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Abstract 

Many non-linear, inherently unstable systems exist whose control using conventional 

methods is both difficult to design and unsatisfactory in implementation. Fuzzy Logic 

Controllers  are  a  class  of  non-linear  controllers  that  make  use  of  human  expert 

knowledge  and  an  implicit  imprecision  to  apply  control  to  such  systems.   

The Knowledge Base of a Fuzzy Logic Controller (FLC) encapsulates expert knowledge 

and consists of the Data Base (membership functions) and Rule-Base of the controller. 

Optimization of both of these Knowledge Base components is critical to the performance 

of the controller and has traditionally been achieved through a process of trial and error. 

Such an approach is convenient for FLCs having low numbers of input variables. 

However, for large numbers of inputs, more formal methods of Knowledge Base 

optimization are required. The construction of  these controllers can be quick and 

effective in the presence of expert knowledge;  conversely,  in  the  absence  of  such  

knowledge,  their  design  can  be  slow and based on trial-and-error rather than a guided 

approach.  

Genetic Algorithms provide a way of surmounting this shortcoming. These algorithms 

use  some  of  the  concepts  of  evolutionary  theory,  and  provide  an  effective  way  of 

searching  a  large  and  complex  solution  space  to  give  close  to  optimal  solutions  in  

much faster times than random trial-and-error. They are also generally more effective at 

avoiding local minima than differentiation-based approaches.  

In this report the application of Genetic Algorithms to the design and optimization of 

Fuzzy Logic Controllers is demonstrated. These controllers are characterized by a set of 

parameters. 

 The efficacy of this approach had been tested by comparison of the GA-FLC’s 

performance in controlling a liquid level control system, to that of heuristically-tuned 

FLC. 
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CHAPTER-I 

INTRODUCTION 

 
 INTRODUCTION 

Traditionally, control systems modeling has been based upon the use of mathematical 

techniques to model the input/output relationship of the system in question [1] [2]. Such 

an approach relies upon a mathematical description of the plant in order to model the 

behavior of the system, subject to certain conditions and assumptions. Many real-world 

systems however, may not be as readily described mathematically due to the complexity 

of the components of the plant and the interaction between them, and consequently, the 

model may be subject to certain assumptions or conditions [3]. 

In such models, the degree of mathematical precision required to completely describe 

every aspect of the process, is either prohibitive or non-trivial. In addition, for actual 

implementation of such systems, heuristics, gained through human experience, are often 

employed in the tuning of the final controller [1][4]. 

The use of Fuzzy Logic [1][2] has found application in the area of control system design 

where human expert knowledge, rather than precise mathematical modeling, of a process 

or plant is used to model/implement the required controller [3] [4]. Human expert 

knowledge is based upon heuristic information gained in relation to the operation of the 

plant or process, and its inherent vagueness (“fuzziness”) offers a powerful tool for the 

modeling of complex systems. 

Uncertainty and ambiguity are evident in many engineering problems. For example, 

system stability can be considered fuzzy in the sense that a system can be lightly-damped, 

under-damped, over damped, etc. Fuzzy Logic Control (FLC) therefore provides a formal 

method of translating subjective and imprecise human knowledge into control strategies, 

thus facilitating better system performance through the exploitation and application of 

that knowledge. 

Optimal design of the FLC Knowledge Base (membership functions and rule -base) is 

central to the performance of the FLC. The rule -base reflects the human expert 

knowledge, expressed as linguistic variables, while the membership functions represent 

expert interpretation of those same variables. In the absence of such knowledge, a 
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common approach is to optimize these FLC parameters through a process of trial and 

error, with respect to the performance of the system for each Knowledge Base formulated 

[5]. This approach becomes impractical for systems having significant numbers of inputs, 

since the rule-base size grows exponentially, and consequently the number of rule 

combinations becomes significantly large [7]. Although a priori knowledge can eliminate 

the requirement to test every possible combination, a more formal method is nonetheless 

required. The use of Genetic Algorithms (GA) in this regard can provide such a solution 

[10]. 

 

Genetic Algorithms (GAs) [11][12] are robust, numerical search methods that mimic the 

process of natural selection. Although not guaranteed to absolutely find the true global 

optima in a defined search space, GAs are renowned for finding relatively suitable 

solutions within acceptable time frames and for applicability to many problem domains. 

Using primary concepts of genetic selection, crossover and mutation, GAs are a 

stochastic, but directed method of identifying global optima within a problem domain-

space. This is achieved through successive performance testing of potential solutions (i.e. 

members) which collectively form a population, with respect to a problem objective 

function. Information exchange between “better performing” candidates is facilitated by 

the genetic operators and occurs across generations of populations. In this way, 

convergence to optimal solutions is achieved. 

 

In this study, simple GA (selection, crossover and mutation only) was used to evaluate 

potential solutions for FLC membership function parameter optimization, with a view to 

optimizing the performance of the FLC, when applied to liquid level control system, and 

to identify and discuss issues arising from the evaluation. 

1.2 STATEMENT OF THE PROBLEM  

Recent studies on optimization showed that fuzzy controllers led proportional-integral-

derivative (PID) controllers with insignificant magnitude of ISE. Thus, the advantage of 

fuzzy controllers over PID controllers is inconspicuous. It is, therefore, necessary to try 

another optimization technique to further enhance the performance of fuzzy controllers.  
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The main problem of this study is how to optimize a fuzzy controller using GA. 

Specifically; it is the concern of this project on how to genetically vary the width of 

membership functions to obtain minimum ISE.  

1.3 OBJECTIVES OF THE STUDY  

The main objective of this study is to establish a methodology on how to apply GA in 

tuning fuzzy controller. This tuning process determines the optimum fuzzy controller 

parameters that would yield minimum ISE.  

It specifically intends to seek solutions on how to apply GA to automatically determine 

the width of the output membership functions that would result to minimum ISE. Further, 

it investigates the convergence rate, the lowest ISE ever attained, and the consistency of 

the optimization process.  

1.4 SIGNIFICANCE OF THE STUDY  

The result of this study will establish a sound methodology in optimizing a fuzzy 

controller using GA. It will also serve as a benchmark of any effort to further verify the 

validity of the work on an actual set-up. Furthermore, it will serve as a basis of any study 

regarding GA search and optimization inside and outside fuzzy controller. 

1.5 SCOPE AND LIMITATIONS  

The study focuses on the application of GA in the optimization of a fuzzy controller used 

in liquid level control system. In order to minimize the parameter set and reduce 

simulation’s processing time, only the output membership function of the controller is 

varied. The input membership function and fuzzy rules are fixed. The optimization 

processes will then be evaluated using the ISE performance criterion. The available 

function in Genetic Algorithm Optimization Toolbox and Fuzzy Logic Toolbox (FLT) 

for MATLAB are being used. The work is limited to computer simulation only. Physical 

experimentation is beyond the scope of this study. 
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1.6 LITERATURE REVIEW 
 

Conventional control system design is predominantly based upon the development of 

mathematical models, which attempt to describe the dynamic behavior of the system in 

question using typically, differential equations. Many such methods of system design 

have been developed over time, including 3-term, Proportional, Integral, Derivative 

control (PID-control) [3][12], root-locus design [13], state-space [14] etc. offering a 

variety of ways in which good controller design may be achieved. In practice, PID (P, PI) 

control systems predominate, with approximately 90% of all controllers in operation, 

being of this form [3] [5]. The dominance of PID control may be explained by the fact 

that it is a long-standing, successful design technique, well understood by industrial users 

[8]. 

PID control however, has some disadvantages associated with it, one of which is that PID 

was originally designed for single -input, single -output (SISO) operation [4]. However, 

in practice, many real-world systems are multiple -input, multiple-output (MIMO), and 

control of such systems can be complicated involving several independent control loops 

[4]. For such systems, complex mathematical models are required in order to exploit the 

interdependencies of physical variables and this may be impractical for several reasons, 

including lengthy model development time [4], and application of extensive 

simplifications or assumptions to the model, which at implementation stage will require 

heuristic tuning [3][5]. 

 

In addition, modeling the system is usually performed using the linear region of operation 

of the plant. This can lead to poor system response to disturbances or nonlinear behavior, 

as a result of component wear and tear over time, for example. A second disadvantage 

associated with mathematical-based models is that heuristic information/knowledge 

which does not ‘fit easily’ into the mathematical framework of the model, tends not to be 

included in the design process, but rather is left to the tuning stage of model 

implementation thus rendering the model less robust [3]. 

Fuzzy Control [3] is the application of Fuzzy Logic [3] to control systems design. Fuzzy 

Logic was pioneered by Lotfi Zadeh [15] in 1965 and is a super-set of Boolean logic 

theory used to represent imprecision and uncertainty. Imprecision and uncertainty 
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(i.e.”fuzziness”) are qualities inherent within human language when used to describe 

perceptions of observed events and objects. 

Uncertainty and imprecision, caused by non-linearity such as noise and disturbances, are 

also evident in the operation of real-world systems. The use of mathematical models to 

develop such systems may result in poor system performance if the dynamics of actual 

events do not form part of the model. This is because a full and complete mathematical 

model describing every possible cause and- effect event is not feasible [5]. The required 

degree of mathematical precision becomes even greater for non-linear system design. 

 

Increased mathematical complexity required for conventional modeling techniques thus 

led to the application of Fuzzy Logic to control systems design in the form of Fuzzy 

Logic Controllers and their use has steadily grown among industrial users [5]. 

The case for FLC is that it translates human abstractions/perceptions in the form of expert 

knowledge, into the numerical domain, thus facilitating suitable system controller design 

while avoiding the need for stringent mathematical, system descriptions [3]. Application 

of FLC in the domain of PID control has been, in general, used to augment existing PID 

controller operation or replacement of PID by FLC [16][17]. 

 

The use of FLCs however requires optimized knowledge bases. Commonly, heuristic 

tuning of rule - bases and/or membership functions has been through a combination of 

trial and error and expert knowledge [5]. For increasingly larger numbers of inputs and 

outputs (rule s), as well as membership functions, even with a priori, expert knowledge, 

this method becomes more difficult as the number of rules rises exponentially [6]. 

Artificial intelligence techniques such as Artificial Neural Networks (ANN)  and Genetic 

Algorithms have been advocated as solutions to this problem [2][9]. Neural Nets can be 

used to learn FLC rule-bases using input-output data, or to tune given membership 

functions. Such an approach combines the learning capability of the ANN with the 

reasoning power of fuzzy logic [2]. Alternatively, the search for suitable rules or 

membership function parameters of a FLC knowledge base can be viewed as an 

optimization problem to which a GA can be applied [9] [18]. 

Genetic Algorithms (GAs) are numerical optimization techniques based upon the 

mechanics of natural selection [11] [12]. Pioneered in the 1970’s by John Holland [18] 

and colleagues at the University of Michigan [19], GAs use the concept of “survival of 

the fittest” to determine, through successive generations of randomized, but directed, 
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information exchange, the optimal sample value or point in a search space [11][12]. GAs 

offer a robust search mechanism as a priori knowledge is not generally required for 

successful application of the algorithm, and they have been successfully applied to a wide 

range of optimization problems [11].  

The key operators of a GA are selection, crossover, mutation and population size 

[10][11][23], with secondary parameters including variable encoding [10][11][24] and 

decoding [10][24], and population-update [10][24], also having a bearing upon the 

effectiveness of the algorithm. Due to the stochastic nature of operation and the wide 

range of problems to which GAs may be applied, a formal, analytical description of the 

interactions and dependencies of the various parameters of a GA is complex, and 

consequently selection of GA parameters and associated settings, has to date been largely 

based upon empirical evaluation [25]. 

GAs can be used to optimize a FLC by optimizing the rule -base [26], membership 

functions [18], or knowledge base (i.e. both rule -base and membership functions) [18] 

[6]. For the GA-optimization of a rule-base, three different population strategies, known 

as Pittsburgh, Michigan and Iterative Rule are possible [18][26]. For the Michigan 

strategy, each GA chromosome in the population represents a single rule and so the 

population as a whole represents the entire rule -base, which is modified over time 

through interaction with the environment. The Pittsburgh strategy is to encode entire rule 

bases into each chromosome so that the entire population represents many competing rule 

-bases. The Iterative Rule strategy is similar to the Michigan approach, in the sense that 

single rules are found, but only the best individual member is considered to form part of 

the solution at each stage with the remaining population members discarded. 

 

Although the Pittsburgh approach involves more computational overhead [18], the 

competition among complete rule -bases, as opposed to single -rules, induces better 

cooperation among the rules of any proposed solution for the FLC [18]. 

In addition to choice of population strategy and all other GA parameters previously 

outlined, the form of objective function used in evaluating GA-population members is an 

essential factor of the optimization task [6]. In the realm of FLC optimization, numerous 

objective functions have been adopted based on minimizing particular attributes of the 

system response such as the Mean Square Error (MSE) [6], cost equations based on 

response rise and settling times [8] and integral of absolute error (IAE). Irrespective of 

definition, the suitability of the objective function as a system performance indicator is 
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critical to the successful application of a Genetic Algorithm and thus requires careful 

selection. Once constructed around a suitable objective function, the GA proceeds to 

evaluate candidate solutions using the objective function in order to gauge the 

performance of each potential solution when applied to the problem domain [26] [28].  

 
 
1.7 REPORT LAYOUT 
 
In relation to work performed in this study, the remainder of the report consists of the 

following chapters; 

Chapter 2 presents a discussion on the fuzzy logic and fuzzy set theory. In this chapter we 

will discuss what fuzzy logic is? How it differ from classical logic and set theory and how 

it handles the problem of imprecision in the real world problems.   

Chapter 3 presents about fuzzy modeling. Here we will explain what we mean fuzzy 

modeling? , types of fuzzy modeling i.e. mamdani and sugeno modeling, the advantage 

and disadvantage of one type of modeling over the other. 

Chapter 4 discusses the development and simulation of the heuristic FLC (he-FLC) 

While Chapter 5 and 6 presents the motivation for, and analysis of, a parametric 

evaluation of the Simple Genetic Algorithm (SGA) that was performed in order to gain 

insight into appropriate parameter methods and settings that should be used for 

application of the SGA to the FLC optimization problem. To ascertain if the GA-

optimization approach of fuzzy controllers used is valid, the performance of the GA first 

checked by using simple multimodal function.  

