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ABSTRACT 

 
Finite-state automata are one of the most pervasive models of computation, not 

only theoretically, but also in all of its applications to real-life problems such as natural 

and formal language processing, pattern recognition, control, etc. Automatically inferring 

finite automata from sets of positive and negative data samples has been an important 

problem in computer science and many schemes have been proposed for its solution. The 

previous works in the evolution of finite state automata were limited to the evolution of 

strictly non-modular FSA. In this dissertation, a modular architecture to develop FSA 

accepting a particular regular language is proposed and a genetic programming procedure 

for evolving such structures is presented. The results on the Tomita Language benchmark 

indicate that the proposed procedure is able to evolve an NFA with less number of 

generations explored and lesser amount of time taken than the earlier non-modular 

evolution. 
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                                                                      A Genetic Approach to Evolve Finite State Automata 

CHAPTER-1 

INTRODUCTION 

 

Automatic programming has been the goal of computer scientists for a number 

of decades. Scientists would like to be able to give the computer a problem and ask the 

computer to build a program to solve it. Genetic Programming, a technique pioneered 

by John Koza [15], shows the most potential way to automatically write computer 

programs, via the core, but highly abstracted principles of natural selection.  

 

GP begins with a population of randomly generated individuals (candidate 

solutions). It then tests these individuals and assesses their quality. The better ones are 

then selected to breed and create new individuals, which in turn are tested, selected, and 

bred. This cycle continues until a sufficiently good solution is found for the problem, or 

until time or other resources are exhausted. In a sentence, it is the compounded breeding 

of (initially random) computer programs, where only the relatively more successful 

individuals pass on genetic material to the next generation [3]. 

 
1.1 Objective 

 

This dissertation focuses on the problem of automatic creation of finite state 

automata accepting a particular regular language using the genetic programming 

paradigm. The basic problem is, given a set of positive and negative example strings, 

automatically infer corresponding automata, which generates or recognizes those 

examples. The Finite Automata is evolved to induce the Tomita language Set [24], a 

popular and nontrivial language induction benchmark. 

 
1.2 Contribution 

 

In this dissertation a modular architecture to evolve finite state automata is 

proposed and a genetic programming procedure for evolving such structures is 

presented. In the proposed modular architecture, the given regular expression is 

Delhi College of Engineering, Delhi  1 



                                                                      A Genetic Approach to Evolve Finite State Automata 

decomposed into few smaller sub-expressions, the finite automata for each of these sub-

expressions are evolved using the genetic programming paradigm, and then the evolved 

sub automata are combined to get the complete automata describing the given regular 

expression as a whole. 

 

Tomita Set results indicate that the proposed procedure is indeed capable of 

successfully evolving modular finite state machines and that such modularity can result 

in a significantly increased rate of optimization. It is also supported by the fact, that, a 

difficult task when decomposed into simpler subtasks can be solved with lower 

computational effort, and their solutions can be combined to give the overall solution to 

the task. Further, already discovered solutions to subtasks may also be reused to 

repeatedly solve similar sub problems. 

 

1.3 Organization of the Dissertation 
 
The rest of the dissertation is organized as follows: 

 

Chapter 2 starts with the brief background of the finite state machines and the 

genetic programming process, and is followed by a brief overview to the problem, 

previous work and to the proposed problem solving approach.  

 

Chapter 3 comprises of learning about, understanding, and implementing the 

concept of Genetic Programming.  

 

Chapter 4 investigates the issue of chromosomal representation of an FSA 

individual. The chapter describes Edge Encoding, a technique for evolving graph and 

network structures via genetic programming. The FSA chromosomes are represented in 

the form of Edge Encoding tree, which can develop into a directed graph when 

evaluated. 
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 Chapter 5 provides the problem and scheme specifications for evolving finite 

state automata for the Tomita Language Set using the Genetic Programming Process. 

 

 Chapter 6 presents the proposed modular architecture to evolve finite state 

automata. The design of architecture as well as the computational algorithm is 

described. The chapter then concludes by explaining an example evolution using the 

proposed architecture. 

 

Chapter 7 examines the experimental setup and compares the results of evolving 

NFA’s for the Tomita Languages using both the modular as well as the non-modular 

approach. 

 

Chapter 8 summarizes the main results of the research and presents some 

conclusions. Some promising future research topics are described as a natural extension 

of this work. 
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CHAPTER - 2 

BACKGROUND 
 

2.1 Overview of Finite State Automata 
 

Finite state automata are one of the most important mathematical constructs 

used in the construction of practical computer programs. They have applicability in 

virtually every area of computer science, especially in language translators. They 

involve states and transitions among states in response to inputs. They are useful for 

developing several kinds of software components, including the lexical analysis 

component of compilers and systems for verifying the correctness of circuits and 

protocols. 

 
Finite State automata consists of a set of states, a start state, set of final states, an 

input alphabet, and a transition function that maps an input symbol and current state to 

next state [1].  

 

2.1.1 Deterministic Finite Automata 
 

A Deterministic Finite Automata (DFA) is a finite automaton having a finite set 

of states and a finite set of input symbols. One state is designated the start state, and one 

or more states are accepting states. A transition function determines how the state 

change each time an input symbol is processed [14]. 

 
A DFA can be represented by a 5-tuple (Q, ∑, δ, q0, F) 

where,   Q is finite nonempty set of states 

   ∑ is a finite nonempty set of inputs called input alphabets 

δ is a function which maps Q×∑ into Q  

q0 ∈ Q is the initial state 

F⊆ Q is the set of final states. 
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2.1.2 Non-deterministic Finite Automata 
 

Non-deterministic Finite state automata differ from DFAs in that they allow for 

an input bit to specify multiple possible next moves. Namely, in an NFA we may move 

from state p to any of states q1, q2, …, qk , by seeing the same input. Hence we will not 

have the same type of transition function as a DFA. Instead, our transition function will 

take as input a state and an element of the alphabet but return some subset of states. In 

an NFA, we also allow for multiple start states [14]. 

 
A Non-deterministic Finite State Automata is a model with 5-tuple (Q, ∑, δ, q0, F) 

where,   Q is finite nonempty set of states 

   ∑ is a finite nonempty set of inputs called input alphabets 

δ is a function which maps Q×∑ into 2Q

q0 ∈ Q is the initial state 

F⊆ Q is the set of final states. 

 

2.1.3 Language of the Automata 
 

All automata accept strings. A string is accepted if, starting in the start state, the 

transitions caused by processing the symbols of that string one at a time leads to an 

accepting state. An algebraic notation called regular expressions can also describe the 

language of a finite automaton [1]. We can convert any definition involving regular 

expressions into an implement able finite automaton in two steps:  

Regular expression NFA DFA 

 

2.2 Overview of Genetic Programming 

One of the central challenges of computer science is to get a computer to do 

what needs to be done, without telling it how to do it. Genetic Programming addresses 

this challenge by providing a method for automatically creating a working computer 

program from a high-level program statement of the problem. It achieves this goal of 
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automatic programming by genetically breeding a population of computer programs, 

using the principles of Darwinian natural selection and biologically inspired operations.  

 
Genetic Programming (GP) searches for good solutions to problems by trying 

large numbers of candidate solutions, selecting the “better” ones, modifying them, and 

producing new candidate solutions to test [15]. 

 
Because it is inspired by natural selection and genetics, genetic programming 

borrows much of its vernacular from genetics, cellular biology, and evolutionary theory. 

In GP, a candidate solution is known as an individual. The pool of current individuals in 

the system is collectively known as the population. This population may, depending on 

the nature of the problem being solved, be broken into several subpopulations. The 

actual encoding of an individual’s solution is known as its genome (occasionally 

chromosome). The solution’s representation when undergoing modification is known as 

the individual’s genotype. The way the solution operates when tested in the problem 

environment is known as the individual’s phenotype. When individuals are modified to 

produce new individuals, they are said to be breeding. During testing an individual 

receives a grade, known as its fitness, which indicates how good a solution it is. The 

period in which the individual is evaluated and assigned fitness is known as fitness 

assessment. When a population has been entirely replaced by children, the new 

population is known as the next generation. The whole process of finding an optimal 

solution is known as evolving a solution [3]. 

 

2.2.1 Genetic programming Process 
 
Initially a population is generated randomly. Each individual is evaluated using 

the fitness measure given at the start. After this is done, a few individuals are selected to 

perform mutation, crossover and reproduction. The selected individuals after applying 

the genetic operations are copied to the next generation. The individuals in the next 

generation undergo the same process of fitness evaluation, selection, and modification. 

This is repeated until the termination condition is not satisfied. Termination condition, 
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generally, is either the maximum number of generations or discovery of an ideal 

individual.  

 
2.3 Problem Statement 
 

This dissertation focuses on the problem of automatic creation of finite automata 

accepting a particular regular language using the genetic programming paradigm. The 

basic problem is, given a set of positive and negative data samples, automatically infer a 

corresponding automaton, which generates or recognizes those samples. 

 

2.3.1 Problem Overview and Historical Background 
 

We evolve FSMs to recognize regular expressions. Regular expressions are used 

to represent a subset of strings. FSM evolution can be beneficial because it requires no 

human interaction. It can be used for data analysis, pattern matching or profiling. It can 

also be used in an adaptive system. The FSM would adapt to its environment to improve 

its fitness level. 

 
The automatic creation of finite automata has long been a goal of the evolutionary 

computation community. Fogel [8] was the first to propose the generation of 

deterministic finite automata (DFAs) by means of an evolutionary process, and the 

possibility of inferring languages from examples was initially established by Gold. 

Since then, much work has been done in the induction of DFAs for language 

recognition.  

 
Gruau [10] has proposed a method called Cellular Encoding, where the GP tree 

is a program, which builds a graph, often for use as a neural network and for developing 

directed graph. 

 
Scott Brave [4] presented a method for the evolution of deterministic finite 

automata that combines genetic programming and cellular encoding. Luke and Spector 

[18] have published a preliminary report on a significant variation to cellular encoding 
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called edge encoding. Their main change is that forests of trees are used to represent the 

entire network, with the trees having the ability to recurse and to call other trees. 

Therefore, the same structure may be represented once and used multiple times. 

. 

Chongstitvatana et al. [6] used genetic inferencing to synthesize FSMs using 

multiple input/output sequences. Nippaman et al. [19] provided another FSM inference 

method, one where only the state transitions were evolved. State outputs were 

determined post-evolution. 

 

Jason et al [13] presented a method to reduce the total number of generations 

needed to evolve a finite state machine using genetic inferencing. The time required to 

evolve a design is reduced, by only evolving, a small partition of the input-output 

relationship. 

 

2.3.2 Proposed Problem Solving Approach 
 

 The previous works in the evolution of finite state machines were limited to the 

evolution of strictly non-modular FSA In this dissertation, a modular FSA architecture 

is proposed and a genetic programming procedure for evolving such structures is 

presented.  

 

 In this approach a regular expression is evolved, by decomposing the expression 

into simpler subparts. These subparts may then be solved with lower computational 

effort and their solutions can be combined to give the overall solution to the problem. 

Further, already discovered solutions to subtasks may be reused to repeatedly solve 

similar sub problems. Thus the total number of generations and the time required to 

evolve a finite state automata is reduced. 

  

 Results on the Tomita Language Set indicate that the proposed procedure is 

indeed capable of successfully evolving modular FSA and that such modularity can 

result in a statistically significantly increased rate of optimization. 
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CHAPTER-3 

GENETIC PROGRAMMING 
 

3.1 Introduction 
 

Genetic programming is a systematic method for getting computers to 

automatically solve a problem starting from a high-level statement of what needs to be 

done. It is a collection of methods for the automatic generation of computer programs 

that solve carefully specified problems, via the core, but highly abstracted principles of 

natural selection. In a sentence, it is the compounded breeding of (initially random) 

computer programs, where only the relatively more successful individuals pass on 

genetic material (programs and program fragments) to the next generation [15]. 

 

3.2 Preparatory Steps of Genetic Programming 
 

Genetic programming starts from a high-level statement of the requirements of a 

problem and attempts to produce a computer program that solves the problem. The 

human user communicates the high-level statement of the problem to the genetic 

programming system by performing certain well-defined preparatory steps [23].  

 

Figure 3.1: Preparatory Steps 

The five major preparatory steps for the basic version of genetic programming 

require the human user to specify 
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(1) the set of terminals (e.g., the independent variables of the problem, zero argument 

functions, and random constants) for each branch of the to-be-evolved program 

(2) the set of primitive functions for each branch of the to-be-evolved program  

(3) the fitness measure (for explicitly or implicitly measuring the fitness of individuals) 

(4) certain parameters for controlling the run, and 

(5) the termination criterion and method for designating the result of the run. 

 

3.2.1 Function Set and Terminal Set 
 

The individuals in the population are compositions of functions and terminals 

appropriate to the particular problem domain. The set of functions used typically 

includes arithmetic operations, mathematical functions, conditional logical operations, 

and domain-specific functions. The set of terminals used typically includes inputs 

appropriate to the problem domain and various constants [3]. 

  

The compositions of functions and terminals described above correspond 

directly to the parse tree that is internally created by most compilers and to the 

programs found in programming languages such as LISP (where they are called 

symbolic expressions or S-expressions) [23]. In genetic programming, we view the 

search for a solution to the problem as a search in the space of all possible compositions 

of functions that can be recursively composed of the available functions and terminals. 

 

3.2.2 Fitness Measure 
 

The fitness measure specifies what needs to be done. The fitness measure is the 

primary mechanism for communicating the high-level statement of the problem’s 

requirements to the genetic programming system. The first two preparatory steps define 

the search space whereas the fitness measure implicitly specifies the search’s desired 

goal [15]. 
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3.2.3 Control Parameters 
 

The fourth preparatory step entails specifying the control parameters for the run. 

The most important control parameter is the population size. In practice, the user may 

choose a population size that will produce a reasonably large number of generations in 

the amount of computer time we are willing to devote to a problem. Other control 

parameters include the probabilities of performing the genetic operations, the maximum 

size for programs, and other details of the run [23]. 

 

3.2.4 Termination 
 

The fifth preparatory step consists of specifying the termination criterion and the 

method of designating the result of the run. The termination criterion may include a 

maximum number of generations to be run as well as a problem-specific success 

predicate. In practice, one may manually monitor and manually terminate the run when 

the values of fitness for numerous successive best-of-generation individuals appear to 

have reached a plateau. The single best-so-far individual is then harvested and 

designated as the result of the run [23].  

 

3.3 Executional Steps of Genetic Programming 
 

Genetic programming typically starts with a population of randomly generated 

computer programs composed of the available programmatic ingredients. Genetic 

programming iteratively transforms a population of computer programs into a new 

generation of the population by applying analogs of naturally occurring genetic 

operations. These operations are applied to individual(s) selected from the population. 

