[GTN XLV:2] # GRACEFUL SIGNED GRAPHS: III. THE CASE OF SIGNED CYCLES IN WHICH THE NEGATIVE SECTIONS FORM A MAXIMUM MATCHING # Mukti Acharya and Tarkeshwar Singh Department of Applied Mathematics Delhi College of Engineering Bawana Road, Delhi-110042, INDIA <mukti1948@yahoo.com> <stsingh@reddiffmail.com> ## Abstract In a previous paper generalizing the well known notion of graceful graphs, we define a (p, m, n)-signed graph S of order p, with m positive edges and n negative edges, to be graceful if there exists an injective function f that assigns integers $0,1,\ldots,q=m+n$ to its vertices such that when to each edge uv of S one assigns the absolute difference |f(u)-f(v)|, the positive edges of S are mapped to the set $\{1,2,\ldots,m\}$ and the negative edges of S are mapped to the set $\{1,2,\ldots,m\}$. A result in that paper showed that if a (p,m,n)-signed graph having an Eulerian underlying graph is graceful then its size q must be congruent to 0,2, or 0 #### 1. Introduction For terminology in graph theory we follow [1]. Additional terms are defined as needed. A signed graph (or sigraph in short) is an ordered pair $S = (S^u, s)$ where $S^u = (V, E)$ is a graph, called the underlying graph of S, and $s: E \to \{+, -\}$ is a function from the edge set E to the set $\{+, -\}$. This notion was first introduced by Harary [2] in the context of modelling a sociopsychologic phenomenon. Let $E^+(S) = \{e \in E : s(e) = +\}$ and $E^-(S) = \{e \in E : s(e) = -\}$. The set $E(S) = E^+(S) \cup E^-(S)$ is called the *edge set* of S. The elements of $E^+(S)$ and $E^-(S)$, respectively, are called *positive* and *negative edges* of S. An *all-positive sigraph* S is one for which $E^+(S) = E(S)$; similarly, S is *all-negative* if $E^-(S) = E(S)$. Hence, we consider a graph as an all-positive sigraph. A sigraph is said to be *homogeneous* if it is either all-positive or all-negative and to be *heterogeneous* otherwise. Given a subsigraph H of S, by a *negative* (*positive*) section of H we mean a maximal connected all-negative (all-positive) subsigraph of H. By (p,m,n)-sigraph we mean a sigraph $S=(S^u,s)$ where $S^u=(V,E)$ is a (p,q)-graph (that is, a graph of order p and size q, as defined in [1]), $|E^+(S)|=m$ and $|E^-(S)|=n$ so that m+n=q. Let f be a function that assigns distinct labels to the vertices of S from the set $\{0,1,2,...,q\}$. Define a labeling g_f of the edges of S induced by f as follows: for each edge $uv \in E$, $g_f(uv) = s(uv)|f(u) - \hat{f}(v)|$. If the q edges of S each have a unique label $g_f(uv)$ from the set $\{1,2,...,m,-1,-2,...,-n\}$, then the labeling f is called a g-raceful labelling of S. A sigraph that admits such a labelling is called a g-raceful sigraph (see [3]). Note that if g is an all-positive sigraph) then this notion coincides with that of a graceful graphs in the Rosa and Golomb sense [4][5]). Graceful labellings of sigraphs may provide insight into the more general problem of finding a unified model for automatic continuous coding of monochromatic factors in an edge packing of a graph, as described in [6]. **Theorem 1 [3]:** Let $S = (S^n, s)$ be a (p, m, n)-sigraph such that S^n is a Eulerian. If S is graceful, then $m^2 + n^2 + m + n \equiv 0 \pmod{4}$. By a signed cycle, Z_k , we mean any signed graph