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AABBSSTTRRAACCTT  

The automatic diagnosis of diseases like breast cancer, liver disorder and diabetes are 

real-world medical problems. A novel approach for diagnosing these diseases is 

undertaken. This approach based on the evolution of the entire fuzzy inference system for 

each diagnosis problem, shows that, it is possible to obtain diagnostic systems exhibiting 

high performance, coupled with interpretability and a confidence measure. The evolved 

fuzzy systems are able to accurately predict the outcome of a human decision-making 

process, while providing an understandable explanation of the underlying reasoning.  

Fuzzy logic provides a formal framework for constructing systems exhibiting both good 

classification performance and interpretability. Linguistically, fuzzy system represents 

knowledge in the form of rules, a natural way for explaining decision processes. 

Optimization of both knowledge base and rule base is critical to the performance of a 

fuzzy system. Genetic algorithm, a genetically inspired optimization technique is used to 

evolve the entire fuzzy system. The concept of evolutionary fuzzy modeling - the design 

of fuzzy inference systems using evolutionary algorithms is the basis for the decision tool.  

The algorithm is successfully applied to model the decision processes involved in the 

above mentioned three diagnostic problems. The evolved fuzzy system is finally tested 

for diagnosis. The diagnostic decision tool has been implemented and tested in MATLAB 

7.0.  
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CHAPTER I  

 INTRODUCTION 

1.1 Problem Description 

A major class of problems in medical science involves the diagnosis of disease, based 

upon various tests performed upon the patient. When several tests are involved, the 

ultimate diagnosis may be difficult to obtain, even for a medical expert. Such data stored 

in database is growing at a phenomenal rate. Although data collection has become easier, 

the difficulties required to retrieve relevant knowledge from the database has become 

significantly increased. Obviously, such kind of raw data is rarely of direct benefit. So, 

the value of these data is predicated on the ability to extract information useful for 

decision support or exploration, and understanding the phenomenon governing the data 

source. Traditionally, data analysis to retrieve the knowledge by the analyst(s) was a 

manual process instead of the automatic process. However, those manual processes easily 

break down while the size of the data grows and the number of dimensions increases. For 

dealing with the scale of data manipulation, exploration going beyond human capacities, 

the computing technologies for automating the process is desired and need to be 

developed. This has given rise, over the past few decades, to computerized diagnostic 

tools, intended to aid the physician in making sense out of the welter of data. A prime 

target for such computerized tools is in the domain of cancer diagnosis. 

 Present-day databases contain a huge amount of data concerning human decisions that 

should be used to model decision-making processes. These data are, however, just a 

collection of recorded facts that do not contain by themselves any information or 

knowledge useful to explain or to predict the decisions. There exist many methods that, 

based on these data, can build systems to predict the outcome of a given decision. Albeit 

useful and widely used, these methods and systems lack the explanatory power required 

to transmit knowledge to humans.  A good computerized tool for medical decision 

support should possess two characteristics, which are often in conflict.  

• The tool must attain the highest possible performance, i.e. diagnose and classify  

the presented cases correctly. Moreover, it would be highly desirable for it to have 

a  degree of confidence: the system not only provides a binary diagnosis ,but also 

outputs a numeric value that represents the degree to which the system is 

confident about its response. 



 

 

• It would be highly beneficial for such a diagnostic system to be human-friendly, 

exhibiting good  interpretability. This means that the physician is not faced with a 

black box that simply spouts answers with no explanation; rather, we would like 

for the system to provide some insight as to how it derives its outputs. 

• Another crucial factor of a hybrid system is the speed of process and the time 

needed to produce a generalized high-performance decision model. 

1.2 Objective of study 

The objective of the dissertation is to obtain a fuzzy-genetic diagnostic decision support 

system in the field of medicine. Breast cancer, Lung cancer, Liver cancer , diabetes 

diagnosis are the prime focus of this dissertation. The general problem that motivates this  

thesis is the  development of an approach to automatically construct systems which 

predict, as accurately as possible, the outcome of a human decision-making process while 

providing an understandable explanation of a possible reasoning leading to it. This report 

investigates a promising method of control engineering, evolutionary fuzzy  modeling. 

Fuzzy-genetics are soft computing techniques. The strengths of genetic algorithms and 

fuzzy logic are explained with the express purpose of proposing how, when combined, a 

useful and workable method of diagnosis  may result. This dissertation describes the use 

of a Hybrid Fuzzy-Genetic Programming system to diagnose respective diagnostic classes  

in large databases. It does this by evolving an entire fuzzy inference system within a 

chromosome; generalizing from a training set of labeled classes. Eventually after proper 

validation, diagnosis can be done using the optimized fuzzy inference system. 

1.3 Proposed solution 

In this thesis there is combination of two methodologies-fuzzy systems and evolutionary 

algorithms—so as to automatically produce systems for medical diagnosis. The proposed 

solution is a diagnostic decision support - a classifier system. A classifier system is 

basically evolution based learning system .Once the computer or the radiologist extracts 

relevant features, a classifier must select and optimally merge them into a diagnostic 

decision aid. 

The fuzzy classifier system is a machine learning system which employs linguistic rules 

and fuzzy sets in its representation and an evolutionary algorithm for rule and 

membership function parameter discovery. In a fuzzy classification system, a case or an 

object can be classified by applying a set of fuzzy rules based on the linguistic values of 



 

 

its attributes.  It therefore combines an easily understood representation with a general 

purpose search method. The major advantage of fuzzy systems is that they favor 

interpretability, however, finding good fuzzy systems can be quite an arduous task. This 

is where evolutionary algorithms step in, enabling the automatic production of fuzzy 

systems, based on a database of training cases. The resulting approach,  is a fuzzy 

modeling technique, based on evolution, conceived to provide high numeric precision 

(accuracy), while incurring as little a loss of linguistic descriptive power (interpretability) 

as possible. The use of Genetic algorithms in classification is an attempt to effectively 

exploit the large search space usually associated with classification tasks. 

In this solution two coevolving parameters are defined: rules and membership functions. 

It proves to be very efficient in designing highly accurate and interpretable systems to 

solve hard problems, in particular modeling medical diagnostic decision processes. 

The proposed diagnostic system for breast cancer is shown in the figure 1.1. Same is 

applied for diagnosis of other diagnostic datasets. It consists of a fuzzy system and a 

threshold unit. The fuzzy system, upon presentation of an input (database entry), proceeds 

to produce a continuous appraisal value. This value is then passed along to the threshold 

unit which produces the final binary output e.g. benign or malignant for breast cancer 

diagnosis. The threshold value is assigned based on the knowledge of the problem at hand 

by the user. The fuzzy subsystem’s membership functions and rule base, both are 

optimized. The appraisal value can accompany the final output of the diagnostic system, 

serving as a confidence measure. This demonstrates an advantage of the ability to output 

not only a binary classification but also a  measure representing the system’s confidence 

in its output. 



 

 

 

1.4 Features of Fuzzy Logic 

Fuzzy logic is a computational paradigm that provides a mathematical tool for 

representing and manipulating information in a way that resembles human 

communication and reasoning processes. It is based on the assumption that, in contrast to 

Boolean logic, a statement can be partially true (or false), and composed of imprecise 

concepts. Fuzzy theory provides us linguistic representation such as slow and fast and 

thus uses truth degrees, which are represented as grades of a membership function. Fuzzy 

logic is a powerful tool for non-probabilistic and ill-defined structures. Fuzzy inference 

system is based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy 

inferences. A fuzzy inference system implements a mapping from its input space to 

output space by a number of fuzzy if-then rules.  

Fuzzy Logic systems are rule-based systems in which an input is first fuzzified (i.e., 

converted from a crisp number to a fuzzy set) and subsequently processed by an inference 

engine that retrieves knowledge in the form of fuzzy rules contained in a rule-base. The 

fuzzy sets computed by the fuzzy inference as the output of each rule are then composed 

and defuzzified .The fuzzy subsystem shown in figure 1.1 shows the main components of 

a typical fuzzy inference system performing the following steps: 

1. Fuzzification 

Figure 1.1 Proposed Diagnostic system 



 

 

It is the process of transformation of crisp measurement into corresponding set of 

degree of belonging. Before the measurements are fuzzified, however, they should 

be first normalized to the range of universe of discourse. 

2. Inferencing 

Inferencing is the process of reasoning the fuzzy set value according to the rules to 

estimate/recognize the objectives. A rule base is a summary of a set of logic 

properties with one or more antecedents and inferred conclusions. 

3. Defuzzification 

At the output of the fuzzy inference there will always be a fuzzy set that is 

obtained by the composition of the fuzzy sets output by each of the rules .In order 

to be used in the real world, the fuzzy output needs to be interfaced to the crisp 

domain by the defuzzifier. The output fuzzy set indicates what the output is in 

fuzzy terms. The crisp output corresponding to a certain fuzzy output set should 

be a number that takes into account all the points in the support of this fuzzy 

output, weighing the points with high membership degree more than the ones with 

small or no membership degree. This corresponds to a center of gravity operation. 

Thus, one widely used defuzzifier is the centroid defuzzifier that transforms a 

fuzzy output set into a number that is the x-coordinate of the set’s center of 

gravity.  

Advantages of Fuzzy Logic 

 Fuzzy logic is conceptually easy to understand. The mathematical concepts behind 

fuzzy reasoning are very simple. Fuzzy logic is based on natural language.  Since 

fuzzy logic is built atop the structures of qualitative description used in everyday 

language, fuzzy logic is easy to use. 

 Fuzzy logic is tolerant of imprecise data. 

 Fuzzy logic can model nonlinear functions of arbitrary complexity. 

 Fuzzy logic can be built on top of the experience of experts. Thus fuzzy logic lets 

you rely on the experience of people who already understand your system. 

 Fuzzy logic can be blended with conventional control techniques. 

 



 

 

1.5 Features of Genetic Algorithm 

Genetic Algorithm is one of the evolutionary optimization method techniques that 

perform parallel, stochastic, but direct search method to evolve the best solution. It is 

fundamentally iterative generation and alternation processes operating on a set of 

candidate solutions in a given problem space. Genetic algorithms are usually applied to 

spaces which are too large to be exhaustively searched.  

Genetic Algorithms simulate the survival of the fittest among individuals, encoding a 

possible solution, over consecutive generation for solving a problem. The individuals in 

the population are then made to go through a process of evolution. A fitness score is 

assigned to each solution representing the abilities of an individual to ‘compete’. The 

individual with the optimal fitness score is sought.  The entire population evolves towards 

better candidate solutions via the selection operations and genetic operators such as 

crossover and mutation. The selection operator decides which candidate solutions move 

into the next generation, which limits the search space. The cross over and mutation 

operators generate new candidate solutions from the search space. 

In this way it is hoped that over successive generations better solutions will thrive while 

the least fit solutions die out. Eventually, once the population has converged and is not 

producing offspring noticeably different from those in previous generations, the algorithm 

itself is said to have converged to a set of solutions to the problem at hand. 

1.6 Dissection of the dissertation 

Chapter 1 has identified the problem and the objective of the study. Some features of 

fuzzy Logic and genetic algorithm are also introduced. 

In relation to the work performed in this study, the remainder of the report consists of the 

following chapters; 

Chapter 2 gives the literature review about the work undertaken in the field of fuzzy, 

genetic algorithms and fuzzy genetics in the medical field. 

Chapter 3 presents the fundamentals of fuzzy logic, fuzzy modeling and describes fuzzy 

logic systems. 

Chapter 4 discusses genetic algorithms in detail. It describes major components of genetic 

algorithm and the effects of genetic operators. 



 

 

Chapter 5 introduces evolutionary fuzzy modeling techniques. The different learning 

approaches with genetic algorithm are presented. It also presents the concept of 

evolutionary computation to solve medical problems. 

Chapter 6   deals with the crux of the dissertation. It discusses the breast cancer, liver 

disorder and diabetes diagnosis problems and presents the approach used for diagnosing 

these diseases. The solution methodology is shown in a flowchart form. 

Chapter 7 analyses the final evolved fuzzy system for each diagnosis. It has the results 

and discussions related to each diagnosis problem. Finally each optimized fuzzy system is 

tested to get actual diagnosis in each case. 

Chapter 8 is conclusion and future scope of the project. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER II  

LITERATURE REVIEW 

2.1 Introduction 

The past few years have witnessed a rapid growth in the number and variety of 

applications of fuzzy logic. A trend that is growing in visibility relates to the use of fuzzy 

logic in combination with neuro-computing and genetic algorithms. More generally, 

fuzzy logic, neurocomputing, and genetic algorithms may be viewed as the principal 

constituents of what might be called soft computing. Soft computing in the field of 

medical diagnosis is a technology which extracts information from the medical signal by 

using expert knowledge. It either seeks to replace physician to perform diagnosis task or it 

borrows ideas from how biological system solves problems and apply to diagnosis. 

2.2 Fuzzy Logic 

The concept of Fuzzy Logic was conceived by Lotfi Zadeh, a professor at the University 

of California at Berkley, as a mathematical way to represent and deal with vagueness in 

everyday life and presented not as a control methodology, but as a way of processing data 

by allowing partial set membership rather than crisp set membership or non-membership. 

This approach to set theory was not applied to control systems until the 70's due to 

insufficient small-computer capability prior to that time. Professor Zadeh reasoned that 

people do not require precise, numerical information input, and yet they are capable of 

highly adaptive control .Other research followed, with the first industrial application, a 

cement kiln built in Denmark, coming on line in 1975. The Japanese interest in fuzzy 

systems was sparked by Seiji Yasunobu and Soji Miyamoto of Hitachi, who in 1985 

provided simulations that, demonstrated the superiority of fuzzy control systems for the 

Sendai railway. Their ideas were adopted, and fuzzy systems were used to control 

accelerating, braking, and stopping when the line opened in 1987 [3]. During an 

international meeting of fuzzy researchers in Tokyo that year, Takeshi Yamakawa 

demonstrated the use of fuzzy control, through a set of simple dedicated fuzzy logic 

chips, in an ‘inverted pendulum’ experiment.  

2.2 Genetic algorithm 

Proposed by John Holland in the 1960s [8], genetic algorithms are the best known class of 

evolutionary algorithms. The basic techniques of the genetic algorithm are designed to 



 

 

simulate processes in natural systems necessary for evolution; especially those follow the 

principles laid down by Charles Darwin of ‘survival of the fittest’. L. J. Fogel’s paper in 

this area triggered the study and the application of evolutionary techniques .[5]
 

Research in Genetic Algorithms remained largely theoretical until the mid-1980s, when 

the first International Conference on Genetic Algorithms was held at the University of 

Illinois. Kenneth De Jong's important dissertation established the potential of Genetic 

Algorithm by showing that they could perform well on a wide variety of test functions, 

including noisy, discontinuous, and multimodal search landscapes. These foundational 

works established more widespread interest in evolutionary computation. By the early to 

mid-1980s, genetic algorithms were being applied to engineering issues such as pipeline 

flow control, pattern recognition and classification, and structural optimization. At first, 

these applications were mainly theoretical. Today, evolutionary computation is a thriving 

field, and genetic algorithms are ‘solving problems of everyday interest’ such as stock 

market prediction and portfolio planning, aerospace engineering, microchip design, 

biochemistry and molecular biology, and scheduling at airports and assembly lines.  

2.3 Fuzzy Genetics 

Two of the most successful approaches to hybridize fuzzy systems with learning and 

adaptation methods have been made in the realm of soft computing. Neural fuzzy systems 

and genetic fuzzy systems hybridize the approximate reasoning method of fuzzy systems 

with the learning capabilities of neural networks and evolutionary algorithms. Genetic 

Fuzzy Systems are genetic fuzzy rule based systems whose genetic process learns or tunes 

different components of a fuzzy rule-based system. [3] 

Voget et al. presented a multi-objective optimization scheme, in which a fuzzy controller 

regulates the selection procedure and fitness function of the Genetic algorithm. In this 

fuzzy evolutionary approach a fuzzy system manages the resources and parameters of a 

Genetic Algorithm such as mutation rate, population size and selective pressure to 

improve the performance. [24]  

Yuhui Shi, et al discussed an evolutionary fuzzy system in which the membership 

function shapes and types and the fuzzy rule set including the number of rules inside it is 

evolved using genetic algorithm. [26] 

Medical domains of application (eg. medical diagnosis from images data or a typical 

characteristics, monitoring of an evolving situation, detection of a sudden change of status 

http://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana-Champaign
http://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana-Champaign


 

 

in a living system, decision making under uncertainty, etc.) seem to comprise a central 

field of research for observing the effectiveness and usability of applying hybrid 

computational intelligence architectures. 