The individuals are probabilistically selected to participate in the genetic operations 

based on their fitness [23].  
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  The executional steps of genetic programming [23] are as follows:  

 

1. Randomly create an initial population (generation 0) of individual computer 

programs composed of the available functions and terminals. 

 

2.  Iteratively perform the following sub-steps (called a generation) on the 

population until the termination criterion is satisfied: 

a) Execute each program in the population and ascertain its fitness (explicitly or 

implicitly) using the problem’s fitness measure. 

 

b) Select one or two individual program(s) from the population with a 

probability based on fitness (with reselection allowed) to participate in the 

genetic operations in (c). 

 

c) Create new individual program(s) for the population by applying the 

following genetic operations with specified probabilities: 

• Reproduction: Copy the selected individual program to the new 

population. 

• Crossover: Create new offspring program(s) for the new population by 

recombining randomly chosen parts from two selected programs. 

• Mutation: Create one new offspring program for the new population by 

randomly mutating a randomly chosen part of one selected program. 

• Architecture-altering operations: Choose an architecture altering 

operation from the available repertoire of such operations and create one 

new offspring program for the new population by applying the chosen 

architecture-altering operation to one selected program. 

 

3. After the termination criterion is satisfied, the single best program in the 

population produced during the run (the best-so-far individual) is harvested and 

designated as the result of the run. If the run is successful, the result may be a 

solution (or approximate solution) to the problem. 
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Figure 3.2: Flowchart of Genetic Programming 
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3.4 The Genetic Programming Algorithm in Action 
 

3.4.1 Generate Random Initial Population 
 

Though genetic programming prints its individuals as s-expressions, it 

represents them internally as trees of named nodes. In genetic programming parlance, 

leaf nodes in the tree are known as terminals and non-leaf nodes are known as non-

terminals. Depending on the problem being solved, an individual may be a single tree, 

or a forest of trees. The experimenter must provide the genetic programming system 

with a primordial soup of basic tree nodes from which to build its program trees [15]. 

 

At the beginning of the evolution process, initial individuals must be generated 

at random. Genetic programming creates these individuals’ trees by applying a tree 

generation algorithm to each tree’s function set. Tree generation algorithms work by 

selecting and copying nodes from the templates in the function set, then hanging the 

copied nodes together to form the tree. The three traditional tree-generation algorithms 

are FULL, GROW and RAMPED HALF-AND-HALF [15]. 

 

The full method selects nodes from F until the tree reaches a pre-determined 

depth then it selects from T. This results in trees with uniform depth. The grow method 

differs in that a node is selected from C if the depth is less than a predetermined 

maximum; else a node is selected from T. A third method combining the full and grow 

is called ramped half and half. Ramped half and half operates by creating an equal 

number of trees with a depth between 2 and a pre-determined maximum. Then for each 

depth, 50% of the trees are created using the full method and 50% using the grow 

method.  

 
3.4.1.1 Grow Method 
 

With this first technique the entire population is created by using the grow 

method which creates one individual at a time. An individual created with this method 

may be a tree of any depth up to a specified maximum, m [15]. 
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1. Starting from the root of the tree every node is randomly chosen as either a 

function or terminal. 

2.  If the node is a terminal, a random terminal is chosen. 

3.  If the node is a function, a random function is chosen, and that node is given a 

number of children equal to the arity (number of arguments) of the function. For 

every one of the function’s children the algorithm starts again, unless the child is 

at depth m, in which case the child is made a randomly selected terminal. 

 
3.4.1.2 Full Method 

 
The full method is very similar to the grow method except the terminals are 

guaranteed to be a certain depth. This method requires a final depth, d [15]. 

 
1. Every node, starting from the root, with a depth less than d, is made a randomly 

selected function. If the node has a depth equal to d, the node is made a 

randomly selected terminal.  

2.  All functions have a number (equal to the arity of the function) of child nodes 

appended, and the algorithm starts again. Thus, only if d is specified as one, 

could this method produce a one-node tree. 

 
3.4.1.3 Ramped-half-and-half Method 

 
To increase the variation in structure both grow and full methods can be used in 

creating the population. Only a maximum depth, md, is specified but the method 

generates a population with a good range of randomly sized and randomly structured 

individuals [15]. 

 
1. The population is evenly divided into parts: a total of md-1. 

2. Half of each part of the population is produced by the grow method. The other 

half is produced using the full method. For the first part, the argument for the 

grow method, m, and the argument for the full method, d, is 2. For the second 

part 3 is used. This continues to part md-1, where the number md is used. Thus a 

population is created with good variation, utilizing both grow and full methods. 
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3.4.2 Measure Fitness of Population 
 

Once the initial random population has been created, the individuals need to be 

assessed for their fitness. In GP, the user-provided AssessFitness(pi) function usually 

assesses the fitness of pi by directly executing it in some problem domain as if it were 

an actual Lisp s-expression program, and then examining the result [11]. 

 
3.4.2.1 Raw Fitness 

 
The definition of raw fitness depends on the problem. For many problems, raw 

fitness can be defined as the sum of the distances (i.e. errors), taken over all the fitness 

cases, between the point in the range space returned by the S-expression for the set of 

arguments for the particular fitness case and the correct point in the range space for the 

particular fitness case [11]. 

 
When raw fitness is error, the raw fitness raw(i) of an individual S-expression i 

in the population of size M is 

∑
=

−=
Ne

j
jCjiSiraw

1
)(),()(  

where S(i,j) is the value returned by S-expression i for fitness case j (of Ne cases) and 

C(j) is the correct value for fitness case j. 

 
3.4.2.2 Standardized Fitness 

 
The standardized fitness std(i) restates the raw fitness so that a lower numerical 

value is better. If a lower value of raw fitness is better (e.g. when raw fitness represents 

error), then standardized fitness  

)()( irawistd =  

If a higher value of raw fitness is better (e.g. when food is being eaten), 

standardized fitness equals the maximum possible value of raw fitness rawmax minus the 

observed raw fitness [11].  

)()( max irawrawistd −=  
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3.4.2.3 Adjusted Fitness 

 
The adjusted fitness measure adj(i) is computed from the standardized fitness 

std(i). The adjusted fitness adj(i) is 

))(1(
1)(

istd
iadj

+
=  

where std(i) is the standardized fitness for individual i at time t. The adjusted fitness lies 

between 0 and 1. The use of this adjustment is beneficial for separation of individuals 

with standardized fitness values that approach zero [11]. 

 
3.4.2.4 Normalized Fitness  

 
The normalized fitness norm(i) is computed from the adjusted fitness value 

adj(i). The normalized fitness norm(i) is [11] 

∑
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Normalized fitness has three desirable characteristics. 

• It ranges between 0 and 1. 

• It is larger for better individuals in the population. 

• The sum of the normalized fitness values is one. 

 
3.4.2.5 Probability of Selection 

 
The probability of selection (sp) is:  

∑
=

= M

K

knorm

inormisp

1

)(

)()(  

 (a) Order the individuals in a population by their normalized fitness  

(b) Chose a random number, r, from zero to one. 

(c) From the top of the list, loop through every individual keeping a total of there 

normalized fitness values. As soon as this total exceeds r, stop the loop and select the 

current individual. 
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3.4.3 Select the Better Individuals from the Population 
 

Once individuals have had their fitness’s assessed, they may be selected and 

bred to form the next generation in the evolution cycle. This is done by selecting one or 

two individuals from the old population, copying them, modifying them, and returning 

the modified copies for addition to the new population. There are several common 

selection strategies in use: 

 
3.4.3.1 Fitness-Proportional Selection  

 
This selection method, due to Holland, normalizes all the fitnesses in the 

population. These normalized fitnesses then become the probabilities that their 

respective individuals will be selected. Fitnesses may be transformed in some way prior 

to normalization; for example, Koza [15] normalizes the adjusted fitness rather than the 

standardized fitness. 

 

3.4.3.2 Ranked Selection  

 
One of the problems with fitness-proportional selection is that it is based directly 

on the fitness. Assessed fitnesses are rarely an accurate measure of how “good” an 

individual really is. Another approach, which addresses this issue, is to rank individuals 

by their fitness, and use that ranking to determine selection probability. In linear 

ranking individuals are first sorted according to their fitness values, with the first 

individual being the worst and the last individual being the best. Each individual is then 

selected with a probability based on some linear function of its sorted rank. This is 

usually done by assigning to the individual at rank i a probability of selection [11] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−+−=

1||||
1)22(2

||||
1

P
icc

P
Pi  

where ||P|| is the size of the population P, and 1≤c≤2 is the selection bias: higher 

values of c cause the system to focus more on selecting only the better individuals. The 
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best individual in the population is thus selected with the probability
|||| P

c ; the worst 

individual is selected with the probability 
||||

2
P

c− . 

. 
3.4.3.3 Tournament Selection 

 
In tournament selection [23], a pool of n individuals is picked at random from 

the population. These are independent choices: an individual may be chosen more than 

once. Then tournament selection selects the individual with the highest fitness in this 

pool. Clearly, the larger the value n, the more directed this method is at picking highly 

fit individuals. On the other hand, if n = 1, then the method selects individuals totally at 

random. Popular values for n include 2 and 7. 

 
3.4.3.4 Truncation Selection  

 
In truncation selection [3], the next generation is formed from breeding only the 

best individuals in the population. One form of truncation selection, (µ, λ) selection, 

works as follows. Let the population size λ = kµ, where k and µ are positive integers. 

The µ best individuals in the population are “selected”. Each individual in this group is 

then used to produce k new individuals in the next generation. In a variant form, (µ + λ) 

selection, µ individuals are “selected” from the union of the population and the µ 

parents, which had created that population previously.  

 
3.4.4 Apply Genetic Operators to Generate New Population 
 

Once parents are selected, they are used as input into the child producing 

algorithms known as genetic operators. There are many ways to produce children; the 

three most common are reproduction, crossover and mutation. 

 
3.4.4.1 Reproduction 
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Reproduction is where a selected individual copies itself into the new 

population. It is effectively the same as one individual surviving into the next 

generation. Koza [15] allowed 10% of the population to reproduce. If the fitness test 

does not change, reproduction can have a significant effect on the total time required for 

GP because a reproduced individual will have an identical fitness score to that of its 

parent. Thus a reproduced individual does not need to be tested, as the result is already 

known. For Koza [15], this represented a 10% reduction in the required time to fitness 

test a population. However, a fitness test that has a random component, which is 

effectively a test that does not initialize to exactly the same starting scenario, would not 

apply for this increase in efficiency. The selection of an individual to undergo 

reproduction is the responsibility of the selection function. 

 

3.4.4.2 Crossover 

 
Crossover takes two parents and replaces a randomly chosen part of one parent 

with another. This is often very destructive to the structure and functionality of the child 

program. It is, however, the means by which valuable code can be transferred between 

programs and is also the theoretical reason why genetic programming is an efficient and 

successful search strategy [23]. 

 
 Two parents are selected based on the fitness measure. Then, the algorithm 

chooses a random point in each individual (this point can be either a function or a 

terminal), and swaps the sub trees rooted at this point. Crossover can yield great 

diversity in the resulting expressions, and therefore helps prevent premature 

convergence of a population. It can swap functions with functions, functions with 

terminals, terminals with terminals or entire individuals. If crossover will yield an 

individual of unacceptable size then the algorithm will choose one of the parents for 

reproduction. An interesting fact about crossover is that if the two parents are the same 

individual, then it is likely that the resulting offspring will not be the same as the 

parents.  
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Figure 3.3: Crossover 

 
The various ways to do crossover are given below  

(i) Subtree Crossover  

Subtree Crossover [23] selects two genetic programs from the population and 

selects one point on each. Each sub-tree from this point is swapped from the other. The 

closure property of the genetic program ensures that these new genetic programs are 

still `legal' possibilities within the domain. 

 
(ii) Hoist 

The hoist operator [25] creates a new individual entirely from a randomly chosen 

subtree of an existing individual. The operator is useful for promoting parsimony. 

 
(iii) Create 

The create operator [25] is unique in that it does not require any existing 

individuals. It generates an entirely new individual in the same way that an individual in 

the initial population is generated. This operator is similar to Hoist in that it helps to 

reduce the size of program trees. 

 
(iv) Self-Crossover 

The self-crossover [23] operator uses a single individual to represent both parents. 

The single individual is itself can be selected using the standard fitness proportional 

selection or tournament selection methods.  

 
(v) Modular/Cassette-Crossover 

One of the restrictions of the standard crossover operator is that is not possible to 

swap blocks that occur in the middle of a tree path. The standard crossover operator 
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only allows entire subtrees to be swapped. One of the reasons for the success of ADFs 

might be due to an effective relaxation of this restriction. This possibility lead Kinnear 

and Altenberg to develop the Modular or Cassette crossover operator. One can best 

view the operator as a module swap between two individuals. A module is defined in 

the program tree of the first individual, and another in the program tree of the second 

individual. The module in the first individual is then replaced by the one in the second 

individual. The new module is then expanded. Clearly there is problem created by the 

possible mismatch of the arguments passed to the module (actual parameters) and the 

formal parameters defined by the module. There are two such possibilities, either the 

number of formal parameters are greater than the number of actual parameters or vice-

versa. The former is resolved by extending the existing actual parameters with random 

chosen copies of themselves. The latter is resolved by choosing at random a subset of 

the existing actual parameters [25].  

 
(vi) Context Preserving Crossover (SCPC/WCPC) 

D'Haeseleer also inspired by the success of ADFs has suggested alternative genetic 

operators called Strong Context Preserving Crossover (SCPC) and Weak Context 

Preserving crossover (WCPC). Both of these operators require a system of coordinates 

for identifying node positions in a tree. SCPC allows two subtrees to be exchanged 

during crossover between two parents only if the points of crossover have the same 

coordinates. WCPC relaxes this rule slightly by allowing crossover of any subtree of the 

equivalent node in the other parent [25].  

 

3.4.4.3 Mutation  

 
Mutation takes one parent and replaces a randomly selected chunk of that parent 

with a randomly generated sequence of code. One of the advantages of this operator is it 

maintains diversity in the population, since any of the function/terminal set can be 

inserted into the program, whereas crossover can only insert code present in the current 

generation’s population. Mutation occurs by selecting a point at random, generating a 
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new expression, and inserting it into the individual at the specified point. Mutation also 

helps prevent premature convergence [23]. 

 
Figure 3.4: Mutation 

 
The various ways to do mutation are given below 

(i) Allele Mutation 

This comprises of genes within the genetic program being swapped with other 

genes with certain constraints. Any terminal can be swapped with any other terminal 

but functions can only be swapped with other functions with the same number of 

arguments. This means that the mutation does not have to create new branches when 

different function types are swapped which would probably slow any form of 

convergence if the mutation rate has been set relatively high [3]. 

 
(ii) Shrink Mutation  

Shrink mutation takes the child of a particular gene and moves that child into the 

position of the parent. This means that genetic programs will 'shrink'. [3] This is a 

particularly useful property when considering how long, some genetic programs get 

as the evolutionary process continues. 