on the cycle C_k of length $k \ge 3$ such that $Z_k = C_k$ if and only if Z_k is all-positive. Corollary 1.1 [3]: If a signed cycle Z_k , $k \ge 3$, is graceful then $k \equiv 0, 2, \text{ or } 3 \pmod{4}$. It was conjectured in [3] that the converse of Corollary 1.1 also holds for all $k \ge 7$ under certain conditions. In fact, the following results are known. **Theorem 2 [3]:** If a signed cycle Z_k of length $k \equiv 0 \pmod{4}$ is graceful then the number of negative sections of odd length in Z_k is even. **Theorem 3** [7]: If a signed cycle Z_k , $k \equiv 3 \pmod{4}$ contains exactly one negative section the Z_k is graceful. **Theorem 4** [7]: If a signed cycle Z_k , $k \equiv 2 \pmod{4}$ is graceful then the number of negative sections of odd length in Z_k is odd. In this paper, we establish the following result as partial progress in settling the converse of Corollary 1.1. **Theorem 5:** If $6 \le k \equiv 0$, 2, or 3 (mod 4) then any signed cycle Z_k in which the negative sections form a maximum matching is graceful. ## 2. Results In this section we complete the proof of Theorem 5 by establishing a series of lemmas. First, we establish the following partial result toward the sufficiency of Theorem 2. In this case, we consider negative sections of unit length (copies of K_2) that form a maximum matching of the signed cycle. **Lemma 1:** If Z_k , $8 \le k \equiv 0 \pmod{4}$, is a signed cycle in which the negative sections constitute a maximum matching, then Z_k is graceful. **Proof:** It is sufficient to provide a graceful labelling of Z_k whose sign structure is as stated in the hypothesis, with m and n denoting, respectively, the sum of lengths of positive and negative sections in Z_k . Furthermore, since $k \equiv 0 \pmod 4$, in this case m = n = k/2 is even. Accordingly, we define a graceful labelling, ψ , of Z_k as follows. Label the vertices of Z_k consecutively as $u_1, u_2, ..., u_k$, with u_1u_k a positive edge. Define the vertex numbering ψ in this case as follows: $$\begin{split} & \psi(u_1) \,=\, 0\,, \\ & \psi(u_i) \,=\, n + \frac{i}{2} - 1\,, \, \text{for} \,\, i \in \{2,\,4,\,\ldots,\,n+2\}\,, \\ & \psi(u_i) \,=\, 2n - \frac{i-3}{2}\,, \, \text{for} \,\, i \in \{3,\,5,\,\ldots,\,n+1\}\,, \\ & \psi(u_i) \,=\, \frac{2n-i}{2} + 1\,, \, \text{for} \,\, i \in \{n+4,\,n+6,\,\ldots,\,2n\}\,, \, \text{and} \\ & \psi(u_i) \,=\, \left\lfloor \frac{i}{2} \right\rfloor , \, \text{for} \,\, i \in \{n+3,\,n+5,\,\ldots,\,2n-1\}\,. \end{split}$$ Then, the induced edge function g_{ψ} yields the edge labels $$\begin{split} \{g_{\psi}(u_{i}u_{i+1}) &= s(u_{i}u_{i+1}) \big| \psi(u_{i}) - \psi(u_{i+1}) \big| = s(u_{i}u_{i+1}) | n-i+2| : i \in \{2,3,4,...,n+1\} \} \\ &= \{-1,-3,...,-(n-1)\} \cup \{2,4,...,n\}; \\ \{g_{\psi}(u_{i}u_{i+1}) &= s(u_{i}u_{i+1}) \Big\| \frac{2n-i-1}{2} \Big\rfloor + 1 - \Big\lfloor \frac{i}{2} \Big\rfloor : i \in \{n+3,n+4,...,2n-1\} \} \\ &= \{3,5,...,n-3\} \cup \{-2,-4,...,-(n-2)\}; \\ g_{\psi}(u_{i}u_{i+1}) &= s(u_{i}u_{i+1}) \Big| n + \frac{i}{2} - 1 - \Big\lfloor \frac{i+1}{2} \Big\rfloor \Big|, \text{ when } i = n+2; \\ g_{\psi}(u_{1}u_{2}) &= -n; \text{ and} \\ g_{\psi}(u_{1}u_{k}) &= 1. \end{split}$$ The injectivity of ψ is straightforward to see from its definition in this case. We have shown that