Genetic algorithms are used for solving fuzzy logical equations in (medical) diagnostic 

expert systems [17]. Fidelis et al presented a classification algorithm based on genetic 

algorithm that discovers If Then rules .The proposed genetic algorithm has flexible 

chromosome encoding where each chromosome corresponds to a classification rule. The 

algorithm has been evaluated on data sets of breast cancer and dermatology [4]. R. Jain et 

al. presented an application of a genetic-algorithm-based representation of fuzzy rules for 

the classification of coronary artery disease data and breast cancer data. In this study the 

concept of fuzzy if-then has been applied for a multi dimensional data classification 

problem which leads to higher classification power. The classification power on real 

world data for coronary artery disease and breast cancer was thus demonstrated by 

computer simulations [9]. Robust ECG R-R wave peak detection using an evolutionary 

programming-based fuzzy inference system (EPFIS) and its application to assessing 

brain-gut interaction was demonstrated by Wang, Z.S et al. [25].  

There are several studies  are based on Wisconsin Breast Cancer Diagnosis database of 

which Bennet and Mangasarian  used linear programming techniques, obtaining a 99.6% 

classification rate [2]. However, their solution exhibits little understandability, i.e., 

diagnostic decisions are essentially black boxes, with no explanation as to how they were 

attained. With increased interpretability in mind as a prior objective, a number of 

researchers like  R. Setino has applied the method of extracting Boolean rules from neural 

networks[19] [20] . He has designed an algorithm that extracts classification rules from 

trained neural networks and discussed its application to breast cancer diagnosis. Their 

results are encouraging, exhibiting both good performance and a reduced number of rules 

and relevant input variables. The systems defined in the above researches use Boolean 

rules and are not capable of furnishing the user with a measure of confidence for the 

decision made. 

2.4 Conclusion 

This chapter has dealt with the research work done in the area of soft computing viz. 

fuzzy and genetics, applied to the medical field. Documenting the exhaustive work that 

has been undertaken in this field is an arduous task and thus this chapter just gives an 

overview of the literature review. 



 

 

CHAPTER III 

 FUZZY MODELING 

3.1  Introduction 

Fuzzy logic is a fascinating area of research because it does a good job of trading off 

between significance and precision — something that humans have been managing for a 

very long time. Fuzzy logic is a convenient way to map an input space to an output space. 

Everyday language is the cornerstone example of vagueness and is representative of how 

we assimilate and act upon vague situations and instructions. It may be said that humans 

assimilate and use (act on) fuzzy data, vague rules, and imprecise information. Just as we 

are able to make decisions about situations which seem to be governed by an element of 

chance, accordingly, computational models of real systems should also be able to 

recognize, represent, manipulate, interpret, and use (act on) both fuzzy and statistical 

uncertainties. Fuzzy interpretations of data structures are a very natural and intuitively 

plausible way to formulate and solve various problems.  

Fuzzy controllers are particularly suited to applications where it is not necessary to find 

the global optimum solution, that is, where a near optimum solution is sufficient. 

Traditional control systems are based on mathematical models in which the control 

system is described using one or more differential equations that define the system 

response to its inputs. Such systems are often implemented as P, P+I and P+I+D 

controllers. Uncertainty and imprecision, caused by non-linearity such as noise and 

disturbances, are also evident in the operation of real-world systems. The use of 

mathematical models to develop such systems may result in poor system performance if 

the dynamics of actual events do not form part of the model. This is because a full and 

complete mathematical model describing every possible cause and- effect event is not 

feasible [11]. The required degree of mathematical precision becomes even greater for non-

linear system design. In many cases, the mathematical model of the control process may 

not exist, or may be too "expensive" in terms of computer processing power and memory, 

and a system based on empirical rules may be more effective. Whereas a fuzzy logic 

solution is tolerant to the imprecision in the inputs and the model of the system and still 

produces an output that is desired out of the system. 

In this context, Fuzzy Logic is a problem-solving control system methodology that lends 

itself to implementation in systems ranging from simple, small, embedded micro-



 

 

controllers to large, networked, multi-channel PC or workstation-based data acquisition 

and control systems. It can be implemented in hardware, software, or a combination of 

both. Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon 

vague, ambiguous, imprecise, noisy, or missing input information.  

3.2 Fuzzy Logic Basics 

3.2.1 Physical modeling 

  

 (a)  AND gate   (b) OR gate    (c) INVERTOR gate  

Figure 3.1 Physical Model of fuzzy logic gates 

Similar to the case of binary operation fuzzy operations can be illustrated by simple 

circuits. Instead of wing switches to represent inputs, we use fuses-a wire that burns out if 

the current through it exceeds certain limit, leading to an open-circuit between its 

terminals. Figure 3.1 shows circuit that illustrates fuzzy AND, OR and INVERTOR 

operations. Figure 3.1 (a) shows a simple circuit that illustrated the concept of fuzzy 

AND. Two fuses with different ratings are arranged in series in the circuit. The fuses with 

lowest rating determine the maximum current that go through the circuit and hence the 

brightness of the bulb, i.e. 

Brightness ∞ min [A, B] 

Figure 3.1(b) illustrates the operation of fuzzy OR. The fuse with highest rating 

determines the brightness of the light, i.e. 

Brightness ∞ max [A, B] 

Figure 3.1(c) illustrates the operation of Fuzzy INVERTOR. If the current in the circuit is 

unity, and current in the parallel resistance is I, then the current through the lamp is (1-I) 

Brightness ∞ (1-I) 



 

 

3.2.2 The direct approach to fuzzy modeling 

Fuzzy modeling techniques of constructing fuzzy rule-based inference systems, is an 

approach to form a system model using a description language based on fuzzy logic with 

fuzzy predicates. Fuzzy modeling is basically the task of identifying the parameters of a 

fuzzy inference system so that a desired behavior is attained. 

The principles of fuzzy modeling were outlined by Zadeh [28] where he proposed a new 

approach that “provides an approximate and yet effective means of describing the 

behavior of systems which are too complex or too ill-defined to admit use of precise 

mathematical analysis.” The models proposed by Zadeh present three distinguishable 

features:  the use of linguistic variables in place or in addition to numerical variables, the 

description of simple relations between variables by conditional fuzzy statements, and  

the characterization of complex relations by fuzzy algorithms. The direct approach of 

fuzzy modeling is still considered as an efficient modeling procedure. 

Table 3.1 Fuzzy logic parameter classes 

 

In this approach, the system is first linguistically described, based on the expert’s a priori 

knowledge. It is then translated into the formal structure of a fuzzy model following the 

steps proposed by Zadeh [28]. There are four classes of fuzzy logic parameters as shown in 

table 1. 

1. Selection of the input, state, and output variables (structural parameters); 

2. Determination of the universes of discourse which is the range of all possible values for 

an input to a fuzzy system. (structural parameters); 

3. Determination of the linguistic labels into which these variables are partitioned 

(structural parameters); 



 

 

4. Definition of the membership functions corresponding to each linguistic label 

(operational parameters); 

5. Definition of the rules that describe the model’s behavior (connective parameters); 

6. Selection of an adequate reasoning mechanism (logic parameters); 

7. Evaluation of the model adequacy. 

 The problem with this approach is that unless the human expert knows the system well it 

is very difficult to design a fuzzy rule base and inference system that is workable, let 

alone efficient. For complex systems (non-linear for example) tuning these membership 

functions would require the adjustment of many parameters simultaneously. System 

identification approach was introduced to overcome the difficulties involved in the direct 

approach of choosing the fuzzy set’s membership functions using a search/optimization 

technique to aid the selection.   

3.2.3 Fuzzy sets 

These are sets without clear or crisp boundaries. The elements they contain may only 

have a partial degree of membership. They are therefore not the same as classical sets in 

the sense that the sets are not closed.  Simply put, fuzzy sets are a clever way to deal with 

vagueness as we often do in our daily life. While mathematically more complicated than 

classical sets, fuzzy sets provide a more natural representation of the world. Fuzzy set has 

the following properties; 

• It has smooth boundary. 

• Membership in a set is a matter of degree or degree of truth ness i.e. in classical 

set theory, an object either belong to the set or not (temperature is cold/hot, glass 

full/empty, person is good/bad) but in fuzzy set theory belongingness is a matter 

of degree (depend up on grade of membership) e.g. A person can be 80% good 

and 20% bad. 

• In classical set theory every individual object is assigned a membership value 

either 1 or 0 that discriminate between membership and non membership of the 

crisp set whereas in fuzzy set an object can take a grade of membership between 0 

and 1 i.e. [0 1]. 

• In classical set theory crisp set are based on a two value logic (yes/no) whereas 

fuzzy set theory is based on multi-value logic. 



 

 

Fuzzy set is characterized by a mapping from universe of discourse in interval [0 1]. This 

mapping is the membership function of the set.  

A fuzzy set can be represented in two ways: 

1) By enumerating membership value of those elements in the set completely or     

partially. A fuzzy set A can be defined by enumeration using expression  

( )
∑=

i

i

x
xA μ  

where the summation and addition operator refers to the union operation and the 

notation ( )
i

i

x
xμ  refers to fuzzy set containing exactly one (partial) element x with 

membership degree μi (xi) 

2) By defining the membership function mathematically. The  term high in terms 

of speed can be defined mathematically as : 

0  if   0  < speed < 30 

μhigh =  (S-20)/40 if  30 < speed < 60 

  1  if          speed > 60 

A fuzzy set whose support is a single point in universe U with µA (u) =1 is called a fuzzy 

singleton. 

3.2.4 Membership functions 

A membership function (MF or μ) is a curve that defines how each point in the input 

space is mapped to a membership value (or degree of membership) between 0 and 1. The 

shape, the overlapping, peak values, and their continuity properties determine how the 

fuzzy system can be designed and how it behaves. The input space is sometimes referred 

to as the universe of discourse.  

A classical set is defined by a crisp membership for example 

A = {x | x > 6} 

 If X is the universe of discourse and its elements are denoted by x, then a fuzzy set A in 

X is defined as a set of ordered pairs. 

A = {x ,  μA(x) |  x Є X} 

μA(x) is called the membership function of x in A. 



 

 

Typical membership function shapes include triangular, trapezoidal and Gaussian 

functions. The shape is chosen on the basis of how well it describes the set it represents. 

However, most often used one is triangular and trapezoidal and bell-shaped membership 

functions, because of the ease with which a parametric, functional description of the 

membership function can be obtained, stored with minimum use of memory and   

mathematically efficient, in terms of real time requirements by the inference engine [11]. 

Crossover points also play an important role in mapping, because if there are no 

crossovers then there would be discontinuities in the control outputs. Also a symmetrical 

shape of the function can lead to an easier inference and defuzzification. 

Criteria for selecting membership functions 

Although, the choice of number, range and shapes of membership functions for a variable 

is ultimately based on subjective design choice and evaluation of resulting system 

performance, the following points are worth to be considered in selecting the membership 

function. 

 Assume symmetrically distributed Fuzzy sets across the defined universe of 

discourse. 

 Use an odd number of Fuzzy sets for each variable, this ensures that some fuzzy 

set will be in middle. Five or seven Fuzzy sets for each system variable is fairly 

typical. 

 Overlap adjacent fuzzy sets to ensure that no crisp value fails to correspond to any 

set, and to help ensure that more than one rule is involved in determining the 

output. System variables with 5 or 7 with 15 to 20 % overlap of adjacent fuzzy 

sets tend to work fairly well. 

3.2.5 Fuzzy logic operators 

Fuzzy logical reasoning is a superset of standard Boolean logic. If we keep the fuzzy 

values at their extremes of 1 (completely true), and 0 (completely false), standard logical 

operations will hold. 

Intersection (AND) denoted by min or product 

μA∩B(x)  =  min (μA(x),  μB(x)) 

Union ( OR) by max /algebraic sum 

μA∪B(x ) = max (μA(x),  μB(x)) 



 

 

 

Figure 3.2 Fuzzy Logic Operators 

3.2.6 Linguistic variables and rule bases 

Linguistic variables are values defined by fuzzy sets. A linguistic variable such as ‘High 

Speeds’ for example could consist of numbers that are equal to or between 50km/hr and 

80km/hr. The conditional statements that make up the rules govern fuzzy logic behavior 

using these linguistic variables and have an if-then syntax. These if-then rules are what 

make up fuzzy rule bases. A sample if-then rule where A and B represent linguistic 

variables could be: 

if x is A then y is B 

The statement is understood to have both a premise, if ‘x is A’, and a conclusion, then ‘y 

is B’. The premise also known as the antecedent returns a single number between 0 and 1 

whereas the conclusion also known as the consequent assigns the fuzzy set B to the output 

variable y. 

Interpreting these rules involves a number of distinct steps. 

1. Fuzzify the inputs. To do this all fuzzy statements in the premise are resolved to a 

degree of membership between 0 and 1. This can be thought of as the degree of support 

for the rule. At a working level this means that if the antecedent is true to some degree of 

membership, then the consequent is also true to that same degree. 

2. Apply the fuzzy operators: For antecedents with multiple parts to yield a single number 

between 0 and 1. Again this is the degree of support for the rule. 



 

 

3. Apply the result to the consequent. This step is also known as implication. The degree 

of support for the entire rule is used to shape the output fuzzy set. The outputs of fuzzy 

sets from each rule are aggregated into a single output fuzzy set. This final set is 

evaluated (or defuzzified) to yield a single number, using the defuzzification methods. 

3.3 Fuzzy Relation and Composition 

A relation can be considered as a set of ordered pairs (tuples). In the same way a fuzzy 

relation is a fuzzy set of tuples i.e. each tuple has a membership function between 0 and 1. 

Fuzzy relation allows a partial membership. Since a relation can be viewed as a set we 

can easily generalize the classical notion of using fuzzy set .Classical binary relation can 

be represent relation R on x, y on domain X, Y as a function that maps an ordered pair (x, 

y) in X×Y to 0 if the relation does not hold between x and y or 1 if relation holds i.e. R= 

X×Y→{0 ,1}. Fuzzy relation generalizes the classical idea of relation in to a matter of 

degree. Therefore, fuzzy relation R between variables x and y whose universe of 

discourse on X,Y is defined by a function that maps ordered pair in X×Y to their degree 

in the relation, which is numbered between 0 and 1 i.e. R= X×Y→[0 ,1]. 

For continuous universes it is denoted by 
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For discrete Universe it is denoted by 
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A fuzzy relation on X×Y can also be denoted as 

( ) ( ){ } ( ) ( ) [ ]1  0,   ,,     ,  ,, ∈×∈= yxYXyxyxyxR RR μμ  

µR (x,y) gives the degree of membership of the ordered pair (x,y) in R associating with 

each pair (x,y) in X×Y in interval [0 1]. The degree of membership indicates the degree to 

which X is in relation with Y. If A and B are fuzzy sets in the universe of X×Y the fuzzy 

relation then has membership degree. 

µR (x,y) = µA×B (x,y) = min[µA (x) , µB (y)]  x Є X and y Є Y 

3.3.1 Projection 

This operation brings a ternary relation back to a binary relation, or a binary relation to a 



 

 

Fuzzy set or a fuzzy set to a single crisp value. In binary case it is simple. Let R be 

defined on X×Y then projection is defined as: 

( )( )
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This is simply done by taking maximum from each column from X ×Y, the same is true for 

proj R on X but from the row. The projection operation is almost always used in 

combination with cylindrical extension. 

3.3.2 Cylindrical extension 

The cylindrical extension is more or less opposite of projection. It extends fuzzy set to 

fuzzy binary relation, fuzzy binary relation to fuzzy ternary relation, etc. it mainly serves 

the following goal: let A be fuzzy set defined on X and R be a fuzzy relation defined on X 

×Y, then it is, of course, not possible to take the intersection of A and R (since X is sub 

space of X ×Y) but when A is extended to X ×Y this is possible. This extension is done 

by cylindrical extension operator 

Cylindrical extension of S into U is denoted by 
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3.4 Types of Fuzzy Systems 

There exist two main types of fuzzy systems that differ in the way they define the 

consequents of their rules: Mamdani and Takagi-Sugeno-Kang fuzzy systems.  