 
3.4.4.4 Permutation 

 
Permutation is another operation in which a parent is selected, and then the 

algorithm chooses a function that composes part of the parent. The algorithm then 
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permutes each of the function's arguments and passes the new expression to the next 

generation [15].  

 
3.4.4.5 Editing 

 
Editing does not create an individual that evaluates differently than the parent, 

but forms expressions that are structurally different. Basically, editing simplifies 

expressions. An editing procedure recursively examines an individual and evaluates all 

functions that only contain terminals as arguments [15].  

 
3.4.4.6 Encapsulation 

 
    Encapsulation [23] takes a valuable sub expression and adds it to the function 

list. This increases the number of times the expression occurs in a given population and 

makes the expression atomic, so it cannot be mutated or changed during a crossover. 

 
3.4.4.7 Decimation 

 
Decimation is a servicing operator that is applied to the initial generation. It 

removes all the programs that have least fitness. Upon creation of the initial generation 

it can be noted that a majority of the population have a very poor fitness. Therefore, if 

the desired population size is 1000 individuals then upon application of decimation of 

10%, an initial population of 10,000 individuals (ten times the desired value) is created. 

From this population the best 1000 individuals are selected. 

 
3.4.5 Control Parameters 

 
The user must specify a number of control parameters before the GP system may 

begin. The control parameters that need to be set are: 

 
1. Population size: A larger population allows for a greater exploration of the 

problem space at each generation and increases the chance of evolving a 
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solution. In general, the more complex a problem the greater the population size 

needed [15]. 

 
2. Maximum number of generations: The evolutionary process needs to be given 

time; the greater the maximum number of generations the greater the chance of 

evolving a solution. However, further evolution of a population does not 

guarantee a solution will be found-it may be better to start again with a different 

initial population [15]. So if, after a user-defined number of generations, a 

sufficiently successful individual has not evolved then the process should halt. 

 
3. Probability of crossover: What proportion of the population will undergo 

crossover before entering the new population? Koza [15] does not change this 

value from 0.90—90% of the population undergoes crossover.  

 
4. Probability of reproduction: The proportion of individuals in a population that 

will undergo reproduction. Throughout Koza’s [15] work this value stays 

constant, at 0.10—10% of the population undergoes reproduction. 

 

3.4.6 Repeat Until a Program Solves the Problem or Time Runs Out 
 

At this point a new population is available to be evaluated for fitness. The cycle 

will continue, until ether a single member of the population is found which satisfies the 

problem within the level of error designated as acceptable by the success criteria, or the 

number of generations exceeds the limit specified [23]. 

 

As discussed earlier, if a run does not succeed after a large number of 

generations, it has probably converged onto a semi-fit solution and the lack of diversity 

in the population is drastically slowing evolutionary progress. Statistically, the 

likelihood of finding a successful individual is, at that point, most increased by starting 

the entire run over again with a wholly new random population. 
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CHAPTER-4 

EDGE ENCODING FOR FSA INDIVIDUALS 
 

Edge encoding is a technique for evolving graph and network structures via 

genetic programming. It was introduced by Luke and Spector [18], and aimed to allow 

more flexible control of the edge growth in the topology evolution. It is a genetic 

programming tree, which produces a directed graph when evaluated. This graph is then 

used in the problem domain as appropriate-as an electrical circuit, FSA, etc. 

 

4.1 Introduction 
 

  Edge encoding [18] uses a tree-structured chromosome, which can develop into 

a directed graph when executed. Each node of the chromosome tree is an operator that 

can act on the edges of a graph. An edge operator can accept from its parent node a 

single edge in the graph, sometimes with additional data such as a stack of nodes. Edge 

encoding operators are executed in a pre-ordered way, modifying a graph edge and 

passing that edge (and any new edges) to its children for further modification. The 

starting point of the development can be a graph with a single edge, which is fed to the 

root node of the chromosome tree as the starting point for development. 

 

For example, consider the double function shown in Figure 6.1. This function 

has two children in the encoding tree. It receives from its parent a single edge E(a,b) in 

the graph (where a is the tail of the edge E, and b is E’s head). From E(a,b), double 

“grows” an additional edge F(a,b). These two edges are each passed to child functions 

for additional modifications; E is passed to the double’s left child, and F is passed to its 

right child. 
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Figure 4.1: The Double Function 

 

Edge encoding’s graph-generation process begins with a graph consisting of a 

single edge. This edge is passed to the root node in the edge-encoding tree, which 

modifies the edge and passes resultant edges to its children, and so on. Terminals in the 

edge-encoding tree have no children, and so stop the modification process for a 

particular edge. After all nodes in the tree have made their modifications, the resultant 

graph is returned. 

 

The functions in a particular edge encoding are commonly of two forms. First, 

there are functions, which change the topology of the graph, by adding or deleting edges 

or vertices. Second, there are functions, which add semantics to the edges or vertices: 

labeling edges, assigning transfer functions to vertices, etc. 

 

4.2 Encoding an NFA 
 

To encode an NFA we have simple set of basic functions, which are sufficient to 

build all non-deterministic finite-state automata (NFA). These functions each take an 

edge and no optional data from their parents, and pass on to children at most two 

resultant edges. A nice property of these functions is that although they have side 

effects (in the way of modifying the graph), these side effects are localized in such a 

way that the functions are referentially transparent. Thus nodes can be executed in any 

order, so long as parent functions are executed prior to child functions [18]. 
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In this encoding, each individual consists of a single tree of functions. Assume 

that each function is passed some edge E(a,b), which after processing is passed to the 

left child. The functions, which describe the topology of the graph, are shown in Table 

4.1. These functions are sufficient to develop the topology of an NFA, which recognizes 

any regular expression. To develop the full NFA, some custom semantic functions are 

necessary to define the starting and accepting states of the NFA and label the edges with 

tokens, which are shown in Table 4.2. 

 

 
Table 4.1: Simple Topological Functions for Edge Encoding 

 

 
Table 4.2: NFA Semantic Functions for Edge Encoding 

 

Figure 4.2 shows an edge encoding genome using these functions whose 

phenotype is an NFA that reads the regular expression ((0|1)*101). Figure 4.3 shows the 

development of the NFA from this genome. These basic sets of functions and terminals, 

alone are sufficient to build all non-deterministic finite-state automata (NFA) of 

interest. 

 

 

Delhi College of Engineering, Delhi  28 



                                                                      A Genetic Approach to Evolve Finite State Automata 

 

 
Figure 4.2: An Edge Encoding Genome, which Describes an NFA that Reads the 

Regular Expression ((0|1)*101) 

 

 

 
Figure 4.3: The Growth of the NFA from the Encoding in Figure 4.2 
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CHAPTER 5 

PROBLEM AND SCHEME SPECIFICATIONS 

 

Finite state automata are well understood, and inherently efficient models of 

simple languages. The basic problem is, given a set of positive and negative example 

strings, automatically infer corresponding automata, which generates or recognizes 

those examples. Genetic programming has been used for evolving such an automata for 

the benchmark problem of Tomita Language Set [24]. The acceptable solution automata 

should correctly recognize all positive test cases, and reject all negative ones. 

 

 The first step in building an NFA from a regular expression is to determine the 

set of functions and terminals, which is used for the population initialization. 

 

5.1 Chromosomal Encoding 
 

Since edge encoding [18] is more suitable for evolving graphs with low 

connectivity. So, for representing the FSA chromosomes we use edge encoding, as 

explained in the previous chapter. Edge encoding uses a tree-structured chromosome, 

which can develop into a directed graph when executed. Each node of the chromosome 

tree is an operator that can act on the edges of a graph. An edge operator can accept 

from its parent node a single edge in the graph, sometimes with additional data such as 

a stack of nodes. Edge encoding operators are executed in a pre-ordered way, modifying 

a graph edge and passing that edge (and any new edges) to its children for further 

modification. The starting point of the development can be a graph with a single edge or 

an embryo with many edges, but only one of them is fed to the root node of the 

chromosome tree as the starting point for development. 

 

To encode an NFA, the basic set of functions and terminals, which are sufficient 

to build all non-deterministic finite-state automata (NFA) are provided here again in 
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Table 5.1, and Figure 5.1 shows an edge encoding genome tree created randomly using 

those functions and terminals and its equivalent s-expression [18]. 

 

 

Function Syntax 

 

Arity 

 

Description 

Double 2 Create an edge F(a,b). 

Bud 2 Create a vertex c. Create an edge F(b,c). 

Split 2 Create a vertex c. Modify E to be E(a,c). Create an edge F(c,b). 

Loop 2 Create a self-loop edge F(b,b). 

Reverse 1 Reverse E to be E(b,a). 

Start 1 Assign the head of E(a,b) (vertex b) to be a starting state. 

Accept 1 Assign the head of E(a,b) (vertex b) to be an accepting state.  

     1 

 

0 

Label an edge with a “1”, that is, define it to be an edge which 

can be traversed only on reading a 1. 

 0 0 

Label an edge with a “0”, that is, define it to be an edge which 

can be traversed only on reading a 0. 

 

      ∈ 

 

0 

Label an edge with an “∈”, that is, define it to be an edge which 

may be traversed without reading any token. 

 

Table 5.1:  Description of function set and terminal set for edge encoding an NFA 

 

 
Figure 5.1: An edge encoding genome and its equivalent s-expression 
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5.2 Generating the Initial Population  
 

Initialize(n) function forms a population by generating individuals at random 

until it has collected n unique individuals. In this thesis, individuals’ trees are initially 

generated with the Ramped Half and Half Tree Creation Algorithm, with a depth bound 

range from 2 to 6 inclusive. 

 

5.3 Tomita Languages 
 

In our problem domain, the NFA is evolved to induce the Tomita language set, 

shown in Table 5.2, a popular and nontrivial language induction benchmark (Tomita 

[26]). 

 
Table 5.2: The Tomita Language Set 

 

The basic problem is, given a set of positive and negative example strings, from 

the Tomita Language set, automatically infer corresponding automata, which generates 

or recognizes those examples. The acceptable solution automata should correctly 

recognize all positive test cases, and reject all negative ones. Afterwards, it is tested for 

generality on the full population of binary strings of that expression.  
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The example positive and negative training sets used for the Tomita Languages 

are shown in Table 5.3 below. 

 

 
 

Table 5.3: Positive and Negative Training Examples. 
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5.4 Fitness Assessment 
 

The fitness function is used to rank the individual solutions present in each 

generation of the GP.  The fitness criteria used here is the number of strings that the 

particular finite state machine is able to correctly classify.  

 

In this dissertation, the Hit Count gives the sum of the number of positive strings 

accepted and the number of negative strings rejected.  

 

The raw fitness Fraw, [4] is defined as a fitness parameter in the range [0,1), 

where 0 represents the optimum and 1 worst possible fitness. In our case it is given by 

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectFraw +

+
−= 1  

 

The individual’s adjusted fitness Fadj, defined as 
raw

adj F
F

+
=

1
1 , maps the fitness 

into the interval (0,1], where 0 is worse than the worst fitness and 1 is the optimum. 

 

5.5 Selection and Breeding 
 

Once individuals have had their fitness’s assessed, they may be selected and 

bred to form the next generation in the evolution cycle, through repeated application of 

Breed(...). This function usually selects one or two individuals from the old population, 

copies them, modifies them, and returns the modified copies for addition to the new 

population. 

 

5.5.1 Selection Scheme 
 

The selection mechanism used here is tournament selection [15], as it is simple, 

fast, and has well-understood statistical properties. In tournament selection, a pool of n 
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individuals is picked at random from the population. Then tournament selection selects 

the individual with the highest fitness in this pool. Clearly, the larger the value n, the 

more directed this method is at picking highly fit individuals. Tournament size of 7 is 

used here in this dissertation, as it is the standard in the genetic programming literature, 

and is highly selective. 

 

5.5.2 Crossover Scheme  
 

The crossover scheme used here is subtree crossover [15], which starts with two 

individuals selected and copied from the old population. A random point is selected 

within one tree of each copied individual with nonterminals selected 90% of the time 

and terminals selected 10% of the time. Then crossover swaps the subtrees rooted at 

these two nodes and returns the modified copies. If the crossover process results in a 

tree greater than a maximum depth bound (17), then the modified child is discarded and 

its parent (the tree into which a subtree was inserted to form the child) is simply copied 

through reproduction. Crossover may only occur if two trees share the same function 

set. This process is illustrated in Figure 5.2. 

 

5.5.3 Mutation Scheme 
 

The mutation scheme used is subtree mutation [15]. Subtree mutation starts with 

a single individual selected and copied from the old population. One node is selected 

from among of the copied individual’s trees, using the same node-selection technique as 

described for subtree crossover. The subtree rooted at this node is removed and replaced 

with a randomly generated subtree, using the GROW algorithm and the appropriate 

function set for the tree. If mutation results in a tree greater than the maximum depth 

(17), then the copy is discarded and its parent is reproduced instead. Subtree mutation is 

illustrated in Figure 5.3. 
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Figure 5.2: Subtree Crossover 

 

 
Figure 5.3 :Subtree Mutation 

Delhi College of Engineering, Delhi  36 



                                                                      A Genetic Approach to Evolve Finite State Automata 

5.6 Control Parameters 
 

The fourth preparatory step entails specifying the control parameters for the run. 

The decisions are critically important as they have a limiting effect on the search space 

of possible programs. Too great a limit may remove all chance of evolving an 

acceptable individual. 

 

The control parameters that need to be set are: 

 

1. Population Size: Population size represents the number of chromosomes that 

constitute the population at any given time. If there are too few chromosomes, the GP 

has few possibilities to perform crossovers and only a small part of search space is 

explored. On the other hand, if there are too many chromosomes, the GP slows down. 

Here, the population size is taken to be 500. 

 

2. Maximum number of generations: The evolutionary process needs to be given 

time; the greater the maximum number of generations the greater the chance of 

evolving a solution. However, further evolution of a population does not guarantee a 

solution will be found - it may be better to start again with a different initial population. 

So if, after a user-defined number of generations, a sufficiently successful individual 

has not evolved then the process should halt.  The maximum number of generations to 

be evolved is chosen to be 50. 

 

3. Probability of crossover: This specifies the proportion of the population that will 

undergo crossover before entering the new population. It is taken to be 0.9. 

 

4. Probability of reproduction: The proportion of individuals in a population that will 

undergo reproduction. Following the Koza’s standard, 0.1 of the population will 

undergo reproduction. 
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CHAPTER-6 

MODULAR ARCHITECTURE TO EVOLVE FINITE 

STATE AUTOMATA 
 

As we have seen in the previous chapters that the automatic creation of finite 

automata has long been a goal of the evolutionary computation community. The 

previous works in the evolution of finite state machines were limited to the evolution of 

strictly non-modular FSA. Here, a modular FSA architecture is proposed and a genetic 

programming procedure for evolving such structures is presented. Preliminary results 

indicate that the proposed procedure is indeed capable of successfully evolving modular 

FSA and that such modularity can result in a statistically significantly increased rate of 

optimization. 