Chapter7 briefly discusses genetic fuzzy systems (GFS) and details the design of the SGA 

used to optimize the FLC and also outlines how MATLAB fuzzy inference systems (FIS) 

were used in conjunction with the GA to encode complete FLC rule -bases and 

membership function specifications.  

The final chapter offers the design of fuzzy genetic system namely liquid level control 

system. The chapter concludes with an evaluation of the results of the optimization 

attempt and issues arising from it, through comparison with the conventional and 

heuristic FLC models. 
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CHAPTER-II 

FUZZY LOGIC CONCEPTS 
 

INTRODUCTION 

Fuzzy Logic is  a multi level  logic  system  that  uses  linguistic variables  such  as  

“long”,  ‘fast”,  “cool”,  “heavy”,  “middle-aged”  and  so  on. Objects can  have  varying  

degrees  of  membership  of  such  fuzzy  sets,  ranging  from  a  crisp “definitely  not  a 

member”  (denoted  by  0)  to  a  crisp  “definitely  a member”  (denoted by  1). The  

crucial  distinction  is  that  between  these  crisp  extremes,  objects  can  have less  

certain  degrees  of membership  such  as  “not  really  a member”  (perhaps  denoted by a 

0.1) and “pretty much a member” (0.9 possibly).  

  

2.2 FUZZY LOGIC  

Fuzzy  logic  is  based  on  the  theory  of  fuzzy  sets where  variables  can  have  

differing degrees of membership of sets. This is unlike the more familiar crisp set theory 

where a variable is either a full member of a set or it is not a member of that set at all. The 

degree to which a variable belongs to a set can vary between 0 and 1. This can allow for 

the handling of borderline cases and other hard-to-categorizes situations in a more 

intuitively satisfying way.   

A universe of discourse is defined as the whole range of fuzzy sets to which a variable 

can belong.  Each  set  on  this  universe  of  discourse  is  referred  to  as  a membership 

function  and  is  often  described  using  a  ‘linguistic  variable’.  On a universe  of  

discourse,  a  variable  has  a  degree  of membership  of  each membership  function  that 

varies between 0 and 1.  

  

Fuzzy  Logic  uses  rules  with  antecedents  and  consequents  to  produce  outputs  from 

inputs. The antecedents are the inputs that are used in the decision-making process or the 

“IF” parts of the rules. The consequents are the implications of  the  rules  or  the 

“THEN” parts. In this thesis, fuzzy logic is not considered as a logic, but as a computing 

method. Fuzzy systems are considered from two points of view. First the system has 

linguistic representation with linguistic variables and fuzzy if-then rules. On the other 

hand, fuzzy logic is used as a numerical method to create a nonlinear mapping between 

inputs and outputs. 
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2.3 HISTORICAL BACKGROUND OF FUZZY LOGIC  
 

The idea of fuzzy logic (grade of membership) was born in July 19 65 by Lofti Zadeh 

well respected professor of Electrical and Computer Engineering at university of 

California, Berkeley [1]. Proff. Zadeh believed that real world problem could be solved 

with efficient, analytical method. In his 1961 paper he has mentioned that traditional 

system analysis technique were too precise for many complex real world problems. In one 

of his seminal paper ,Zadeh explained the principle of incompatibility ,which state 

“…. as the complexity of a system increases, our ability to make precise yet significant 

descriptions about its behavior diminishes until a threshold is reached beyond which 

precision become almost mutually exclusive characteristics” 

When we see from practical point of view the idea of Zadeh was acceptable. One has to 

pay a cost for high precision but the cost may be too high to be practical. The following 

figure clearly indicates the relation ship between cost, utility and precision. The vertical 

axis serves dual purpose of representing both the cost and degree of utility and the 

horizontal axis represent the degree of precision. 

        Cost and  utility Cost  

 Utility  

 

  

 

   Precise 

                       Fig2-1 The cost –precision trade-off 

The above figure indicates that as precision of the system increases, the cost for 

developing the system also increases, in exponential manner. On the other hand 

usefulness (utility) of the system does not increase proportionally as its precision 

increases, it usually saturate after a certain point. Therefore, the gray area is both cost 

effective and highly useful. This leads for the development of fuzzy logic and its 

fundamental principle that is to develop cost effective approximate solution to complex 
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problem by exploiting the tolerance of imprecision. As result, fuzzy logic brings a 

complementary viewpoint –a view in which cost effectiveness rather than precision [1]. 

Zadeh has encountered sharp criticism due to fuzzy set concept from academic 

community. Some reject it because of the name, without knowing the content in detail. 

Others rejected it because of theory’s emphasis on imprecision,- a major departure from 

the western scientific discipline’s  focus on precision. However, starting from 1965 many 

researchers around the world became Zadeh’s follower. 

In 1974 E.Mamdani in United Kingdom developed the first fuzzy logic controller, which 

was controlling a steam generator. Panasonic company in Japan was the first to apply 

fuzzy logic to consumer product, a shower head that control water temperature in 19 87. 

The first fuzzy logic VLSI chip for performing fuzzy logic inference was developed by 

M.Togie and H.watanabe in 1986 [1]. Later they formed a company that sold hardware 

and software package for developing fuzzy logic application.. Later on several companies 

were formed in late 19 80s  but did not survive through mid 1990 due to the fact that 

vendors of conventional control design software such as mathworks started introducing 

add on tool boxes for designing fuzzy system in 1994. 
Since the introduction of the theory of fuzzy sets by L. A. Zadeh, and the industrial 

application of the first fuzzy controller by E. H. Mamdani, fuzzy systems have obtained a 

major role in engineering systems and consumer products in the 1980s and 1990s.  

 
2.4FUZZY BASICS 

The primary objective of fuzzy logic is to map an input space to an output space. The way 

of controlling this mapping is to use if-then statements known as rules [4]. The order 

these rules are carried out in is insignificant since all rules run concurrently. The 

following sections will present and develop ideas such as sets, membership functions, 

logical operators, linguistic variables and rule bases. 

 

2.5 FUZZY LOGIC EXAMPLE  

An  example  of  a  fuzzy  set  is  the  set  of  humans who  could  be  described  as  

young. Most  people  would  agree  that  anyone  aged  between fifteen  and  twenty  

could  be  described as being definitely young, whereas anyone over forty would be 

described as not at all young. The ages between twenty and forty are more of a grey area, 

however. 
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The  closer  a  person’s  age  is  to  twenty  the more  readily  they  could  be  described  

as young.  This fuzzy set is displayed in Figure 2-2 below. According to this fuzzy set a 

person  aged  fifteen  is  definitely  young,  i.e.  their degree  of membership  of  the  

fuzzy set Young  is one. However,  it is less clear-cut whether a person aged thirty could 

be described as young,  i.e.  their degree of membership  is less than one, in this example, 

0.5.  

 

Fig 2-2 The Fuzzy Set “Young”  
  
 
 
The Universe of Discourse of  a  variable  is  the  range of values  that  that variable can 

take.  Many  fuzzy  sets  can  be  defined  on  one  Universe  of  Discourse  and  a  single 

variable can have membership of more than one fuzzy set. For example, in Figure 2-3 

below  we  return  to  our  “Age”  example  and  examine  the Universe  of Discourse  on 

which, in addition to Young, the fuzzy sets Middle Aged and Old are added. Here we can 

see that a person aged 35 has membership of two sets, Young and Middle Aged with 

degrees of membership of 0.25 and 0.33 respectively. 
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Fig2-3 “Age” Universe of Discourse 
 
 
 Fuzziness primarily describes uncertainty or partial truth. The concept of partial truth 

characterized by fuzziness has led to a new theory of fuzzy sets, which has yielded a more 

accurate representation of perception of truth. In Boolean logic, truth values are 0 or 1. In 

fuzzy logic, truth is a matter of degrees. Fuzzy logic provides a simple way to arrive at a 

definite conclusion based upon vague, ambiguous, imprecise, noisy or missing input 

information. Fuzzy Logic incorporates a simple, rule-based IF X AND Y THEN Z 

approach to solving a control problem rather than attempting to model a system 

mathematically. Fuzzy logic uses the concept of linguistic or fuzzy variables, e.g., "large 

positive" error, "small positive" error, "zero" error, "small negative" error, and "large 

negative" error. Based on these linguistic variables, a rule matrix is constructed which 

relates the input to output in linguistic term.  

The rule matrix is implemented with the help of membership function, which is a 

graphical representation of the magnitude of participation of each input. It associates a 

weighting with each of the inputs that are processed, defines functional overlap between 

inputs, and ultimately determines an output response. The inputs are combined logically 

using the AND operator to produce output response values for all expected inputs. The 

active conclusions are then combined into a logical sum for each membership function. A 

firing strength for each output membership function is computed. All that remains is to 

combine these logical sums in a defuzzification process to produce the crisp output that is 

accomplished by combining the results of the inference process and then computing the 

"fuzzy centroid" of the area. The weighted strengths of each output member function are 
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multiplied by their respective output membership function center points and summed. 

Then, this area is divided by the sum of the weighted member function strengths and 

summed. Finally, this area is divided by the sum of the weighted member function 

strengths and the result is taken as the crisp output. 

 
2.6UNIQUE FEATURES OF FUZZY LOGIC 
 
Fuzzy Logic offers several unique features that make it a particularly appealing choice for 

many control problems.  

1. It is inherently robust since it does not require precise, noise-free inputs and can 

be programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations.  

2. Since the Fuzzy Logic controller processes user-defined rules governing the target 

control system, it can be modified and tweaked easily to improve or drastically 

alter system performance. New sensors can be conveniently incorporated into the 

system by generating appropriate governing rules.  

3. Fuzzy Logic is not limited to a few feedback inputs and one or two control 

outputs, nor is it necessary to measure or compute rate-of-change parameters in 

order for it to be implemented. Any sensor data that provides some indication of a 

system's actions and reactions is sufficient. This allows the sensors to be 

inexpensive and imprecise thus keeping the overall system’s cost and complexity 

low. 

4.  Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 

defining the rule base quickly becomes complex if too many inputs and outputs 

are chosen for a single implementation since rules defining their interrelations 

must also be defined. It would be better to divide the control system into smaller 

chunks and use several smaller FL controllers distributed on the system, each with 

limited individual responsibilities.  

Fuzzy Logic can control nonlinear systems that would be difficult or impossible to model 

mathematically. This opens the door for controlling systems that would normally be 

deemed unfeasible for automation. 
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2.7 FUZZY SETS, MEMBERSHIP FUNCTIONS AND LOGICAL OPERATORS 

2.7.1 FUZZY SET THEORY 

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a crisp, 

clearly defined boundary. It can contain elements with only a partial degree of 

membership. To understand what a fuzzy set is, first consider what is meant by what we 

might call a classical set. A classical set is a container that wholly includes or wholly 

excludes any given element. Most human data is not binary (YES,NO )type.  

For example let us take the concept of warm room temperature in the range [60o
c  80 o

c] 

    

          1         1 

  

                     60o
c 80 o

c                                            60o
c 80 o

c

           Fig.2.4 classical set                                       Fig.2.5 fuzzy set 

In classical set as shown in the above figure the transition from non-membership to 

membership is abrupt whereas in fuzzy set the transition is gradual.  

Fuzzy set has the following properties; 

 It has smooth boundary 

 Membership in a set is a matter of degree i.e. in classical set theory an object 

either belong to the set or not ( temperature is cold/hot, glass full/empty, person is 

good/bad) but in fuzzy set theory belong ness is a matter of degree(depend up on 

grade of membership) eg. A person can be 80% good and 20% bad 

 In classical set theory every individual object is assigned a membership value 

either 1 or 0 that discriminate between membership and non membership of the 

crisp set whereas in fuzzy set an object can take a grade of membership between 0 

and 1 i.e. [0 1]. 

 In classical set theory crisp set are based on a two value logic(yes/no) whereas  

fuzzy set theory  is based on multi-value logic 

Fuzzy set is characterized by a mapping from universe of discourse in to interval [0 1]. 

This mapping is the membership function of the set. 
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 Fuzzy set violet two law of classical set theory due to permission of  partial 

membership   

1) Law of Contradiction: A ∪A’ = U (i.e., a set and its complement must 

comprise the universe of discourse, any object must belong to a set or to its 

complement); in fuzzy set A ∪A’ ≠ U 

2) Law of Excluded Middle: A ∩A’ = ∅ (i.e., a set and its complement are 

disjoint, any object can only be in one of either a set or its complement, it 

cannot simultaneously be in both). In fuzzy set A ∩A’  ≠ ∅’  
Indeed ∀x ∈ A such that µA (x) = ∝, 0 < ∝ < 1: µA∪A’ (x) =max{∝,1-∝} ≠ 1   and 

µA∩A’(x)= min{∝,1-∝}≠ 0 . Note that all other classical set operations are valid in fuzzy 

set theory. 

 
2.7.2 REPRESENTATION OF FUZZY SET 

A fuzzy set can be defined in two ways; 

a) By enumerating membership value of those elements in the set completely or 

partially. This is possible if the set is discrete, because a continuous fuzzy set has 

infinite number of fuzzy set. A fuzzy set A can be defined by enumeration using 

expression 

                                    
( )∑=

i i

ii
x

xA µ
  

            where the summation and addition operator refers to the union  operation and                

 the notation µi(xi)/xi refers to fuzzy set containing exactly one (partial) element x 

 with membership degree µi(xi) 

b) by defining the membership function mathematically 

          eg. The term high in terms of temperature may be defined us 

  0              if 0o
c<T<40 

                  µHigh(T)=             (T-20)/40    if 40≤  T ≤50 

  1             if T>50 
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Fuzzy sets are sets without clear or crisp boundaries. The elements they contain may only 

have a partial degree of membership. They are therefore not the same as classical sets in 

the sense that the sets are not closed. Some examples of vague fuzzy sets and their 

respective units include the following. 

• Loud noises (sound intensity) 

• High speeds (velocity) 

• Desirable actions (decision of control space) 

Fuzzy sets can be combined through fuzzy rules to represent specific actions/behavior and 

it is this property of fuzzy logic that will be utilized when implementing a fuzzy logic 

controller in subsequent chapters. 