3.4.1 Mamdani fuzzy systems. 

Mamdani fuzzy systems have fuzzy sets as rule consequents. A typical Mamdani type 

fuzzy controller is realized using the following steps.  

 Fuzzification.  

It is the process of transformation of crisp measurement into corresponding fuzzy 

set . The value between 0 and 1 each input is given represents the degree of 



 

 

membership or the degree of belongingness. For figure 3.2  the fuzzy sets can be 

written as: 

μLow = {(0, 1), (3,1), (4,0.8), (5,0.5), (7,0)} 

μHigh = {(0,0), (3,0), (4,0.3), (5,0.5), (7,1)} 

 

Figure 3.3 Input membership functions for level 

 Application of fuzzy logic operators 

The rule-base is the key factor in fuzzy logic technique. If there are multiple parts 

to the antecedent of a rule, apply fuzzy logic operators and resolve the antecedent 

to a single number between 0 and 1 that represents the strength of that rule. This is 

the degree of support for the rule. Use the degree of support for the entire rule to 

shape the output fuzzy set.  

 Apply implication method 

The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy 

set is represented by a membership function that is chosen to indicate the qualities 

of the consequent. If the antecedent is only partially true, (i.e., is assigned a value 

less than 1), then the output fuzzy set is truncated according to the implication 

method. In general, one rule by itself does not do much good. What is needed are 

two or more rules that can play off one another. 

Example: We desire to control the acceleration of a moving object, in order to 

reach a goal position. Let the input measurements available in order to decide 

acceleration values at every time instant are the distance of the moving object 

from the target position and its velocity. One possible rule in the rule-base of a 

fuzzy logic system could be: 

         3       4                   7 
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IF distance is big AND velocity is small THEN acceleration is big. 

Here the implication method being AND i.e. MIN, hence 0.6 is taken and output 

membership function is truncated. 

 

Figure 3.4 Implication method-AND 

 Aggregate all outputs 

The output of each rule is a fuzzy set. The fuzzy outputs of each rule need to be 

combined in a meaningful way to be of any use. Aggregation is the method used 

to perform this by combining each output set into a single output fuzzy set. The 

order of rules in the aggregation operation is unimportant as all rules are 

considered. The three methods of aggregation available for use include sum (sum 

of each rules output set), max (maximum value of each rule output set) and the 

probabilistic OR method (the algebraic sum of each rules output set). 

 Defuzzification 

At the output of the fuzzy inference there will always be a fuzzy set that is 

obtained by the composition of the fuzzy sets output by each of the rules .In order 

to be used in the real world, the fuzzy output needs to be interfaced to the crisp 

domain by the defuzzifier. The output fuzzy set indicates what the output is in 

fuzzy terms. This fuzzy output will be a membership function that provides the 

degree of membership of several possible crisp outputs. Thus, the point 

corresponding to the highest degree of membership in the fuzzy output has to be 

sought. This operation would correspond to a type of defuzzification, called max 

defuzzification. Unfortunately, in most practical cases the situation is not so 

simple, since there might be many points having the same maximum degree of 

membership in the fuzzy output, and an indecision on which one of these points to 

choose arises. Moreover, choosing the maximum point of the membership 

function is an operation that discards most of the information contained in the 

membership function itself. There is the need for a technique that summarizes the 



 

 

information contained in the membership function [12]. A number of methods of 

defuzzification are possible and these include the mean of maximum, smallest of 

maximum and centroid (centre of area)methods. 

Given an output fuzzy set Y = μY (v) defined in the universe V of the variable v, the 

defuzzified output y  for center of gravity method  is given by the expressions: 

                                       

S is the support of  μY(y). One drawback of this kind of defuzzification is the 

complexity involved with finding the center of gravity (i.e., integration). 

3.4.2 Takagi-Sugeno-Kang (TSK) fuzzy systems.  

The Sugeno fuzzy model, or more fully the Takagi-Sugeno-Kang method of fuzzy 

inference was first introduced in 1985.  In many respects it is identical to the Mamdani 

method except that the output membership functions for the Sugeno method are always 

linear or constant. The output membership functions can be thought of as singleton spikes 

that undergo a simple aggregation instead of other aggregation methods such as max, 

probor or sum. A typical rule in a Sugeno fuzzy model has the form 

If  Input 1 = x and Input 2 = y, then Output is z = ax + by + c 

 

Figure 3.5 Sugeno Rule inference 

For a zero-order Sugeno model ,the output level z is a constant (a = b =0).The output 

level zi of each rule is weighted by the firing strength wi of the rule. For example, for an 

AND rule with Input 1 = x and Input 2 = y, the firing strength is wi = And Method (F1(x) 



 

 

, F2(y)) where F1,2 (.) are the membership functions for Inputs 1 and 2 [29]. The final 

output of the system is the weighted average of all rule outputs, computed as: 
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 Due to their functional description, TSK-type systems usually exhibit greater accuracy 

than Mamdani systems. However, the interpretability of their rules is significantly 

reduced as they no longer represent linguistic concepts and hence not intuitive. The 

Sugeno system is computationally efficient and its ability to interpolate multiple linear 

models makes it particularly suited to modeling non-linear systems. The Sugeno model 

has shown itself to have better potential in controlling non-linear systems that require 

more stringent output membership functions. 

3.5 Fuzzy Logic in Control problems. 

Fuzzy Logic offers several unique features that make it a particularly good choice for 

many control problems.  

 It is inherently robust since it does not require precise, noise-free inputs and can 

be programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations.  

 Since the Fuzzy Logic controller processes user-defined rules governing the target 

control system, it can be modified and tweaked easily to improve or drastically 

alter system performance. New sensors can easily be incorporated into the system 

simply by generating appropriate governing rules. 

 Fuzzy Logic is not limited to a few feedback inputs and one or two control 

outputs, nor is it necessary to measure or compute rate-of-change parameters in 

order for it to be implemented. Any sensor data that provides some indication of a 

system's actions and reactions is sufficient. This allows the sensors to be 

inexpensive and imprecise thus keeping the overall system cost and complexity 

low. 

 Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 

defining the rule base quickly becomes complex if too many inputs and outputs 



 

 

are chosen for a single implementation since rules defining their interrelations 

must also be defined. It would be better to break the control system into smaller 

chunks and use several smaller Fuzzy Logic controllers distributed on the system, 

each with more limited responsibilities. 

 Fuzzy Logic can control nonlinear systems that would be difficult or impossible to 

model mathematically. This opens doors for control systems that would normally 

be deemed unfeasible for automation. 

3.6 CONCLUSION 

Fuzzy logic fundamentals have been introduced. Fuzzy modeling techniques are 

explained and a detailed fuzzy system working has been presented.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER IV 

 GENETIC ALGORITHM 

4.1 Introduction 

Genetic algorithms are computerized search and optimization algorithms based on the 

mechanics of natural genetics and natural selection. Essentially, Genetic Algorithm is an 

optimization technique that performs parallel, stochastic, but direct search method to 

evolve the fittest population. 

The genetic algorithm is a method for solving both constrained and unconstrained 

optimization problems. According to Goldberg, the simulated evolution of a solution 

through genetic algorithms is, in some cases, more efficient and robust than the random 

search, enumerative or calculus based techniques. The main reasons given by Goldberg 

are the probability of a multi-modal problem state space in non-linear problems, and that 

random or enumerative searches are exhaustive if the dimensions of the state space are 

too great [6].   

Genetic algorithms are by far the most popular evolutionary technique. This is due in part 

to their conceptual simplicity, the ease of programming entailed, and the small number of 

parameters to be defined (apart from the genomic representation and the fitness function, 

parameters include mainly population size, crossover and mutation probabilities, and 

termination condition). One can apply the genetic algorithm to solve a variety of 

optimization problems that are not well suited for standard optimization algorithms, 

including problems in which the objective function is discontinuous, non-differentiable, 

stochastic, or highly nonlinear. 

The idea is to have a pool of candidate solutions evaluated in parallel, from which the 

“fittest" solutions are chosen to mate and breed new candidate solutions using genetic 

operators. This procedure is iterated until the population converges or a preset condition 

is met. Over successive generations, the population "evolves" toward an optimal solution. 

 

 4.1.1 Evolution theory 

Human cells are made up of chromosomes. Chromosomes are strings of DNA 

(deoxyribonucleic acid). A chromosome consists of genes, blocks of DNA. Each gene 



 

 

encodes a particular protein. Basically, it can be said that each gene encodes a trait, for 

example color of eyes. Possible settings for a trait (e.g. blue, brown) are called alleles. 

Each gene has its own position in the chromosome. This position is called locus. 

Complete set of genetic material (all chromosomes) is called genome. Thus a 

chromosome (solution) is composed of several genes (variables).  

Particular set of genes in genome is called genotype. The genotype is with later 

development after birth base for the organism's phenotype, its physical and mental 

characteristics, such as eye color, intelligence etc. During reproduction, recombination (or 

crossover) first occurs. Genes from parents combine to form a whole new chromosome. 

The newly created offspring can then be mutated. Mutation means that the elements of 

DNA are a bit changed. These changes are mainly caused by errors in copying genes from 

parents. The fitness of an organism is measured by success of the organism in its life 

(survival). In principle, a Genetic Algorithm can be applied to any problem where the 

variables to be optimized (“genes”) can be encoded to form a string (“chromosome”). 

4.2 Classical Vs Genetic Algorithm 

 Genetic Algorithm works with coding of parameter not parameter itself. 

 Seeks optimal solution by searching population of points of the search space in 

parallel not single point. 

 Uses only value of objective function no derivative or other information is 

necessary. 

 Uses stochastic (probabilistic) transition not deterministic rule in optimization 

procedure. 

 It is robust – eliminates costly redesigning, adaptation to the environment –

existing system can perform their function longer and better. 

4.3 Strengths of Genetic Algorithm 

 It evaluates many possible solutions simultaneously. Hence it is intrinsically 

parallel. Most other algorithms are serial and can only explore the solution space 

to a problem in one direction at a time, and if the solution they discover turns out 

to be suboptimal, there is nothing to do but abandon all work previously 

completed and start over. However, since Genetic Algorithms have multiple 

offspring, they can explore the solution space in multiple directions at once. If one 



 

 

path turns out to be a dead end, they can easily eliminate it and continue work on 

more promising avenues, giving them a greater chance each run of finding the 

optimal solution. 

 Genetic Algorithms have the quality of robustness, that is, while special case 

algorithms may find more optimal solutions to specific problems, genetic 

algorithms perform very well over a large number of problem categories. Because 

of this, Genetic Algorithms are not caught by local minima. Genetic Algorithms 

are stochastic and less likely to get trapped in local optima, which inevitably are 

present in any practical optimization applications. 

 Genetic Algorithms also perform well on problems whose complexity increases 

exponentially with the number of input parameters, since these types of problems 

are extremely inefficient to solve using traditional approaches. 

4.4 Weakness of Genetic Algorithm 

 Although Genetic Algorithms are easy to implement and are powerful tools to 

solve difficult problems featuring complex search spaces, they usually require 

human supervision to be exploited successfully.  

 There are practical limit on the hypothetically unlimited number of iteration or 

generation and population size in genetic algorithm.  

 The key disadvantage of the Genetic Algorithms is that its convergence speed near 

the global optimum becomes slow. 

4.5 Basic Working Principle  

A Genetic Algorithm is an iterative procedure that involves a population of individuals, 

each one represented by a finite string of symbols, known as the genome, encoding a 

possible solution in a given problem space. A general outline of the algorithm is described 

below.  This can yield solution to the problem, whatever the form of objective function. 

The search process for the solution of an optimization problem, in the form of a pseudo 

code, is summarized as below. 

4.5.1 A General Outline of Genetic Algorithm 

 An initial population of individuals is generated at random or heuristically. 



 

 

 Every evolutionary step, known as a generation, the individuals in the current 

population are decoded and evaluated according to some predefined quality criterion, 

referred to as the fitness, or fitness function. To form a new population (the next 

generation), individuals are selected according to their fitness.  

 New individuals are introduced into the population, (i.e. to find new points in the 

search space) by genetically inspired operators- Crossover and mutation. 

 Crossover is performed with probability pc (the ‘crossover probability’ or 

‘crossover rate’) between two selected individuals, called parents, by 

exchanging parts of their genomes (i.e. encodings) to form two new 

individuals, called offspring.  

 The mutation operator is introduced to prevent premature convergence to local 

optima by randomly sampling new points in the search space. It is carried out 

by flipping bits at random, with some (usually small) probability pm.  

 Replaces the current population with the children to form the next generation. 

 The algorithm stops when one of the stopping criteria is met. 

 Runs prescribed number of generation. 

 If acceptable solution has been found. 

 There is no improvement in fitness value. 

4.5.2 The Pseudo Code  

Begin GA 

g=0; 

Initialize population P (g) 

Evaluate population P (g): Compute fitness value 

while not done  

g = g+1 

Select P (g) from P (g-1) 

Crossover P (g) 

Mutate P (g) 

Evaluate P (g) 



 

 

end while 

end GA 

4.6 Development of Genetic Algorithm 

4.6.1 Encoding Schemes 

 The first decision to take when applying such an algorithm is how to encode candidate 

solutions within the genome. The representation must allow for the encoding of all 

possible solutions while being sufficiently simple to be searched in a reasonable amount 

of time. So that the genetic algorithm may converge to good solutions, the representation 

must be carefully designed to minimize redundancy. (i.e. several genotypes encoding the 

same phenotype) and to avoid invalid representation (i.e. a genotype encoding a 

phenotype which is not a possible solution to the problem in hand) .Encoding transforms 

points in parameter space into bit string representation. Binary encoding is the most 

common one, mainly because the first research of Genetic Algorithm used this type of 

encoding and because of its relative simplicity. In binary encoding, every chromosome is 

a string of bits {0, 1}. 

For instance, a point (11, 5, 8) in a three-dimensional parameter space can be represented 

as a concatenated binary string 1011 0101 1000 in which each coordinate value is 

encoded as a “gene” composed of four binary bits using binary coding. 

If each variable Xi, with real values, is coded as a binary string of length li, then the 

relation between the initial value and coding information is; 
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where the variable Xi can take the value from a domain Di  =  [xi (L), xi (U)] and is coded 

in substring Si of length l. The decoded value of a binary substrings Si is calculated as 
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where Si ε (0,1) 

Generalizing this concept, we may say that with a li–bit coding for a variables, the 

obtainable accuracy in that variable is approximately 
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variables has been done, the corresponding point x = (x1,x2,…….xN)T can be found using 



 

 

equation (4.1). Thereafter, the function value at the point ‘x’ can also be calculated by 

substituting x in the given objective function f(x). 

4.6.2 Fitness Function 

The first step after creating a generation is to calculate the fitness value of the each 

member in the population. The fitness/objective function is chosen depending on the 

problem in hand such that the individuals having high fitness values are the good solution 

candidates for the optimization Therefore, reproduction of the next generation will strictly 

be dependent on the fitness measure. 

In general fitness function is F(x) is first derived from objective function and used in 

successive genetic generations. For maximization problems the fitness function can be 

considered to be the same as objective function or F(x) =f(x). For minimization problems, 

the fitness function is an equivalent maximization problem chosen in such a way that the 

optimum point remains unchanged. 

A number of such transformations are possible. The following fitness function is often 

used; where f(x) is the objective function 
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1
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This transformation does not alter the location of optimum point but converts 

maximization problem in to equivalent minimization problem. The fitness function value 

is called string fitness for survival. 

Fitness is an important concept for the operation of the Genetic Algorithm. The fitness of 

a string is a measure of the quality of the trial solution represented by the string with 

respect to the function being optimized. Thus, high fitness corresponds to a high value (in 

a maximization problem) or a low value (in a minimization problem) of the function. 

Fitness is important in determining the likelihood of an individual taking part in crossover 

and also in deciding which individuals will survive into the next generation.  

