurp(final File f)
 throws IOException
 {

LineNumberReader r = new LineNumberReader(new InputStreamReader(new
FileInputStream(f)));

 String bits;

 Vector v = new Vector();
 while((bits=r.readLine())!=null)
 {
 bits = bits.trim();
 int len = bits.length();
 if (len==0) continue; // empty line
 if (bits.charAt(0)=='#') continue; // comment
 if (bits.equalsIgnoreCase("e"))
 v.addElement(new boolean[0]);
 else
 {
 boolean[] b = new boolean[len];
 for(int x=0;x<len;x++)
 b[x] = (bits.charAt(x)=='1');
 v.addElement(b);
 }
 }
 r.close();
 boolean[][] result = new boolean[v.size()][];
 v.copyInto(result);
 return result;
 }

 public void printBits(final EvolutionState state, final boolean[][] bits)
 {
 StringBuffer s;
 for(int x=0;x<bits.length;x++)
 {
 s = new StringBuffer();
 for(int y=0;y<bits[x].length;y++)
 if (bits[x][y]) s.append('1');
 else s.append('0');
 if (s.length()==0) state.output.message("(empty)");
 else state.output.message(s.toString());
 }
 }

 public void setup(final EvolutionState state, final Parameter base)
 {
 super.setup(state,base);

Delhi College of Engineering, Delhi 97

 A Genetic Approach to Evolve Finite State Automata

 File ap = null;
 File an = null;
 File tp = null;
 File tn = null;
 int restriction;

 if (generalize)
 {
 ap = state.parameters.getFile(base.push(P_ALLPOS),null);
 an = state.parameters.getFile(base.push(P_ALLNEG),null);
 }

 tp = state.parameters.getFile(base.push(P_TESTPOS),null);
 tn = state.parameters.getFile(base.push(P_TESTNEG),null);

 if (generalize)
 {
 if (ap==null) state.output.error("File doesn't exist", base.push(P_ALLPOS));
 if (an==null) state.output.error("File doesn't exist", base.push(P_ALLNEG));
 }

 if (tp==null) state.output.error("File doesn't exist", base.push(P_TESTPOS));
 if (tn==null) state.output.error("File doesn't exist", base.push(P_TESTNEG));
 state.output.exitIfErrors();

 if (generalize)
 {
 if (!ap.canRead()) state.output.error("File cannot be read", base.push(P_ALLPOS));
 if (!an.canRead()) state.output.error("File cannot be read", base.push(P_ALLNEG));
 }

 if (!tp.canRead()) state.output.error("File cannot be read", base.push(P_TESTPOS));
 if (!tn.canRead()) state.output.error("File cannot be read", base.push(P_TESTNEG));
 state.output.exitIfErrors();

 if (generalize)
 {
 state.output.message("Reading Positive Examples");
 try { posA = slurp(ap); }
 catch(IOException e)

{ state.output.error("IOException reading file (here it is)\n" + e,
base.push(P_ALLPOS)); }

 state.output.message("Reading Negative Examples");
 try { negA = slurp(an); }
 catch(IOException e)

{ state.output.error("IOException reading file (here it is)\n" + e,
base.push(P_ALLNEG)); }

 }

 state.output.message("Reading Positive Training Examples");

Delhi College of Engineering, Delhi 98

 A Genetic Approach to Evolve Finite State Automata

try { posT = slurp(tp); }

catch(IOException e)

{ state.output.error("IOException reading file (here it is)\n" + e,
base.push(P_TESTPOS)); }

 if ((restriction = state.parameters.getInt(
 base.push(P_MAXTEST),null,1))>0)
 {
 state.output.message("Restricting to <= " + restriction + " Unique Examples");
 posT = restrictToSize(restriction,posT,state,0);
 }

 state.output.message("");
 printBits(state,posT);
 state.output.message("");

 state.output.message("Reading Negative Training Examples");
 try { negT = slurp(tn); }
 catch(IOException e)