A classical set may be for example written as: 

A = {x | x > 3} 

Now if X is the universe of discourse with elements x then a fuzzy set A in X is defined 

as a set of ordered pairs: 

A = {x, µA (x) | x ∈X} 

Note that in the above expression µA (x) may be called the membership function of x in 

A and that each element of X is mapped to a membership value between 0 and 1. Typical 

membership function shapes include triangular, trapezoidal and Gaussian functions. The 

shape is chosen on the basis of how well it describes the set it represents. Below in Figure 

2.3 some example fuzzy sets can be observed. 

 
 

Fig 2.6 Example fuzzy sets. S,small; MS,medium small; M,medium;ML,medium 
Large;L,Large. 
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Fig 2.7 Sample three-part Gaussian shaped MF 

 
2.7.3 MEMBERSHIP FUNCTIONS 

Membership functions form the basis for fuzzy computing. The shape, the overlapping, 

peak values, and their continuity properties determine how the fuzzy system can be 

designed and how it behaves. Thus it is worthwhile to consider the membership functions 

in more detail. 

Membership functions have a number of properties according to which they can be 

classified to different categories. Some of them are useful also from a practical point of 

view. 

Those properties are related to the membership function but also to the set of membership 

functions. Here the set means membership functions that are defined for a certain input 

variable and the membership functions together have some properties. 

Some of the properties are characteristics for fuzzy sets but there are also connections to 

function approximation theory and to other methodologies. There is an increasing interest 

to unify the theory of basis functions and membership functions of fuzzy sets [2]. A 

membership function (MF) is a curve that defines how each point in the input space is 

mapped to the set of all real numbers from 0 to 1. This is really the only stringent 

condition brought to bear on a MF. 

 
 
 
 
 
 
 

 27



Genetic Optimization Of Fuzzy Controller For Liquid Level Control  
 

2.7.3.1TYPES OF MEMBERSHIP FUNCTIONS 

Whereas there exist numerous types of membership functions; triangular, trapezoids, bell 

curves, Gaussian, and sigmoidal function, s-function and etc. However, most often used 

one is triangular and trapezoidal and bell-shaped membership functions [4]. These three 

choices can be explained by; 

 the ease with which a parametric, functional description of the membership 

function can be obtained , 

  stored with minimum use of memory and 

 Mathematically efficient, in terms of real time requirements by the inference 

engine. 

 

2.7.3.2 PARAMETER CHARACTERIZING MEMBERSHIP FUNCTION 

The following parameters characterize membership function [2] ; 

Peak value:- Peak value is the value that attains highest membership value. In case of 

triangular membership function, peak value corresponds to one and only one value from 

domain of discourse whose membership value is 1, whereas in trapezoidal and bell shape 

the peak value is an interval. This affects the rate of confidence on a given value. 

Left and right width;-the left width of membership function(µ(x))  is the length of interval 

from the  peak value to the value in X which is located to the left of peak value and whose 

degree of membership is zero. The same is true for right width but to right of peak value. 

If the right and left width are equal the membership function is symmetrical otherwise it 

is asymmetrical. In case of symmetric membership function we have equal magnitude of 

the rate of gaining or losing our confidence on a given value from peak value. The reverse 

is true for asymmetrical membership function. [3] 

Cross point and influence of cross point level;-let µ1
lx and  µ2

lxbe two membership 

function representing the meaning of two linguistic values of X  which are elements of 

the term set lX.a cross point between µ1
lx and  µ2

lx  is that value in domain of discourse 

where µ1
lx (xcross)=µ2

lx(xcross)>0. Furthermore, a cross point level is defined by the degree 

of membership of xcross i.e. µ1
lx (xcross) which, by definition the cross point, is the same as 

µ2
lx(xcross). Two membership functions defining the meaning of to different linguistic 
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value may have more than one cross point. The number of cross point between two 

membership function is called cross point ratio. 

                                  

                                   µ  

 1 

                                   0.4 

 

                                                      xcross       X

                               cross point level=0.4 and cross point ratio=1 

                  Fig 2.8 cross point and cross point level of triangular membership function 

The mapping from a term set to membership function defined on the domain of discourse 

has to be such that the cross point level for every two membership function greater than 

zero. This means the crisp value of linguistic variable belongs to at least one membership 

function with degree of membership strictly greater than zero. If it is not the case , then 

there will be a crisp input value of a linguistic variable which can not be matched during 

the fuzzification phase ,to a rule antecedent. Thus non of the rules will be fire and 

consequently, no value for control output will be computed. This in turn leads to 

discontinuity in the control output. Further, more if the cross point ratio between two 

membership function is zero then only one rule at a time can fire.  

For linear system up to third order and for symmetrical membership function there are 

some optimal value of the cross point level and ratio. That is if each two adjacent 

membership function has a cross point level 0.5 and cross point ratio 1, then this provides 

for significantly less overshoot, fast rise time and less undershoot [2].  

2.7.4 BASIC OPERATIONS ON FUZZY SETS 
 
The three major operations on sets are union, intersection and complement. Since the 

notion of set membership in classical set theory has been generalized in to a matter of 

degree in fuzzy set , these operation should be extended accordingly. 

Fuzzy logic reasoning is a superset of standard Boolean logic yet it still needs to use 

logical operators such as AND, OR and NOT. Firstly note that fuzzy logic differs from 
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Boolean yes/no logic in that although TRUE is given a numerical value ‘1’ and FALSE 

numerical values ‘0’, other intermediate values are also allowed. For example the values 

0.2 and 0.8 can represent both not-quite-false and not-quite-true respectively. It will be 

necessary to do logical operations on these values that lie in the [0,1] set, but two-valued 

logic operations like AND, OR and NOT are incapable of doing this. For this 

functionality, the functions min, max and additive complement will have to be used.  

  

                   

 
Figure 2.9 Examples of two-valued and multi-valued logical operations 

 
2.8 LINGUISTIC VARIABLES, VALUES, HEDGES AND RULE BASES 

Just like an algebraic variable takes numbers as values, a linguistic variable takes words 

or sentences as values. A linguistic variable enables its value to be described both 

qualititatively by linguistic term or linguistic values and quantitatively by corresponding 

membership function which express the meaning of the fuzzy set. The set of values that it 

can take is called its term set (linguistic variable). Linguistic term is used to express the 

concept and knowledge in human communication; whereas membership function is useful 
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for processing numeric input data. Each value in the term set is a fuzzy variable defined 

over a base variable or universe of discourse. The base variable defines the universe of 

discourse for all the fuzzy variables in the term set.  

Linguistic variables are values defined by fuzzy sets. A linguistic variable such as ‘High-

Speed’ for example could consist of numbers that are equal to or between 50km/hr and 

80km/hr. The conditional statements that make up the rules that govern fuzzy logic 

behavior use these linguistic variables and have an if-then syntax. These if-then rules are 

what make up fuzzy rule bases. A sample if-then rule where A and B represent linguistic 

variables could be: 

                     if x is A then y is B 

The statement is understood to have both a premise, if ‘x is A’, and a conclusion, then ‘y 

is B’. The premise also known as the antecedent returns a single number between 0 and 1 

whereas the conclusion also known as the consequent assigns the fuzzy set B to the 

output variable y. Another way of writing this rule using the symbols of assignment ‘=’ 

and equivalence ‘==’ is: 

                    if x == A then y = B 

An if-then rule can contain multiple premises or antecedents. For example, 

             if velocity is high and road is wet and brakes are poor then… 

Similarly, the consequent of a rule may contain multiple parts. 

           if temperature is very hot then fan is on and throughput is reduced 

Among all the technique developed using fuzzy sets , fuzzy if then-rules are by far most 

visible due to their wide range of successful application. A fuzzy if-then rule associate a 

condition described using linguistic variables and fuzzy sets to a conclusion. From a 

knowledge representation view point, a fuzzy if then rule is a scheme of capturing 

knowledge that involves imprecision. The main feature of reasoning using fuzzy if then 

rule is its partial matching capability, which enables an inference to make from a fuzzy 

rule even when the rule’s condition is only partially satisfied. 

In classical logic if we know a rule is true and we also know antecedent of the rule is true, 

it can be inferred that the consequent of the rule is true. This is refer to as modus ponens. 

Eg. If we know R1 is true 

     R1: if the annual income of a person is greater than $120,000 Then the person is rich. 

 We also know that the following statement is true 

John’s annual income is $121,000 
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Based on modus ponens, classical logic we can deduce that  

                          John is rich 

One of the limitations of modus ponens is that  

 It can not deal with partial membership i.e. antecedent part does not represent 

smooth transition 

 It does not deal with a situation where the antecedent of a rule (if part) is partially 

satisfied. 

Eg. If John’s annual income is $119,999, it can not infer any conclusion but in reality 

(as per human knowledge) John is still rich 

Viewing such limitation, fuzzy rule based inference handle it by generalizing modus 

ponens to allow its inferred conclusion to be modified by the degree to which the 

antecedent is satisfied. For instance it handles the limitation on the above example by 

putting in the following way; 

              If the annual income of a person is high then the person is rich. 

where high  is a fuzzy set defined by the membership function. 

Interpreting these rules involves a number of distinct steps. 

1. Firstly, the inputs must be fuzzified. To do this all fuzzy statements in the 

premise are resolved to a degree of membership between 0 and 1. This can be 

thought of as the degree of support for the rule. At a working level this means that 

if the antecedent is true to some degree of membership, then the consequent is 

also true to that same degree. 

2. Secondly, fuzzy operators are applied for antecedents with multiple parts to 

yield a single number between 0 and 1. Again this is the degree of support for the 

rule. 

3. Thirdly, the result is applied to the consequent. This step is also known as 

implication. The degree of support for the entire rule is used to shape the output 

fuzzy set. The outputs of fuzzy sets from each rule are aggregated into a single 

output fuzzy set. This final set is evaluated (or defuzzified) to yield a single 

number. 

The following example in Figure 2.10 shows how these steps are applied in practice by 

using MATLAB Fuzzy Logic Tool box.. 
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Consider the two rules for a fuzzy model that evaluates lecture attendance: 

1. If (LectureQuality) is Good) and (InterestOfMaterial is Interesting) then 

(Attendance is   High) 

2. If (LectureQuality is Poor) or (InterestOfMaterial is Boring) then (Attendance is 

Low) 

 
 
 
 
These rules can then be seen visually in Figure2.10. 
 

 
 

Fig 2.10 Application of rules for lecture attendance example 
 The yellow color Gaussian membership function indicates those rule fired and blue color 

indicates the implied clipped fuzzy set from two rules. The red color line indicates the 

difuzzified crisp value.  

The fuzzy AND operator is applied in rule one and since the premise of the rule is true to 

a high degree then the consequent is also going to be true to a high degree. In this 

example both the fuzzy AND operator and the implication operator use the min function, 

hence for an input of 55.9% for LectureQuality and 36.2% for InterestOfMaterial, the 

defuzzified attendance percentage works out to be58.6%.  

This comes from min ( µLecture Quality, µInterest Of Material) 

= min (1.0, 0.75) 

= 0.75 
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Immediate advantages of this approach become apparent. Fuzzy sets can be combined 

using fuzzy rules to define system behavior and thus complex non-linear systems can be 

expressed linguistically. In fact, as will be shown later, rule tables can represent fuzzy 

controllers. The process of fuzzifying a single crisp input, applying fuzzy operators and 

then defuzzifying to produce a single crisp output is known as fuzzy inference. This 

progression of modeling is discussed in detail in the next section. 

 

2.9 FUZZY RELATION AND COMPOSITION 

A relation can be considered as a set of ordered pairs (tuples). In the same way a fuzzy 

relation is a fuzzy set of tuples i.e. each tuple has a membership function between 0 and 1. 

fuzzy relation generalize the notion of a classical black and white relation in to one that 

allows a partial membership. Since a relation can be viewed as a set we can easily 

generalize the classical notion of using fuzzy set .Classical binary relation can be 

represent relation  R on x,y on domain X,Y as a function that maps an order pair (x,y) in 

X×Y to 0 if the relation does not hold between x and y or 1 if relation holds  i.e. R= 

X×Y→{0 ,1}. Fuzzy relation generalizes the classical idea of relation in to a matter of 

degree. Therefore, fuzzy relation R between variables x and y whose universe of 

discourse on X,Y is defined by a function that maps ordered pair in X×Y to their degree 

in the relation, which is numbered between 0 and 1 i.e. R= X×Y→[0 ,1]. 

For continuous universes it is denoted by  

   ( )
( )∫

×

=
YX

R
yx

yxR ,
,µ  

 

For discrete universe it is denoted by                       

( )
( )∑

×

=
YX

R
yx

yxR ,
,µ  

 A fuzzy relation on X×Y can also be denoted as 

( ){ ( ) } ( ) ( ) ]10[,,,,,, ∈×∈= yxYXyxyxyxR RR µµ  
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µR(x,y) gives the degree of membership of the order pair (x,y) in R associating with each 

pair (x,y) in X×Y in interval [0 1]. The degree of membership indicates the degree to 

which X is in relation with Y.  

 

If A and B are fuzzy sets in the universe of X×Y the fuzzy relation them has membership 

degree;                

( ) ( ) ( ) ( )[ ] YyandXxyxyxyx BABAR ∈∀∈∀== × µµµµ ,min,,  

Two very important operations on fuzzy sets and fuzzy relation are projection and 

cylindrical-extension.                                                                                                               

2.9.1 PROJECTION (PROJ) 

This operation brings a ternary relation back to a binary relation, or a binary relation to a 

fuzzy set, or a fuzzy set to a single crisp value. In binary case it is simple. Let R be 

defined on X×Y  then 

                          
( )

y
yxYRonproj R

x

,sup µ∫=   

   This simply done by taking maximum from each column from X×Y, the same is true for 

proj R on X but from the row.  The projection operation is almost always used in 

combination with cylindrical extension. 

2.9.2 CYLINDRICAL EXTENSION 

The cylindrical extension is more or less opposite of projection. It extends fuzzy set to 

fuzzy binary relation, fuzzy binary relation to fuzzy ternary relation, etc. it mainly serves 

the following goal: let A be fuzzy set defined on X and R be a fuzzy relation defined on 

X×Y, then it is ,of course , not possible to take the intersection of A and R (since X is sub 

space of X×Y) but when A is extended to X×Y this is possible. This extension is done by 

cylindrical extension operator.                  