 

Perhaps the most important attractive property of finite state automata is that 

they can be combined in various interesting ways, with the guarantee that the result 

again is a finite state automaton. This property is perhaps most clearly exploited here in 

modular FSA architecture. 

 

6.1 Proposed Evolution Model 
 

The previous works in the evolution of finite automata accepting a particular 

regular language comprises of, first generating the sample positive strings described by 

the given regular expression and sample negative strings which are not described by the 

given regular expression. And then, the finite state automaton is inferred, from these 

sets of positive and negative data samples, thereby accepting a particular regular 

language. 

 

In the proposed Modular Architecture, we will first breakdown the given regular 

expression into few smaller sub-expressions, and evolve the finite automata for each of 
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these sub-expressions, and then further combine each of the evolved automata to get the 

complete automata describing the given regular expression as a whole. 

 

The proposed architecture is also supported by the fact, that, a difficult task 

when decomposed into simpler subtasks can be solved with lower computational effort, 

with their solutions combined to give the overall solution. Further, already discovered 

solutions to subtasks may also be reused to repeatedly solve similar sub problems. 

 

Thus, the method reduces the total number of generations needed to evolve 

finite state automata for a complex regular expression, as breaking it down into simpler 

smaller sub-expressions reduces the complexity of the search space. Also, the time 

required and the size of the edge encoding tree as well as the size of the evolved finite 

automata is reduced. 

 

6.2 Design Of Modular Architecture 
 

The design of modular FSA roughly follows Thompson’s construction as 

described in Aho, Sethi, and Ullman [1] and Thompson [22]. Thompson’s construction 

first parses a regular expression into its subexpressions, and then builds an NFA 

bottom-up by grouping smaller NFAs that represent those subexpressions. 

 

By definition, for any regular expression r, one of the following is true. 

 

• r is ε. 

• r is a symbol σ ∈ ∑. 

• r can be broken down into s t for some regular expressions s and t. 

• r can be broken down into s|t for some regular expressions s and t. 

• r can be broken down into s* for some regular expression s. 

• r can be broken down into (s) for some regular expression s. 
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For each of these cases, the edge encoding which produces the appropriate NFA, 

and also the NFA itself is given below. Each constructed NFA will have one start-state 

and one accepting-state, indicated with an “S” and “A” respectively. 

 

Case 1. r is ε. In this case, the edge encoding for r is simply ε. This produces the NFA 

 
 

Case 2. r is a symbol σ ∈ ∑. In this case, the edge encoding for r is simply tσ, where tσ 

is the terminal that corresponds with r as described above. This produces the NFA 

 
 

Case 3. r can be broken down into s t. Let S and T be the edge encodings for s and t, 

respectively, with NFAs 

 
Then the edge encoding for r is (split S (split ε T)), which produces the NFA 

 
 

Case 4. r can be broken down into s | t. Let S and T be the edge encodings for s and t, 

respectively, with NFAs 

 
Then the edge encoding for r is (double (split (split ε S) ε) (split (split ε T) ε )),  

which produces the NFA 
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Case 5. r can be broken down into s*. Let S be the edge encoding for s, encoding the 

NFA 

 
Then the edge encoding for r is (double (split (split ε (double S ( reverse ε ))) ε ) ε ),  

which produces the NFA 

 
 

Case 6. r can be broken down into (s). Let S be the edge encoding for s, respectively, 

encoding the NFA 

 
Then the edge encoding for r is the same as S, producing the NFA 

 
 

Labeling Start and Accepting States- The start-state vertex will have one or more 

labeled edges leaving it, and the accepting-state vertex will have one or more labeled 

edges entering it. When we have finished constructing our final NFA, we can indicate 

its start state by finding the terminal function (call it A) responsible for labeling some 

outgoing edge of the start-state vertex. We convert this terminal function into (reverse 

(start (reverse A))), which labels the start-state vertex. To indicate the NFA’s accepting 
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state, we find the terminal function (B) responsible for labeling some incoming edge of 

the accepting-state vertex. We convert this terminal function into (accept B), which 

labels the accepting-state vertex. 

 

6.3 Computational Algorithms 
 

 The procedure to evolve a finite state automaton for a given regular expression 

using the modular architecture is divided into two algorithms. The first one is the Basic 

NFA Evolution Algorithm [18], which evolves an automaton for the whole expression, 

by creating the positive and negative test samples of the regular expression and 

representing the chromosomes as edge encoding tree.  

  

The second one, Modular Algorithm, proposed in this dissertation, first, 

decomposes the regular expression into simple smaller sub-expressions, and then, uses 

the Basic NFA Evolution Algorithm for each of the sub-expressions. After this, the sub-

automata evolved for each of the sub-expressions is joined together using the modular 

design described in Section 6.2 resulting in the complete automata for the initial whole 

expression. The procedural steps for both the algorithms are given below.  

 

6.3.1 Basic Algorithm for NFA Evolution 
 

1. First of all create around 10-15 sample positive and negative test strings from 

the regular expression for which the automata is to be evolved. Also the set of 

all-positive strings described by the expression and the set of all-negative strings 

not recognized by the expression is created to check the generalization score of 

the final evolved automata. 

 

2. Randomly create an initial population (generation 0), of 500 individual edge 

encoding tree, composed of the available functions and terminals using ramped 

half-and-half algorithm. 
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3. Iteratively perform the following sub-steps (called a generation) on the 

population until the termination criterion is satisfied: 

 

a. Execute each program in the population and ascertain its fitness by 

testing the NFA against the positive and negative test examples.  

b. Select one or two individual program(s) using tournament selection with 

the tournament size 7, from the population with a probability based on 

fitness (with reselection allowed) to participate in the genetic operations 

in (c). 

c. Create new individual program(s) for the population by applying the 

following genetic operations with specified probabilities: 

• Reproduction: Copy the selected individual program to the new 

population. 

• Crossover: Create new offspring program(s) for the new population 

by recombining randomly chosen parts from two selected programs.  

• Mutation: Create one new offspring program for the new population 

by randomly mutating a randomly chosen part of one selected 

program. 

 

4. After the termination criterion is satisfied, the single best program in the 

population produced during the run (the best-so-far individual) is harvested and 

designated as the result of the run.  

 

5. The Best Individual is checked for its generalization score by testing it against 

all the positive and negative training strings of the given regular expression. The 

generalization score of 1 results when the solution found accepts all the positive 

strings and rejects all the negative ones. 

 

6. If the run is successful and the generalization score is one, the result may be a 

solution to the problem. 
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6.3.2 Proposed Modular Algorithm 
 

1. Given a regular expression, first break it down into 2-4 sub-expressions.  

2. For each of the sub-expression, define the positive and negative test strings files. 

3. Call the Basic NFA evolution Algorithm for each of the sub-expressions with 

the test strings files as the input. 

4. Recompose the final NFA, by grouping each of the evolved sub-automata from 

step (3) using the procedure described in section 6.2. 

5. The final NFA is checked for the generalization score, so that it may be a correct 

solution to the expression. 

 

6.4 Example Evolution 
 

To gain a better understanding of the modular evolution, we will here step through 

the growth of a simple automaton that recognizes the language 1* (10)*. In this, the 

regular expression is divided into two sub-expression, as 1* and (10)* and for each of 

the expressions the NFA is evolved using the Basic NFA Evolution Algorithm. The 

evolved edge encoding tree and the NFA are shown in the Figure 6.1 and 6.2. 

 

 
Figure 6.1: Edge Encoding for 1* and (10)* 
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Figure 6.2: Encoding Tree and NFA for 1* and (10)* 

 
As we have seen earlier, the edge encoding for r when broken down into s t, 

where S and T be the edge encoding for s and t respectively, is (split S (split ε T)). Thus, 

the expression 1*(10)* after combining have the encoding tree and the NFA as shown 

in Figure 6.3. 

 
Figure 6.3: Edge Encoding Tree and the NFA for 1*(10)* using modular evolution 

 
6.5 Summary 
 

The modular architecture is developed to provide for some general mechanism 

whereby a problem can be decomposed into distinct subtasks and to allow for the 

preservation of elements of the representation that may be useful in solving the task at 

hand.  
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CHAPTER-7 

EXPERIMENTS AND RESULTS 
 

7.1 Experimental Setup 
 
7.1.1 Implementation 

 
The GP system, for the evolution of NFA using both modular and non-modular 

architecture has been implemented in Java Programming Language. Java has been 

extensively used for the implementation of GP system as it is portable and can be easily 

replicated across platforms. It also provides distributed computation and is easily 

extensible.  
 

7.1.2 Test Data 
 
To assess the performance of the proposed procedure it was tested on the Tomita 

Language Set [24], a popular and nontrivial language induction benchmark. The Tomita 

set results indicate that using modular architecture we can induce an automaton with far 

fewer fitness evaluations than the previous non-modular methods.  

 

7.1.3 Tomita Decomposition For The Modular Evolution 
 
 Table 7.1 shows the decomposition of the Tomita languages into sub-

expressions for evolution using the modular architecture. For the Tomita 1 and Tomita 

2, no further breakdown is possible, so the expression is evolved as a whole similar to 

the non-modular approach. Tomita 3, Tomita 4 and Tomita 5 are decomposed further 

into two sub-expressions respectively, and the NFA for the sub-expressions are evolved 

separately, later the sub NFA’s are joined using the modular design. For the Tomita 6 

and Tomita 7 only one NFA for the sub-expression 1 is evolved and the resulting NFA 

can be used for the sub-expression 2, as they are similar. In the case of sub-expression 2 

of Tomita 6, only the need is to change 1’s into 0’s and 0’s into 1’s in the NFA of sub-
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expression 1, whereas in the case of Tomita 7 there’s no such need as the sub-

expressions are exactly same. 

 

 

Non-modular Evolution 

 

Modular Evolution 

Tomita Languages 

as a Whole 

Tomita Languages 

Sub expression 1 

Tomita Languages 

Sub expression 2 

1* 1* - 

(10)* (10)* - 

(0 | 11)* (1* | (100 (00 | 1)*)) (0 | 11)* (1* | (100 (00 | 1)*)) 

1*((0 | 00) 11*)*(0 | 00 | 1*) 1*((0 | 00) 11*)* (0 | 00 | 1*) 

(((1|0)(1|0))*(1|0)) | ((11|00)*((01|10) 

(00|11)*(01|10)(00|11)*)*(11|00)*) 

(((1|0)(1|0))*(1|0)) ((11|00)*((01|10)(00|11)* 

(01|10)(00|11)*)*(11|00)*) 

((0(01)*(1|00)) | (1(10)*(0|11)))* ((0(01)*(1|00)) (1(10)*(0|11)))* 

0*1*0*1* 0*1* 0*1* 

 

Table 7.1: Tomita Decomposition for the Modular Evolution 

 

7.1.4 Fitness Metric 
 

The standard experimental methodology for most Tomita language induction 

experiments in the literature is to attempt to induce a mechanism, which properly 

classifies all positive and negative examples in a limited training set. Afterwards, this 

mechanism is tested for generality on the full population of binary strings of that length. 

The same accuracy measurement, which was used by the other experiments for the raw 

fitness metric is used here, namely: 

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectFraw +

+
−= 1  

After an evolutionary run is completed, the generalization accuracy of its 

highest-fitness individual is measured. Generalization accuracy uses all possible strings 
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up to 15 symbols in length. The resultant score estimates how closely the NFA was able 

to properly generalize to that particular Tomita language. Generalization score metric is: 

examplesnegativetotalexamplespositivetotal
examplesnegativecorrectexamplespositivecorrectAccuracyGen

+
+

=.  

 
7.2 Experimental Results 
 
7.2.1 Population-based Analysis 
 

In this dissertation a procedure for evolving Finite Automata using modular 

architecture is proposed. Two separate sets of experiments were performed to compare 

the effectiveness of this approach against the existing non-modular approach, evolving 

FSA for the Tomita Language Set. A total of 30 runs were carried out for each of the 

Tomita Languages in both the experiment set. Each set of experiments used a 

population size of 500 machines and evolution lasted for 50 generations or until a 

solution was found which correctly classified all its training examples. 

 

Table 7.2 summarizes the results, showing the number of generations needed, as 

well as the number of nodes evaluated, in the best run and the average of the 30 runs, 

for the Tomita Languages evolved using the non-modular approach. Similarly, Table 

7.3 shows the results for each sub-expression evolution using the modular approach. 

Figure 7.1 and Figure 7.2 compares the modular and non-modular approach on the basis 

of number of generations explored for the Tomita Languages. Similarly, Figure 7.3 and 

Figure 7.4 compares both the approaches on the basis of Number of Nodes Evaluated. 

 

From the results it can be concluded that the proposed procedure is capable of 

successfully evolving modular Finite Automata with significantly increased rate of 

optimization, by reducing the number of generations evolved and the number of nodes 

evaluated. 
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Best Average Tomita 
No. 

No. of 
Generations 

Needed 

No. of 
Nodes 

Evaluated 

No. of 
Generations 

Needed 

No. of Nodes 
Evaluated 

1 1 10714 1.133 11068.2 

2 1 10856 2.833 24174.4 

3 7 179622 15.466 780046.7 

4 8 223316 14.533 491532.6 

5 14 1228148 38.866 5944380.2 

6 17 942558 36.633 3564287.6 

7 7 242900 13.57 611230.3 

 

Table 7.2: Number of generations explored and the number of nodes evaluated for 

the evolution of each Tomita language using non-modular approach 

 

Best Average Tomita 
No. 

Sub-
Expressions 

No. of 
Generations 

Needed 

No. of 
Nodes 

Evaluated 

No. of 
Generations 

Needed 

No. of 
Nodes 

Evaluated 
1 1 1 10714 1.133 11068.2 

2 1 1 10856 2.833 24174.4 

3 1 1 10624 3.166 46020.2 

 2 2 27368 5.2 111626.1 

4 1 2 73296 3.86 90664.3 

 2 1 3405.55 3.2 52238.4 

5 1 3 45580 6.5 159616.3 

 2 5 109414 9.06 344836.4 

6 1 8 557904 16.43 1050733.1 

7 1 1 11090 2.16 28544.6 

 

Table 7.3: Number of generations explored and the number of nodes evaluated for 

the evolution of each Tomita language using proposed modular approach 
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Figure 7.1: Number of Generations Explored in the Best case for the  

Tomita Languages 
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Figure 7.2: Number of Generations Explored in the Average case for the  

Tomita Languages 
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Figure 7.3: Number of Nodes Evaluated in the Best case for the Tomita Languages 
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Figure 7.4: Number of Nodes Evaluated in the Average case for the  

Tomita Languages 
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7.2.2 Timing Analysis 

 
Table 7.4 shows the average elapsed time for the evolution of Tomita Language 

Sets both using modular and non-modular approach. Also Figure 5.5 and Figure 5.6 

compares both the approaches on the basis of Time Taken for finding the solution for 

the Tomita Languages in the best and the average case. All timings are based on Java 

implementations running on a 706 MHz Pentium processor.  