4.6.3 Selection 

After evaluation, a new population is created from the current generation. Selection 

operation determines which parents participate in producing offspring for the next 

generation, and it is analogous to “survival of the fittest” in natural selection. There are 

many different techniques which a genetic algorithm can use to select the individuals to 



 

 

be copied over into the next generation, but listed below are some of the most common 

methods.  

4.6.3.1 Elitist selection 

The fit members of each generation are guaranteed to be selected. (Most Genetic 

Algorithms do not use pure elitism, but instead use a modified form where the single best 

or a few of the best, individuals from each generation are copied into the next generation 

just in case nothing better turns up). 

4.6.3.2 Fitness-proportionate selection 

Individuals are selected with a probability proportional to their relative fitness. More fit 

individuals are more likely, but not certain, to be selected. This ensures that the expected 

number of times an individual is chosen is approximately proportional to its relative 

performance in the population. Thus, high-fitness (‘good’) individuals stand a better 

chance of ‘reproducing’, while low-fitness ones are more likely to disappear 

4.6.3.3 Roulette-wheel selection 

A form of fitness-proportionate selection in which the chance of an individual's being 

selected is proportional to the amount by which its fitness is greater or less than its 

competitor’s fitness. (Conceptually, this can be represented as a game of roulette - each 

individual gets a slice of the wheel, but more fit ones get larger slices than less fit ones. 

The wheel is then spun, and whichever individual "owns" the section on which it lands 

each time is chosen.) 

4.6.3.4 Tournament selection 

Subgroups of individuals are chosen from the larger population, and members of each 

subgroup compete against each other. Only one individual from each subgroup is chosen 

to reproduce. 

4.6.3.5 Rank selection 

Each individual in the population is assigned a numerical rank based on fitness, and 

selection is based on these ranking rather than absolute differences in fitness. The 

advantage of this method is that it can prevent very fit individuals from gaining 

dominance early at the expense of less fit ones, which would reduce the population's 

genetic diversity and might hinder attempts to find an acceptable solution. 



 

 

4.6.3.6 Steady-state selection 

The offspring of the individuals selected from each generation go back into the pre-

existing gene pool, replacing some of the less fit members of the previous generation. 

Some individuals are retained between generations. 

4.6.5 Crossover 

To exploit the potential of the current population, the crossover operator generates new 

chromosomes. Crossover is usually applied to selected pairs of parents with a probability 

equal to a given crossover rate. Crossover techniques are described below: 

 One point crossover is the most basic crossover operator, where a crossover point 

on the genetic code is selected at random and two parent chromosomes are 

interchanged at this point as shown in figure 4.1 

 In two-point crossover, two crossover points are selected and the part of the 

chromosome string between these two points (P1 , P2) is then swapped to generate 

two children as shown in figure 4.2 

 

 

Figure 4.1 One point Crossover 

 

 



 

 

Figure 4.2 Two point Crossover 

4.6.6 Mutation 

 While crossover exploits current gene potentials, mutation operators are capable of 

spontaneously generating new chromosomes. A mutation operator can prevent any single 

bit from converging to a value throughout the entire population, and more important, it 

can prevent the population from converging and stagnating at any local optima. For 

example, the string 1011, when the mutation operator applied to the last bit of the string, 

becomes 1010. A similar example is depicted in figure 4.3.  Mutations are needed in 

Genetic Algorithms because while reproduction and crossover explore the search space 

well, occasionally they lose information that is essential to the solution. Moreover the 

Genetic Algorithm may converge on sub-optimum strings due to a bad choice of initial 

population.  It is for this reason mutation is used to explore the search space as efficiently 

as possible. Mutation is the occasional random alteration of a value of a string position.  

Mutation is applied randomly to an entire population and with low probability 

(0.001→0.1). 

 

Figure 4.3 Mutation  

4.7 Effect of Genetic Operators 

4.7.1 Crossover Probability 

The crossover operator determines the rate of convergence and how often crossover will 

be performed. This operator tends to enable the evolutionary process to move toward 

‘promising’ regions of the search space. If there is no crossover, offspring are exact 

copies of parents. If there is crossover, offspring are made from parts of both parent's 

chromosome. If crossover probability is 100%, then all offspring are made by crossover. 

If it is 0%, whole new generation is made from exact copies of chromosomes from old 

population Crossover is made in hope that new chromosomes will contain good parts of 

old chromosomes and therefore the new chromosomes will be better.  



 

 

4.7.2 Mutation Probability 

Using mutation alone induces a random walk through the search space. The probability of 

mutation is normally low because a high mutation rate would destroy fit strings and 

degenerate the genetic algorithm into a random search, and it becomes difficult to quickly 

converge to the global optimum. Mutation probability values of around 0.1% or 0.01% 

are common, these values represent the probability that a certain string will be selected 

for mutation i.e. for a probability of 0.1%; one string in one thousand will be selected for 

mutation. If there is no mutation, offspring are generated immediately after crossover (or 

directly copied) without any change. If mutation is performed, one or more parts of a 

chromosome are changed. If mutation probability is 100%, whole chromosome is 

changed, if it is 0%, nothing is changed. Mutation generally prevents the Genetic 

Algorithm from falling into local extremes.  

4.7.3 Population Size 

It is the number of chromosomes in population (in one generation). Population size is a 

factor that affects the Genetic Algorithm performance. Increasing the population means a 

longer computation time, while if the population size is decreased; the accuracy of the 

solution is also decreased because of reduced variation of chromosomes. If there are too 

few chromosomes, Genetic Algorithm has few possibilities to perform crossover and only 

a small part of search space is explored. On the other hand, if there are too many 

chromosomes, Genetic Algorithm slows down. Research shows that after some limit 

(which depends mainly on encoding and the problem) it is not useful to use very large 

populations because it does not solve the problem faster than moderate sized populations.  

In Genetic Algorithm design there must be a balance between generation numbers and 

population size. For e.g. a population of 100 chromosomes can reach a solution in 10 

generations. However, the solution in a population of 20 chromosomes and 20 

generations can take four times shorter time than the first one. Population size also 

reduces the effect of highest fitness valued chromosomes. For e.g. in a population of 10 

chromosomes, if one of the chromosomes has fitness value of 9 while others have value 

of 1, half of the parents chosen from among the relatively low fitness valued 

chromosomes though the best fitness valued chromosome is nine times better. 

 

 



 

 

4.8 CONCLUSION 

The genetic algorithm optimizing technique has been discussed in detail. The algorithm 

outline has been dealt and each of its components has been explained. The effect of its 

parameters on the algorithm functioning has also been discussed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER V 

EVOLUTIONARY FUZZY MODELING 

The domain of evolutionary computation involves the study of the foundations and the 

applications of computational techniques based on the principles of natural evolution. 

Evolutionary algorithms are used to search large, and often complex, search spaces.  They 

have proven worthwhile on numerous diverse problems; able to find near-optimal 

solutions given an adequate performance (fitness) measure .Genetic algorithm is a well 

known evolutionary algorithm. Fuzzy modeling can be considered as an optimization 

process where part or all of the parameters of a fuzzy system constitute the search space. 

Evolutionary fuzzy modeling has since been applied to an ever-growing number of 

domains, branching into areas as diverse as chemistry, medicine, telecommunications, 

biology, and geophysics. When designing a fuzzy system using a Genetic Algorithm, the 

first important consideration is the representation strategy that is how to encode the fuzzy 

system into the chromosome. To completely represent a fuzzy system, each chromosome 

must encode all the needed information about the rule set and the membership function 

parameters. 

Below one can classify evolutionary fuzzy modeling techniques based on three types of 

parameters which compose the search space: structural, connective, and operational.  

5.1. Applying Evolution to Fuzzy Modeling 

Depending on several criteria—including the available a priori knowledge about the 

system, the size of the parameter set, and the availability and completeness of input: 

output data—artificial evolution can be applied in different stages of the fuzzy parameters 

search. From the viewpoint of optimization, the task of finding an appropriate knowledge 

base for a particular problem, is equivalent to parameterize the fuzzy knowledge base 

(rules and membership functions), and to find those parameter values that are optimal 

with respect to the design criteria. The knowledge base parameters constitute the 

optimization space, which is transformed into a suitable genetic representation on which 

the search process operates. 

First of all, it is important to distinguish between tuning (alternatively, adaptation) and 

learning problems: 



 

 

• Tuning is concerned with optimization of an existing Fuzzy Rule Base System. Tuning 

processes assume a predefined rule base and have the objective to find a set of optimal 

parameters for the membership and/or the scaling functions, data base parameters. 

• Learning constitutes an automated design method for fuzzy rule sets that starts from 

scratch.  The processes perform a more elaborated search in the space of possible rule 

bases or whole knowledge base and do not depend on a predefined set of rules. A genetic 

learning process faces a much more difficult task as it has to establish the proper 

relationship between input and output states from scratch, rather than optimizing the 

performance of a fuzzy system that already operates at least approximately correct.  

Three of the four types of fuzzy parameters in Table 3.1 can be used to define targets for 

evolutionary fuzzy modeling: structural parameters, connective parameters, and 

operational parameters. Logical parameters are usually predefined by the designer based 

on experience. 

5.1.1 Knowledge Tuning (Operational Parameters) 

The evolutionary algorithm is used to tune the knowledge contained in the fuzzy system 

by finding membership function values. An initial fuzzy system is defined by an expert. 

Then, the membership function values are encoded in a genome, and an evolutionary 

algorithm is used to find systems with high performance. Evolution often overcomes the 

local-minima problem present in gradient descent-based methods.  

Genetic Algorithms are applied to modify the membership functions. When modifying 

the membership functions, these functions are parameterized with one to four coefficients 

(Figure 5.1), and each of these coefficients will constitute a gene of the chromosome for 

the Genetic Algorithm. The basic idea is to represent the complete set of membership 

functions by an individual and to evolve shape and location of the triangles.  Each triangle 

may be described by its anchor points on the abscissa axis, and the gaussian membership 

functions are characterized by center c and sigma σ.  

 



 

 

 

Figure:  5.1 some parameterized membership functions 

Using as example the WBCD (Wisconsin Breast Cancer Diagnosis) problem, an initial 

fuzzy rule base is defined by an expert. An example fuzzy rule in this case would be: 

 if (input2 is Low) and (input6 is Low) then (output is benign).  

The evolutionary algorithm then fine-tunes the membership functions, i.e. the 

membership function parameter values .One of the major shortcomings of knowledge 

tuning is its dependency on the initial setting of the knowledge base. 

5.1.2 Behavior Learning (Connective Parameters) 

In this approach, one supposes that extant knowledge is sufficient in order to define the 

membership functions; this determines, in fact, the maximum number of rules [27]. The 

genetic algorithm is used to find either the rule consequents, or an adequate subset of 

rules to be included in the rule base. As the membership functions are fixed and 

predefined, this approach lacks the flexibility to modify substantially the system behavior. 

Furthermore, as the number of variables and membership functions increases, the curse of 

dimensionality becomes more pronounced and the interpretability of the system decreases 

rapidly. 

5.1.3 Structure Learning (Structural Parameters) 

In many cases, the available information about the system is composed almost exclusively 

of input: output data and specific knowledge about the system structure is scant. In such a 

case, evolution has to deal with the simultaneous design of rules, membership functions, 

and structural parameters. Some methods use a fixed-length genome encoding a fixed 

number of fuzzy rules along with the membership function values. In this case the 

designer defines some structural constraints according to the available knowledge of the 

problem characteristics. Other methods use variable-length genomes to allow evolution to 

discover the optimal size of the rule base. In this thesis, evolutionary structure learning is 



 

 

carried out by encoding within the genome an entire fuzzy system (this is known as the 

Pittsburgh approach). 

Structure learning permits to specify other criteria related to the interpretability of the 

system, such as the number of membership functions and the number of rules. On the 

other hand, the strong interdependency among the parameters involved in this form of 

learning may slow down, or even prevent altogether, the convergence of the genetic 

algorithm.  

 

5.2 Learning with Genetic Algorithm 

Both connective and structural parameters modeling can be viewed as rule base learning 

processes with different levels of complexity. They can thus be assimilated within other 

methods from machine learning, taking advantage of experience gained in this latter 

domain. In the evolutionary algorithm community there are two major approaches for 

evolving such rule systems: the Michigan approach and the Pittsburgh approach. The 

three approaches are presented below. 

5.2.1 Michigan Approach 

Each individual represents a single rule. The fuzzy inference system is represented by the 

entire population. Since several rules participate in the inference process, the rules are in 

constant competition for the best action to be proposed, and cooperate to form an efficient 

fuzzy system. The cooperative–competitive nature of this approach renders difficult the 

decision of which rules are ultimately responsible for good system behavior. It 

necessitates an effective credit assignment policy to ascribe fitness values to individual 

rules. The method is suitable for on-line learning tasks as the evolutionary algorithm 

incrementally improves the performance of the fuzzy controller constituted by the 

population of rules. In Michigan approach, data base and rule base are two clearly 

separate entities. All rules share the same membership functions defined in a common 

data base.  

5.2.2 Pittsburgh Approach 

Here, the evolutionary algorithm maintains a population of candidate fuzzy systems, each 

individual representing an entire fuzzy system. In this approach each chromosome 

encodes a whole rule base or knowledge base. Selection and genetic operators are used to 



 

 

produce new generations of fuzzy systems. Since evaluation is applied to the entire 

system, the credit assignment problem is eschewed. This approach allows including of 

additional optimization criteria in the fitness function, thus affording the implementation 

of multi-objective optimization. In a Pittsburg approach fuzzy system, each rule operates 

with its own fuzzy sets. Data base and rule base merge as the rule itself contains the 

parameters of the underlying membership functions. Such a representation possesses 

more degrees of freedom which permits a more accurate approximation of the desired 

input-output relationship, hence the term approximate.  

The price of increased accuracy is that the resulting fuzzy system becomes more difficult 

to analyze as an individual fuzzy set no longer coincides with a linguistic concept.  The 

main shortcoming of this approach is its computational cost, since a population of full-

fledged fuzzy systems has to be evaluated each generation [22].  

5.2.3. Iterative Rule Learning Approach 

As in the Michigan approach, each individual encodes a single rule. An evolutionary 

algorithm is used to find a single rule, thus providing a partial solution. The evolutionary 

algorithm is used iteratively for the discovery of new rules, until an appropriate rule base 

is built. To prevent the process from finding redundant rules (i.e. rules with similar 

antecedents), a penalization scheme is applied each time a new rule is added.  

This approach combines the speed of the Michigan approach with the simplicity of fitness 

evaluation of the Pittsburgh approach. However, as with other incremental rule base 

construction methods, it can lead to a non-optimal partitioning of the antecedent space. 

5.3 Evolutionary Computation to Solve Medical Problems 

Most medical decisions can be formulated as a search in some appropriate space. For 

example, a pathologist analyzing biopsies to decide whether they are malignant or not, is 

searching in the space of all possible cell features for a set of features permitting him to 

provide clear diagnosis. A radiologist planning a sequence of radiation doses is searching 

for the best treatment in the space of all possible treatments [15]. Medical search spaces are 

usually very large and complex. Medical decisions are based on clinical tests which 

provide huge amounts of data. Based on these data one must ultimately make a single 

decision (e.g. malignant or benign). Given the tight interdependency among the domain 

variables, and the inherent non-linearity of most real-world problems, neighboring points 

in the search space may have widely differing qualities, turning the search into a complex 



 

 

task. Evolutionary computation provides powerful techniques for searching such complex 

spaces.  

The construction of accurate models of medical decision from extant knowledge is a hard 

task. On one hand, the models involve too many non-linear and uncertain parameters to 

be treated analytically. On other hand, medical experts are usually not available, or 

simply do not collaborate in translating their experience into a usable decision tool. 

Evolutionary computation is applied in medicine to perform several types of tasks. 

Whenever a decision is required in medicine, it is usually possible to fine a niche for 

evolutionary techniques. The tasks performed by evolutionary algorithms in the medical 

domain can be divided into two groups:  

1. Data mining mainly applied to diagnosis and prognosis. 

2. Medical imaging and signal processing. 

Evolutionary algorithms (EA) for discovering fuzzy classification rules can be divided 

into three categories. 