Cylindrical extension of S into U is denoted by      

                       ( )∫=
U n

iki
S nx

xxSce ,.........
),.....()( µ  

 

 35



Genetic Optimization Of Fuzzy Controller For Liquid Level Control  
 

 

CHAPTER -III 

FUZZY MODELING 
 
 
INTRODUCTION 
 

Standard control techniques use numerical data to relate input and output signals. Fuzzy 

logic systems can use both numerical information and linguistic information to perform a 

mapping of an input to an output space. Consider the following diagram in Figure 1.6. 

 
Fig 3.1 Mapping of input space to output space 
 

Many different control mechanisms could reside within the black box but in this case the 

mechanism will be confined to a fuzzy logic system. Since the objective is to map inputs 

to outputs it becomes possible to model non-linear systems, even complex ones. This is 

one of fuzzy logics’ greatest advantages. Put differently, fuzzy logic systems are tolerant 

of imprecise data. When considered this suits many real-world applications well because 

as real-world systems become increasingly complex often the need for highly precise data 

decreases. The rules that govern this mapping can be acquired through two methods. The 

first is a method called the direct approach and the second is by using system 

identification. The direct approach involves the manual formulation of linguistic rules by 

a human expert. These rules are then converted into a formal fuzzy system model. The 

problem with this approach is that unless the human expert knows the system well it is 

very difficult to design a fuzzy rule base and inference system that is workable, let alone 

efficient. For complex systems (non-linear for example) tuning these membership 
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functions would require the adjustment of many parameters simultaneously. 

Understandably no human expert could accomplish this 

 

All of the previous elements of fuzzy logic that have been discussed up to this point are 

put together to form a fuzzy inference system (FIS). Two main types of fuzzy inference 

system exists the Mamdani and Sugeno type. They are both introduced in the following 

sections. 

3.2 Mamdani Modeling 
Owing its name to Ebrahim Mamdani the Mamdani model was the first efficient fuzzy 

logic controller designed and was introduced in 1975 [2]. The controller consists of a 

fuzzifier, fuzzy rule base, an inference engine and a defuzzifier. It is shown in the Figure 

3.2 below. 

 
 

Fig 3.2 Mamdani fuzzy modeling  
Conventional control systems require crisp outputs to result from crisp inputs. The above 

representation shows how a crisp input in R can be operated on by a fuzzy logic system to 

yield a crisp output. This Mamdani controller is realized using the following steps. 

A. Fuzzification of Inputs 

B. Application of Fuzzy Operators 

C. Application of Implication Method 

D. Aggregation of all Outputs 

E. Defuzzification of Aggregated Output 
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A. Fuzzification of Inputs 

The fuzzifier maps crisp input numbers into fuzzy sets. The value between 0 and 1 each 

input is given represents the degree of membership that input has within these output 

fuzzy sets. Fuzzification can be implemented using lookup tables or as in this report, 

using membership functions. 

 
Fig 3.3. An example of an input membership function with an illustration of fuzzification of non-

fuzzy input signal 0.3. 

A numerical value 0.3, for example, is converted into its relevant fuzzy points. 

B. Application of Fuzzy Operators 

In the case where multiple statements are used in the antecedent of a rule, it is necessary 

to apply the correct fuzzy operators as explained in 2.5.4. This allows the antecedent to be 

resolved to a single number that represents the strength of that rule. 

C. Application of Implication Method 

This part of the Mamdani system involves defining the consequence as an output fuzzy 

set. This can only be achieved after each rule has been evaluated and is allowed 

contribute its ‘weight’ in determining the output fuzzy set. 

D. Aggregation of all Outputs 

The fuzzy outputs of each rule need to be combined in a meaningful way to be of any use. 

Aggregation is the method used to perform this by combining each output set into a single 

output fuzzy set. The order of rules in the aggregation operation is unimportant as all rules are 

considered. The three methods of aggregation available for use include sum (sum of each 
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rules output set), max (maximum value of each rule output set) and the probabilistic OR 

method (the algebraic sum of each rules output set). An example of the aggregation process 

using the max operator can be seen in Figure 3.4 below. 

E. Defuzzification of Aggregated Output 

The aggregated fuzzy set found in the previous step is the input to the defuzzifier. 

As indicated in the model shown in Figure 1.8 this aggregated fuzzy set mapped to a crisp 

output point. This crisp output is a single number that can usefully be applied in controlling 

the system. A number of methods of defuzzification are possible and these include the mean 

of maximum, largest of maximum, smallest of maximum and centroid (centre of area) 

methods. The centroid method is the most widely used and can be seen in Figure 1.8 below. 

 
Fig 3.4 Diagram showing aggregation and defuzzification 
 

Advantages of the Mamdani Method 

•It’s intuitive. 

•It has widespread acceptance. 

•It’s well-suited to human input. 

 
3.3 Sugeno Modeling 
 
The Sugeno fuzzy model or more fully the Takagi-Sugeno method of fuzzy inference was 

first introduced in 1985 [4]. In many respects it is identical to the Mamdani method except 

that the output membership functions for the Sugeno method are always linear or constant. 

The output membership functions can be thought of as singleton spikes that undergo a simple 
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aggregation instead of other aggregation methods such as max, sum. In this section, we 

discuss the so-called Sugeno, or Takagi-Sugeno, method of fuzzy inference. Introduced in 

1985  it is similar to the Mamdani method in many respects. The first two parts of the fuzzy 

inference process, fuzzifying the inputs and applying the fuzzy operator, are exactly the same. 

The main difference between Mamdani and Sugeno is that the Sugeno output membership 

functions are either linear or constant. A typical rule in a Sugeno fuzzy model has the form     

If  Input 1 = x and Input 2 = y, then Output is z = ax + by + c 

For a zero-order Sugeno model [33], the output level z is a constant (a=b =0).The output level 

zi of each rule is weighted by the firing strength wi of the rule. For example, for an AND rule 

with Input 1 = x and Input 2 = y, the firing strength is    wi = AndMethod (F1(x),F2(y))where 

F1,2 (.) are the membership functions for Inputs 1 and 2. The final output of the system is the 

weighted average of all rule outputs, computed as 

 

 
 
A Sugeno rule operates as shown in the following diagram. 
 

 
 
Fig.3.5 rule operation of sugeno inference 
 

The rules for tipping problem [6] is shown below 

1.If (service is poor) or (food is rancid) then (tip is cheap) (1) 

2. If (service is good) then (tip is average) (1) 

3. If (service is excellent) or (food is delicious) then (tip is generous) (1) 
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Fig 3.6 sugeno inference  
 
The Sugeno system is computationally efficient and its ability to interpolate multiple linear 

models makes it particularly suited to modeling non-linear systems. 

 

 
 
Fig 3.7 Implementation of a Sugeno model in matlab 
 

Advantages of the Sugeno Method 

•It’s computationally efficient. 

•It works well with linear techniques (e.g., PID control). 

•It works well with optimization and adaptive techniques. 
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CHAPTER-IV 

FUZZY CONTROLLER DESIGN 

 
INTRODUCTION 
 

A fuzzy controller is a fuzzy system, which is used to control a target system or it is used 

for supervisory control. The fuzzy controller has a linguistic interpretation, which can be 

expressed with help of fuzzy sets, membership functions, and fuzzy rules. However, it 

processes exact input data and produces exact output data in a deterministic way. 

Fuzzy controllers can be used when nonlinear control action is needed, or when the 

controller is to be tuned manually. In many cases where fuzzy control is applied the 

control has been performed before manually.  

Fuzzy controller is a static mapping F:ℜnx →ℜnz between the inputs x and the outputs 

z.  

In this thesis we will show how the fuzzy control design methodology can be used to 

construct fuzzy controllers for challenging real-world applications. As opposed to 

“conventional” control approaches (e.g., proportional-integral-derivative (PID), lead-lag, 

and state feedback control) where the focus is on modeling and the use of this model to 

construct a controller that is described by differential equations, in fuzzy control we focus 

on gaining an intuitive understanding of how to best control the process, then we load this 

information directly into the fuzzy controller. 

Fuzzy  Logic  can  be  applied  to  control,  and when  it  is,  is  known  as  Fuzzy Control. 

Fuzzy Control  is made up of control  rules which mimic  those used by humans when 

they  control  or  operate  machinery:  “If  you  need  to  go  a  little  bit  faster,  push  the 

accelerator  pedal  slightly”.  Fuzzy  Control  can  be  an  especially  effective  way  of 

controlling  non-linear  systems  when  expert  human  knowledge  of  the  system  is 

available.  

 

For instance, in the cruise control example we may gather rules about how to regulate the 

vehicle’s speed from a human driver. One simple rule that a human driver may provide is 

“If speed is lower than the set-point, then press down further on the accelerator pedal.” 

Other rules may depend on the rate of the speed error increase or decrease, or may 

provide ways to adapt the rules when there are significant plant parameter variations (e.g., 
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if there is a significant increase in the mass of the vehicle, tune the rules to press harder 

on the accelerator pedal). For more challenging applications, control engineers typically 

have to gain a very good understanding of the plant to specify complex rules that dictate 

how the controller should react to the plant outputs and reference inputs. 

Basically, while differential equations are the language of conventional control, heuristics 

and “rules” about how to control the plant are the language of fuzzy control. This is not to 

say that differential equations are not needed in the fuzzy control methodology.  

 

4.2 FUZZY CONTROL CONSIDERATIONS 

Fuzzy logic control considerations can be categories in to theoretical and practical reasons 

[3] 

a. Theoretical Reason for fuzzy control 

 As general rule a good engineering approach should be capable of making 

effective use of all the available information. If the mathematical model of 

a system is too difficult to obtain (this is true for many practical system) , 

then the most important information come from two sources: 1) sensors 

which provide numerical measurements of key variable sand    2) human  

experts who provide description about the system and control instructions. 

Fuzzy controllers, by design, provide a systematic and efficient frame 

work for incorporating linguistic fuzzy information from human experts. 

Conventional controller, however, can not incorporate the linguistic fuzzy 

information into their design. If in some situation the most important 

information come from human experts, fuzzy control is the best choice. 

 Fuzzy control is model free approach i.e. it does not require mathematical 

of the system under control. Control engineer now facing more and more 

complex systems, and the mathematical model of these system are 

increasingly difficult to obtain. Thus, model free approaches have taken on 

added importance. Conventional control has also some model free 

approaches, e.g. nonlinear adaptive control and PID control [3] fuzzy 

control provides yet another model free approach. 

 Fuzzy control provides nonlinear controllers .e. these fuzzy logic 

controllers are general enough to perform any nonlinear fuzzy controllers, 

it is always possible to design a fuzzy controller that is suitable for 

nonlinear system under control. 
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b. Practical reasons for fuzzy control; 

 It is easy to understand. Because fuzzy controller emulates control 

strategy, the underlying principle can be easily understood by those who 

are not control specialists. There fore, practical engineers who are in the 

front line of designing consumer products tend to use approaches that are 

simple and easy to understand. Fuzzy control is just such an approach. 

 It is simple to implement. Fuzzy logic systems, which are at the heart of 

fuzzy control, admit a high degree of parallel implementation. Many fuzzy 

VLSI chips have been developed which make the implementation of fuzzy 

controllers simple and fast [1]. 

 It is inexpensive to develop. From a practical point of view, the 

development cost is one of the most important criteria for a successful 

product. Because fuzzy control is to understand, the time necessary to 

learn the approach is short; i.e. the software cost is low. Also, because 

fuzzy control is simple to implement, the hardware cost is also low. What 

is more, there are software tools available for designing fuzzy controllers. 

Thus, fuzzy control is an approach that has a high performance/cost ratio. 

 
4.3 FUZZY CONTROL SYSTEM DESIGN 
 

Design of the fuzzy controller means selection of fuzzy rule base structure, including the 

number of fuzzy sets for each input and output. After that places and shapes of the 

membership functions are tuned to obtain behavior of the controller as wanted. 

Often the tuning must be done on a trial-and-error basis, which is time-consuming and 

needs patience. 

With fuzzy logic, very versatile control strategies can be implemented. Thus the design of 

the fuzzy controller includes many choices, and therefore each selection is discussed in 

the following subsections.  

 

What, then, is the motivation for turning to fuzzy control? Basically, the difficult task of 

modeling and simulating complex real-world systems for control systems development, 

especially when implementation issues are considered, is well documented. 

Even if a relatively accurate model of a dynamic system can be developed, it is often too 

complex to use in controller development, especially for many conventional control 
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design procedures that require restrictive assumptions for the plant (e.g., linearity). It is 

for this reason that in practice conventional controllers are often developed via simple 

models of the plant behavior that satisfy the necessary assumptions, and via the ad hoc 

tuning of relatively simple linear or nonlinear controllers. Regardless, it is well 

understood (although sometimes forgotten) that heuristics enter the conventional control 

design process as long as you are concerned with the actual implementation of the control 

system. It must be acknowledged, moreover, that conventional control engineering 

approaches that use appropriate heuristics to tune the design have been relatively 

successful.  

 

4.4 STRUCTURE OF FUZZY CONTROLLER 

 

The fuzzy controller block diagram is given in Figure 3.1, where we show a fuzzy 

controller embedded in a closed-loop control system. The plant outputs are denoted by 

y(t), its inputs are denoted by u(t), and the reference input to the fuzzy controller is 

denoted by r(t). 

 
      

 

 

Fig. 4.1 Fuzzy controller architecture 
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The fuzzy controller has four main components: 
 
4.4.1 A FUZZIFICATION INTERFACE, 

      Fuzzification interface converts the controller input in to information the inference 

mechanism can easily use to activate and apply the rules. It establish a mapping 

between crisp input value in the input domain and fuzzy set defined in the same 

universe of discourse, convert numeric input into a form that the fuzzy inference 

mechanism can use to determine which knowledge in the rule is most relevant at 

current time. It simply modifies the inputs so that they can be interpreted and 

compared to the rule in the rule base. The fuzzification interface allows the fuzzy rule 

based system to deal with real inputs and out puts. Its aim is to define a mapping that 

establishes a correspondence between each value in the crisp input space and a fuzzy 

set define in the universe of discourse of this input, obtaining  the membership 

function associated with each one of the system input. Symbolically this component 

work as  

A=F(xo)     with xo being a crisp input value for the fuzzy knowledge base system 

defined in the universe of discourse.A being a fuzzy set define in the same domain 

and F being fuzzification operator.  