 
 

Non-modular 
Evolution 

 

 
Modular Evolution 

 

Total Time taken 
(ms) 

Time taken by sub 
expression 1 (ms) 

Time taken by sub 
expression 2 (ms) 

Total Time taken 
(ms) 

 
Tomita 
Number 

 

Best Average Best Average Best Average Best Average 

1 1650 1808.16 1650 1808.16 - - 1650 1808.16 

2 1700 2297.76 1700 2297.76 - - 1700 2297.76 

3 8010 25665.2 1760 3240.13 2470 5667.16 4230 8907.29 

4 9170 16974.5 3720 5088.57 1980 3405.55 5700 8494.12 

5 38950 182420 3830 6920.4 5160 10450.2 8990 17370.6 

6 31970 116053 8140 23041.4 - - 8140 23041.4 

7 8900 20920.7 1700 2520.2 - - 1700 2520.2 

 
Table 7.4: Average elapsed time in milliseconds to learn the Tomita languages for 

both non-modular and modular architecture 

 
7.2.3 Performance Evaluation 
 

The performance over the seven Tomita targets indicates that the proposed 

modular approach evolves an automaton with statistically increased rate of optimization 

as compared to the non-modular approach. Furthermore, inspection of the evolved 

automata showed that all solutions were fully generalizable. Thus, modular approach is 

able to evolve an NFA with lesser number of generations explored and fewer number of 

nodes evaluated in a significantly reduced amount of time. 
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Figure 7.5: Time Taken for finding the Solution in the Best case for the  

Tomita Languages 
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Figure 7.6: Time Taken for finding the Solution in the Average case for the 

 Tomita Languages 
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CHAPTER-8 

CONCLUSIONS AND FUTURE DIRECTIONS 

 
8.1 Conclusions 
 

In this dissertation, finite state automata for the Tomita Languages are evolved 

using the genetic programming paradigm. A modular architecture to evolve finite state 

automata is proposed. The method is simple to understand, easy to implement, and is 

potentially a powerful tool for evolving complex automata. The procedure is evaluated 

on the Tomita languages, which evolved an NFA consistent with the given training set.  

 

The experimental results obtained indicate that the modular architecture is able 

to evolve finite state machines typically in lesser number of generations and many 

fewer nodes evaluations than previous non-modular approach. Also, the average time 

taken to learn a Tomita language with modular method is 9205.64 ms, which compares 

very favorably with the non-modular method where it is 52305.6 ms. Thus, it can be 

concluded that the proposed procedure is capable of successfully evolving modular 

finite state automata and that such modularity can result in a significantly increased rate 

of optimization. 

 

8.2 Future Work 
 

The present work can be extended in several directions. One possible 

improvement of the fitness function might be to rate smaller automata higher than larger 

ones, to stimulate the search towards a minimal, parsimonious solution. The next step 

consists of refining the design by using Automatically Defined Functions and 

Modular/Cassette Crossover to swap blocks that occur in the middle of a tree. 
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In the experiments, the wide degree of qualitative variations between runs 

indicates that, some times evolution quickly gets stuck at sub optimal solutions. Parallel 

subpopulations may help in this regard. Also, during evolution the Tomita languages 

can be further modularized depending upon the requirement. 

 

The evolution of finite state machines using both the basic architecture and the 

modular architecture can be extended in several areas like, they can be used in the field 

of grammatical inference (GI), or can be used to encode computations, recognize 

events, or can be used to solve more real world applications like developing several 

kinds of software components, including the lexical analysis component of compilers 

and systems for verifying the correctness of circuits and protocols.  
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APPENDIX A: OUTPUT 
 

As this dissertation evolves the finite state automata for the Tomita Language Sets 

using both modular and non-modular architecture, a brief implementation overview for evolving 

Tomita 7, is provided here in this section.  

 
A.1 Non-modular Evolution 
 
The positive and negative training sets used for Tomita 7 are shown in Table A.1. 

 
Tomita 7 Positive Set Negative Set 

 

0*1*0*1* 

 

e, 1, 0, 10, 01, 11111, 000, 

0101, 00110011, 

0000100001111, 00, 00100, 

011111011111 

 

 

1010, 00110011000, 

0101010101, 1011010, 

10101, 010100, 101001, 

100100110101 

 
Table A.1: Positive and Negative Training Sets for Tomita 7  

 
A.1.1 Example Run 
 

An experimental run with the training set of Tomita 7, evolved the ideal individual in 

the 8th generation. The population size used was 500. Below, are the few sample chromosomes 

generated during the run and the best individual of the run. Also the NFA generated for the best 

individual has been shown. 

 

GENERATION  0 

================ 

 

Individual : 0 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (s e) 
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Individual : 1 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (reverse (split e 0)) 

 

Individual : 2 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (reverse (s (reverse 1))) 

 

Individual : 3 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (s (bud e 1)) 

 

Individual : 4 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 1 

 

Individual : 5 

Evaluated: true 

Fitness: Raw=0.47619048 Adjusted=0.67741936 Hits=11 

TREE     

 (a (a (loop (split (reverse 1) (double 0  e)) (s (split 1 e))))) 

 

Individual : 6 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     
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 (a 1) 

 

Individual : 7 

Evaluated: true 

Fitness: Raw=0.3809524 Adjusted=0.72413796 Hits=13 

TREE     

 (double (split (split (a 1) (a 0)) (loop (loop 1 1) (a 0))) (double (s (loop e 1)) 

 (s (double 0 0)))) 

 

Individual : 8 

Evaluated: true 

Fitness: Raw=0.5714286 Adjusted=0.6363636 Hits=9 

TREE     

 (split (split (a (s 0)) (bud (a e) (split 0 0))) (reverse (loop (split e 1) 

(reverse 0)))) 

 

Individual : 9 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (bud (bud (double (bud (split e e) (loop 1 0)) (loop 1 1)) (split (split (a 1) (reverse e)) (bud 0 

(double 0 e)))) (split (split (split (double 1 e) (s e))  (loop (double 1 e) (bud 1 e))) 0)) 

 

… 

… 

… 

… 

… 

 

GENERATION  7 

================ 

 

Individual : 0 

Evaluated: true 
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Fitness: Raw=0.14285715 Adjusted=0.87499994 Hits=18 

TREE     

 (bud (loop (s (bud (double 1 1) (loop (bud (a e) (a 1)) (bud 0 1)))) 0) (reverse (reverse (a (split 

(s (loop 0 1)) (loop (double (double (bud (double e 1) (a 1)) (loop (loop 1 0) (s (a e)))) (double 

(double (a 1) (split 0 0)) (bud (bud 1 1) (a 0)))) (loop 0 0))))))) 

 

Individual : 1 

Evaluated: true 

Fitness: Raw=0.2857143 Adjusted=0.7777778 Hits=15 

TREE     

 (split (double (s (split (split e 1) (double (double (bud e 1) (reverse e)) 1))) (loop 1 e)) (loop 

(double (s (split 1 (s (double     (double (a 1) (split 0 0)) (bud (bud 1 1) (a 0)))))) (bud (s 1) (s (a 

(loop (a 1) (s 0)))))) (a (reverse (reverse 1))))) 

 

Individual : 2 

Evaluated: true 

Fitness: Raw=0.3809524 Adjusted=0.72413796 Hits=13 

TREE     

 (split (double (s (bud (reverse (double (split  0 1) (a (split (s (loop 0 1)) (loop (double  (double 

(bud (double e 1) (a 1)) (loop (loop  1 0) (s (a e)))) (loop (bud (loop 0 0) (a  1)) (double (loop 0 

e) (reverse (reverse  0))))) (loop 0 0)))))) (reverse (reverse  (double (split 0 1) (a (split (s (loop 0  

1)) (loop (double (double (bud (double e  1) (a 1)) (loop (loop 1 0) (s (a e)))) (loop  (s (double (a 

1) (split 0 0))) (double (loop   0 e) (reverse (s e))))) (loop 0 0)))))))))  (loop (bud (a e) (a 1)) (bud 

0 1))) (loop  (double (s (split (split (double (s 0) (double  0 e)) (loop (loop 0 0) (a 1))) (s (double  

(double (a 1) (split 0 0)) (bud (double 1  1) (loop 1 e)))))) (bud (s 1) (s 0))) (a     (bud (s 1) 

(reverse 1))))) 

 

Individual : 3 

Evaluated: true 

Fitness: Raw=0.61904764 Adjusted=0.61764705 Hits=8 

TREE     

 (bud (loop (s (bud (double 1 1) (loop 1 e)))  0) (reverse (loop (s (bud (double 1 1) (loop     1 e))) 

0))) 
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Individual : 4 

Evaluated: true 

Fitness: Raw=0.33333334 Adjusted=0.75 Hits=14 

TREE     

 (bud (loop (s (bud (double 1 1) (loop (bud (a (loop (reverse 0) (s 0))) (a 1)) (bud 0 1)))) 0) 

(reverse (bud (bud 1 1) (a 0)))) 

 

 

… 

… 

… 

… 

… 

 

 

Individual : 495 

Evaluated: true 

Fitness: Raw=0.04761905 Adjusted=0.9545454 Hits=20 

TREE     

 (split (double (s (split (split (a (split (s (bud (loop (s (double (loop 0 e) (reverse    (reverse 0)))) 

0) (reverse (reverse (double (split 0 1) (a (split (s (loop 0 1)) (loop (s e) (loop 0 0))))))))) (loop (s 

e) (loop  0 0)))) 1) (double e 1))) (loop (bud (a e) (a 1)) (bud 0 1))) (loop (double (s (split e 1)) 

(bud (s 1) (s 0))) (a (bud (s 1) (reverse  1))))) 

 

Individual : 496 

Evaluated: true 

Fitness: Raw=0.1904762 Adjusted=0.84000003 Hits=17 

TREE     

 (split (s (a (loop (a 1) (s 0)))) (loop (split  (bud (double e 1) (a 1)) (s 0)) (a 1))) 

 

Individual : 497 

Evaluated: true 

Fitness: Raw=0.14285715 Adjusted=0.87499994 Hits=18 

TREE     
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 (bud (loop (s (bud (double 1 1) (bud (double   e 1) (a 1)))) 0) (reverse (reverse (double     (split 

0 1) (a (split (s (loop 0 1)) (loop  (double (double (s (s (a (loop (bud (bud  1 1) (a 0)) (s 0))))) 

(loop (loop 1 0) (s (a e)))) (loop (bud (loop 0 0) (a 1)) (double  (loop 0 e) (reverse (s e))))) (loop 

0 0)))))))) 

 

Individual : 498 

Evaluated: true 

Fitness: Raw=0.0952381 Adjusted=0.9130435 Hits=19 

TREE     

 (split (s (a (loop (a 1) (s 0)))) (loop (split (s (s (a (loop (s (a (loop (a 1) (s 0)))) (s 0))))) (s 0)) (a 

1))) 

 

Individual : 499 

Evaluated: true 

Fitness: Raw=0.1904762 Adjusted=0.84000003 Hits=17 

TREE     

 (bud (a (split (split (s (bud (bud 1 1) (a  0))) (a (a (split (s (loop 0 1)) (loop (s e) (loop 0 0)))))) 

(loop (s e) (loop (split  0 0) 0)))) (a (loop 1 e))) 

 

Best Individual of Generation 7:  

============================= 

Evaluated: true 

Fitness: Raw=0.0 Adjusted=1.0 Hits=21 

TREE     

 (double (loop (a e) (s e)) (double (a (bud   (a (reverse e)) (loop 1 1))) (reverse (bud (s 0) (bud (a 

(split (s (loop 0 1)) (loop  (s (double 1 0)) (a (loop (a e) (s 0))))))  (a (double (loop 1 1) (split 0 (s 

0))))))))) 

---------------------------------------------------------- 

 

Final Statistics 

================ 

 

Total Individuals Evaluated: 4000 
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Best Individual of Run: 

 

Evaluated: true 

Fitness: Raw=0.0 Adjusted=1.0 Hits=21 

 

TREE     

(double (loop (a e) (s e)) (double (a (bud  (a (reverse e)) (loop 1 1))) (reverse (bud (s 0) (bud (a 

(split (s (loop 0 1)) (loop (s (double 1 0)) (a (loop (a e) (s 0)))))) (a (double (loop 1 1) (split 0 (s 

0))))))))) 

 

Best Individual's Generalization Score... 

Pos: 1940/1940 Neg: 30827/30827 

(pos+neg)/(allpos+allneg):     1.0 

 

Best Individual's NFA 

===================== 

 

States          Transitions 

0    S   =>  (0:5) (e:1) 

1   SA =>  (0:0) (1:2) (e:0,1) 

2       =>  (1:2)  

3   SA  =>  (0:3,6) (1:4) (e:3) 

4   SA  =>  (1:4)  

5   S  =>  (0:3) (1:3,5)  

6        =>  (0:4)  

 

A.2 Modular Evolution 
 

The modular evolution of Tomita 7 involves the decomposition of the expression into 

two smaller sub-expressions, and then evolving the automata for both the sub-expressions. The 

sub automata generated are further combined to give the resultant automata for the language. 
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The decomposition of Tomita 7 (0*1*0*1*) into two sub expressions can be done as 

(0*1*) and (0*1*), where, only the automata for sub expression 1 is evolved and the same 

results can be used for the sub expression 2, thereby reducing the time as well as the resources 

for evolving sub expression 2.  The encoding tree for the sub expression 1 is concatenated with 

itself using the property (split X (split ε X)) (where X is the encoding tree for the sub expression 

1), to get the complete automata for the Tomita 7 language. 

 

The positive and negative training sets used for the sub expression 1 of the Tomita 7 are shown 

in Table A.2. 

 

Tomita 7 Positive Set Negative Set 

 

0*1* 

 

e, 0, 00, 1, 11, 01, 0011, 0001, 

0111, 000000011111, 

000011111111 

 

10, 010, 100, 101, 00110 

111100000, 10000 

0001111000 

 

 

Table A.2: Positive and Negative Training Sets for Sub Expression 1 of Tomita 7  

 

A.2.1 Example Run 
 

An experimental run with the training set for the sub expression 1 of the Tomita 7, 

evolved the ideal individual in the 2nd generation. The population size used was 500. Below, are 

the few sample chromosomes generated during the run and the best individual of the run. Also 

the NFA generated for the best individual has been shown. 