• Fixed membership functions: This approach has Evolutionary algorithm search 

for good combinations of attribute values, which will compose fuzzy rules. 

However, the membership functions of the attribute values are predefined (either 

manually or by another algorithm), rather than being evolved by the Evolutionary 

algorithms. 

• Fixed rules: Evolutionary algorithms are used for tuning the membership 

functions associated with attributes being fuzzified. This approach is typically 

used when crisp rules have already been discovered by another algorithm, and we 

just want to use an Evolutionary algorithm to fuzzify the discovered crisp rules. 

• Evolutionary algorithms for both generating fuzzy rules and tuning membership 

functions. This approach has Evolutionary algorithm to optimize both the 

contents of fuzzy rules and the membership functions of the linguistic values of 

the attributes being fuzzified. 

 

 

 

 



 

 

5.4 CONCLUSION 

The concept of evolutionary fuzzy modeling and its different techniques has been 

explained. The different approaches for evolutionary rule based systems have been 

discussed and it’s found that evolutionary computation is a good tool for medical 

diagnosis and thus being widely used. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER VI 

MEDICAL DIAGNOSIS USING FUZZYGENETICS 

6.1 Breast Cancer Diagnosis 

Breast cancer is the most common cancer among women, excluding skin cancer. The 

presence of a breast mass is an alert sign, but it does not always indicate a malignant 

cancer. The Wisconsin Breast Cancer Diagnosis (WBCD) problem, involves classifying a 

presented case of putative cancer as to whether it is benign or malignant.  Fine needle 

aspiration (FNA) of breast masses is a cost-effective, non-traumatic, and mostly non-

invasive diagnostic test that obtains information needed to evaluate malignancy. The 

Wisconsin breast cancer diagnosis database is the result of the efforts made by Dr. W.H. 

Wolberg, at the University of Wisconsin Hospital for accurately diagnosing breast masses 

based solely on an FNA test and is available at the University of California- Irvine, 

machine learning repository [30]. 

Nine visually assessed characteristics of an FNA sample considered relevant for diagnosis 

were identified, and assigned an integer value between 1 and 10 as shown in Table 6.1. 

Each case has nine input attributes, as shown in Table 6.2; and a binary diagnostic output, 

whether the case is benign or malignant.  But the diagnostics do not provide any 

information about the degree of benignity or malignancy.  It admits a relatively high 

number of variables and consequently a large search space. WBCD database consists of 

683 cases of breast biopsy evaluations. The output diagnostics in the WBCD database 

were furnished by specialists in the field. The objective is to evolve an optimized fuzzy 

inference system for this dataset, such that it can diagnose benignancy or malignancy for 

any breast cancer patient. 

 

Case    υ1            υ2           υ3            …                υ9 diagnostic 
1 5 1 1 … 4 Benign 
2 5 4 4 … 1 Benign 
: : : : … : : 

683 4 8 8 … 1 Malignant 

 

Table: 6.2 Input attribute information 

Input attribute name Input attribute symbol 

Table 6.1 WBCD dataset



 

 

Clump thickness υ1 

Uniformity of cell size υ2 

Uniformity of cell shape υ3 

Marginal adhesion υ4 

Single epithelial cell size υ5 

Bare nuclei υ6 

Bland chromatin υ7 

Normal nucleoli υ8 

Mitosis υ9 

 

Output diagnostic classes 

1. Benign 

2. Malignant   

6.1.1 Evolving fuzzy systems for the WBCD problem 

The solution scheme for the WBCD problem depicted in Fig 1.1 is referred now. In order 

to evolve the fuzzy model we must make some preliminary decisions about the fuzzy 

system itself and about the genetic algorithm encoding.  

Previous knowledge about the WBCD problem and about some of the extant rule-based 

models represents valuable information are used for the choice of fuzzy parameters. 

When defining the set up, following results, described in previous works are taken into 

consideration.  

 Small number of rules. Systems with no more than four rules have been shown to 

obtain high performance [13, 20]. 

 Small number of variables. Rules with no more than four antecedents have proven 

adequate [13, 21, 23]. 



 

 

 Monotonicity of the input variables. Simple observation of the input and output 

spaces shows that higher-valued variables are associated with malignancy. Some 

fuzzy models forgo interpretability in the interest of improved performance. 

Where medical diagnosis is concerned, interpretability—also called linguistic 

integrity—is the major advantage of fuzzy systems[13]. 

 Justifiable number of elements. The number of membership functions of a variable 

should be compatible with the number of conceptual entities a human being can 

handle. The same criterion is applied to the number of variables in the rule 

antecedent. For example, the following would be considered an adequate rule:  

if (υ1 is High) and (υ2 is High) and (υ4 is High) and (υ6 is Low) and (υ8 is 

Low) then (output is benign). 

 Coverage. Any element from the universe of discourse should belong to at least 

one of the fuzzy sets. That is, its membership value must be different than zero for 

at least one of the linguistic labels. Referring to Fig. 6.1, we see that any value 

along the x-axis belongs to at least one fuzzy set (Low, High, or both); no value 

lies outside the range of all sets. 

 Normalization. Since all labels have semantic meaning, then, for each label, at 

least one element of the universe of discourse should have a membership value 

equal to one. In Fig. 6.1, we observe that both Low and High have elements with 

membership value equal to 1.  

 Orthogonality. For each element of the universe of discourse, the sum of all its 

membership values should be equal to one (e.g. in Fig.6.1 a Low membership 

value of 0.8 entails a High membership value of 0.2).  

Taking into account the above criteria, we delineate the fuzzy system setup. 

6.1.1.1 Fuzzy system parameters set up. 

 Fuzzy system type : Mamdani 

 Logical parameters 

 Reasoning mechanism: singleton-type fuzzy system, meaning that 

consequents of rules (i.e. output membership functions) are real values 

(also called singletons), rather than fuzzy ones.  

 Fuzzy operators: min  



 

 

 Input membership function type: Trapezoidal. (See Fig. 6.1). Though 

triangular was also tried, but it gave less fitness value as compared to 

trapezoidal for WBCD. 

  Defuzzification method: Weighted average. 

 Structural parameters 

 Number of input membership functions: Two membership functions, 

denoted Low and High are used (Fig.6.1). Here P and d are the parameters 

used to describe the membership functions. 

 

 

Figure 6.1 Trapezoidal input membership function 

 Number of output membership functions: Two singletons are used, 

corresponding to the benign and malignant diagnostics.  

 Number of rules: This is a user-configurable parameter. It can be limited 

the number of rules to be between 1 and 5. Number of rules has been 

chosen to be three or five.  The rules themselves are to be found by the 

genetic algorithm. 

 Connective parameters 

 Antecedents of rules: to be found by the genetic algorithm.  

 Consequent of rules: the algorithm finds rules for the benign diagnostic; 

the malignant diagnostic is an else condition. 

 Rule weights: active rules have a weight of value 1 and the else condition 

has a weight of 0.25. 

 Operational parameters 

d



 

 

 Input membership function values: to be found by the genetic algorithm. 

 Output membership function values: following the WBCD database, a 

value of 2 for benign and 4 for malignant is used. 

6.1.1.2 Genetic algorithm parameters    

 The Genetic algorithm parameters taken for the experiments are as shown in Table 6.3  

 

Table 6.3: GA   parameters 

Population size 20, 30 

Maximum number of Generations 20, 50 

Mutation probability 0.01 

Crossover probability 1 

Termination criteria 

Max number of generations reached or  when 
the increase in fitness of the best individual 

over five successive generations falls below a 
threshold of 0.001 

                 Selection Procedure  Fitness proportionate 

6.1.2 Encoding the genome 

Pittsburgh-style structure learning is applied, using a genetic algorithm to search for two 

parameters. The genome, encoding input membership function values and antecedents of 

rules is constructed as follows [14]:  

 6.1.2.1 Membership function parameters. 

 There are nine input variables (υ1– υ9), each with  two parameters P and d, defining the 

start point and the end point of the membership function edges, respectively (Fig.6.1).  

6.1.2.2 Antecedents 

 The i-th rule has the form: 

if (υl   is  A1 
i ) and…and (υ9 is A9 

i )  then  (output is benign), 

where Aj 
i represents the membership function applicable to variable  υj.  Aj 

i can 

take on the values: 1 (Low), 2 (High), or 0 or 3 (Other). 

The total number of bits required for encoding the genome is as shown in table 6.3. 



 

 

 

Table 6.4: Parameter encoding of an individual’s genome 

Parameters Values Bits Quantity Total Bits 

P {1,2…8} 3 9 27 

d {1,2…8} 3 9 27 

A {0,1,2,3} 2 9×Nr 18 ×  Nr 

 

The total genome length is 54 + 18Nr, where Nr denotes the number of rules (set to 3 or 

5), which is fixed during the genetic run. 

An example of a simple one rule genome encoding is shown in the figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Example of a genome for a single rule system 

 5117 6 47361117 2 5 1 3 4 

 d9P9d8P8 d7 P7d6P6d5P5d4P4d3 P3 d2 P2 d1 P1 

1 3 1 3 2 3 3 1 0  

A1
9A1

8 A1
7 A1

6A1
5A1

4A1
3A1

2A1
1  

(a)  Database

5 1 6 7 6 1 7 5 3 d 

1 7 4 3 1 1 2 1 4 P 

υ9 υ8 υ7υ6υ5υ4υ3υ2υ1  

Rule 1:  if (υ2 is low) and (υ5 is High) and (υ7 is low) and (υ9 is low) then (output  is 
benign). 

Default:  else output is malignant.           
            

       (b)  Rule base 



 

 

 

Figure 6.2 shows: 

(a) Genome encoding. The first 18 positions encode the parameters P and d for the 9 

input variables. The rest encode the membership functions applicable to the nine 

antecedents for each rule: 1 (Low), 2 (High), or 0 or 3 (Other). 

(b) Interpretation. Data base and rule base of the single rule system encoded by (a) 

6.1.3 Fitness function 

As the main function of the proposed system is the assessment of a medical diagnosis, the 

fitness function takes into account the criteria of classification performance, computed as 

the  ratio of  cases correctly diagnosed (NC) to the total cases. 

Fitness = NC / total number of patient cases. 

6.2   Liver Disorder Diagnosis 

Liver is the largest internal human organ and one of the most important one too. Liver 

disorders can be congenital, injury-related, viral-induced, or alcohol-induced. BUPA 

Medical Research Ltd has recorded these data evaluations of patients complaining for 

liver disorders. The data of this dataset is available at the University of California-Irvine 

machine learning repository [31] .The dataset consists of 345 patient records with six input 

variables (Table 6.4). There are two output diagnostic classes. Each record contains data 

for one male patient. The first five variables are all blood tests which are thought   to be 

sensitive to liver disorders that might arise from excessive alcohol consumption.  This 

data set was donated by R. S. Forsyth. The problem is to predict whether or not a male 

patient has a liver disorder based on blood tests and alcohol consumption.   

  Table 6.5 Liver disorder input attribute information 

Input attribute name Input attribute symbol Range [Min Max] 

Mean Corpuscular Volume MCV(v1) [65 103] 

Alkaline Phosphotase ALKPHOS(v2) [ 23 138] 

Alamine Aminotransferase SGPT(v3) [4 155] 



 

 

Aaspartate Aminotransferase SGOT(v4) [5 82] 

Gamma-Glutamyl Transpeptidase GAMMA GT(v5) [5 297] 

Number of half-pint equivalents of 

alcoholic beverages drunk per day 
Drinks(v6) [0 20] 

 

Output diagnostic classes 

   1. Liver disorder  

   2. No liver disorder 

 

6.2.1 Evolving fuzzy systems for the Liver disorder problem 

6.2.1.1 Fuzzy system parameters set up 

 Fuzzy system type : Mamdani 

 Logical parameters 

 Reasoning mechanism: singleton-type fuzzy system.  

 Input membership function type: Triangular. (Fig. 6.3). Though 

trapezoidal was also tried, but it gave less fitness value as compared to 

triangular for liver dataset. 

 Defuzzification method: Weighted average. 

 Structural parameters 

 Number of input membership functions:  

• Three Membership functions, denoted as Low, Medium and High 

(Figure 6.3). Here the membership parameters  P1, P2, P3, P4 and  P5 are   

encoded into the genome. So a total of five  parameters ( P = 5 ) denote 

the three membership functions in this case, instead of two as in the 

previous case. LL  and  UL  are the lower and upper ranges of the input. 



 

 

 

• Five membership functions, denoted by Vlow, Low, Medium, High and 

Vhigh are used (Fig. 6.4). Here the membership parameters P1, P2, P3 

and the three centers (C1, C2, and C3)   are encoded into the genome. 

So a total of six parameters ( P = 6) denote the five membership 

functions in this case. 

   Figure 6.4 Five triangular input membership functions 

 Number of output membership functions: two singletons are used, 

corresponding to the Liver disorder and No liver disorder diagnostics.  

 Number of rules: It is chosen to be three and five.   

 Connective parameters 

 Antecedents of rules: to be found by the genetic algorithm.  

 Consequent of rules: the algorithm finds rules for the Liver disorder 

diagnostic; the No disorder diagnostic is an else condition. 

  Vlow        Low Medium    High       Vhigh  

   LL             P1C1         P2  C2         P3  C3                  UL 
Input 

µ 

  LL    P1       P2       P3   P4      P5        UL 

   
 
Figure 6.3Three triangular input membership function 

Low            Medium           High

Input 

µ 



 

 

 Rule weights: active rules have a weight of value 1 and the else condition 

has a weight of 0.25. 

 Operational parameters 

 Input membership function values: to be found by the genetic algorithm. 

 Output membership function values: following the database, a value of 1 

for Liver disorder and 2 for No liver disorder is used. 

6.2.1.2 GA   parameters 

 The same parameter values were used as shown in Table 6.3 

6.2.2 Encoding the genome 

6.2.2.1 Membership function parameters. 

The number of input variables (NI) is six, each with five or six parameters P, defining the 

membership functions. (Fig. 6.3 and 6.4).  The bits required to encode each input 

parameter is shown in table 6.5. Hence, total number of bits to encode the membership 

function parameters would be  (5+7+7+6+8+4) ×  P = 37×P bits . 

6.2.2.2 Antecedents. 

Antecendents can take on values:  

  For 3 Membership functions:  1 (Low), 2 (Medium), 3(High). It would require 2 

bits ( B = 2) to encode each of these values. 

 For 5 Membership functions:  1 (VLow), 2 (Low), 3 (Medium), 4(High), 5 

(Vhigh). It would require 3 bits ( B = 3) to encode each of these values 

Table 6.6 Parameter encoding of an individual’s genome for liver dataset 

Input 
Range of Values

[Min Max] 

Bits required  
for each input 

parameter 

 Total Bits for each 
input variable 

encoding 

MCV [65 103] 5 5×P 

ALKPHOS [23 138] 7 7×P 

SGPT [4 155] 7 7×P 

SGOT [5 82] 6 6×P 

GAMMA GT [5 297] 8 8×P 



 

 

Drinks [0 20] 4 4×P 

 

Hence, for 5 triangular Membership functions, 3 rule system , total genome length is :  

(37 ×  P )  +  (Nr ×B ×NI )    =    (37 ×  6 )  +  (3 ×3 ×6 ) =  276 bits 

6.2.3 Fitness function   

Fitness = NC / total number of patient cases. 

6.3 Diabetes diagnosis  

Diabetes is a disease in which blood glucose levels are above normal. People with 

diabetes have problems converting food to energy. Cells use insulin, a hormone made in 

the pancreas, to help them convert blood glucose into energy. People develop diabetes 

because the pancreas does not make enough insulin or because the cells in the muscles, 

liver, and fat do not use insulin properly, or both. As a result, the amount of glucose in the 

blood increases while the cells are starved of energy. Diabetes is caused by genetic and 

environmental factors. 

Women with gestational diabetes are an ideal group to target for primary prevention. 