There are two main possibilities for choosing the operator F; 

i. Punctual fuzzification:- A  is built as a punctual fuzzy set (a 

singleton) with support xo . that is it represents the membership 

function  

 A(x)=    1         if x= xo 

         0         otherwise      

This method is most used due to simplicity 

ii. non punctual or approximate fuzzification :- in this case A(x)=1 

and the membership function of the remaining values decrease 

when moving away from xo. This second kind of operator allows 

us to deal with different type of membership functions. For 

example triangular shape fuzzy set can be obtained by defining  

   A(x)=     1-
δ

|| ox x−
        if |x-xo| ≤ δ  

 

                        0             otherwise 
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To summarize fuzzification module perform the following functions: 

 measure the value of input variable 

 perform a scale transformation (normalization) that maps the physical measure 

value in to normalized domain 

 Using membership function, converts the current value of a process state variable 

in to a fuzzy set to make it compatible with the fuzzy set representation of the 

process state variable in the rule antecedent. 

 
4.4.2 RULE BASE 

 

The rule base holds the knowledge, in the form of a set of rules ,of how best to control a 

system. It is a set of IF…THEN rules which contains a fuzzy logic quantification of the 

expert’s linguistic description of how to achieve a good control. Rule base is used to 

model human problem solving activity behavior by the use of if-then rule i.e. satisfaction 

of the rule antecedent gives rise to the execution of the consequent; that is one action is 

performed.  

Property of rule base 

 Completeness : A set of if-then rules are complete if any combination of input 

value results in output value, i.e. whether there are conclusion for every fuzzy 

control input. It has to be noticed that almost no rule base in practical application 

of fuzzy knowledge base controller is complete. This has to do with the fact that 

certain region of the input domain to controller are not interest (due to lack of 

firing strength). For instance, the well known inverted pendulum problem 

performs optimally only ten or twelve from twenty-five rule [2]. 

 Consistency: a set of if then rule is consistent if it does contain contradiction, i.e. 

whether the conclusion that rule make conflict with other rule. A set of if then 

rule is inconsistent if there are two rules with the same rule antecedent but 

different rule consequent.   

   Reasoning using fuzzy rule has three major features; 

a. It enables a rule that partially matches the input data to make an 

inference 
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b. It typically infers the possibility distribution of an out put variable from 

the possibility distribution from input variable  

c. The system combine the inferred conclusions from all rules to form an 

over all conclusion.  

The data base in the knowledge base provide the necessary information for the proper 

function of fuzzification module, inference engine and defuzzification 

This information includes fuzzy set(membership function) that represent the meaning of 

the linguistic values of the process state and the  control output variable. Physical 

domains and their normalized counterparts together with the normalization (scaling) 

factor.  

To design fuzzy controller the control engineer must gather information on how the 

artificial decision maker (operator of the plant) should act in closed loop system.  

    This information can come from: 

 Expert experience and control engineering knowledge:- The most common 

approach to establishing such a collection of rules of thumb, is to question 

experts 

Or may come from operators using a carefully organized questionnaire i.e. from 

human decision maker who perform the control task (plant operator) 

 The control engineer can come to understand the plant dynamics and write down 

a set of rules about how to control the system with outside help. 

 Self learning: The self-organizing controller is an example of a controller that 

finds the rules itself. Neural networks are another possibility. 

These rules basically say” If the plant out put and reference input are behaving in a 

certain manner, then the plant input should be some value”. A whole set of such IF-

THEN rules is loaded into rule base , and an inference strategy is chosen ,then the system 

is ready to be tested to see if the closed loop specification are met. 

4.4.3 INFERENCE MECHANISMS 

 It is also called inference engine, which emulate the experts’ decision making in 

interpreting and applying knowledge about how best to control the plant. The inference 

mechanism evaluates which control rules in rule base are relevant at the current time and 

then decides what the input to the plant should be i.e. it apply the action indicated by this 
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rule. In this component the membership value obtained in the fuzzification steps are 

combined through T-norms, usually multiplication or minimization, to obtain the firing  

strength of each rule. Each rule characterizes the control goal and control policy of the 

domain experts by means of a set of linguistic control rules. Then depending on the firing 

strength, the consequent part of each qualified rule is generated. The inference engine 

using the fuzzified inputs and the rules stored in the rule base processes the incoming data 

and produces an (fuzzy) output 

There are two basic types of inference mechanism; 

a. Composition based inference:- in this case , the fuzzy relation representing the 

meaning of each individual rule are aggregated into one fuzzy relation 

describing the meaning of the over all set of rules. Then inference or firing 

with this fuzzy relation is performed via the operation composition between 

the fuzzified crisp input and the fuzzy relation representing the meaning of 

over all set of the rules. As a result of composition one obtain the fuzzy set 

describing the fuzzy value of the overall control output. 

b. Individual rule based inference:- In this case , first each single rule is fired. 

This firing can be simply described by; 

1 .Computing the degree of match between the crisp input and the fuzzy 

set describing the meaning of rule antecedent 

2 .”Clipping “the fuzzy set describing the meaning of rule consequent to 

the degree to which the rule antecedent matched by the crisp input. Finally 

the “clipped” value of the control output of each rule are aggregated, thus 

forming the value of the over all control output. 

4.4.4 DEFUZZIFICATION INTERFACE: 
 

For use in the fuzzy control environment defuzzification step is needed. We need a crisp 

single value to be the input to the controller system. The output fuzzy set inferred by the 

rule base and inference engine can not be used directly as input to the controlled 

deterministic system. In order to obtain a crisp value from the output of the FLC we are 

faced the problem of selecting one element y* from universe Y to represent the value to 

implement. This process of selecting one representative crisp element based up on the 

knowledge that the fuzzy value of the output variable is called defuzzification. 
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Defuzzification interface combines the conclusion reached by the fuzzy interface 

mechanism and provide a numeric value as an output. Because the system must give a 

crisp output, the defuzzification interface has to develop the task of aggregating the 

information provided by each one of the fuzzy set and transform it into a single crisp 

value. It defines a mapping between fuzzy set defined in the output domain and crisp 

value defined in the same universe of discourse 

4.5 DESIGN PROCEDURE OF FUZZY CONTROLLER. 

The main feature of fuzzy logic control is that a control engineering base typically in 

terms of a set of rules created using experts knowledge of process behavior, is available 

within the controller and the control action are generated by applying existing process 

condition to the knowledge base making use of inference mechanism. The design of fuzzy 

controller needs through understanding of fuzzy logic. Careful attention must be given in 

choosing design parameters and their effect in the controller performance.       

The following questions should be addressed during design process 

 What are the best membership functions? 

 How many linguistic values and rules should be used? 

 Should the minimum or product operator be used to 

represent the” and” in premises and which should be 

used to represent implication? 

 What defuzzification method should be chosen? 

Things that one should take into consideration while designing fuzzy control system 

 All rules are evaluated in parallel, so the order of the rules is unimportant 

 Define all the terms you plan on using the adjectives that describe them 

 Define the range over which the variable can be expected to vary as well as 

the meaning of linguistic value. 

 In classical binary logic if the premise is true then the conclusion is true but in 

fuzzy logic if the antecedent is true to some extent (degree) then the 

consequent is also true to that same degree. This is because we can not be 

surer about the outcome than premises (input). 
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4.5.1 DESIGN STEPS OF FLC 

Step 1: choice of fuzzy controller input and out put 

This step needs identification of the input and output of fuzzy controller using linguistic 

variable, universe of discourse of input and output variables Fuzzy control is assumed to 

be the most suitable for non-trivial control tasks. Thus, the selection of the input and the 

output variables of the fuzzy system may be nontrivial also. 

Usually the design problem is well-defined with respect to the output variables of the 

fuzzy system, i.e., the signals u(k) which affect the process output y(k) are known. 

If that is not the case, careful process analysis is needed before any controller, even fuzzy 

controller, can be considered. Another part is the selection of the input variables for the 

fuzzy controller. In practice, there are several signals, which should be taken into account 

when the control signal is calculated. 

In feedback control, the error signal between the set-point and the measurement 

      e(k) = yr(k) _ y(k) 

 is observed. The control objective is to keep the error signal small. Usually the changing 

rate of the error signal in the form of the change in the error 

            ∆e(k)=e(k)-e(k-1) 

is also considered. The signs of the change and the error indicate, if the process output is 

going towards the set-point or not. With those two inputs, the fuzzy system can perform 

PI or PD type control depending on whether the output is the change in the control signal 

∆u(k) or the pure control signal u(k). 

In the selection of input variables, it is useful to restrict the number of variables because 

the more inputs the rule base has, the larger it is. The minimum number of rules grows 

exponentially 2n in relation to the number of inputs n. In real applications the total 

number of rules is much more than 2n because nonlinearities are not easy to generate with 

only two fuzzy sets for each input. Thus a practical limit for the number of inputs is three 

or four. If the input variables affect the system independently of each other, the rule base 

can be divided into two or more rule bases with less input in order to decrease the total 

number of rules. 
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Step 2: selection or choice of the input normalizing factor and output  

   de-normalizing factor. 

The use of normalized domains requires a scale transformation that maps the physical 

values of the process state variable in to a normalized domain. Choice of scaling factors 

here plays a role similar to that of gain coefficients in conventional control and may affect 

the performance and stability issues. 

Step 3: design of each of the four component of fuzzy controller  

 These four components are; 

1. Fuzzification interface: convert point-wise (crisp) value into fuzzy 

set. Here we have considered choice of membership function i.e. 

    -Choice of its shape 

    -Influence of peak value, left and right width, cross               

    point and symmetry. 

The design parameter of fuzzification module is choice of fuzzification strategy  which is 

depend up on inference engine or rule firing employed and are only two choices are 

available:     

     a. fuzzification on the case of composition based 

                      b. individual rule firing 

2. Design of rule base: holds the knowledge in the form of if-then   

rule. These needs writing of rules that controller to follow in order 

to meet design specification. 

In constructing the rule base, the numerical completeness must be kept in mind in order to 

prevent dividing zero by zero in the center-of-gravity defuzzification. It is easily caught 

by including all combinations of the input fuzzy sets into the rule base by means of fuzzy 

AND connectives. The number of rules demanded can be decreased by dropping some 

fuzzy conditions away from the antecedent. 

The rules may come from; 

       -by interrogation of process operator/control engineer using    

  carefully organization or 

       -by introspective verbalization of experience based knowledge       

  (this used in the design of water heating system)  
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The design parameters involved in the construction of the  rule base includes: 

 Choice of contents of rule antecedent and rule consequent 

 Choice of term set (range linguistic value)for the process   

state and control variable 

 Derivation of control rule 

 Choice of process state and control 

3. Design of inference engine: used to evaluate which control rules 

are relevant at he current time and decides what the plant should be 

     Two basic type of approaches are employed in the design 

                -composition based inference (firing) 

                 -individual rule based inference (firing)  

     The design parameters for the inference engine design are 

 Choice of representing the meaning of a single 

production rule 

 Choice of representing the meaning of the set of rule 

 Choice of inference engine 

 Testing the set of rules for consistency and completeness 

4 Design of deffuziffication module: used to convert the 

conclusion reached by the inference mechanism in to crisp 

input to the plant 

         Design parameter of deffuzification module is  

 Choice of defuzzification operator 

                                             The most commonly used defuzzification methods are 

                                                -center of gravity (COG) 

                                                 -center average 

step4: Off-line debugging, testing and verification. Test for completeness and non-

ambiguity of the system. If a software simulation or sample data of the   

 process exist, it is used in this step.  

Step 5. On-Line Debugging. Connect the fuzzy logic system to the process under 

control and analyze its performance in operation. Because fuzzy logic lets you modify 

the system in a straightforward way from the performance you observe, this step can 

rapidly expedite system design.  
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 Advantage of fuzzy logic based controller 

It takes into account the transition from membership to non membership area is gradual 

rather than abrupt results smooth control 

 Concerned in the main with imprecision and uncertainty of data 

 Important tool for modeling complex system in which due to complexity 

or imprecision where classical tools are unsuccessful. 

 Inference method become more robust and flexible with approximate 

reasoning method of fuzzy logic 

 Use of heuristic technique to construct non linear controller.  

 Reduction of development time;-fuzzy control system, which work at two 

levels of abstraction, offer languages at both level of expertise. The 

symbolic level is appropriate describing the application engineer’s 

strategies, whereas the compiled level is well understood by the 

control engineers. Because there is a well defined formal 

translation between this two levels, a fuzzy bases approach can 

help in reduction of communication problem. 

 It is easily tuned by changing rules or using scaling factor or membership 

function online. 

Limitations of fuzzy control system 

 At present, there is no systematic procedure for the design of fuzzy control 

system. The most straight forward approach is to define 

membership function and decision rule subjectively by studying an 

operating system or existing controller 

 In case of very complex system, the proper decision rule can not easily be 

derived by human expertise. 

 Designing and tuning a multi input –multi output (MIMO) fuzzy control 

system is so tedious as to be unfeasible. 
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 In some situation, reliable expert knowledge may not be available. Even 

relying on expert knowledge, fine tuning or achieving the optimal 

fuzzy control system not trivial task. 

Some significant operating changes i.e. disturbance or parameter changes might be 

outside expert’s experience. 

 

Obtaining rule from an expert (knowledge elicitation) is one of the major bottlenecks in 

the development of fuzzy control system. Frequently, the fuzzy algorithms provided by 

experts are incorrect, irrelevant and incomplete. This problem can be overcame by 

adaptive fuzzy control system which automatically find appropriate set of rule and 

membership function (self learning (training) fuzzy control system) 

4.6 CONCLUSION  
 
Fuzzy controller is considered as a fuzzy computing system, which is designed for a 

control application. Selections of input and output variables are discussed. It is advisable 

to restrict the number of inputs to below four. In practice, numerical completeness of the 

rule base must be provided. Product-sum composition and normalized triangular shaped 

membership functions are usually sufficient. If each rule can have an individual 

consequence, the fuzzy controller can be parameterized with the cores of the membership 

functions. Thus the number of parameters is small but the fuzzy controller can 

approximate any nonlinear control action with sufficient accuracy.  