 

GENERATION  0 

================ 

 
Individual : 0 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     
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 (a (bud (a (double (double 1 e) (reverse 0))) (double (loop (double 0 1) (reverse e)) (double 

(bud 0 e) (loop 1 e))))) 

 

Individual : 1 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 1 

 

Individual : 2 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (a (double e (a (split (a 0) e)))) 

 

Individual : 3 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (bud (a (reverse e)) (a (split 1 0))) 

 

Individual : 4 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (bud e e) 

 

Individual : 5 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (loop (bud (double 1 (split 1 1)) e) e) 

 

… 
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… 

… 

… 

… 

 

 

GENERATION  1 

================ 

 

Individual : 0 

Evaluated: true 

Fitness: Raw=0.44444445 Adjusted=0.6923077 Hits=10 

TREE     

 (s (bud (double (bud e (double 1 0)) 1) (s 

     (double (a 1) (loop 1 1))))) 

 

Individual : 1 

Evaluated: true 

Fitness: Raw=0.3888889 Adjusted=0.72 Hits=11 

TREE     

 (a (s (loop (reverse (reverse e)) (a (s (split 0 (loop 1 0))))))) 

 

Individual : 2 

Evaluated: true 

Fitness: Raw=0.5555556 Adjusted=0.64285713 Hits=8 

TREE     

 (s (a 0)) 

 

Individual : 3 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (s (s (loop e e))) 
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… 

… 

… 

… 

… 

 

Individual : 497 

Evaluated: true 

Fitness: Raw=0.44444445 Adjusted=0.6923077 Hits=10 

TREE     

 (s (split (a (s (double 1 1))) (bud (bud (bud (loop (bud (reverse (s (double 1 1)))         (double (a 

(split 1 e)) (a (loop 1 e))))  (a (s (a (loop e e))))) 0) (a 0)) (a (reverse e))))) 

 

Individual : 498 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 e 

 

Individual : 499 

Evaluated: true 

Fitness: Raw=0.6111111 Adjusted=0.62068963 Hits=7 

TREE     

 (s 1) 

 

Best Individual of Generation:  

============================= 

Evaluated: true 

Fitness: Raw=0.0 Adjusted=1.0 Hits=18 

TREE     

 (loop (bud 0 (a (loop 1 1))) (s (double (reverse  (a 0)) (loop (a 0) (double e e))))) 

---------------------------------------------------------- 
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Final Statistics 

================ 

 

Total Individuals Evaluated: 1000 

 

Best Individual of Run: 

Evaluated: true 

Fitness: Raw=0.0 Adjusted=1.0 Hits=18 

TREE     

 (loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e))))) 

 

Best Individual's Generalization Score... 

Pos: 15/15 Neg: 32752/32752 

(pos+neg)/(allpos+allneg):     1.0 

 

Best Individual's NFA 

===================== 

States    Transitions  

0       =>  (0: 1)  

1   SA  =>  (0: 1,1) (1: 2) (e: 1,1) 

2    A  =>  (1: 2)  

 

 

A.2.2 Combining Sub Automata 
 

After the automata for each of the sub expressions are evolved, the encoding tree of the 

sub automata’s are joined using the design as explained in Section 6.2, depending upon the 

joining conditions. Here, sub automata 1 is concatenated with itself using the condition (split X 

(split ε X)). 

 

The resulting encoding tree for the Tomita 7 using the above procedure is: 
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(split (loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e))))) (split e  

(loop (bud 0 (a (loop 1 1))) (s (double (reverse (a 0)) (loop (a 0) (double e e))))))) 

 

And, the NFA generated for the above encoding is: 

 

Complete NFA for Tomita 7 using modular approach 

================================================= 
 
 
States    Transitions  

 
0       =>  (0: 1)  

1   SA  =>  (0: 1,1) (1: 2) (e: 1,1) 

2    A  =>  (1: 2)  

3   => (0: 4) 

4  SA => (0: 4,4) (1: 5) (e: 4,4) 

5  A => (1: 5) 
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APPENDIX B: SOURCE CODE 
 
package fsa 
 
 
Breeder.java 
 
package fsa; 
 
public  class Breeder  
    { 
 
    public abstract Population breedPopulation(final EvolutionState state) throws 
CloneNotSupportedException; 
 
    } 
 
 
BreedingSource.java 
 
package fsa; 
import fsa.util.*; 
 
 
public abstract class BreedingSource implements Prototype, RandomChoiceChooser 
    { 
    public static final String P_PROB = "prob"; 
    public static final float NO_PROBABILITY = -1.0f; 
    public static final int UNUSED = -1; 
    public static final int CHECKBOUNDARY = 8; 
    public static final int DEFAULT_PRODUCED = 1; 
 
    public float probability; 
 
    public void setup(final EvolutionState state, final Parameter base) 
 { 
 
 Parameter def = defaultBase(); 
 
 if (!state.parameters.exists(base.push(P_PROB),def.push(P_PROB))) 
     probability = NO_PROBABILITY; 
 else 
     { 
     probability = state.parameters.getFloat(base.push(P_PROB),def.push(P_PROB),0.0); 
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if (probability<0.0) state.output.error("Breeding Source's probability must be a 
floating point value >= 0.0, or empty, which represents NO_PROBABILITY.", 
base.push(P_PROB),def.push(P_PROB)); 

     } 
 } 
 
    public final float getProbability(final Object obj) 
 { 
 return ((BreedingSource)obj).probability; 
 } 
 
    public final void setProbability(final Object obj, final float prob) 
 { 
 ((BreedingSource)obj).probability = prob; 
 } 
 
    public static int pickRandom(final BreedingSource[] sources,final float prob) 
 { 
 return RandomChoice.pickFromDistribution(sources,sources[0], 
       prob,CHECKBOUNDARY); 
 } 
 
    public static void setupProbabilities(final BreedingSource[] sources) 
 { 
 RandomChoice.organizeDistribution(sources,sources[0],true); 
 } 
 
    public abstract int typicalIndsProduced(); 
 
    public abstract boolean produces(final EvolutionState state,  final Population newpop, 
         final int subpopulation,  int thread); 
 
    public abstract void prepareToProduce(final EvolutionState state,  final int subpopulation, 
       final int thread); 
 
    public abstract void finishProducing(final EvolutionState s,  final int subpopulation, 
      final int thread); 
 
    public abstract int produce(final int min, final int max, final int start, final int subpopulation, 
    final Individual[] inds, final EvolutionState state, 
    final int thread) throws CloneNotSupportedException; 
 
    public Object protoClone() throws CloneNotSupportedException 
 { 
 return super.clone(); 
 } 
 
    public final Object protoCloneSimple() 
 { 
 try { return protoClone(); } 
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 catch (CloneNotSupportedException e) 
     { throw new InternalError(); } 
 } 
 
    public abstract void preparePipeline(final Object hook); 
    } 
 
 
Fitness.java 
 
package fsa; 
import java.io.*; 
 
public interface Fitness extends Prototype 
    { 
    public static final String P_FITNESS = "fit"; 
 
    public abstract float fitness(); 
 
    public abstract boolean isIdealFitness(); 
 
    public abstract boolean equivalentTo(Fitness _fitness); 
 
    public abstract boolean betterThan(Fitness _fitness); 
 
    public abstract void printFitness(EvolutionState state, int log, 
          int verbosity); 
 
    public abstract void printFitness(final EvolutionState state, 
          final PrintWriter writer); 
 
    public abstract void readFitness(final EvolutionState state, 
         final LineNumberReader reader) 
 throws IOException, CloneNotSupportedException; 
    } 
 
 
 
FsaEvolution.java 
 
package fsa; 
import java.io.IOException; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.OptionalDataException; 
import java.io.PrintWriter; 
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public class FsaEvolution 
    { 
 
   public  static long inittime; 
   public  static long exittime; 
   public  static long tottime; 
 
    public static final String A_FILE = "-file"; 
 
    public static final String P_EVALTHREADS = "evalthreads"; 
 
    public static final String P_BREEDTHREADS = "breedthreads"; 
 
    public static final String P_SEED = "seed"; 
 
    public static final String V_SEED_TIME = "time"; 
 
    public static final String P_STATE = "state"; 
 
    public static void main(String[ ] args) 
 { 
 
 EvolutionState state=null; 
 ParameterDatabase parameters=null; 
 Output output; 
 MersenneTwisterFast[] random; 
 int[] seeds; 
 int breedthreads = 1; 
 int evalthreads = 1; 
 int x; 
 
 
 if (state==null) 
     { 
 
     for(x=0;x<args.length-1;x++) 
  if (args[x].equals(A_FILE)) 
      { 
      try 
   { 
   parameters=new ParameterDatabase( 
       new File(new File(args[x+1]).getAbsolutePath()), 
       args); 
   break; 
   } 
      catch(FileNotFoundException e) 
   { Output.initialError( 
       "A File Not Found Exception was generated upon" + 
       "reading the parameter file \"" + args[x+1] + 
       "\".\nHere it is:\n" + e); } 
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      catch(IOException e) 
   { Output.initialError( 
       "An IO Exception was generated upon reading the" + 
       "parameter file \"" + args[x+1] + 
       "\".\nHere it is:\n" + e); } 
      } 
     if (parameters==null) 
                 Output.initialError( 
      "No parameter file was specified." ); 
 
     breedthreads = parameters.getInt( 
  new Parameter(P_BREEDTHREADS),null,1); 
 
     if (breedthreads < 1) 
  Output.initialError("Number of breeding threads should be an integer >0.", 
        new Parameter(P_BREEDTHREADS)); 
 
     evalthreads = parameters.getInt( 
  new Parameter(P_EVALTHREADS),null,1); 
 
     if (evalthreads < 1) 
  Output.initialError("Number of eval threads should be an integer >0.", 
        new Parameter(P_EVALTHREADS)); 
 
     random = new MersenneTwisterFast[breedthreads > evalthreads ? 
          breedthreads : evalthreads]; 
     seeds = new int[breedthreads > evalthreads ? 
       breedthreads : evalthreads]; 
 
     int time = (int)System.currentTimeMillis(); 
                 String seed_message = "Seed: "; 
      

    for (x=0;x<random.length;x++) 
  { 
  int seed = 1; 
  String tmp_s = parameters.getString( 
      new Parameter(P_SEED).push(""+x),null); 
  if (tmp_s==null) 
      { 
      Output.initialError("Seed should be an integer.", 
     new Parameter(P_SEED).push(""+x)); 
 
      } 
  else if (tmp_s.equalsIgnoreCase(V_SEED_TIME)) 
      { 
      seed = time++; 
      } 
  else 
                                { 
      try 
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                               { 
                          seed = parameters.getInt(new Parameter(P_SEED).push(""+x),null); 
                          } 
                         catch (NumberFormatException e) 
                          { 
                          Output.initialError("Invalid Seed Value (must be an integer):\n" + e); 
                          } 
                     seed_message = seed_message + seed + " "; 
                     } 
 
  seeds[x] = seed; 
  } 
 
     for (x=0;x<random.length;x++) 
  { 
  for (int y=x+1;y<random.length;y++) 
  if (seeds[x]==seeds[y]) 
   { 

Output.initialError(P_SEED+"."+x+" ("+seeds[x]+") and 
"+P_SEED+"."+y+" ("+seeds[y]+") should not be the same seed."); 

   } 
  random[x] = new MersenneTwisterFast(seeds[x]); 
  } 
 
  
     state = (EvolutionState) 
  parameters.getInstanceForParameter(new Parameter(P_STATE),null, 
         EvolutionState.class); 
     state.parameters = parameters; 
     state.random = random; 
     state.output = output; 
     state.evalthreads = evalthreads; 
     state.breedthreads = breedthreads; 
 
     output.systemMessage("Threads:  breed/" + breedthreads + " eval/" + evalthreads); 
             output.systemMessage(seed_message); 
 
     try 
  { 
  inittime= System.currentTimeMillis(); 
 
  state.run(EvolutionState.C_STARTED_FRESH); 
 
  System.out.println("\n time=" + inittime); 
  extime=System.currentTimeMillis(); 
  System.out.println("\n time=" + extime); 
  tottime= System.currentTimeMillis()-inittime; 
  System.out.println("\n time=" + tottime); 
  } 
     catch (IOException e) 
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  { 
  Output.initialError( 
      "An IO Exception  generated " + e); 
  } 
 
     output.flush(); 
 
     PrintWriter pw = new PrintWriter(System.err); 
 
     pw.flush(); 
 
     System.err.flush(); 
     System.out.flush(); 
 
            output.close(); 
            } 
       } 
 
 } 
 
 
 
Group.java 
 
package fsa; 
import fsa.util.Parameter; 
 
public interface Group extends Setup, Cloneable 
    { 
    public Group emptyClone() throws CloneNotSupportedException; 
    } 
 
 
 
Individual.java 
 
package fsa; 
import java.io.*; 
 
public abstract class Individual implements Prototype 
    { 
    public Fitness fitness; 
 
    public Species species; 
 
    public boolean evaluated; 
 
    public Individual deepClone() 
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        { 
        return (Individual) protoCloneSimple(); 
        } 
 
 
    public Object protoClone() throws CloneNotSupportedException 
 { 
 Individual myobj = (Individual) (super.clone()); 
 
 if (myobj.fitness!=null) myobj.fitness = (Fitness)(fitness.protoClone()); 
 return myobj; 
 } 
 
    public final Object protoCloneSimple() 
 { 
 try { return protoClone(); } 
 catch (CloneNotSupportedException e) 
     { throw new InternalError(); } 
 } 
 
    public abstract void setup(final EvolutionState state, final Parameter base); 
 
 
    public abstract void printIndividual(final EvolutionState state, 
      final int log, 
      final int verbosity); 
 
    public abstract void printIndividual(final EvolutionState state, 
      final PrintWriter writer); 
 
    public abstract void readIndividual(final EvolutionState state, final LineNumberReader 
reader) 
 throws IOException, CloneNotSupportedException; 
 
 
    public long size() { return 0; } 
    } 
 
 
Initializer.java 
 
package fsa; 
import fsa.util.Parameter; 
 
 
public abstract class Initializer implements Singleton 
    { 
 
    public static final String P_POP = "pop"; 
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    public abstract Population initialPopulation(final EvolutionState state); 
    } 
 
 
Population.java  
 
 
package fsa; 
import fsa.util.Parameter; 
 
 
public class Population implements Group 
    { 
    public Subpopulation[] subpops; 
    public static final String P_SIZE = "subpops"; 
    public static final String P_SUBPOP = "subpop"; 
 
 
    public Group emptyClone() 
 { 
 try 
     { 
     Population p = (Population)clone(); 
     p.subpops = new Subpopulation[subpops.length]; 
     for(int x=0;x<subpops.length;x++) 
  p.subpops[x] = (Subpopulation)(subpops[x].emptyClone()); 
     return p; 
     } 
 catch (CloneNotSupportedException e) { throw new InternalError(); } 
 } 
 
    public void setup(final EvolutionState state, final Parameter base) 
 { 
 
 Parameter p; 
 
 p = base.push(P_SIZE); 
 int size = state.parameters.getInt(p,null,1); 
 if (size==0) 
     state.output.fatal("Population size must be >0.\n",base.push(P_SIZE)); 
 subpops = new Subpopulation[size]; 
 
 for (int x=0;x<size;x++) 
     { 
     p = base.push(P_SUBPOP).push(""+x); 

subpops[x] = (Subpopulation)(state.parameters.getInstanceForParameterEq 
(p,null,Subpopulation.class));   

     subpops[x].setup(state,p); 
     } 
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 } 
 
    public void populate(EvolutionState state) 
 { 
 // let's populate! 
 for(int x=0;x<subpops.length;x++) 
     subpops[x].populate(state); 
 } 
 