the induced edge labelling g_{ψ} is also injective. This completes the proof of Lemma 1. Lemma 1 is illustrated in Figure 1. Figure 1: Examples of graceful signed cycles Z_k , $k \equiv 0 \pmod{4}$. **Lemma 2:** If Z_k , $7 \le k \equiv 3 \pmod{4}$, is a signed cycle in which the negative sections constitute a maximum matching, then Z_k is graceful. **Proof:** Again it is sufficient to provide a graceful labelling of Z_k . We construct a graceful labeling ψ as follows. Let the vertices of Z_k be labeled consecutively as $u_1, u_2, ..., u_k$ so that the edge u_1u_2 is positive. Note that this choice fixes the signs of other edges in Z_k due to the maximum matching condition. Define the vertex numbering ψ as follows: $$\begin{split} & \psi(u_1) = 0; \\ & \psi(u_i) = \frac{k+1}{2} + \frac{i}{2} - 1, \text{ for } i \in \{2, 4, ..., \frac{k+1}{2}\}; \\ & \psi(u_i) = k - \frac{i-3}{2}, \text{ for } i \in \{3, 5, ..., \frac{k+3}{2}\}; \\ & \psi(u_i) = \frac{k-i}{2} + 1, \text{ for } i \in \{\frac{k+7}{2}, \frac{k+11}{2}, ..., k\}; \text{ and } \\ & \psi(u_i) = \frac{i}{2}, \text{ for } i \in \{\frac{k+5}{2}, \frac{k+9}{2}, ..., k-1\}. \end{split}$$ The induced edge function g_{w} yields the edge labels $$\begin{split} g_{\psi}(u_1u_k) &= 1\,; \\ g_{\psi}(u_1u_2) &= \frac{k+1}{2}; \\ \{g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| \psi(u_i) - \psi(u_{i+1}) \big| = s(u_iu_{i+1}) \big| \frac{k-1}{2} - i + 2 \big| : i \in \{2, 3, 4, ..., \frac{k+1}{2}\} \} \\ &= \{-1, -3, ..., -(\frac{k-1}{2})\} \cup \{2, 4, ..., \frac{k-3}{2}\}; \\ \{g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| \frac{k+1}{2} - i \big| : i \in \{\frac{k+5}{2}, \frac{k+7}{2}, ..., k-1\} \} \\ &= \{3, 5, ..., \frac{k-5}{2}\} \cup \{-2, -4, ..., -(\frac{k-3}{2})\}; \text{ and} \\ g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| k - (\frac{i-3}{2}) - (\frac{i+1}{2}) \big| = |k-i+1| = \frac{k-1}{2} \text{ when } i = \frac{k+3}{2}. \end{split}$$ The injectivity of ψ is straightforward to see from its definition. We have also shown that the induced edge labelling g_{w} is injective. This completing the proof of Lemma 2. Lemma 2 is illustrated in Figure 2. Figure 2: Examples of graceful signed cycles Z_k , $k \equiv 3 \pmod{4}$. **Lemma 3:** If Z_k , $6 \le k \equiv 2 \pmod{4}$, is a signed cycle in which the negative sections form a maximum matching, then Z_k is graceful. **Proof:** Clearly it is sufficient to provide a graceful labelling of Z_k . We construct a graceful labeling ψ as follows. Let the vertices of Z_k be labeled consecutively as $u_1, u_2, ..., u_k$. Let the edge u_1u_k be negative (however, in this proof the vertex function works independently of this choice). Define the vertex numbering ψ as follows: $$\begin{split} & \psi(u_i) = 0; \\ & \psi(u_i) = \frac{k}{2} + \frac{i}{2} - 1, \text{ for } i \in \{2, 4, ..., \frac{k}{2} + 1\}; \\ & \psi(u_i) = k - \frac{i - 3}{2}, \text{ for } i \in \{3, 5, ..., \frac{k}{2}\}; \\ & \psi(u_i) = \left\lfloor \frac{k - i}{2} \right\rfloor + 1, \text{ for } i \in \{\frac{k + 6}{2}, \frac{k + 10}{2}, ..., k\}; \text{ and } \\ & \psi(u_i) = \left\lfloor \frac{i}{2} \right\rfloor, \text{ for } i \in \{\frac{k + 4}{2}, \frac{k + 8}{2}, ..., k - 1\}. \end{split}$$ Then the induced edge function $g_{\mathbf{W}}$ yields