Rules of the thumb are given for the selection of the fuzzy controller parameters. 

The input membership functions should cover the whole varying interval of the inputs 

and the inner membership functions should be placed according the shape of the 

nonlinearity to be approximated. If a conventional controller exists, the fuzzy controller 

can be initially tuned with respect to the conventional controller. 

Instead of being more robust or performing better, or being easier to design than a 

conventional controller, for fuzzy controller’s systematic design and tuning methods are 

lacking. The success of fuzzy control is based on the easy user-interface in the form of 

linguistic rule base. Less skilled personnel are needed for the design and the maintenance 

and rough working applications can be developed within a short developing period. Fuzzy 

computing does not require any special computing power; therefore it is also applicable in 

cheap consumer products. 
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CHAPTER-V 

GENETIC ALGORITHM (GA) 
 

INTRODUCTION  

Searching or optimizing algorithms inspired by biological evolution are called 

evolutionary computations. The features of the evolutionary computation are that its 

search or optimization is conducted; 

• based on multiple searching points or solution candidates 

(population based search), 

• using operations inspired by biological evolution, such as 

crossover and mutation,  

• based on probabilistic search and probabilistic operations, 

and  

• using little information of searching space, such as 

differential information. 

Genetic algorithms are computerized search and optimization algorithms based on the 

mechanics of natural genetics and natural selection. Essentially, GA is an optimization 

technique that performs parallel, stochastic, but direct search method to evolve the fittest 

population. GA mimics the concept of natural genetics and natural selection to constitute 

search and optimization procedure. GA drives their name from the genetic process of 

natural evolution. Genetic algorithms have been developed by Professor John Holland, 

his colleagues, and his students at the University of Michigan in mid 1960s. it is applied 

and implemented successfully in a broad range of  control applications  for example the 

design of neural and fuzzy controller for tuning of industrial controllers and for the 

creation of hybrid fuzzy –genetic and neural-genetic controller. The techniques of GA 

have in common the emulation of the natural evolution of individual structure through 

process inspired from natural selection and reproduction. These process depends on the 
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fitness of the individual to survive in a hostile environment according to Darwinian 

principle of” survival of the fittest”. The idea is to have a pool of candidate solutions 

evaluated in parallel, from which the “fittest" solutions are chosen to mate and breed new 

candidate solutions using stochastic operators. This procedure is iterated until the 

population converges or a preset condition is met. 

The terminology in the field of Genetic algorithm is derived from Biology and genetics. 

Thus, the candidate solutions of an optimization problem are termed individuals. The 

population of solution evolves in accordance with the laws of natural evolution. After 

initialization, the population undergoes selection, recombination and mutation repeatedly 

until some termination condition is satisfied. Each iteration termed a Generation while the 

individual that undergoes recombination and mutation are named parents and yields 

offspring. 

 

The corner stone of Genetic algorithm is the iterative procedure in exploring the search 

space while simultaneously exploiting the information that being accumulated during the 

search. This is in fact, where their function lies. Through exploration, a systematic 

sampling of the search space is achieved, while through exploitation the information that 

has been accumulated during exploration is used to search the new area of interest. The 

central theme of research on genetic algorithms has been robustness, the balance between 

efficiency and efficacy for survival in many different environments. The implications of 

robustness for artificial systems are main fold. If artificial systems can be made more 

robust, costly redesigns can reduced or eliminated. If higher levels of adaptation can be 

achieved, existing systems can perform their functions longer and better. Genetic 

algorithms are theoretically and empirically proven to provide robust search in complex 

search. Genetic algorithms are computationally simple yet powerful in their search for 

improvement.  Further more, they are not fundamentally limited by restrictive 

assumptions about the search space (assumptions concerning continuity, existence of 

derivatives, unimodality, and other matters) 
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5.2 BIOLOGICAL BACKGROUND 

5.2.1. Chromosome  

All living organisms consist of cells. In each cell there is the same set of chromosomes. 

Chromosomes are strings of DNA and serve as a model for the whole organism. A 

chromosome consists of genes, blocks of DNA. Each gene encodes a particular protein. 

Basically, it can be said that each gene encodes a trait, for example color of eyes. 

Possible settings for a trait (e.g. blue, brown) are called alleles. Each gene has its own 

position in the chromosome. This position is called locus.  

Complete set of genetic material (all chromosomes) is called genome. Particular set of 

genes in genome is called genotype. The genotype is with later development after birth 

base for the organism's phenotype, its physical and mental characteristics, such as eye 

color, intelligence etc.  

5.2.2. Reproduction  

During reproduction, recombination (or crossover) first occurs. Genes from parents 

combine to form a whole new chromosome. The newly created offspring can then be 

mutated. Mutation means that the elements of DNA are a bit changed. These changes are 

mainly caused by errors in copying genes from parents.  

The fitness of an organism is measured by success of the organism in its life (survival). In 

principal, a GA can be applied to any problem where the variables to be optimised 

(``genes'') can be encoded to form a string (``chromosome'') - as sheown below. Each 

string represents a trial solution of the problem. By analogy with biology, the values of 

the individual variables are known as ``alleles''. 

 
Fig.5.1 chromosome, gene and allele  
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The basic relation between concepts in natural evolution and genetic algorithms are given 

in the following table 

 

Table 5.1 Relation between concepts in natural evolution and genetic algorithms 

 

Concept in natural evolution                         concept in genetic algorithm 

 

  Chromosome    string 

  Gene      features in string 

  Locus      position in the string 

  Allele     position value (usually 1 and 0 in               

          binary ) 

  Genotype    string structure 

  Phenotype     set of characteristics (features)  

 

5.3. DIFFERENCE BETWEEN TRADITIONAL OPTIMIZATION METHODS 

AND GENETIC ALGORITHMS 

 

Before answering the above questions it had better to discuss some common types of 

traditional optimization methods and what we mean optimization? What we are trying to 

accomplish when we optimize? Optimization theory studies how to describe and attain 

what is best, and encompasses the quantitative study of optima and method of finding 

them. Thus optimization seeks to improve performance toward some optimum point or 

points. Note that this definition has two parts; we seek improvement to approach some 

optimal point. This is clear distinction between the process of improvement and the 

destination or optimal it self. Yet, in judging optimization procedures we commonly focus 

solely up on convergence ( i.e. does the method reach the optimum? ) and forget entirely 

about interim performance. The most important goal of optimization is improvement (i.e. 

can we get some good satisfying level of performance quickly?) 

There are different types of search method when we come to optimization. Most 

literatures identify three main types of search methods; 

a) Calculus based 

b) Enumerative 

c) Random search 
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a. calculus based method 

Calculus based method further subdivided into two main classes; direct and indirect 

methods. 

i) Direct method:- direct method seeks local optima by hopping on the 

function and moving in direction related to local gradient. This is 

simply the notion of hill climbing to find the local best, climb the 

function in the steepest permissible direction. 

ii) Indirect method::- this method seeks local extrema by solving the usual 

nonlinear set of equations resulting from setting the gradient of the 

objective function equal to zero. This is multidimensional 

generalization of the elementary calculus notion of extremal point. 

Given smooth, unconstrained function, finding possible peak starts by 

restricting searching to those points with slops of zero in all direction. 

                    Drawback of calculus method 

 Both methods are local in scope; the optima they seek are the best in 

neighborhood of the current point. Clearly, starting the search or zero 

finding procedure in the neighborhood of the lower peak will cause us to 

miss the higher peak. Further more, once the lower peak is reached, further 

improvement must be sought through random restart or other trickery.  

 Calculus based method depend up on the existence of derivatives ( well 

defined slope value). Even if we allow numerical approximation this is 

severe shortcoming and insufficiently robust. 

b. enumerative method:- these schemes have been considered in many shapes and sizes. 

The idea is fairly straight forward with in finite search space or a discretized infinite 

search space, the search algorithm starts looking objective function value at every point in 

space one at a time.  Although the simplicity of this type of algorithms is attractive and 

enumeration is very human kind of search when the number of possibilities is small, such 

scheme must ultimately be discounted in the robustness race for simple reason lack of 

efficiency.  It is inefficient because many practical spaces are simply too large to search 

one at a time.  

c. Random method:- random search algorithms have, achieved increasing popularities as 

researchers recognized the short comings of calculus based and enumerative schemes. 
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Yet, random walks and random schemes that search and save the best must also be 

discounted because of efficiency requirement. Random searches, in long run can be 

expected to do no better than enumerative schemes. 

In general conventional search methods are not robust. This does not imply that they are 

not useful. The schemes mentioned and countless hybrid combination has been used 

successfully in many applications. However, as more complex problems are attacked 

other method will be necessary. This leads to the innovation of non conventional search 

method, Genetic algorithm to attack complex problems.  

GAs  are different from more traditional methods in the following ways 

•  GAs work with a coding of the parameter set, not the parameter themselves. 

• GAs Seek the optimum solution by searching a population of points of the search 

(solution) space in parallel and not in isolated space (a single point) so that it 

searches always global optimum. 

•  Uses only the values of objective function and do not require derivative 

information or any other information in search procedure. The direction of search 

is influenced by the evolutions of the objective function and of the respective 

fitness function only.  

•  GAs uses stochastic (probabilistic) transition not deterministic rules in the 

optimization procedure.  

5.4 CHARACTERISTICS OF GENETIC ALGORITHMS 
 

Aside from being free from dependence on functional derivatives, GAs are popular due to 

the following characteristics [12 ]:  
 

 A population of points (trial design vectors)  is used for starting the procedure 

instead of a single design point. Since several points are used as candidate 

solutions, GAs are less likely to get trapped at a local optimum. 

  GAs are parallel-search procedures that can be implemented on parallel-

processing machines for massively speeding up their operations. 

 GAs are applicable to both continuous and discrete (combinatorial) optimization 

problems. 

 GAs are stochastic and less likely to get trapped in local minima, which inevitably 

are present in any practical optimization application. 
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 GAs’ flexibility facilitates both structure and parameter identification in complex 

models such as neural networks and fuzzy inference systems. 

 The objective function value corresponding to a design vector plays the role of 

fitness in natural genetics. 

 Can yield a population of optimum feasible solutions in a problem and not a 

unique one. The choice of the best solution is then left to the user. This is very 

useful in practical problems where multiple solutions exist as well as in multi 

objective optimization problems. 

5.5 WORKING PRINCIPLE OF GENETIC ALGORITHM 

Genetic algorithms are used for minimization or maximization, search for global 

extremes, especially when your search space is too large to check all possible solutions. 

Use of exact methods is mostly not possible in such cases and it is exactly the time for 

approximate methods like genetic algorithms.  

At the very beginning we have to introduce GA dictionary of special GA terminology:  
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Table 5.2 Technical terms used in GA literatures 

 

chromosome vector which represents solutions of application task 

 

gene each solution which consists of a chromosome 

 

selection choosing parents’ or offsprings’ chromosomes for the next generation 

 

individual each solution vector which is each chromosome 

population total individuals 

 

population 

size 

the number of chromosome 

 

fitness 

function 

a function which evaluates how each solution suitable to the given task 

 

phenotype expression type of solution values in task world, for example, ‘red,’ “13 

cm”, “45.2 kg” 

 

genotype bit expression type of solution values used in GA search space, for 

example, “011,” “01101.” 

parent individual selected for reproduction 

offspring new solution, individual created from parents 

crossover 

mutation 

operations, defined on chromosomes (code), producing offsprings 

Genetic algorithms begin with a population of string structures created randomly. 

Thereafter, the fitness measure of each string in the population is evaluated. The 

population is then reformed by three main operators, namely, reproduction, crossover, 

and mutation. Depending on the fitness measure for each solution candidate, the operation 

is continued until the termination criteria are met. One cycle of the application of above 
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mentioned operators and the evaluation procedure is known as a generation in the 

terminology of GAs. In this section, the operators in the terminology are briefly reviewed. 

 

5.6 COMPONENTS OF GAS 

The major components of GAs are namely: encoding schemes, fitness evaluation, 

selection, crossover, and mutation [10]. 

5.6.1. CODING  

In order to use GAs to solve a problem, variables are first coded in some string structure. 

Most of the time GA encode each point in a parameter or solution space into a binary bit 

(binary –coded strings having 1’s and 0’s) string called a chromosome. Each point or 

binary string represents a potential solution to the problem that is to be solved. The length 

of the string is usually determined according to the desired solution accuracy i.e. the 

larger the length of chromosome the higher the accuracy is. Knowledge of biological 

terminology, though no necessary, but may help better appreciation of genetic algorithm.. 

In genetic algorithm , the decision variables of an optimization problem are coded  by 

structure of one of one or more strings which are analogous to chromosomes in natural 

genetic system. The coding strings are composed of features that are analogues to genes ( 

gene- eg. Animal eye color). Features are located in different position in the string where 

each features has it own position i.e. locus and definite allele value which compiles the 

proposed coding method. The string structures in the chromosome go through different 

operation similar to the natural evolutionary process to produce better alternative solution. 

The quality of new chromosome is estimated based on the ‘fitness’ value which can be 

considered as objective function for optimization problem. 

If each variable Xi, with real values, is coded as a binary string of length l  , then the 

relation between the initial value and coding information is; 
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Generalizing this concept, we may say that with an li–bit .coding for a variables , the 

obtainable accuracy in that variable  is approximately  
il
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the variables has been done, the corresponding point x=(x1,x2,…….xN)T can be found using 

equation (1.1). Thereafter, the function value at the point ‘x’ can also be calculated by 

substituting x in the given objective function f(x). 

Encoding of chromosomes is the first question to ask when starting to solve a problem 

with GA. Encoding depends on the problem heavily. Here we will discuss some 

encodings that have been already used with some success 

Binary encoding is the most common one, mainly because the first research of GA used 

this type of encoding and because of its relative simplicity.  

In binary encoding, every chromosome is a string of bits - 0 or 1.  

Chromosome A 101100101100101011100101

Chromosome B 111111100000110000011111

                         Fig.5.2.Example of chromosomes with binary encoding  

Binary encoding gives many possible chromosomes even with a small number of alleles. 