    } 
 
 
Problem.java 
 
package fsa; 
 
public abstract class Problem implements Prototype 
    { 
    public static final String P_PROBLEM = "problem"; 
 
    public Parameter defaultBase() 
 { 
 return new Parameter(P_PROBLEM); 
 } 
 
    public void setup(final EvolutionState state, final Parameter base) 
        { } 
 
    public Object protoClone() throws CloneNotSupportedException 
        { 
        return clone(); 
        } 
 
    public Object protoCloneSimple() 
        { 
        try { return protoClone(); } 
        catch (CloneNotSupportedException e) {  }   
        return null; 
        } 
    } 
 
 
Prototype.java 
 
package fsa; 
 
public interface Prototype extends Cloneable     

{ 
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    public Object protoClone() throws CloneNotSupportedException; 
 
    public Object protoCloneSimple(); 
 
    public void setup(final EvolutionState state, final Parameter base); 
 
    public Parameter defaultBase(); 
 
     } 
 
 
SelectionMethod.java 
 
package fsa 
 
 
public abstract class SelectionMethod  
    { 
    public static final int INDS_PRODUCED = 1; 
 
    public int typicalIndsProduced() { return INDS_PRODUCED; } 
 
    public abstract int produce(final int subpopulation, final EvolutionState state, final int 
thread); 
 
public boolean produces(final EvolutionState state, final Population newpop,  final int 
subpopulation, 
       final int thread) 
 { 
 return true; 
 } 
 
 
public void prepareToProduce(final EvolutionState s, final int subpopulation,  final int thread) 
 { return; } 
 
 
public void finishProducing(final EvolutionState s,  final int subpopulation, final int 
thread) 
 { return; } 
 
public int produce(final int min, final int max, final int start, final int subpopulation, final 
Individual[ ]  inds,  final EvolutionState state,  final int thread) throws 
CloneNotSupportedException 
 { 
 int n=INDS_PRODUCED; 
 if (n<min) n = min; 
 if (n>max) n = max; 
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 for(int q=0;q<n;q++) 
     inds[start+q] = state.population.subpops[subpopulation]. 
  individuals[produce(subpopulation,state,thread)]; 
 return n; 
 } 
 
    public void preparePipeline(Object hook) 
 { 
 
 } 
    } 
 
 
Setup.java 
 
package fsa; 
import java.io.Serializable; 
 
 
public interface Setup extends Serializable 
    { 
 
    public void setup(final EvolutionState state, final Parameter base); 
    } 
 
 
package fsa.edge.func 
 
Accept.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
public class Accept extends GPNode 
    { 
    public String toString() { return "a"; } 
 

public void checkConstraints(final EvolutionState state, final int tree,  final GPIndividual 
typicalIndividual,  final Parameter individualBase) 

 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=1) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 

Delhi College of Engineering, Delhi   83



                                                                      A Genetic Approach to Evolve Finite State Automata 

    public void eval(final EvolutionState state, final int thread,  final GPData input, 
final ADFStack stack, final GPIndividual individual,  final Problem 
problem) 

 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 prob.accept[prob.to[edge]] = true; 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
 
Bud.java 
 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
 
public class Bud extends GPNode 
    { 
    public String toString() { return "bud"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual,  final Parameter 
individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 

state.output.error("Incorrect number of children for node " + toStringForError() + " at " 
+  individualBase); 

 } 
 
    public void eval (final EvolutionState state,  final int thread,  final GPData input, 

final ADFStack stack,  final GPIndividual individual,  final Problem 
problem) 

 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 if (prob.from.length==prob.numEdges) 
     { 
     int[] from_ = new int[prob.numEdges*2]; 
     int[] to_ = new int[prob.numEdges*2]; 
     int[] reading_ = new int[prob.numEdges*2]; 
     System.arraycopy(prob.from,0,from_,0,prob.from.length); 
     System.arraycopy(prob.to,0,to_,0,prob.to.length); 
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     System.arraycopy(prob.reading,0,reading_,0,prob.reading.length); 
     prob.from = from_; 
     prob.to = to_; 
     prob.reading = reading_; 
     } 
 
 if (prob.start.length==prob.numNodes) 
     { 
     boolean[] start_ = new boolean[prob.numNodes*2]; 
     boolean[] accept_ = new boolean[prob.numNodes*2]; 
     System.arraycopy(prob.start,0,start_,0,prob.start.length); 
     System.arraycopy(prob.accept,0,accept_,0,prob.accept.length); 
     prob.start = start_; 
     prob.accept = accept_; 
     } 
 
 int newedge = prob.numEdges; 
 prob.numEdges++; 
 int newnode = prob.numNodes; 
 prob.numNodes++; 
 
 prob.accept[newnode] = false; 
 prob.start[newnode] = false; 
 
 prob.from[newedge] = prob.to[edge]; 
 prob.to[newedge] = newnode; 
 prob.reading[newedge] = prob.reading[edge]; 
 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 
 ((EdgeData)(input)).edge = newedge; 
 
 children[1].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
 
Double.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
public class Double extends GPNode 
    { 
    public String toString() { return "double"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
  final GPIndividual typicalIndividual,  final Parameter individualBase) 
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 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
public void eval(final EvolutionState state,  final int thread,  final GPData input,  final 
ADFStack stack,   final GPIndividual individual,  final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 if (prob.from.length==prob.numEdges) 
     { 
     int[] from_ = new int[prob.numEdges*2]; 
     int[] to_ = new int[prob.numEdges*2]; 
     int[] reading_ = new int[prob.numEdges*2]; 
     System.arraycopy(prob.from,0,from_,0,prob.from.length); 
     System.arraycopy(prob.to,0,to_,0,prob.to.length); 
     System.arraycopy(prob.reading,0,reading_,0,prob.reading.length); 
     prob.from = from_; 
     prob.to = to_; 
     prob.reading = reading_; 
     } 
 
 int newedge = prob.numEdges; 
 prob.numEdges++; 
 prob.from[newedge] = prob.from[edge]; 
 prob.to[newedge] = prob.to[edge]; 
 prob.reading[newedge] = prob.reading[edge]; 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 
 ((EdgeData)(input)).edge = newedge; 
 
 children[1].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
Epsilon.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
public class Epsilon extends GPNode 
    { 
    public String toString() { return "e"; } 
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    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
    public void eval(final EvolutionState state,  final int thread,  final GPData input, 
       final ADFStack stack,  final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 prob.reading[edge] = Edge.EPSILON; 
 } 
    } 
 
 
Loop.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.app.edge.*; 
 
public class Loop extends GPNode 
    { 
    public String toString() { return "loop"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
    public void eval(final EvolutionState state,  final int thread,  final GPData input, 
       final ADFStack stack,  final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
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 Edge prob = (Edge)problem; 
 
 if (prob.from.length==prob.numEdges) 
     { 
     int[] from_ = new int[prob.numEdges*2]; 
     int[] to_ = new int[prob.numEdges*2]; 
     int[] reading_ = new int[prob.numEdges*2]; 
     System.arraycopy(prob.from,0,from_,0,prob.from.length); 
     System.arraycopy(prob.to,0,to_,0,prob.to.length); 
     System.arraycopy(prob.reading,0,reading_,0,prob.reading.length); 
     prob.from = from_; 
     prob.to = to_; 
     prob.reading = reading_; 
     } 
 
 int newedge = prob.numEdges; 
 prob.numEdges++; 
 prob.from[newedge] = prob.to[edge]; 
 prob.to[newedge] = prob.to[edge];  // same 
 prob.reading[newedge] = prob.reading[edge]; 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 
 ((EdgeData)(input)).edge = newedge; 
 
 children[1].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
One.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
public class One extends GPNode 
    { 
    public String toString() { return "1"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
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    public void eval(final EvolutionState state, final int thread,  final GPData input, 
       final ADFStack stack,  final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 prob.reading[edge] = Edge.READING1; 
 } 
    } 
 
Reverse.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.edge.*; 
 
public class Reverse extends GPNode 
    { 
    public String toString() { return "reverse"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=1) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
    public void eval(final EvolutionState state,  final int thread,  final GPData input, 
       final ADFStack stack,  final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 int swap = prob.from[edge]; 
 prob.from[edge] = prob.to[edge]; 
 prob.to[edge] = swap; 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
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Split.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.app.edge.*; 
 
public class Split extends GPNode 
    { 
    public String toString() { return "split"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
    public void eval(final EvolutionState state,  final int thread,  final GPData input, 
       final ADFStack stack,  final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 if (prob.from.length==prob.numEdges) 
     { 
     int[] from_ = new int[prob.numEdges*2]; 
     int[] to_ = new int[prob.numEdges*2]; 
     int[] reading_ = new int[prob.numEdges*2]; 
     System.arraycopy(prob.from,0,from_,0,prob.from.length); 
     System.arraycopy(prob.to,0,to_,0,prob.to.length); 
     System.arraycopy(prob.reading,0,reading_,0,prob.reading.length); 
     prob.from = from_; 
     prob.to = to_; 
     prob.reading = reading_; 
     } 
 
 if (prob.start.length==prob.numNodes) 
     { 
     boolean[] start_ = new boolean[prob.numNodes*2]; 
     boolean[] accept_ = new boolean[prob.numNodes*2]; 
     System.arraycopy(prob.start,0,start_,0,prob.start.length); 
     System.arraycopy(prob.accept,0,accept_,0,prob.accept.length); 
     prob.start = start_; 
     prob.accept = accept_; 
     } 
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 int newedge = prob.numEdges; 
 prob.numEdges++; 
 int newnode = prob.numNodes; 
 prob.numNodes++; 
 
 // set up new node 
 prob.accept[newnode] = false; 
 prob.start[newnode] = false; 
 
 // set up new edge 
 prob.from[newedge] = newnode; 
 prob.to[newedge] = prob.to[edge]; 
 prob.reading[newedge] = prob.reading[edge]; 
 // modify old edge 
 prob.to[edge] = newnode; 
 
 // pass the original edge down the left child 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 
 // reset input for right child 
 ((EdgeData)(input)).edge = newedge; 
 
 // pass the new edge down the right child 
 
 children[1].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
 
Start.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.app.edge.*; 
 
public class Start extends GPNode 
    { 
    public String toString() { return "s"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=1) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
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    public void eval(final EvolutionState state, final int thread, final GPData input, 
       final ADFStack stack, final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 prob.start[prob.to[edge]] = true; 
 
 // pass the edge down 
 
 children[0].eval(state,thread,input,stack,individual,problem); 
 } 
    } 
 
 
Zero.java 
 
package fsa.edge.func; 
import fsa.*; 
import fsa.app.edge.*; 
 
public class Zero extends GPNode 
    { 
    public String toString() { return "0"; } 
 
    public void checkConstraints(final EvolutionState state,  final int tree, 
     final GPIndividual typicalIndividual, final Parameter 
individualBase) 
 { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " + 
          toStringForError() + " at " + 
          individualBase); 
 } 
 
    public void eval(final EvolutionState state, final int thread, final GPData input, 
       final ADFStack stack, final GPIndividual individual, 
       final Problem problem) 
 { 
 int edge = ((EdgeData)(input)).edge; 
 Edge prob = (Edge)problem; 
 
 prob.reading[edge] = Edge.READING0; 
 } 
    } 
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package fsa.edge 
 
 
EdgeData.java 
 
package fsa.edge; 
import fsa.util.*; 
import fsa.*; 
 
public class EdgeData extends GPData 
    { 
 
    public int edge; 
 
    public GPData copyTo(final GPData gpd) 
 {  

((EdgeData)gpd).edge = edge; return gpd; 
} 

    } 
 
 
EdgeStatistics.java 
 
package fsa.app.edge; 
import fsa.*; 
import fsa.util.*; 
 
public class EdgeStatistics extends KozaStatistics 
    { 
    public void finalStatistics(final EvolutionState state, final int result) 
 { 
 super.finalStatistics(state,result); 
 
 
 ((SimpleProblemForm)(state.evaluator.p_problem.protoCloneSimple())).describe( 
     best_of_run[0], state, 0, statisticslog,Output.V_NO_GENERAL); 
 } 
 
    } 
 
 
Edge.java 
 
package fsa.edge; 
import java.io.*; 
import java.util.*; 
import fsa.*; 
import fsa.gp.*; 
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public class Edge extends GPProblem implements SimpleProblemForm 
    { 
    public static final String P_DATA = "data"; 
    public static final String P_GENERALIZE = "generalize"; 
    public static final String P_ALLPOS = "allpos"; 
    public static final String P_ALLNEG = "allneg"; 
    public static final String P_TESTPOS = "testpos"; 
    public static final String P_TESTNEG = "testneg"; 
    public static final String P_MAXTEST = "maxtest"; 
 
    public static final int MIN_ARRAY_SIZE = 64; 
 
    public static final int BAD = 0; 
    public static final int READING0 = 1; 
    public static final int READING1 = 2; 
    public static final int EPSILON = 3; 
 
    public EdgeData input; 
 
    public boolean[] start; 
    public boolean[] accept; 
    public int numNodes; 
    public int[] from; 
    public int[] to; 
    public int[] reading; 
    public int numEdges; 
 
    public int[][] reading1; 
    public int[] reading1_l; 
    public int[][] reading0; 
    public int[] reading0_l; 
    public int[][] epsilon; 
    public int[] epsilon_l; 
 
    public boolean[][] posT; 
    public boolean[][] negT; 
    public boolean[][] posA; 
    public boolean[][] negA; 
 
    public boolean[] state1; 
    public boolean[] state2; 
 
    public boolean generalize; 
 
    public Object protoClone() throws CloneNotSupportedException 
 { 
 
 Edge myobj = (Edge) (super.protoClone()); 
 myobj.input = (EdgeData)(input.protoClone()); 
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 return myobj; 
 } 
 
    public static String fill(int num, char c) 
 { 
 char[] buf = new char[num]; 
 for(int x=0;x<num;x++) buf[x]=c; 
 return new String(buf); 
 } 
 
 
    public String printCurrentNFA() 
 { 
 int strsize = String.valueOf(numNodes).length(); 
 String str = ""; 
 for(int x=0;x<numNodes;x++) 
     { 
     str += justify(String.valueOf(x),strsize,J_RIGHT) + " " + 
  (start[x] ? "S" : " ") + (accept[x] ? "A" : " ") + 
  "=> "; 
 
     if (reading0_l[x]>0) 
  { 
  str += "(0:"; 
  for(int y=0;y<reading0_l[x];y++) 
      str += ((y>0 ? "," : "") + String.valueOf(reading0[x][y])); 
  str += ") "; 
  } 
 
     if (reading1_l[x]>0) 
  { 
  str += "(1:"; 
  for(int y=0;y<reading1_l[x];y++) 
      str += ((y>0 ? "," : "") + String.valueOf(reading1[x][y])); 
  str += ") "; 
  } 
 
     if (epsilon_l[x]>0) 
  { 
  str += "(e:"; 
  for(int y=0;y<epsilon_l[x];y++) 
      str += ((y>0 ? "," : "") + String.valueOf(epsilon[x][y])); 
  str += ")"; 
  } 
     str += "\n"; 
     } 
 return str; 
 } 
 
    public boolean[][] restrictToSize(int size, boolean[][]cases, EvolutionState state, int thread) 
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 { 
 int csize = cases.length; 
 if (csize < size) return cases; 
 