the edge labels $$\begin{split} g_{\psi}(u_1u_k) &= -1; \\ g_{\psi}(u_1u_2) &= \frac{k}{2}; \\ \{g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| \psi(u_i) - \psi(u_{i+1}) \big| = s(u_iu_{i+1}) \big| \frac{k}{2} - i + 2 \big| : i \in \{2, 3, 4, \dots, \frac{k}{2}\} \} \\ &= \{-3, -5, \dots, -(\frac{k}{2})\} \cup \{2, 4, \dots, \frac{k}{2} - 1\}; \\ \{g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| \big| \frac{i}{2} \big| - \big| \frac{k-i-1}{2} \big| - 1 \big| : i \in \{\frac{k+4}{2}, \frac{k+6}{2}, \dots, k-1\} \} \\ &= \{1, 3, \dots, \frac{k-4}{2}\} \cup \{-2, -4, \dots, -(\frac{k-2}{2})\}; \text{ and} \\ g_{\psi}(u_iu_{i+1}) = s(u_iu_{i+1}) \big| \frac{k}{2} + \frac{i}{2} - 1 - \big| \frac{i+1}{2} \big| \big| \text{ when } i = \frac{k}{2} + 1. \end{split}$$ The injectivity of ψ is straightforward from its definition. We have also shown that the induced edge labelling g_{ψ} is injective. This completing the proof of Lemma 3. Lemma 3 is illustrated in Figure 3. Figure 3: Examples of graceful signed cycles Z_k , $k \equiv 2 \pmod{4}$. # 3. Concluding Remarks We have determined the graceful signed cycles Z_k for all integers $6 \le k \equiv 0$, 2, and 3 (mod 4), in which the negative sections constitute a maximum matching. In general, the determination of graceful signed cycles in which there are more than one negative section seems to be a hard problem. For k=3, that Z_3 is graceful is noted in [7]. For k=4, that Z_4 is not graceful when the negative sections form a maximum matching is noted in [3]. For k=5, that no signed cycle Z_5 on C_5 is graceful follows from Theorem 1 [3]. Thus, we have completely characterized the values $k \equiv 0$, 2, and 3 (mod 4) for which Z_k is graceful when the allnegative subsigraph of Z_k forms a maximum matching. ## Acknowledgements The authors thank Dr. B.D. Acharya for graciously providing discussion and suggestions that were useful in the preparation of this paper. We also thank the referee for his very elaborate comments on a previous version of this paper; this greatly helped in reducing the content and focusing on the problem of graceful signed cycles. T.S. is grateful to the authorities of the Institute of Mathematical Sciences, Chennai, India for providing an excellent environment and support to complete the work reported in this paper. #### References - [1] F. Harary; Graph Theory, Addison-Wesley, Reading (1969). - [2] F. Harary; On the notion of balance of a signed graph. Mich. Math. J., 2, 143–146 (1953). - [3] M. Acharya and T. Singh; Graceful signed graphs, Czechoslovak Mathematical Journal. —To appear. - [4] S.W. Golomb; How to number a graph? In Graph Theory and Computing, R.C. Read, Ed. Academic Press. - [5] A. Rosa; On certain valuations of the vertices of a graph. In *Theory of Graphs*, P. Rosentiehl, Ed. 349-355. Proc. Intl, Symp., Rome, 1966. Dunod, Paris (1968). - [6] B.D. Acharya; (*k*,*d*)-graceful packings of a graph. In Proceedings of Group Discussion on Graph Labeling Problems, B.D. Acharya and S.M. Hegde, Eds. Karnataka Regional Engineering College, Surathkal, August 16–25 (1999). - [7] M. Acharya and T. Singh; Graceful signed graphs: II. The case of signed cycles with connected negative sections. Submitted. Received: January 7, 2002 Revised: November 6, 2002