{ state.output.error("IOException reading file (here it is)\n" + e,
base.push(P_TESTNEG)); }
 if ((restriction = state.parameters.getInt(
 base.push(P_MAXTEST),null,1))>0)
 {
 state.output.message("Restricting to <= " + restriction + " Unique Examples");
 negT = restrictToSize(restriction,negT,state,0);
 }

 state.output.message("");
 printBits(state,negT);
 state.output.message("");

 state.output.exitIfErrors();

 input = (EdgeData) state.parameters.getInstanceForParameterEq(
 base.push(P_DATA), null, EdgeData.class);
 input.setup(state,base.push(P_DATA));
 }

 public boolean test(final boolean[] sample)
 {
 final boolean STATE_1 = false;
 final boolean STATE_2 = true;
 boolean st = STATE_1;

 for(int x=0;x<numNodes;x++)
 state1[x]=start[x];

Delhi College of Engineering, Delhi 99

 A Genetic Approach to Evolve Finite State Automata

 for(int x=0;x<sample.length;x++)
 {
 if (st==STATE_1)
 {
 for(int y=0;y<numNodes;y++)
 state2[y]=false;
 for(int y=0;y<numNodes;y++)
 if (state1[y])
 {
 // advance edges
 if (sample[x]) // reading a 1
 for(int z=0;z<reading1_l[y];z++)
 state2[reading1[y][z]] = true;
 else // reading a 0
 for(int z=0;z<reading0_l[y];z++)
 state2[reading0[y][z]] = true;
 }

 // advance along epsilon boundary
 boolean moreEpsilons = true;
 while(moreEpsilons)
 {
 moreEpsilons = false;
 for(int y=0;y<numNodes;y++)
 if (state2[y])
 for(int z=0;z<epsilon_l[y];z++)
 {
 if (!state2[epsilon[y][z]]) moreEpsilons = true;
 state2[epsilon[y][z]] = true;
 }
 }
 }

 else //if (st==STATE_2)
 {
 for(int y=0;y<numNodes;y++)
 state1[y]=false;
 for(int y=0;y<numNodes;y++)
 if (state2[y])
 {
 // advance edges
 if (sample[x]) // reading a 1
 for(int z=0;z<reading1_l[y];z++)
 state1[reading1[y][z]] = true;
 else // reading a 0
 for(int z=0;z<reading0_l[y];z++)
 state1[reading0[y][z]] = true;

Delhi College of Engineering, Delhi 100

 A Genetic Approach to Evolve Finite State Automata

 }

 // advance along epsilon boundary
 boolean moreEpsilons = true;
 while(moreEpsilons)
 {
 moreEpsilons = false;
 for(int y=0;y<numNodes;y++)
 if (state1[y])
 for(int z=0;z<epsilon_l[y];z++)
 {
 if (!state1[epsilon[y][z]]) moreEpsilons = true;
 state1[epsilon[y][z]] = true;
 }
 }
 }

 st = !st;
 }

 if (st==STATE_1)
 {
 for(int x=0;x<numNodes;x++)
 if (accept[x] && state1[x]) return true;
 }
 else // (st==STATE_2)
 {
 for(int x=0;x<numNodes;x++)
 if (accept[x] && state2[x]) return true;
 }
 return false;
 }

 int totpos;
 int totneg;

// Tests an individual, returning its successful positives in totpos and its successful negatives in
totneg.

 public void fullTest(final EvolutionState state, final Individual ind, final int threadnum,
 boolean[][] pos, boolean[][] neg)
 {
 numNodes = 2;
 numEdges = 1; from[0]=0; to[0]=1;
 start[0]=start[1]=accept[0]=accept[1]=false;
 ((EdgeData)input).edge = 0;