 Hashtable hash = new Hashtable(); 
 for(int x=0;x<size;x++) 
     { 
     while(true) 
  { 
  boolean[] b = cases[state.random[thread].nextInt(csize)]; 
  if (!hash.contains(b)) { hash.put(b,b); break; } 
  } 
     } 
 
 boolean[ ][ ] newcases = new boolean[size][ ]; 
 Enumeration e = hash.keys(); 
 for(int x=0;x<size;x++) 
     { 
     newcases[x] = (boolean[ ])(e.nextElement()); 
     } 
 
 
 QuickSort.qsort(newcases, 
   new SortComparator() 
       { 
       public boolean lt(Object a, Object b) 
    { 
    boolean[] aa = (boolean[])a; 
    boolean[] bb = (boolean[])b; 
    for(int x=0;x<Math.min(aa.length,bb.length);x++) 
        if (!aa[x] && bb[x]) return true; 
        else if (aa[x] && !bb[x]) return false; 
    if (aa.length<bb.length) return true; 
    return false; 
    } 
 
       public boolean gt(Object a, Object b) 
    { 
    boolean[] aa = (boolean[])a; 
    boolean[] bb = (boolean[])b; 
    for(int x=0;x<Math.min(aa.length,bb.length);x++) 
        if (!aa[x] && bb[x]) return false; 
        else if (aa[x] && !bb[x]) return true; 
    if (aa.length>bb.length) return true; 
    return false; 
    } 
       }); 
 return newcases; 
 } 
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    public boolean[][] slurp(final File f) 
 throws IOException 
 { 

LineNumberReader r = new LineNumberReader(new InputStreamReader(new 
FileInputStream(f))); 

 String bits; 
 
 Vector v = new Vector(); 
 while((bits=r.readLine())!=null) 
     { 
     bits = bits.trim(); 
     int len = bits.length(); 
     if (len==0) continue; // empty line 
     if (bits.charAt(0)=='#') continue;  // comment 
     if (bits.equalsIgnoreCase("e")) 
  v.addElement(new boolean[0]); 
     else 
  { 
  boolean[] b = new boolean[len]; 
  for(int x=0;x<len;x++) 
      b[x] = (bits.charAt(x)=='1'); 
  v.addElement(b); 
  } 
     } 
 r.close(); 
 boolean[][] result = new boolean[v.size()][]; 
 v.copyInto(result); 
 return result; 
 } 
 
 
    public void printBits(final EvolutionState state, final boolean[][] bits) 
 { 
 StringBuffer s; 
 for(int x=0;x<bits.length;x++) 
     { 
     s = new StringBuffer(); 
     for(int y=0;y<bits[x].length;y++) 
  if (bits[x][y]) s.append('1'); 
  else s.append('0'); 
     if (s.length()==0) state.output.message("(empty)"); 
     else state.output.message(s.toString()); 
     } 
 } 
 
 
    public void setup(final EvolutionState state,  final Parameter base) 
 { 
 super.setup(state,base); 
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 File ap = null; 
 File an = null; 
 File tp = null; 
 File tn = null; 
 int restriction; 
 
 if (generalize) 
     { 
     ap = state.parameters.getFile(base.push(P_ALLPOS),null); 
     an = state.parameters.getFile(base.push(P_ALLNEG),null); 
     } 
 
 tp = state.parameters.getFile(base.push(P_TESTPOS),null); 
 tn = state.parameters.getFile(base.push(P_TESTNEG),null); 
 
 if (generalize) 
     { 
     if (ap==null) state.output.error("File doesn't exist", base.push(P_ALLPOS)); 
     if (an==null) state.output.error("File doesn't exist", base.push(P_ALLNEG)); 
     } 
 
 if (tp==null) state.output.error("File doesn't exist", base.push(P_TESTPOS)); 
 if (tn==null) state.output.error("File doesn't exist", base.push(P_TESTNEG)); 
 state.output.exitIfErrors(); 
 
 if (generalize) 
     { 
     if (!ap.canRead()) state.output.error("File cannot be read", base.push(P_ALLPOS)); 
     if (!an.canRead()) state.output.error("File cannot be read", base.push(P_ALLNEG)); 
     } 
 
 if (!tp.canRead()) state.output.error("File cannot be read", base.push(P_TESTPOS)); 
 if (!tn.canRead()) state.output.error("File cannot be read", base.push(P_TESTNEG)); 
 state.output.exitIfErrors(); 
 
 if (generalize) 
     { 
     state.output.message("Reading Positive Examples"); 
     try { posA = slurp(ap); } 
     catch(IOException e)  

{ state.output.error("IOException reading file (here it is)\n" + e, 
base.push(P_ALLPOS)); } 

     state.output.message("Reading Negative Examples"); 
     try { negA = slurp(an); } 
     catch(IOException e)  

{ state.output.error( "IOException reading file (here it is)\n" + e, 
base.push(P_ALLNEG)); } 

     } 
 
 state.output.message("Reading Positive Training Examples"); 
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try { posT = slurp(tp); } 

  
catch(IOException e)  

{ state.output.error( "IOException reading file (here it is)\n" + e, 
base.push(P_TESTPOS)); } 

 if ((restriction = state.parameters.getInt( 
   base.push(P_MAXTEST),null,1))>0) 
     { 
     state.output.message("Restricting to <= " + restriction + " Unique Examples"); 
     posT = restrictToSize(restriction,posT,state,0); 
     } 
 
 state.output.message(""); 
 printBits(state,posT); 
 state.output.message(""); 
 
 state.output.message("Reading Negative Training Examples"); 
 try { negT = slurp(tn); } 
 catch(IOException e)  

{ state.output.error(  "IOException reading file (here it is)\n" + e, 
base.push(P_TESTNEG)); } 
 if ((restriction = state.parameters.getInt( 
   base.push(P_MAXTEST),null,1))>0) 
     { 
     state.output.message("Restricting to <= " + restriction + " Unique Examples"); 
     negT = restrictToSize(restriction,negT,state,0); 
     } 
 
 state.output.message(""); 
 printBits(state,negT); 
 state.output.message(""); 
 
 state.output.exitIfErrors(); 
 
 
 input = (EdgeData) state.parameters.getInstanceForParameterEq( 
     base.push(P_DATA), null, EdgeData.class); 
 input.setup(state,base.push(P_DATA)); 
 } 
 
 
    public boolean test(final boolean[] sample) 
 { 
 final boolean STATE_1 = false; 
 final boolean STATE_2 = true; 
 boolean st = STATE_1; 
 
 for(int x=0;x<numNodes;x++) 
     state1[x]=start[x]; 
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 for(int x=0;x<sample.length;x++) 
     { 
     if (st==STATE_1) 
  { 
  for(int y=0;y<numNodes;y++) 
      state2[y]=false; 
  for(int y=0;y<numNodes;y++) 
      if (state1[y]) 
   { 
   // advance edges 
   if (sample[x]) // reading a 1 
       for(int z=0;z<reading1_l[y];z++) 
    state2[reading1[y][z]] = true; 
   else  // reading a 0 
       for(int z=0;z<reading0_l[y];z++) 
    state2[reading0[y][z]] = true; 
   } 
 
 
  // advance along epsilon boundary 
  boolean moreEpsilons = true; 
  while(moreEpsilons) 
      { 
      moreEpsilons = false; 
      for(int y=0;y<numNodes;y++) 
   if (state2[y]) 
       for(int z=0;z<epsilon_l[y];z++) 
    { 
    if (!state2[epsilon[y][z]]) moreEpsilons = true; 
    state2[epsilon[y][z]] = true; 
    } 
      } 
  } 
 
 
     else //if (st==STATE_2) 
  { 
  for(int y=0;y<numNodes;y++) 
      state1[y]=false; 
  for(int y=0;y<numNodes;y++) 
      if (state2[y]) 
   { 
   // advance edges 
   if (sample[x]) // reading a 1 
       for(int z=0;z<reading1_l[y];z++) 
    state1[reading1[y][z]] = true; 
   else  // reading a 0 
       for(int z=0;z<reading0_l[y];z++) 
    state1[reading0[y][z]] = true; 
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   } 
 
  // advance along epsilon boundary 
  boolean moreEpsilons = true; 
  while(moreEpsilons) 
      { 
      moreEpsilons = false; 
      for(int y=0;y<numNodes;y++) 
   if (state1[y]) 
       for(int z=0;z<epsilon_l[y];z++) 
    { 
    if (!state1[epsilon[y][z]]) moreEpsilons = true; 
    state1[epsilon[y][z]] = true; 
    } 
      } 
  } 
 
     st = !st; 
     } 
 
 if (st==STATE_1)   
     { 
     for(int x=0;x<numNodes;x++) 
  if (accept[x] && state1[x]) return true; 
     } 
 else // (st==STATE_2) 
     { 
     for(int x=0;x<numNodes;x++) 
  if (accept[x] && state2[x]) return true; 
     } 
 return false; 
 } 
 
 
 
    int totpos; 
    int totneg; 
 
// Tests an individual, returning its successful positives in totpos and its successful negatives in 
totneg. 
    
 public void fullTest(final EvolutionState state, final Individual ind, final int threadnum, 
    boolean[ ][ ] pos,  boolean[ ][ ] neg) 
 { 
 numNodes = 2; 
 numEdges = 1; from[0]=0; to[0]=1; 
 start[0]=start[1]=accept[0]=accept[1]=false; 
 ((EdgeData)input).edge = 0; 
 
 ((GPIndividual)ind).trees[0].child.eval( 
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     state,threadnum,input,stack,((GPIndividual)ind),this); 
 
 if (reading1.length < numNodes || 
     reading1[0].length < numEdges) 
     { 
     reading1 = new int[numNodes*2][numEdges*2]; 
     reading0 = new int[numNodes*2][numEdges*2]; 
     epsilon = new int[numNodes*2][numEdges*2]; 
     reading1_l = new int[numNodes*2]; 
     reading0_l = new int[numNodes*2]; 
     epsilon_l = new int[numNodes*2]; 
     } 
 
 for(int y=0;y<numNodes;y++) 
     { 
     reading1_l[y]=0; 
     reading0_l[y]=0; 
     epsilon_l[y]=0; 
     } 
 
 for(int y=0;y<numEdges;y++) 
     switch(reading[y]) 
  { 
  case READING0: 
      reading0[from[y]][reading0_l[from[y]]++]=to[y]; 
      break; 
  case READING1: 
      reading1[from[y]][reading1_l[from[y]]++]=to[y]; 
      break; 
  case EPSILON: 
      epsilon[from[y]][epsilon_l[from[y]]++]=to[y]; 
      break; 
  } 
 
 if (state1.length < numNodes) 
     { 
     state1 = new boolean[numNodes*2]; 
     state2 = new boolean[numNodes*2]; 
     } 
 
 
        totpos=0; 
        totneg=0; 
 for(int y=0;y<pos.length;y++) 
     if (test(pos[y])) totpos++; 
 for(int y=0;y<neg.length;y++) 
     if (!test(neg[y])) totneg++; 
 } 
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    public void evaluate(final EvolutionState state,  final Individual ind,  final int threadnum) 
 { 
 if (start==null) 
     { 
     start = new boolean[MIN_ARRAY_SIZE]; 
     accept = new boolean[MIN_ARRAY_SIZE]; 
     reading = new int[MIN_ARRAY_SIZE]; 
     from = new int[MIN_ARRAY_SIZE]; 
     to = new int[MIN_ARRAY_SIZE]; 
     state1 = new boolean[MIN_ARRAY_SIZE]; 
     state2 = new boolean[MIN_ARRAY_SIZE]; 
     reading1 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
     reading0 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
     epsilon = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
     reading1_l = new int[MIN_ARRAY_SIZE]; 
     reading0_l = new int[MIN_ARRAY_SIZE]; 
     epsilon_l = new int[MIN_ARRAY_SIZE]; 
     } 
 
 if (!ind.evaluated)   
     { 
     fullTest(state,ind,threadnum,posT,negT); 
 
     KozaFitness f = ((KozaFitness)ind.fitness); 
 
     f.setFitness(state,(float) 
    (1.0 - ((double)(totpos + totneg)) / 
     (posT.length + negT.length))); 
 
     f.hits = totpos + totneg; 
     ind.evaluated = true; 
     } 
 } 
 
 
    public void describe(final Individual ind,  final EvolutionState state,  final int threadnum, 
final int log, 
    final int verbosity) 
 { 
 if (start==null) 
     { 
     start = new boolean[MIN_ARRAY_SIZE]; 
     accept = new boolean[MIN_ARRAY_SIZE]; 
     reading = new int[MIN_ARRAY_SIZE]; 
     from = new int[MIN_ARRAY_SIZE]; 
     to = new int[MIN_ARRAY_SIZE]; 
     state1 = new boolean[MIN_ARRAY_SIZE]; 
     state2 = new boolean[MIN_ARRAY_SIZE]; 
     reading1 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
     reading0 = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
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     epsilon = new int[MIN_ARRAY_SIZE][MIN_ARRAY_SIZE]; 
     reading1_l = new int[MIN_ARRAY_SIZE]; 
     reading0_l = new int[MIN_ARRAY_SIZE]; 
     epsilon_l = new int[MIN_ARRAY_SIZE]; 
     } 
 
 if (generalize) 
     fullTest(state,ind,threadnum,posA,negA); 
 else 
     fullTest(state,ind,threadnum,posT,negT); 
 
 if (generalize) 
     state.output.println("\n\nBest Individual's Generalization Score...\n" + 
     "Pos: " + totpos + "/" + posA.length + 
     " Neg: " + totneg + "/" + negA.length + 
     "\n(pos+neg)/(allpos+allneg):     " + 
     (float) 
     (((double)(totpos+totneg))/(posA.length+negA.length)), 
      verbosity,log); 
 
 state.output.println("\nBest Individual's NFA\n=====================\n", 
        verbosity,log); 
 
 state.output.println(printCurrentNFA(),verbosity,log); 
 } 
 
    } 
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