On the other hand, this encoding is often not natural for many problems and sometimes 

corrections must be made after crossover and/or mutation.  

5.6.2 POPULATION 

The solution to the optimization problem requires a set of candidates, which are 

structurally represented as chromosomes. The content of the chromosomes is composed 

of zeros and ones. It is therefore evident that the length of the binary coded representation 

will determine the maximum number of individuals in the population as well as the 

accuracy of the solution. 

Typically, the initial population is generated randomly. 

 

5.6.3. OBJECTIVE FUNCTION/ FITNESS FUNCTION 

The fitness/objective function is chosen depending on the problem in hand such that the 

individuals having high fitness values are the good solution candidates for the 
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optimization. Therefore, reproduction of the next generation will strictly be dependent on 

the fitness measure. 

In general fitness function is F(x)  is first derived from objective function and used in 

successive genetic generations. Certain genetic operator requires that the fitness function 

be non negative, although certain operators do not have this requirement. For 

maximization problems the fitness function can be considered to be the same as objective 

function or F(x)=f(x). For minimization problems, the fitness function is an equivalent 

maximization problem chosen in such a way that the optimum point remains unchanged. 

A number of such transformations are possible. The following fitness function is often 

used; 

                            
f(x)1
1F(x)

+
=       or           )()( xfxF −=     where f(x) is the objective 

function 

This transformation does not alter the location of optimum point but converts 

maximization problem in to equivalent minimization problem. The fitness function value 

is called string fitness for survival.  

Fitness is an important concept for the operation of the GA. The fitness of a string is a 

measure of the quality of the trial solution represented by the string with respect to the 

function being optimized. Thus, high fitness corresponds to a high value (in a 

maximization problem) or a low value (in a minimization problem) of the function. If the 

upper and lower limits of the function being optimized are known, then absolute fitness 

may be used -- where fitness values may be compared from generation to generation. 

Otherwise (as in most GA applications), dynamic fitness scaling can be adopted, where, 

in each generation the fitness of all the individuals are scaled relative to the best and 

worst members of the current population. Fitness is important in determining the 

likelihood of an individual taking part in crossover and also in deciding which individuals 

will survive into the next generation. 

 

 5.6 .4 GA OPERATORS  

The operation of GAs begins with a population of random strings representing design 

variables. Thereafter, each string is evaluated to find the fitness value. The population is 

then operated by three main operators- reproduction, crossover, and mutation- to create a 

new population of points. The new population further evaluated and tested for 

termination. If termination criteria not met, the population is iteratively operated by above 
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three operators and evaluated. This procedure is continued until the termination criterion 

is met.  

An evolutionary algorithm is start with population of randomly generated individual, 

although it is possible to use previously saved population or population of individual 

encoding to solution provided by human experts or by another heuristic algorithms. In 

case of genetic algorithm initial population will be made up of random bit strings. Once 

an initial population has been created, evolutionary algorithms enter a loop. At the end of 

each iteration a new population will have been created by applying certain stochastic 

operator to the previous population. One such iteration is referred to as a generation. The 

iteration is shown in the following flow chart; 

 

 

Fig5.3 Basic steps of a genetic algorithm 

In principle, the above described loop is infinite, but it can be stopped when a given 

termination condition specified by the user is met. Examples of termination conditions are 

 A pre-determined number of generation or time has elapsed; 

 A satisfactory solution has been found; 

 No improvement in solution quality has take place for predetermined number of 

generation 
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Evolutionary cycle can be summarized by the following pseudo code; 

   Generation =0; 

   Seed population 

   While not termination condition do  

     Generation=Generation+1 

    Calculate fitness 

    Selection 

    Crossover (Pcross) 

    Mutation (Pmut) 

   End while 

Reproduction/ selection operator; Reproduction is a method for increasing the number 

of solution candidates having high fitness values.  Reproduction is the first operator 

applied on a population. Reproduction selects good strings in a population and form a 

mating pool, which, at the same time, eliminates the least-fit strings from the pool.. That 

is why the reproduction operator sometimes called the selection operator.  

 

According to Darwin the most qualified (fittest) creature survive to mate. Fitness is 

determined by creature’s ability to survive predators, pestilence, and other obstacles to 

adulthood and subsequent reproduction. In our artificial setting, we quantify “most 

qualified” via a chromosome’s fitness F(x). The fitness function is the final arbiter of the 

strings-creature’s life or death. Selecting strings according to their fitness value means 

that the string with a higher probability of contributing one or more off spring in the next 

generation. The commonly used reproduction operator is the proportionate reproduction 

operator where string is selected for the mating pool with the probability proportional to 

its fitness. Thus ith string is in the population is selected with the probability proportional 

to Fi . Since the population size is usually kept fixed in a simple GA, the sum the 

probability of each string being selected for the mating pool must be one. Therefore, the 

probability of selecting the i-th string is  
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where n is the population size. One way to implement this selection scheme Goldberg 

[12] uses the analogy of spinning a unit circumference roulette wheel; the wheel is cut 

like a pie in to S regions where the ith region is associated with the element of  pi. one 

spine the wheel , and if the pointer points at region i when the wheel stops, place the 

corresponding string into the mating pool. Since the circumference of the wheel is marked 
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     copies of the ith string in the mating pool. 

Simulation procedure of roulette wheel selection scheme is as follows; 

1) Using the fitness value Fi  of all string the probability of selection of all string pi 

can be calculated i.e  
∑
=
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i

F

F  

2) Calculate the cumulative probability of Pi of each string being copied by adding 

the individual probabilities from the top of the list. 

3) Simulate roulette wheel concept by realizing the i-th string in the population 

represent the cumulative probability value from Pi-1 to Pi. The cumulative 

probability of any string lies between 0 to 1. In order choose n strings , n random 

number between 0 and 1 are created at random. Finally copy a string that 

represent the chosen random number in the cumulative range , calculated from 

the fitness value, to the mating pool. 

This way the string with a higher fitness value will represent a larger range in the 

cumulative probability value and there for has a higher probability of being copied into 

the mating pool. On the other hand , a string with a smaller fitness value represents a 

smaller range in cumulative probability value and has a smaller probabilities being copied 

in to the mating pool. It is important to note that no new strings are formed in the 

reproduction phase.    

As we already know from the GA outline chromosomes are selected from the population 

to be parents for crossover. The problem is how to select these chromosomes. According 
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to Darwin's theory of evolution the best ones survive to create new offspring. There are 

many methods in selecting the best chromosomes. Examples are roulette wheel selection, 

tournament selection, rank selection, steady state selection and some others. In this 

project we will use roulette wheel selection and  described as follows. 

In Roulette Wheel Selection Parents are selected according to their fitness. The better the 

chromosomes are, the more chances to be selected they have. Imagine a roulette wheel 

where all the chromosomes in the population are placed. The size of the section in the 

roulette wheel is proportional to the value of the fitness function of every chromosome - 

the bigger the value is, the larger the section is. See the following picture for an example.  

 

Fig 5.4 Roulette wheel selection 

A marble is thrown in the roulette wheel and the chromosome where it stops is selected. 

Clearly, the chromosomes with bigger fitness value will be selected more times.  

 

Crossover; As we can see from the genetic algorithm outline, the crossover and 

mutation are the most important parts of the genetic algorithm. The performance is 

influenced mainly by these two operators. 
Crossover is applied to selected pairs of parents with a probability equal to a given 

crossover rate. It is hoped then that the new generated chromosomes retain the good 

features of the previous generation. Actually there are different types of crossover such as 

one point crossover, two point crossover, uniform crossover, simplex crossover etc. The 

two common crossover operators are the one-point and the two-point; these are illustrated 

in Figure 3.7. 
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Fig 5.5 Crossover operators: (a) one-point crossover; (b)two-point crossover.        

 

Using selection and crossover on their own will generate a large amount of different 

strings. However there are two main problems with this: 

1. Depending on the initial population chosen, there may not be enough diversity in the 

initial  strings to ensure the GA searches the entire problem space. 

2. The GA may converge on sub-optimum strings due to a bad choice of initial 

population. 

These problems may be overcome by the introduction of a mutation operator into the GA. 

Mutation is the occasional random alteration of a value of a string position. It is 

considered a background operator in the genetic algorithm 

 

Mutation; Mutation operator is another degree of freedom in search procedure, which is 

frequently used in GA based designs. Functionally, the operator negates the value of a bit 

in the string. This makes it possible to reach to the inaccessible regions of search space. 

The need for mutation is to keep the diversity in the population and to escape from local 

minima. For example, if beyond a particular position along the all strings in the 

population have a value 0, and if a 1 is needed beyond that position to obtain the 

optimum, then neither reproduction nor crossover operator described above will be able 

to create a 1 in that position. The activation of the mutation operator is generally 

controlled by the excess of a certain probability threshold. Therefore the design must 

include such a criterion. 
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After a crossover is performed, mutation takes place. Mutation is intended to prevent 

falling of all solutions in the population into a local optimum of the solved problem. 

Mutation operation randomly changes the offspring resulted from crossover. In case of 

binary encoding we can switch a few randomly chosen bits from 1 to 0 or from 0 to 1. 

Mutation can be then illustrated as follows: 

Original offspring 1 1101111000011110

Original offspring 2 1101100100110110

Mutated offspring 1 1100111000011110

Mutated offspring 2 1101101100110110

                                                  

                                                        Fig.5.6 mutation 

The technique of mutation (as well as crossover) depends mainly on the encoding of 

chromosomes. For example when we are encoding permutations, mutation could be 

performed as an exchange of two genes. In static mutation, the mutated gene is assigned 

a completely random value, while in dynamic mutation its value is changed by a small, 

random amount about its original value. 

5.7 ELITISM  

With crossover and mutation taking place, there is a high risk that the optimum solution 

could be lost as there is no guarantee that these operators will preserve the fittest string. 

To counteract this, elitist models are often used. Elitism is the name of the method that 

first copies the best chromosome (or few best chromosomes) to the new population. In an 

elitist model, the best individual from a population is saved before any of these operations 

take place. After the new population is formed and evaluated, it is examined to see if this 

best structure has been preserved. If not, the saved copy is reinserted back into the 

population The rest of the population is constructed in ways described above. Elitism can 

rapidly increase the performance of GA, because it prevents a loss of the best found 

solution 
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Eg . if population size=20; 

            Elite count=2 

             Pc=0.8 then the number of each type of children in the next generation is as 

follows; 

o There are 2 elite children 

o There are 18 individual other than elite children so the algorithm rounds   0.8x 

18=14  to get the number of cross over children  

o The remaining 4 individual are mutation children 

 
  5.8 PARAMETERS OF GENETIC ALGORITHM 

There are two basic parameters of GA - crossover probability and mutation probability.  

Crossover probability: how often crossover will be performed. If there is no crossover, 

offspring are exact copies of parents. If there is crossover, offspring are made from parts 

of both parent's chromosome. If crossover probability is 100%, then all offspring are 

made by crossover. If it is 0%, whole new generation is made from exact copies of 

chromosomes from old population (but this does not mean that the new generation is the 

same!). 

Crossover is made in hope that new chromosomes will contain good parts of old 

chromosomes and therefore the new chromosomes will be better. However, it is good to 

leave some part of old populations survive to next generation.  

Mutation probability: The probability of mutation is normally low because a high 

mutation rate would destroy fit strings and degenerate the genetic algorithm into a 

random search. 

Mutation probability values of around 0.1% or 0.01% are common, these values represent 

the probability that a certain string will be selected for mutation i.e. for a probability of 

0.1%; one string in one thousand will be selected for mutation. 

 If there is no mutation, offspring are generated immediately after crossover (or directly 

copied) without any change. If mutation is performed, one or more parts of a chromosome 

are changed. If mutation probability is 100%, whole chromosome is changed, if it is 0%, 

nothing is changed. Mutation generally prevents the GA from falling into local extremes. 

Mutation should not occur very often, because then GA will in fact change to random 
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search. If the mutation rate is too high, the GA searching becomes a random search, and it 

becomes difficult to quickly converge to the global optimum. There are also some other 

parameters of GA. One another particularly important parameter is population size.  

Population size: how many chromosomes are in population (in one generation). If there 

are too few chromosomes, GA have few possibilities to perform crossover and only a 

small part of search space is explored. On the other hand, if there are too many 

chromosomes, GA slows down. Research shows that after some limit (which depends 

mainly on encoding and the problem) it is not useful to use very large populations 

because it does not solve the problem faster than moderate sized populations.  

5.9 ESTABLISHING THE NEXT GA-GENERATION 

Any subsequent population may be overlapping or non-overlapping with respect to the 

current population P(t). An overlapping population is the one that includes members of 

the parental population P(t) and some or all of the offspring of this parental generation. 

Overlapping populations are based upon relative fitness among parents and offspring and 

are sometimes referred to as “elitist”, indicating that strongly performing individual’s 

progress through a number of generations. 

Non-overlapping populations are those populations where P(t) is completely replaced by 

offspring to form the next generation of P(t+1).  

In relation to optimization problems where convergence is the prime consideration, most 

literatures suggest that a non-overlapping population scheme performs best. Such a 

scheme is perhaps preferable since it obviates the need for fitness evaluations and 

comparisons between existing population members and offspring and therefore facilitates 

a simpler implementation. 

 
5.10 TERMINATION CRITERIA OF GA 

Due to the fact that GAs are stochastic search methods, it can prove difficult to prescribe 

a formal convergence criteria. In practice, the most common method is to allow the GA to 

run for a prescribed number of generations, followed by evaluation of the best population 

members against the target problem. If an acceptable solution has been found or there is 

no improvement in fitness value then the algorithm may terminate,  if not, then further 

runs of the algorithm may be initiated. 
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5.11 STRENGTH OF GENETIC ALGORITHMS 

One of GA’s most important qualities is its ability to evaluate many possible solutions 

simultaneously. This ability, called implicit parallelism, is the cornerstone of GA’s 

power. Each string may contain millions of building blocks that comprise the string, and 

GA assesses them all simultaneously each time it calculates the string’s fitness. Besides, 

GAs have the quality of robustness, that is, while special case algorithms may find more 

optimal solutions to specific problems. GAs performs very well over a large number of 

problem categories. Because of this, GAs are not caught by local minima. GAS also 

perform well on problems whose complexity increases exponentially with the number of 

input parameters, since these type of problems are extremely inefficient to solve using 

traditional approaches. 