Gestational diabetes develops in some women during the late stages of pregnancy caused 

by the hormones of pregnancy or by a shortage of insulin.  Pregnant women who develop 

glucose intolerance during pregnancy are at lifetime risk of developing diabetes after a 

varying period of life. Their children face the same fate[18]. The data of  the epidemic of 

diabetes in Pima Indians has been used extensively for  diabetes research.    A population 

of women who were at least 21 years old, of Pima Indian heritage and living near 

Phoenix, Arizona, was tested for diabetes according to World Health Organization 

criteria. The data were collected by the US National Institute of Diabetes and Digestive 

and Kidney Diseases and made into the pima-Indian diabetes dataset.[32]  

The diagnostic, binary-valued variable investigated is whether the  patient shows signs of 

diabetes according to World Health Organization criteria (i.e., if the 2 hour post-load 

Plasma glucose was at least 200 mg/dl at any survey  examination or if found during 

routine medical care). The dataset consists of eight inputs and one diagnostic class 

variable. It has 768 female patient data.  

The objective is to evolve an optimized fuzzy inference system for this dataset, such that 

it can diagnose whether a female patient suffers from diabetes or not and thus whether she 

is at a risk to pass it to her offspring. 



 

 

 

 

 

Table 6.7 Diabetes input attribute information 

Input attribute name Range [Min Max] Symbol 

Number of times pregnant [0 17] υ1 

Plasma glucose concentration a 2 hours 

in an oral glucose tolerance test 
[0 199] υ2 

Diastolic blood pressure [0 122] υ3 

Triceps skin fold thickness [0 99] υ4 

2-Hour serum insulin [0 846] υ5 

Body mass index [0.0 67.1] υ6 

Diabetes pedigree function [0.078 2.42] υ7 

Age  [21 81] υ8 

 

Output classes 

 1 . Tested positive for diabetes  

  2.  Tested negative for diabetes 

6.3.1 Evolving fuzzy systems for the pima Indian diabetes  problem 

6.3.1.1 Fuzzy system parameters set up 

The logical, connective, structural and Operational parameters are kept same as in 

the case of liver disorder problem. 

6.3.1.2 GA parameters 

The genetic algorithm parameters are same as shown in table 6.3 



 

 

 

6.3.2 Encoding the genome 

6.3.2.1 Membership function parameters. 

There are six input variables, each with five or six parameters (P = 5 or P = 6), defining 

the membership functions (Fig. 6.3 and Fig 6.4).  The bits required to encode each input 

parameter is shown in table 6.7. Hence, total number of bits to encode the membership 

function parameters would be  (4+8+7+7+10+6+2+6) ×  P = 50 ×P bits . 

6.3.2.2 Antecedents. 

 For 3 Membership functions: Antecedents can take on values: 1 (Low), 2 

(Medium), 3(High). It would require 2 bits ( B = 2) to encode each of these 

values. 

 For 5 Membership functions: Antecedents can take on values:  1 (VLow), 2 

(Low), 3 (Medium), 4(High), 5 (Vhigh). It would require 3 bits ( B = 3) to encode 

each of these values 

Table 6.8 Parameter encoding of an individual’s 
 genome for pima-indian diabetes dataset 

Input 
Range of Values

[Min Max] 

Bits required  
for each input 

parameter 

 Total Bits for each 
input variable 

encoding 

υ1 [0 17] 4 4×P 

υ2 [0 199] 8 8×P 

υ3 [0 122] 7 7×P 

υ4 [0 99] 7 7×P 

υ5 [0 846] 10 10×P 

υ6 [0.0 67.1] 6 6×P 

υ7 [0.078 2.42] 2 2×P 

υ8 [21 81] 6 6×P 



 

 

• For 5 triangular Membership functions, 3 rule system , total genome length is : 

(50 ×  P )  +  (Nr ×B ×NI )    =    (50 ×  6)  +  (3 ×3 ×8 ) =  372 bits, 

where NI is the number of inputs, B is the bits required to code antecedent and 

Nr is the number of rules. 

• For 3 triangular Membership functions, 3 rule system , total genome length is : 

(50 ×  P )  +  (Nr ×B ×  NI)    =    (50 ×  5  )  +  (3 ×2 ×8 ) =  298 bits 

6.3.3 Fitness function  

As the main function of the proposed system is the assessment of a medical diagnosis, the 

fitness function takes into account the criteria of classification performance, computed as 

the  ratio of  cases correctly diagnosed (NC) to the total cases. 

Fitness = NC / total number of patient cases. 

 

6.4 A general Flowchart 
Referring to the proposed diagnostic system shown in figure 1.1, a fuzzy inference 

system needs to be modeled first. A random initial population is taken with the 

membership function parameters and rule encoded into it. Each patient’s data from the 

dataset is applied to the fuzzy subsystem. Fitness value for each individual (chromosome- 

entire fuzzy system here) is found out. Thus the entire fuzzy inference system is evolved 

from scratch. The final evolved fuzzy system is then tested with 50% of the dataset 

(validation).  

The code has been implemented in MATLAB 7.0. Fuzzy logic toolbox and the genetic 

optimization functions are the platform on which the code functions. The diagnostic code 

is takes care of : 

 The number and the type of membership functions suited for each diagnosis. 

 Implementing the weighted average function. 

 The length of chromosome as different inputs has different ranges and different 

number of rules. 
A general flowchart is shown as follows. 

 



 

 

 

Decode and Fuzzify 
 each patient’s data 

from the dataset for the population 

Apply Min operator and 
aggregate  each rule to find the 

weighted average output 

A

 B 

Load the particular dataset , 
number of inputs and total 

data 

Divide dataset in training 
and test cases 

Make a Fuzzy Inference 
System and provide the 

GA parameters 

Choose which diagnosis 
1. Breast cancer 
2. Liver disorder 
3. Diabetes

Initialize a  population having 
the MF parameters and rules 
encoded into each genome 

A general flowchart 



 

 

 
 

Fitness function 
evaluation 

Convergence 
achieved? 

Parent selection 

Crossover and 
mutation 

  New generation 

Classify this data into classes 
depending on a threshold value 

 A B 

Decode this genome to obtain the 
optimized FIS for the particular 
diagnosis chosen and test it for 

50% of the dataset. 



 

 

6.5 CONCLUSION 
The fuzzy genetic approach to solve each of the diagnosis problems has been dealt with 

in detail. The fuzzy subsystem modeling of the proposed solution is explained. The 

methodology to encode the genome, the fitness function which is to be maximized has 

been presented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

CHAPTER VII 

 RESULTS AND DISCUSSION 

 

The proposed diagnostic system consisting of the fuzzy system and the threshold unit 

diagnoses all three medical problems, providing excellent performance, i.e. diagnose and 

classify the presented cases correctly. The entire fuzzy system is optimized using genetic 

algorithm. The designed system has been implemented in the MATLAB 7.0 programming 

environment.  

The evolutionary experiments performed for each problem with proper validation has the 

training set containing 50% of the dataset cases and the test set containing the remaining 

50% of the cases. In each case, the membership function which works best has been 

analyzed. The results are tabulated for trapezoidal and triangular membership function 

cases. Also the results obtained by encoding three and five triangular input membership 

functions into the genome, have been shown. 

The best evolved fuzzy system is the one which has the best diagnosis–classification 

performance. The percentage of correctly classified data is obtained on providing the 

testing dataset to the optimized fuzzy system. Average number of variables per rule has 

been considered, as more of this number, more is the complexity and more difficult is the 

interpretability. Computation time is also noted and it’s seen that as the genome length 

increases the time taken is more. The number of rules needs to be initialized beforehand. 

Three and five rule base system results are shown. For each medical problem, the evolved 

fuzzy inference system i.e. the optimized input membership function plots and the rule 

base, has been plotted.  

 The diagnostic system is also tested to find out the diagnostic confidence measure, thus 

going beyond a mere binary classification instead giving a better understanding about the 

system output. This is done by giving a patient’s data information and verifying the 

output from the dataset.  

 

7.1 Breast Cancer diagnosis  

7.1.1 The best membership function 



 

 

The results for trapezoidal and triangular membership function have been tabulated as in 

table 7.1 and table 7.2 respectively. 

Table: 7.1 Results for WBCD: trapezoidal membership function 

 Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

3 0.947368 97.9412 4.33 160 

3 0.906433 97 4 110 

3 0.932749 97.3529 4.66 99 

2 0.862573 90.8824 3.55 96 

2 0.859649 91.7647 4 100 

2 0.763158 92.3529 4 103 

 

Table: 7.2 Results for WBCD: triangular membership function 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

3 0.847953 92.3529 7 426 

3 0.877193 93.2353 5.66 430 

3 0.880117 96.4706 6.66 427 

Result: As seen from the table 7.1 and table 7.2 for WBCD problem the trapezoidal 

membership function works better.  

Hence the best evolved fuzzy inference system with classification performance of 

97.9412% is as below. The Fitness Vs generation plot and the nine input membership 

function plots are shown in figure 7.1 and figure 7.2 respectively. 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

Figure 7.2 Optimized input membership function plots for WBCD-3 rule base 

 

 Optimized 3 rule base 

1. If (Cell size Uniformity is LOW) and (Epithelial cell size is LOW) and (Bare nuclei is   

LOW) then (Diagnosis is BENIGN)  

2. If (Clump thickness is HIGH) and (Cell size Uniformity is HIGH) and (Cell shape 

Uniformity is LOW) and (Marginal adhesion is HIGH) and (Bare nuclei is HIGH) and 

(Bland chromatin is LOW) and (Mitosis is HIGH) then (Diagnosis is BENIGN)  

3. If (Marginal adhesion is LOW) and (Bland chromatin is LOW) and (Mitosis is LOW) 

then (Diagnosis is BENIGN)  

4. else ( Diagnosis is MALIGNANT) 

7.1.2 Evolved fuzzy system for two trapezoidal membership functions and five 

rule base. 

Table 7.3 Results for WBCD: trapezoidal MF and five rule base 



 

 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

5 0.938596 98.5294 5.2 244 

5 0.947368 97.0588 5.6 236 

5 0.935673 94.7059 4.8 232 

 

Hence the best evolved five rules fuzzy inference system with classification performance 

of 98.5294% is as below. The Fitness Vs generation plot and the nine input membership 

function plots are shown in figure 7.3 and figure 7.4 respectively. 

 

 

Figure 7.3 Fitness Vs Generation plot 



 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

Figure 7.4 Optimized input membership function plots for WBCD-5 rule base 

 The optimized five rule base 



 

 

1. If (Cell size Uniformity is HIGH) and (Cell shape Uniformity is LOW) and (Epithelial 

cell size is LOW) and (Bland chromatin is LOW) and (Normal nucleoli is LOW) and 

(Mitosis is LOW) then (Diagnosis is BENIGN)  

2. If (Clump thickness is LOW) and (Cell size Uniformity is LOW) and (Cell shape 

Uniformity is HIGH) and (Marginal adhesion is HIGH) and (Epithelial cell size is LOW) 

and (Bare nuclei is LOW) and (Normal nucleoli is LOW) and (Mitosis is LOW) then 

(Diagnosis is BENIGN)  

3. If (Cell shape Uniformity is LOW) and (Normal nucleoli is LOW) then (Diagnosis is 

BENIGN)  

4. If (Cell shape Uniformity is HIGH) and (Epithelial cell size is LOW) and (Mitosis is 

HIGH) then (Diagnosis is BENIGN)  

5. If (Clump thickness is LOW) and (Cell size Uniformity is LOW) and (Cell shape 

Uniformity is LOW) and (Marginal adhesion is LOW) and (Epithelial cell size is LOW) 

and (Bland chromatin is LOW) and (Normal nucleoli is LOW) then (Diagnosis is 

BENIGN)  

6. else (Diagnosis is MALIGNANT) 

7.1.3 Testing the evolved fuzzy system-diagnostic confidence 

Suppose the following input data of patient no #145 from the WBCD dataset is given to 

the evolved fuzzy system of topic 7.1.2. 

υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8 υ9 

4 3 1 1 2 1 4 8 1 

 

The membership value of each variable is then computed in accordance with the evolved 

database of 7.1.2. 

Table: 7.4 Fuzzification using the evolved database for WBCD 

 υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8 υ9 

μLow 1 0.6 1 1 0.8 1 0.9 0.25 1 

μHigh  0 0.4 0 0 0.2 0 0.1 0.75 0 

 

Rule 1: ( ) 25.0 1 ,  25.0 ,  9.0 ,  8.0 ,  1 ,  4.0 =Min  

Rule 2: ( ) 0 1  , 0.25  , 1 , 8.0 ,  0 ,  0 ,  0.4 ,  1 =Min  



 

 

Rule 3: ( ) 25.0 25.0  ,  4.0 =Min  

Rule 4: ( ) 00 ,  8.0 ,  0 =Min  

Rule 5: ( ) 25.0 0.25 ,  0.9 ,  8.0 ,  1 ,  1 ,  0.6 ,  1 =Min  

Each of the above rules has rule weight of 1 and the malignant rule has rule weight of 

0.25. The output functions are singletons at 2 and 4 for benign and malignant 

respectively. 

 

Figure 7.5 Output singletons membership functions 

Weighted average for defuzzification: 

Defuzzified output = ( ) ( ) ( ) ( ) 5.2
25.025.025.025.0

425.0225.0225.0225.0
=

+++
×+×+×+×  

Discussion :  

 This appraisal (defuzzified) output from the evolved fuzzy system is then passed 

on to the threshold system having a threshold of 3. As 2.5 is less than 3, we have 

the diagnosis that it benign. This is correct in relation to the output given in the 

output dataset of the WBCD. 

 The  best diagnostic classification performance obtained is that of  98.5294 % 

 

7.2 The Liver disorder problem. 

7.2.1 The best membership function. 

The results for trapezoidal and triangular membership function have been tabulated as in 

table 7.5 and table 7.6 respectively. 

Table 7.5 Results for Liver disorder: trapezoidal membership function 

Benign         Malignant 
1 
 

μ

Output 
  2                   4  



 

 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

3 0.601156 58.4795 2.66 123 

3 0.606936 59.0643 3.33 25 

3 0.612717 59.0643 2.33 127 

 

Table 7.6 Results for Liver disorder: triangular membership function 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

3 0.630058 64.3275 4.33 141 

3 0.647399 63.7427 5 144 

3 0.630058 62.5731 3.33 140 

2 0.580913 61.165 2.667 128 

2 0.585062 60.194 3 124 

2 0.589212 61.165 2.33 124 

Result: As seen from the table for liver disorder problem the triangular membership 

function works well.  

Hence the best evolved three rules fuzzy inference system with classification performance 

of 64.3275% is as below. The Fitness Vs generation plot and the six input membership 

function plots are shown in figure 7.6 and figure 7.7 respectively. 



 

 

 

 



 

 

 

 

 

The optimized 3 rule base 



 

 

1. If (Alkaline phosphotase is LOW) and (Aspartate aminotransferase is HIGH) and 

(Drinks is MEDIUM) then (Diagnosis is LIVER DISORDER)  

2. If (Mean Corpuscular Volume is HIGH) and (Alkaline phosphotase is HIGH) and 

(Alamine aminotransferase is MEDIUM) and (G-G transpeptidase is LOW) and (Drinks 

is MEDIUM) then (Diagnosis is LIVER DISORDER)  

3. If (Mean Corpuscular Volume is HIGH) and (Alkaline phosphotase is MEDIUM) and 

(Aspartate aminotransferase is HIGH) and (G-G transpeptidase is MEDIUM) and 

(Drinks is HIGH) then (Diagnosis is LIVER DISORDER) 

4. else Diagnosis is (HEALTHY LIVER) 

 

7.2.2 Evolved fuzzy system for five triangular membership functions and 

three rule base. 

Table 7.7 Results for Liver disorder: five triangular MF and 3 rule base 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

3 0.589595 60.2339 4.66 155 

3 0.630058 60.2339 4.33 149 

3 0.630058 64.3275 3 152 

 

Hence the best evolved three rules fuzzy inference system with classification performance 

of 64.3275 is as below. The Fitness Vs generation plot and the six input membership 

function plots are shown in figure 7.8 and figure 7.9 respectively. 