 ((GPIndividual)ind).trees[0].child.eval(

Delhi College of Engineering, Delhi 101

 A Genetic Approach to Evolve Finite State Automata

 state,threadnum,input,stack,((GPIndividual)ind),this);

 if (reading1.length < numNodes ||
 reading1[0].length < numEdges)
 {
 reading1 = new int[numNodes*2][numEdges*2];
 reading0 = new int[numNodes*2][numEdges*2];
 epsilon = new int[numNodes*2][numEdges*2];
 reading1_l = new int[numNodes*2];
 reading0_l = new int[numNodes*2];
 epsilon_l = new int[numNodes*2];
 }

 for(int y=0;y<numNodes;y++)
 {
 reading1_l[y]=0;
 reading0_l[y]=0;
 epsilon_l[y]=0;
 }

 for(int y=0;y<numEdges;y++)
 switch(reading[y])
 {
 case READING0:
 reading0[from[y]][reading0_l[from[y]]++]=to[y];
 break;
 case READING1:
 reading1[from[y]][reading1_l[from[y]]++]=to[y];
 break;
 case EPSILON:
 epsilon[from[y]][epsilon_l[from[y]]++]=to[y];
 break;
 }

 if (state1.length < numNodes)
 {
 state1 = new boolean[numNodes*2];
 state2 = new boolean[numNodes*2];
 }

 totpos=0;
 totneg=0;
 for(int y=0;y<pos.length;y++)
 if (test(pos[y])) totpos++;
 for(int y=0;y<neg.length;y++)
 if (!test(neg[y])) totneg++;
 }

Delhi College of Engineering, Delhi 102

 A Genetic Approach to Evolve Finite State Automata

 public void evaluate(final EvolutionState state, final Individual ind, final int threadnum)
 {
 if (start==null)
 {
 start = new boolean[MIN_ARRAY_SIZE];
 accept = new boolean[MIN_ARRAY_SIZE];
 reading = new int[MIN_ARRAY_SIZE];
 from = new int[MIN_ARRAY_SIZE];
 to = new int[MIN_ARRAY_SIZE];
 state1 = new boolean[MIN_ARRAY_SIZE];
 state2 = new boolean[MIN_ARRAY_SIZE];
 reading1 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];
 reading0 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];
 epsilon = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];
 reading1_l = new int[MIN_ARRAY_SIZE];
 reading0_l = new int[MIN_ARRAY_SIZE];
 epsilon_l = new int[MIN_ARRAY_SIZE];
 }

 if (!ind.evaluated)
 {
 fullTest(state,ind,threadnum,posT,negT);

 KozaFitness f = ((KozaFitness)ind.fitness);

 f.setFitness(state,(float)
 (1.0 - ((double)(totpos + totneg)) /
 (posT.length + negT.length)));

 f.hits = totpos + totneg;
 ind.evaluated = true;
 }
 }

 public void describe(final Individual ind, final EvolutionState state, final int threadnum,
final int log,
 final int verbosity)
 {
 if (start==null)
 {
 start = new boolean[MIN_ARRAY_SIZE];
 accept = new boolean[MIN_ARRAY_SIZE];
 reading = new int[MIN_ARRAY_SIZE];
 from = new int[MIN_ARRAY_SIZE];
 to = new int[MIN_ARRAY_SIZE];
 state1 = new boolean[MIN_ARRAY_SIZE];
 state2 = new boolean[MIN_ARRAY_SIZE];
 reading1 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];
 reading0 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];

Delhi College of Engineering, Delhi 103

 A Genetic Approach to Evolve Finite State Automata

 epsilon = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE];
 reading1_l = new int[MIN_ARRAY_SIZE];
 reading0_l = new int[MIN_ARRAY_SIZE];
 epsilon_l = new int[MIN_ARRAY_SIZE];
 }

 if (generalize)
 fullTest(state,ind,threadnum,posA,negA);
 else
 fullTest(state,ind,threadnum,posT,negT);

 if (generalize)
 state.output.println("\n\nBest Individual's Generalization Score...\n" +
 "Pos: " + totpos + "/" + posA.length +
 " Neg: " + totneg + "/" + negA.length +
 "\n(pos+neg)/(allpos+allneg): " +
 (float)
 (((double)(totpos+totneg))/(posA.length+negA.length)),
 verbosity,log);

 state.output.println("\nBest Individual's NFA\n=====================\n",
 verbosity,log);

 state.output.println(printCurrentNFA(),verbosity,log);
 }

 }

Delhi College of Engineering, Delhi 104