 

 

 

 

 



 

 

 

 

 

 

The optimized 3 rule base  



 

 

1. If (Mean Corpuscular Volume is HIGH) and (Alkaline phosphotase is VLOW) and (G-

G transpeptidase is VLOW) then (Diagnosis is LIVER DISORDER)  

2. If (Mean Corpuscular Volume is VHIGH) and (Aspartate aminotransferase is 

MEDIUM) and (G-G transpeptidase is VHIGH) then (Diagnosis is LIVER DISORDER)  

3. If (Alamine aminotransferase is VLOW) and (Aspartate aminotransferase is VHIGH) 

and (Drinks is VHIGH) then (Diagnosis is LIVER DISORDER)  

4. else (Diagnosis is LIVER HEALTHY) 

7.2.3 Evolved fuzzy inference system for five triangular membership functions 

and five rule base.  

Table 7.8 Results for Liver disorder: five triangular MF and 5 rule base 

Number of 
Rules Fitness % of correctly 

classified data 

Average number 
of variables per 

rule 

Computation 
time (sec) 

5 0.624277 66.6667 4 166 

5 0.630058 67.2515 3.2 171 

5 0.641618 63.7427 3.6 156 

 

The Fitness Vs generation plot and the six input membership function plots of the best 

evolved five rule fuzzy system are shown in figure 7.10 and figure 7.11 respectively. 

 



 

 

 

 

 



 

 

 

 

 Optimized five rule inference 

1. If (Mean Corpuscular Volume is VHIGH) and (Alkaline phosphotase is LOW) and 

(Alamine aminotransferase is VLOW) then (Diagnosis is LIVER DISORDER)  

2. If (Mean Corpuscular Volume is HIGH) and (Alkaline phosphotase is VLOW) and 

(Aspartate aminotransferase is HIGH) then (Diagnosis is LIVER DISORDER)  

3. If (Alamine aminotransferase is LOW) and (G-G transpeptidase is LOW) and (Drinks 

is VLOW) then (Diagnosis is LIVER DISORDER) 

4. If (Mean Corpuscular Volume is VHIGH) and (Alkaline phosphotase is HIGH) and 

(Aspartate aminotransferase is VHIGH) and (G-G transpeptidase is LOW) then 

(Diagnosis is LIVER DISORDER)  



 

 

5. If (Alkaline phosphotase is MEDIUM) and (G-G transpeptidase is VLOW) and (Drinks 

is MEDIUM) then (Diagnosis is LIVER DISORDER)  

6. else (Diagnosis is LIVER HEALTHY). 

 

7.2.4 Testing the evolved system-diagnostic confidence 

Suppose the following input data of patient no #15 from the UCI Liver dataset is given to 

the evolved fuzzy system of topic 7.2.3. 

 

v1 v2 v3 v4 v5 v6 

96 67 29 20 11 0.5 

 

The membership value of each variable is then computed in accordance with the evolved 

database of 7.1.2. 

 

Table 7.9 Fuzzification using the evolved database for liver disorder 

 υ1 υ2 υ3 υ4 υ5 υ6 

μVLow 0 0 0.35 0 0.55 0.8 

μLow  0 0.6 0.5 0.56 0.3 0.1 

μMedium 0 0.55 0 0.1 0 0 

μHigh 0.7 0 0 0 0 0 

 μVHigh  0.45 0 0 0 0 0 

      

Rule 1: ( ) 35.0  35.0 ,  6.0 ,  45.0 =Min  

Rule 2: ( ) 0 0 ,  0 ,  0.7 =Min  

Rule 3: ( ) 3.0 0.8  , 3.0  ,  5.0 =Min  

Rule 4: ( ) 0 0.3  , 0 ,  0 , .450 =Min  

Rule 5: ( ) 0 0  ,  0.55 , 0.55 =Min  

Each of the above rules has rule weight of 1 and the malignant rule has rule weight of 

0.25. The output functions are singletons at 2 and 4 for benign and malignant 

respectively. 



 

 

 

 

Weighted average for defuzzification: 

Defuzzified output = ( ) ( ) ( ) 28.1
25.03.035.0

225.013.0135.0
=

++
×+×+×  

Discussion: 

 This appraisal (defuzzified ) output from the evolved fuzzy system is then passed 

on to the threshold system having a threshold of 1.5. As 1.28 is less than 1.5, we 

have the diagnosis that the patient has liver disorder. This is correct in relation to 

the output given in the output liver dataset. 

 The best diagnostic classification performance obtained is 67.2515. 

 Five triangular input membership functions and five rule base fuzzy system work 

best for this problem. 

 

 

7.3 Pima-Indian diabetes diagnosis    

7.3.1 The best membership function  

The results for trapezoidal and triangular membership function have been tabulated as in 

table 7.10 and table 7.11 respectively. 

 

Table 7.10 Results for diabetes: trapezoidal membership function 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

         1                2 

1 
 

Liver disorder     Liver  Healthy 

Figure 7.12 Output singletons membership functions 
Output

μ



 

 

rule 

3 0.721354 76.7624 4.66 

3 0.708333 74.1567 4 

3 0.700521 74.9347 4.66 

 

Table 7.11 Results for diabetes: triangular membership function 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time 

3 0.723958 78.0679 4.33 284 

3 0.713542 77.0235 4 285 

3 0.721354 75.4569 4.33 287 

2 0.723958 77.0235 4.5 275 

2 0.714783 77.0235 6 278 

2 0.71875 77.5457 3.5 281 

Result: As seen from the table 7.8 and table 7.9 for pima Indian diabetes problem the 

triangular membership function works better.  

Hence the best evolved three rule fuzzy inference system with classification performance 

of 78.0679% is as below. The Fitness Vs generation plot and the eight input membership 

function plots are shown in figure 7.13 and figure 7.14 respectively. 



 

 

 

 

 

 



 

 

 

 

 

 
 



 

 

 
 

Optimized three rule base 
 

1. If (Plasma glucose concentration is LOW) and (Diabetes pedigree fun is Medium) then 

(Diagnosis is DIABETES POSITIVE)  

2. If (Plasma glucose concentration is Medium) and (Diastolic BP is Medium) and (2Hr 

serum insulin is LOW) and (Body Mass Index is Medium) and (Diabetes pedigree fun is 

Medium) and (Age is Medium) then (Diagnosis is DIABETES POSITIVE)  

3. If (Number of times pregnant is LOW) and (Skin fold thickness is Medium) and (2Hr 

serum insulin is Medium) and (Body Mass Index is LOW) and (Age is Medium) then 

(Diagnosis is DIABETES POSITIVE)  

4. else (Diagnosis is DIABETES NEGATIVE) 

7.3.2 Evolved fuzzy system for five triangular membership functions and 

three rule base. 

Table : 7.12 Results for diabetes :five triangular MF and 3 rule base 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time 

3 0.721354 78.3290 4.66 452 

3 0.710938 77.8068 4.66 450 



 

 

3 0.716146 79.3734 4.33 500 

 

 Thus the best evolved three rule fuzzy inference system with classification performance 

of 79.3734% is as below. The Fitness Vs generation plot and the eight input membership 

function plots are shown in figure 7.15 and figure 7.16 respectively. 

 

 

 



 

 

 

 

 

 



 

 

 

 

 
The optimized three rule inference 
1. If (Number of times pregnant is MEDIUM) and (Skin fold thickness is MEDIUM) and 

(Body Mass Index is VLOW) and (Diabetes pedigree fun is LOW) and (Age is LOW) then 

(Diagnosis is DIABETES POSITIVE)  

2. If (Plasma glucose concentration is VHIGH) and (Diastolic BP is VHIGH) and (Skin 

fold thickness is LOW) and (Body Mass Index is VHIGH) and (Diabetes pedigree fun is 

LOW) then (Diagnosis is DIABETES POSITIVE)  

3. If (Plasma glucose concentration is VHIGH) and (Diastolic BP is MEDIUM) and 

(Body Mass Index is HIGH) then (Diagnosis is DIABETES POSITIVE)  

4. else (Diagnosis is DIABETES NEGATIVE) 



 

 

7.3.3 Testing the evolved system-diagnostic confidence 

Suppose the following input data of patient no #12 from the pima-Indian diabetes dataset 

is given to the evolved fuzzy system of topic 7.3.2 

 

v1 v2 v3 v4 v5 v6 v7 v8 

10 168 74 0 0 38 0.537 34 

 

The membership value of each variable is then computed in accordance with the evolved 

database of 7.3.2 

 

Table 7.13 Fuzzification using the evolved database for Pima-Indian diabetes 

 υ1 υ2 υ3 υ4 υ5 υ6 υ7 υ8 

μVLow 0 0 0 1 1 0 0 0 

μLow  1 0 0 0 0 0 0 0.75 

μMedium 0.7 0 0.65 0 0 0 0 0.3 

μHigh 0 0.5 0.45 0 0 0.65 0.8 0 

 μVHigh  0 0.58 0 0 0 0.02 0.2 0 

 

 

Rule 1: ( ) 0  75.0 ,  0 ,  0 ,  0 ,  7.0 =Min  

Rule 2: ( ) 0  0 ,  0.02 ,  0 ,  0 ,  58.0 =Min  

Rule 3: ( ) 58.0 0.65 , 65.0  ,  58.0 =Min  

Each of the above rules has rule weight of 1 and the else rule has rule weight of 0.25. The 

output functions are singletons at 1 and 2 for diabetes positive and negative respectively. 

Weighted average for defuzzification: ( ) ( ) 3.1
25.058.0

225.0158.0
=

+
×+×  

Discussion: 

This appraisal (defuzzified) output from the evolved fuzzy system is then passed on to the 

threshold system having a threshold of 1.5. As 1.3 is less than 1.5, we have the diagnosis 

that the patient suffers from diabetes. This is correct in relation to the output given in the 

diabetes output dataset . 



 

 

 

7.3.4 Evolved Fuzzy system for five triangular membership functions and 

five rule base. 

Table: 7.14 Results for diabetes: five triangular MF and 5 rule base 

Number of 

Rules 
Fitness 

% of correctly 

classified data 

Average number 

of variables per 

rule 

Computation 

time (sec) 

5 0.710938 77.0235 4.2 484 

5 0.721354    77.5457 4.2 509 

5 0.721354   77.8068 5 481 

Thus the best evolved five rules fuzzy inference system with classification performance 

of 77.8068% is as below. The Fitness Vs generation plot and the nine input membership 

function plots are shown in figure 7.17 and figure 7.18 respectively. 

 



 

 

 

 

 



 

 

 

 

 



 

 

 

Figure 7.18 Optimized input membership function plots for diabetes 
5 triangular MF and 5 rule base 

 

Optimized five rule base: 

1. If (Number of times pregnant is HIGH) and (Plasma glucose concentration is LOW) 

and (Diastolic BP is VHIGH) and (Skin fold thickness is VLOW) and (Age is VHIGH) 

then (Diagnosis is DIABETES POSITIVE)  

2. If (Number of times pregnant is LOW) and (Plasma glucose concentration is 

MEDIUM) and (2Hr serum insulin is LOW) and (Body Mass Index is HIGH) and 

(Diabetes pedigree fun is VLOW) then (Diagnosis is DIABETES POSITIVE) 

3. If (Number of times pregnant is HIGH) and (Skin fold thickness is LOW) and (Diabetes 

pedigree fun is LOW) then (Diagnosis is DIABETES POSITIVE)  

4. If (Diastolic BP is HIGH) and (Diabetes pedigree fun is VLOW) and (Age is VHIGH) 

then (Diagnosis is DIABETES POSITIVE)  

5. If (Number of times pregnant is LOW) and (Plasma glucose concentration is 

MEDIUM) and (Diastolic BP is HIGH) and (Skin fold thickness is VLOW) and (Diabetes 

pedigree fun is LOW) then (Diagnosis is DIABETES POSITIVE)  

6. else (Diagnosis is DIABETES NEGATIVE) 

 

Discussion: 

 The best diagnostic classification performance obtained for this problem is 

79.3734%. 

 Five triangular input membership function and three rule base fuzzy system work 

best for this problem. 



 

 

CHAPTER-VIII 

CONCLUSION AND FUTURE SCOPE  

CONCLUSION 

The optimized fuzzy inference system, evolving both the membership functions and the 

rules has been obtained for breast cancer, liver disorder and diabetes diagnosis problems. 

The best evolved system has also been tested for correct diagnosis, giving excellent 

classification performance. 

The resulted evolved systems exhibit both characteristics outlined in Chapter 1: they 

attain high classification performance with the possibility of attributing a confidence 

measure to the output diagnosis and the resulting systems involve a few simple rules, and 

are therefore interpretable. 

Trapezoidal membership functions works best for the Wisconsin breast cancer problem, 

while triangular membership functions work best for liver disorder and diabetes problem. 

The diagnostic classification performance for breast cancer diagnosis is better as 

compared to the work done by R. Setiono [20], Taha and Ghosh [23] . 

The diagnostic classification performance for pima-indian diabetes diagnosis is better as 

compared to work done by W.Au et al [1]. 

The problem encountered is that as the length of the genome is large , the computation 

time is more. Moreover as the fitness function just takes into account the classification 

performance, and does not penalize systems with a large number of variables per rule,  

rules are more complicated , thus interpretability decreases. 

 

 

 

 

 

 

FURTHER WORK 

Further work on this project should concentrate on the following issues: 



 

 

The experiments were constrained with the limited number of rules per system. It was 

kept fixed between 2 to 5. The system can be worked with more number of rules and its 

effect on the fitness function can be seen. 

The active rules in the experiments diagnose benignity, liver disorder and diabetes tested 

positive with the default diagnosis being malignancy, no liver disorder and diabetes tested 

negative. It can be sought to find out what would happen if this were reversed, i.e. could 

better systems be evolved with benignity, liver disorder and diabetes tested positive as the 

default diagnosis? 

The fitness function used in this project takes into account just the classification 

performance. It can be changed taking into consideration two criteria: 

 The interpretability-penalizing systems with a large number of variables per rule. 

 The quadratic error (difference between the appraisal value and the correct 

diagnosis given by the database). It adds selection pressure towards systems with 

low quadratic error. 

What would be the effect of the above functions on the correct diagnosis? This would 

trade off performance for better interpretability. 

One can investigate the fuzzy genetic approach presented here for other complex 

diagnosis problems and test how well it can diagnose the disease. 
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APPENDIX 

 
1. MAIN PROGRAM FOR DIAGNOSIS 

 
% n = number of inputs 
% s = The input dataset matrix. 
% p = number showing which diagnosis to be done 
% y = Min max value matrix of each input  
% total = total patient data in each dataset. 
% List_inp = character array of the name of inputs in the dataset 
% name = The function called to get List 
% vlb vub = The lower and upper bounds of each input 
% bits = Number of bits required to code each input 
% e = The cpu time taken to run the genetic loop 
% x = The optimized genome  
% k = The rule base from the optimized genome 
% f = The MF parameters from the optimized genome 
 
clear all 
clc 
disp(sprintf('Choose which diagnosis')); 
disp('*-----------------------------------------------*'); 
disp(sprintf('1) Breast cancer')); 
disp(sprintf('2) Liver Disorder')); 
disp(sprintf('3) Diabetes')); 
p=input('Type the desired :') 
 
% Load the particular dataset, the number of inputs , total data and 

input names and   outputs. 
switch p, 
 
case 1, 
   s=load('C:\Documents and Settings\My Documents\uci\cancer.data'); 
   n =9; 
   total=342; 
   List_inp=name(1); 
   List_out=nameo(1); 
 
case 2, 
   s=load('C:\Documents and Settings\My Documents\uci\liver.data'); 
   n =6; 
   total=173; 
  
  List_inp=name(2); 
  List_out=nameo(2); 
 
case 3, 
   s=load('C:\DocumentsandSettings\My Documents\uci\diabetes.data'); 
   n=8; 
   total=384; 
   List_inp=name(3); 
   List_out=nameo(3); 
end; 
 
y=[minmax(transpose(s))]; 
y=transpose(y); 
if(p==1) y(:,1)=[]; 
end 
y(:,n+1)=[]; 
y=transpose(y); 
 
disp('%%%%%%%%%%%%%%%%%%%%%%') 
disp('     The Inputs:      ') 
disp('%%%%%%%%%%%%%%%%%%%%%%') 
disp(List_inp) 
pause; 
disp('%%%%%%%%%%%%%%%%%%%%%%') 
disp('  The Input ranges:'   ) 
disp('%%%%%%%%%%%%%%%%%%%%%%') 



 

 

disp(y) 
pause; 
disp('%%%%%%%%%%%%%%%%%%%%%%') 
disp('  The Output classes:' ) 
disp('%%%%%%%%%%%%%%%%%%%%%%') 
disp(List_out) 
pause; 
 
% Generate the upper and lower bounds, bits required to code each input 
vlb1=[];vub1=[];b1=[];r=[]; 
i=1; 
        
while(i<n+1) 
          y1(i,1)=y(i,2)-y(i,1); 
          b1=round(log2(y1(i,1))); 
            lb1=cat(2,vlb1,repmat(y(i,1),1,6)); 

vub1=cat(2,vub1,repmat(y(i,2),1,6));  
b1=cat(2,r,repmat(b1,1,6));            

          r=b1; 
          i=i+1; 
 end   
         
% Generate the upper and lower bounds, bits required to code each rule 
vlb2=zeros(1,3*n); 
vub2=7*ones(1,3*n); 
b2=3*ones(1,3*n); 
vlb=cat(2,vlb1,vlb2); 
vub=cat(2,vub1,vub2); 
bits=cat(2,b1,b2); 
 
% Make a Fuzzy inference system with the input and output variables 
a=newfis('fuzzy'); 
l=1; 
Lis=char(List_inp); 
Lis_o=char(List_out); 
    for i=1:n 
        a=addvar(a,'input',List_inp(i),[y(l,1) y(l,2)]); 
        a.input(i).name=Lis(i,:); 
        l=l+1; 
    end; 
a=addvar(a,'output','Diagnosis',[0 5]); 
 
% Give the necessary genetic algorithm parameters 
options = foptions([1 1e-3]); 
options(13) = 0.01;         % Mutation probability 
options(14) =20;           % Number of generations 
options(11)=20;              % Population size 
options(12)=1;                    % Crossover probability 
 
% Note the initial time before entering into the genetic loop 
t=cputime; 
 
 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
disp('    Genetic optimization    ') 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
 
% Start the genetic algorithm by encoding  all the MF parameters of each  
% input and all the 3 rules into the genome. 
% the genetic function has not been shown in this thesis .It is 
basically a  
% genetic algorithm implementation   
 
[x,stats,options,bf,fgen,igen]=genetic('fit',[],options,vlb,vub,bits,a,n,p,s,  y,total); 
 
% Find the time taken by the genetic algorithm 
disp('%%%%% The time taken by the genetic algorithm %%%%%'); 
e=cputime-t 
 



 

 

% The optimized genome in decoded form 
disp('%%%%% The optimized genome in decoded form %%%%%%%%') 
x 
pause; 
 
% Decode the genome into the MF parameters(f) and the rules(t1) 
q=length(x); 
k=x(n*6+1:q); 
t1=x(1:n*6); 
h=1;j=1; 
    while (j<n*6+1) 
        f(h,:)=t1(j:j+5); 
        j=j+6; 
        h=h+1; 
    end 
f=sort(f,2); 
l=1; 
% Define the Name , Type and Parameters of each MF for each input, using 
the optimized genome. 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
disp(' The optimized Membership function plots:   ') 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
pause; 
         
% For trapezoidal MF use  'trapmf' and number of the parameters to four. 
for i=1:n 
    a=addmf(a,'input',i,'VLOW','trimf',[y(l,1) y(l,1) f(i,1)]); 
    a=addmf(a,'input',i,'LOW','trimf',[y(l,1) f(i,2) f(i,3)]); 
    a=addmf(a,'input',i,'MEDIUM','trimf',[f(i,1) f(i,4) f(i,5)]);     
    a=addmf(a,'input',i,'HIGH','trimf',[f(i,3) f(i,6) y(l,2)]); 
    a=addmf(a,'input',i,'VHIGH','trimf',[f(i,5) y(l,2) y(l,2)]); 
l=l+1; 
end 
 
% Add the output MF to the FIS. 
if(p==1)v1=2;v2=4; 
else v1=1;v2=2; 
end 
 
a=addmf(a,'output',1,List_out(1),'trimf',[v1 v1 v1]); 
a=addmf(a,'output',1,List_out(2),'trimf',[v2 v2 v2]); 
plotmf(a,'output',1); 
pause; 
a.output(1).mf(1).name=Lis_o(1,:); 
a.output(1).mf(2).name=Lis_o(2,:); 
 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
disp('     The optimized rules       ') 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
k 
pause; 
 
% Find the average number of variables per rule 
avg=0; 
for i=1:n*3 
    if(k(1,i)>5) k(1,i)=0; 
    end 
    if (k(1,i)~=0)avg=avg+1; 
    end 
end 
avg=avg/3 
 
% Add the optimized rules into the FIS 
switch p, 
    case 1, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) k(1,7) 

k(1,8) k(1,9) 1 1 1; k(1,10) k(1,11) k(1,12) k(1,13) k(1,14) 
k(1,15) k(1,16) k(1,17) k(1,18) 1 1 1 ; k(1,19) k(1,20) 
k(1,21) k(1,22) k(1,23) k(24) k(1,25) k(1,26) k(1,27) 1 1 
1]; 



 

 

    case 2, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) 1 1 1; 

k(1,7) k(1,8) k(1,9) k(1,10) k(1,11) k(1,12) 1 1 1 ; k(1,13) 
k(1,14) k(1,15) k(1,16) k(1,17) k(1,18) 1 1 1]; 

    case 3, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) k(1,7) 

k(1,8) 1 1 1; k(1,9) k(1,10) k(1,11) k(1,12) k(1,13) k(1,14) 
k(1,15) k(1,16) 1 1 1 ;k(1,17) k(1,18) k(1,19) k(1,20) 
k(1,21) k(1,22) k(1,23) k(1,24) 1 1 1]; 

end;         
 
a=addrule(a,rulelist); 
     
% Testing the optimized FIS to obtain the percentage of  correctly 
classified data for the 50% of the dataset. 
if (p==1)     L1=343;L2=683;L3=340; 
elseif(p==2)  L1=174;L2=345;L3=171; 
else          L1=385;L2=768;L3=383; 
end; 
 
% Call the weighted average function. 
out=wgav(L2,n,f,p,k,s,y,L1); 
 
% Compare the weighted average output with the output set of the 
dataset. 
c2=comp(out,s,L1,L2,p); 
 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
disp('     The correctly classified data using the optimized FIS   ') 
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') 
Percent_classification= (c2/L3)*100 
 
% plot the optimized membership function plots 
for d=1:n 
plotmf(a,'input',d); 
pause; 
end 
 
% show the optimized rules    
    showrule(a,1) 
    showrule(a,2) 
    showrule(a,3) 
      
% Give any input to the optimized FIS for diagnosis     
disp('%%%%%%%%%%%%%%%%%%') 
disp('      DIAGNOSIS  ' ) 
disp('%%%%%%%%%%%%%%%%%%') 
disp('The input range is:'); 
disp(y) 
 
[data]=input('Enter the input data whose diagnosis is to be found:') 
wgt_outp=wgtav(1,n,f,p,k,data,y,1); 
 
switch(p) 
    case 1, 
        if(wgt_outp>=3) sprintf('Malignant') 
        else sprintf('Benign') 
        end; 
    case 2, 
        if(wgt_outp>=1.5) sprintf('Liver disorder') 
        else sprintf('No liver problem') 
        end; 
    case 3, 
        if(wgt_outp>=1.5) sprintf('Diabetes +') 
        else sprintf('Diabetes -') 
        end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 



 

 

 
2. THE FITNESS FUNCTION 

 
% x = The decoded genome containing the MF parameters and the rule 

values 
% a = The fuzzy inference system 
% n1 = The number of inputs 
% p1 = Number showing which diagnosis to be done 
% s1 = The input dataset matrix. 
% y1 = Min max value matrix of each input  
% tot = Total number of patient data in the dataset 
% t = Matrix of the MF parameters. 
% k = rules coded in decimal format for 3 rules  
%  : 1 =LOW, 2=MEDIUM, 3=HIGH 
% outp = The weighted average output for each patient data . 
% comp = Function which compares the weighted average output and the 

output  
% set of the dataset. 
% wgtav = The weighted average function to find the defuzzified output 
% c = Correctly classified data which is to be maximized 
 
function c = fitness(x,a,n1,p1,s1,y1,tot) 
 
% Find the length of the decoded genome 
e=length(x); 
 
% Divide the genome into the MF parameter part(t) and the rule part(k) 
t1=x(1:n1*6); 
k=x(n1*6+1:e); 
s=1;j=1; 
while (j<n1*6+1) 
    t(s,:)=t1(j:j+5); 
    j=j+6; 
    s=s+1; 
end 
t=sort(t,2);      % t has the MF 
parameters 
 
% Add triangular membership functions to the FIS input and output 
variables. 
m=1; 
 
for i=1:n1 
    a=addmf(a,'input',i,'Vlow','trimf',[y1(m,1) y1(m,1) t(i,1)]); 
    a=addmf(a,'input',i,'low','trimf',[y1(m,1) t(i,2) t(i,3)]); 
    a=addmf(a,'input',i,'medium','trimf',[t(i,1) t(i,4) t(i,5)]); 
    a=addmf(a,'input',i,'high','trimf',[t(i,3) t(i,6) y1(m,2)]); 
    a=addmf(a,'input',i,'vhigh','trimf',[t(i,5) y1(m,2) y1(m,2)]); 
    m=m+1; 
end   
        
if(p1==1)v1=2;v2=4; 
else v1=1;v2=2; 
end 
   
    a=addmf(a,'output',1,'class1','trimf',[v1 v1 v1]); 
    a=addmf(a,'output',1,'class2','trimf',[v2 v2 v2]); 
 
% k has the rules coded in decimal format for 3 rules  
%      : 1 =LOW, 2=MEDIUM, 3=HIGH 
for i=1:n1*3 
    if(k(1,i)>5) k(1,i)=0; 
    end 
end 
 
switch p1, 
    case 1, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) k(1,7) 

k(1,8) k(1,9) 1 1 1; k(1,10) k(1,11) k(1,12) k(1,13) k(1,14) 
k(1,15) k(1,16) k(1,17) k(1,18) 1 1 1 ; k(1,19) k(1,20) 



 

 

k(1,21) k(1,22) k(1,23) k(24) k(1,25) k(1,26) k(1,27) 1 1 
1]; 

    case 2, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) 1 1 1; 

k(1,7) k(1,8) k(1,9) k(1,10) k(1,11) k(1,12) 1 1 1 ; k(1,13) 
k(1,14) k(1,15) k(1,16) k(1,17) k(1,18) 1 1 1]; 

    case 3, 
        rulelist=[k(1,1) k(1,2) k(1,3) k(1,4) k(1,5) k(1,6) k(1,7) 

k(1,8) 1 1 1; k(1,9) k(1,10) k(1,11) k(1,12) k(1,13) k(1,14) 
k(1,15) k(1,16) 1 1 1;k(1,17) k(1,18) k(1,19) k(1,20) 
k(1,21) k(1,22) k(1,23) k(1,24) 1 1 1]; 

end;   
 
% Add the rules to the FIS 
a=addrule(a,rulelist); 
 
% Call the weighted average function 
outp=wgav(tot,n1,t,p1,k,s1,y1,1); 
 
% Compare the weighted average output with the output set of the 
dataset. 
c2=comp(outp,s1,1,tot,p1); 
 
% c is the fitness function (Correctly classified data) which is to be 
maximized 
c=c2/tot; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 

 
 

3. WEIGHTED AVERAGE  FUNCTION 
 

% This function finds out the weighted average for all input of a 
particular diagnosis dataset. 
% tot = Total number of data for each dataset. 
% r = Total inputs for each dataset 
% t1 = The MF parameters 
% p1 = The number specifying which diagnosis 
% y = Min max matrix for each input 
% k1 = Rule parameters 
% input = Input dataset. 
% wt = Matrix containing the defuzzified weighted average output  
 
function  [wt] =wgav(tot,r,t1,p1,k1,input,y,z) 
 
q=1;q1=r; 
for l=1:3 
  k(l,:)=k1(q:q1); 
  q=q1+1; 
  q1=q+r-1; 
end; 
k=transpose(k); 
 
% For validation use 50% of the data for training. 
for b=z:tot 
        c=1; 
        if(p1==1)j=2; 
        else j=1; 
        end 
 
% Fuzzify the input using triangular MF 
% For trapezoidal MF use 'trapmf' and number of the parameters to four. 
        for q=1:r 
        w(q,1)=evalmf(input(b,j),[y(c,1) y(c,1) t1(q,1)],'trimf'); 
        w(q,2)=evalmf(input(b,j),[y(c,1) t1(q,2) t1(q,3)],'trimf'); 
        w(q,3)=evalmf(input(b,j),[t1(q,1) t1(q,4) t1(q,5)],'trimf'); 
        w(q,4)=evalmf(input(b,j),[t1(q,3) t1(q,6) y(c,2)],'trimf'); 
        w(q,5)=evalmf(input(b,j),[t1(q,5) y(c,2) y(c,2)],'trimf'); 
        c=c+1; 



 

 

        j=j+1; 
        end 
 
 
% Defuzzify using weighted average method as output is singleton 
for j=1:3 
rule=[]; 
g1=[]; 
[f,g,v] = find(k(j,:)); 
e=length(v); 
for i=1:e 
g1(1,i)=w(g(i),v(1,i)); 
end 
rule=min(g1); 
end 
 
den=sum(rule)+0.25; 
 if(p1==1)m=2;m1=4; 
else m=1;m1=2; 
end 
wt(b)=(sum(rule)*m+0.25*m1)/den; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
 

4. COMPARE FUNCTION 
 

% This function compares the weighted average output with the output set 
of 
% the dataset. 
% c1 = Total number of patient data correctly diagnosed/classified 
% x1 = The weighted average output for each patient data  
% y = The dataset 
% b = The patient number to start with 
% t = The patient number to end with 
% p = Number showing which diagnosis to be done 
% k = The output column number in the dataset 
% k1 = Class 2 value shown in the dataset 
% k2 = Class 1 value shown in the dataset 
 
function c1=comp(x1,y,b,t,p) 
l=1; 
m=1; 
 
% Set the threshold value: j 
if(p==2)j=1.5;k=7;k1=2;k2=1; 
    elseif(p==1) j=3;k=11;k1=4;k2=2; 
        else j=1.5;k=9;k1=0;k2=1; 
end 
 
for i=b:t 
    % Compare the output with the threshold 
    if(x1(i)>=j) 
        % Compare the output with the output in the dataset 
        if(y(i,k)==k1) l=l+1; 
        end 
    elseif(y(i,k)==k2) m=m+1; 
    end 
end 
c1=l+m; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% 
 

5. INPUT/OUTPUT NAMES FUNCTION 
 

% This function sets the names of all the inputs of each dataset. 
% n1 = The chosen diagnosis number. 
% listn = The array containing the names of the inputs 
 



 

 

function listn = name(n1) 
 
if (n1==1) 
listn={'Clump thickness'; 'Cell size Uniformity' ;'Cell shape 
Uniformity'; 'Marginal adhesion'; 'Epithelial cell size'; 'Bare nuclei'; 
'Bland chromatin'; 'Normal nucleoli'; 'Mitosis'}; 
 
elseif (n1==2) 
listn={'Mean Corpuscular Volume';'Alkaline phosphotase';'Alamine 
aminotransferase'; 'Aspartate aminotransferase'; 'G-G transpeptidase'; 
'Drinks'}; 
 
else listn={'Number of times pregnant'; 'Plasma glucose concentration'; 
'Diastolic BP'; 'Skin fold thickness'; '2Hr serum insulin '; 'Body 
MassIndex'; 'Diabetes pedigree fun'; 'Age'}; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% This function sets the names of all the outputs of each dataset. 
% n1 = The chosen diagnosis number. 
% listn = The array containing the names of the outputs 
 
function listn=nameo(n1) 
if (n1==1) 
    listn={'BENIGN';'MALIGNANT'}; 
elseif (n1==2) 
    listn={'LIVER DISORDER';'NO LIVER DISORDER'}; 
else listn={'DIABETES POSITIVE';'DIABETES NEGATIVE'}; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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