Furthermore, GAS can produce intermediate solutions, i.e. the search can stop at any time 

if a suboptimal solution is acceptable. Finally, GAs easily lend themselves to parallel 

processing; they can be implemented on any multiprocessor architecture. 

Advantage of genetic optimization 

o GAs are parallel search procedure that can implemented parallel processing 

machine for massively speeding up their operation 

o GAs is applicable to both continuous and discrete optimization problems 

o GAs are stochastic and less likely to get trapped  I local optima, which inevitably 

are present in any practical optimization applications 

o GA’s flexibility facilitates both structure and parameter identification in complex 

models.  

o superior global searching capability in the space which has complex searching 

surface,  

o  Applicability to the searching space where we cannot use gradient information of 

the space. 
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5.12 WEAKNESS OF GENETIC ALGORITHMS 

Genetic algorithms are adaptive methods, which may be used to solve search and 

optimization problems. Although GAS are easy to implement and are powerful tools to 

solve difficult problems featuring complex search spaces, they usually require human 

supervision to be exploited successfully. An important problem in the use of GAS is the 

premature convergence to a local optimum. This mainly arises when there is lack of 

diversity in the population and disproportionate relationship between exploitation and 

exploration. 

Two general approaches towards improving genetic algorithm performance have been 

based on  

(a) The development of adaptive mechanisms within the GA, and,  

(b) The optimization of static parameters such as mutation rate or population size. 

 

Limitation of genetic optimization 

The genetic algorithm theory provides some explanation why for given problem 

formulation , we may obtain convergence to the sought optimal point . Unfortunately, 

practical applications do not always follow the theory, the main reason being; 

o The coding of the problem often moves the GA to operate in a different space the 

problem itself 

o There are practical limit on the hypothetically unlimited number of iteration or 

generation in genetic algorithm 

o There is a limit on the hypothetically unlimited population size. 

o The key disadvantage of the GAs is that its convergence speed near the global 

optimum becomes slow. 

One of the implication of these observations is the inability of GA , under certain 

condition, to find optimal solution or even an approximation to the optimal solution ; such 

failures are usually caused by premature convergence to local optimum. 
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CHAPTER-VI 

MATLAB IMPLEMENTATION OF SIMPLE GENETIC 

ALGORITHM OPTIMIZATION 

 
INTRODUCTION 

MATLAB is acronym of Matrix laboratory, which has been designed to speed up 

mathematical calculations. It has several design tool box for different subject and in the 

latest release it incorporates built in genetic tool box and fuzzy logic tool box. In this 

project MATLAB version 6.5 with external genetic tool box released by MATWORKS, 

company has been used.      

6.2 GENETIC TOOL BOX FOR MATLAB 

Genetic algorithm for optimization of simple multi-modal function was done by using 

matlab genetic tool box created by the MathWorks, Inc. 1993. This tool box has several 

m-files that can be called when required to accomplish the required task. This m-files 

includes the following functions; 

1) ENCODING FUNCTION; a function which  Converts from  decimal value to  

binary representation  

the syntax is ; function [gen,lchrom,coarse,nround] = encode(x,vlb,vub,bits) 

where  

    [GEN,LCHROM,COARSE,nround] = ENCODE(X,VLB,VUB,BITS)  Encodes non-

binary variables of X to binary.  The variables in the i'th column of X will be encoded by 

BITS(i) bits.  VLB and VUB are the lower and upper bounds on X.  GEN is the binary 

representation of these X.  LCHROM=SUM(BITS) is the length of the binary 

chromosome. COARSE(i) is the coarseness of the  i'th variable as determined by the 

variable ranges and  BITS(i).  ROUND contains the absolute indices of the X which 

where rounded due to finite BIT length. 

2) DECODING FUNCTION; ------ function [x,coarse] = decode(gen,vlb,vub,bits) 

          DECODE Converts from binary to variable representation.  

 [X,COARSE] = DECODE(GEN,VLB,VUB,BITS) converts the binary  

 population GEN to variable representation.  Each individual of GEN should 

 have SUM(BITS).  Each individual binary string encodes 

 length(vlb)=length(vub)=length(bits) variables. 
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  COARSE is the coarseness of the binary mapping and is also of length- 

 length(vub). 

3) MATE FUNCTION; -----function [new_gen,mating] = mate(old_gen) 

 MATE   Randomly reorders (mates) OLD_GEN. 

 [new_gen,mating] = mate(old_gen) performs random reordering on old_gen.  

 new_gen is the new reordering.  Individual in row 1 is to be mated with 

 individual in row 2, etc.  MATING is the reordering vector (ie: 

new_gen=old_gen(mating,:)). 

 

4) MUTATE FUNCTION;----- function [new_gen,mutated] =mutate(old_gen,Pm) 

 MUTATE Changes a gene of the old_gen with probability Pm. 

 [new_gen,mutated] = mutate(old_gen,pm) performs random mutation on the 

 population old_pop.  Each gene of each individual of the population can mutate 

 independently with probability Pm.  Genes are assumed possess Boolean   alleles.  

 MUTATED contains the indices of the mutated genes. 

 

5) CROSSOVER FUNCTION-- function [new_gen,sites] = xover(old_gen,Pc) 

            XOVER  Creates a new_gen from old_gen using crossover. 

 [new_gen,sites] = xover(old_gen,pc) performs crossover procreation on pairs of          

 old_gen with probability Pc .Crossover SITES are chosen at random . 

6) REPRODUCE FUNCTION--function [new_gen,selected] = 

reproduc(old_gen,fitness) 

          REPRODUC selects individuals proportional to their fitness. 

 [new_gen,selected] = mate(old_gen,fitness) selects  individuals from old_gen     

 proportional to their fitness new_gen will have the same number of individuals 

 as     old_gen. selected contains the indices (rows) of the selected  individuals 

(ie:  NEW_GEN=OLD_GEN(SELECTED,:)). 

7) GENETIC FUNCTION…function [xopt,stats,options,bestf,fgen,lgen] = 

genetic(fun,  x0,options,vlb,vub,bits,P1,P2,P3,P4,P5,P6,P7P,P8,P9,P10) 

         GENETIC tries to maximize a function using a simple genetic algorithm. 

 X=GENETIC('FUN',X0,OPTIONS,VLB,VUB) uses a simple (haploid) genetic 

algorithm to find a maximum of the fitness function  FUN (usually an M-file: FUN.M).  

The user may define all or part of an initial population X0  (or supply an empty argument 

in which case an initial population will be  chosen randomly between the lower and 
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upper bounds VLB and VUB.  Use  OPTIONS   to specify optional parameters such as 

population size and maximum number of generations produced.   The default algorithm 

uses a fixed population size, OPTIONS(11),  and no generational overlap.  Three genetic 

operations:  reproduction, crossover, and mutation are performed during  procreation. 

The probability that an individual of the      population will reproduce is proportional to 

its fitness. Individuals chosen for reproduction are mated at random. Mating produces two 

offspring (re: constant population size.) Crossover in mating occurs with probability 

Pc=OPTIONS(12) and the  crossover index is randomly selected.  Each feature of the 

offspring can mutate  independently with probability Pm=OPTIONS(13).  Default 

options are OPTIONS(11:13)=[30 1 0]. 

The default maximum generations OPTIONS(14) is 100. 

X=GENETIC('FUN',X0,OPTIONS,VLB,VUB,BITS) allows the user to  define  the 

number of BITS used to code non-binary parameters as binary strings.  Note: 

length(BITS) must equal length(VLB). 

 X=GENETIC('FUN',X0,OPTIONS,VLB,VUB,BITS,P1,P2,...) allows up to ten 

 arguments, P1, P2, ... to be passed directly to FUN. 

           F=FUN(X,P1,P2,...). 

          [X,STATS,OPTIONS,BESTF,FGEN,LGEN]=GENETIC(<ARGS>) 

          STATS   - [max min mean std] for each generation 

          OPTIONS - options used 

          BESTF   - Fitness of individual X (i.e.: best fitness) 

          FGEN    - first generation population 

          LGEN    - last generation population 

The following two functions were added in genetic tool box to initialize the population 

and to calculate the fitness of our proposed function. The two functions are  

8) INIT FUNCTION…. function phen=init(vlb,vub,siz,sea) 

     This function creates a random initial population 

9) SCORE FUNCTION … function [fitness, object]=score(phen, popsize) 

  This function computes fitness and objective function values of population 
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6.3 INVESTIGATING GA PARAMETERS  

 There are many factors that affect how the GA performs. These include population size, 

mutation probability and crossover probability among others.  To investigate how some 

of these factors affected the GA an experiment was performed using a test function with 

multiple maxima and minima. The main program is found in AppendexB1. 

The test function is   f(x1,x2)=x1
2+x2

2-0.3*cos(3*pi*x1)-0.4cos(4*pi*x2)+0.7 This 

function is plotted as Figure below. Genetic algorithm searches the global minimum of 

the function. The program searches and traces the global minimum by blue line on 

countor  plot.  
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                                         Fig.6.1 multi-modal function 

 As can  be  seen  from  the  plot,  this  function  has  many optimum whose  peak  and 

valley values  are  different. It is hoped that the GA searching this solution space will find 

the peak value in this range which occurs at x1 = 0, x2 = 0 or somewhere close to it. There 
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are  also  two  local  minima  whose  peaks  fall  just  short  of  the  global  peak.  Those 

searches that succeed in avoiding getting stuck at these local minimum are those whose 

properties should be noted and emulated. To perform the GA, MATLAB was used in 

conjunction with the genetic toolbox, which is open-source code provided by Andrew et 

al.  [7]. An  objective  function  has  to  be provided  for  this  toolbox  that  evaluates  the  

string  passed  in.  This code is shown below.  

function [fitness, object]=score(phen,popsize)  

for ii=1:popsize  

objective(ii)=phen(ii,1)^2+phen(ii,2)^2-0.3*cos(3*pi*phen(ii,1))-

0.4*cos(4*pi*phen(ii,2)) +0.7; 

    fitness(ii)=1/(objective(ii)+1); 

end 

The graph of the best average and worst value verses generation number is shown below. 

Population size=10  pm=0.01  pc=0.8   bits=12 each generation =50 
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Fig.6.2 graph of the best average and worst value of multi-modal function f(x1,x2) 
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To  apply  the  parameters  to  the  GA  a  script  file was written  in which  the  essential 

parameters  are  set. This file is listed in Appendix B1, different  runs  of  the GA were 

performed, and the parameters for these runs are given in Table  below.   

 

 6.4 EFFECT OF GENETIC PARAMETERS  

 

Table 6.1 comparison of effect of genetic parameter optimization problem 

s.no pc pm generation Population 

size 

Bit 

length 

Best 

fitness 

value 

Average 

fitness 

value 

Worst 

fitness 

value  

1 0.8 0.01 50 10 12 0.000932 0.777718 0.865227

2 0.4 0.9 50 10 12 0.003424 1.149183 2.007528

3 0 1 50 10 12 0.623899 1.075680 1.843257

4 1 0 50 10 12 0.008560 0.059543 0.145596

5 0.8 0.01 100 10 12 0.000039 0.328916 1.301278

6 0.4 0.9 100 10 12 0.002000 1.177807 1.832853

7 0.8 0.01 50 40 12 0.001423 1.061131 1.926886

 

The above table indicates that how the selection of parameter affects the out come of 

genetic algorithm. The following factors affect the out come of genetic algorithms; 

a) Population diversity; diversity indicates that the average distance between 

individual. If diversity is high, average distance between individual is large 

and vice versa. Getting the right diversity is a matter of trial and error. If 

the diversity is too high or too low the GA might not perform well. 

Diversity is controlled by appropriately setting initial range of the 

population 

b)   Population size; population size determines the size of population at each 

generation. If population size is high GA have to search more points which 

leads to better result but the longer the Ga takes to compute each 

generation value . At least the population size should be equal to number 

of variable 

c) fitness scaling.; converts raw fitness score that are returned by the fitness 

function to value in the range that is suitable for the selection function 
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which uses scaled fitness to select the parameter of the next generation 

according to its fitness value. If the scaled value too widely the individual 

with the highest scaled value reproduce to rapidly taking over the 

population generation converges to quickly ,preventing the GA from 

searching other area of the function space. If it vary only a little all 

individual  have approximately the same chance of reproduction and 

search will progress slowly. In most GA default fitness scaling is RANK , 

scales the raw score based on the rank of each individual instead of its 

score. The rank of individual is its position in the sorted score , most fit 

individual rank 1……n .last fit individual  

d) selection operator;  choose  parents for the next generation based on their 

scaled value from fitness scaling function 

e) Reproduction operator; controls how genetic algorithm creates the next 

generation. Usually GA uses elite count i.e. best fitness value in the 

current generation directly pass to the next generation .which is called elite 

children. Setting elicits count high value causes the fittest individual to 

dominate to dominate the population, which make the search less effective.    

f) Crossover probability (pc). Determines the fractions of individual in the 

next generation other than elite children hat are created by crossover 

operator. 

g) Mutation probability (pm) ; Determines the fraction of individual in the 

next generation other than  elite and crossover children by introducing 

random change of bit from 1 to 0 or vice versa in single parent. 

To show the actual procedure or basic flow chart of genetic algorithm m-file has been 

created and presented in appendix A3. The program follows the basic procedure of GA 

and intended to give deep insight in to how GA works. The function to be optimized has 

been taken from reference [50] and as expected genetic algorithm searches the optimum 

value of the function. The graph of the best and average fitness value verses generation 

number is shown below for different optimization parameters.  
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The optimized function is  

                     f(x1,x2)=(x1
2+x2-11)2+(x1+x2

2-7)2 

 

Population size=20   
Pc=0.8  
Pm=0.05  
maxgen=100  
Bits= 10 each  
Number of variable=2  
Range=[ 0  6; 0  6] 
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 Fig.6.3 graph of Best and Average fitness of f(x1,x2) 
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Population size=100   

Pc=0.8  

pm=0.05  

maxgen=100 

Bits= 10 each  

Number of variable=2  

Range=[ 0 6; 0 6] 
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Fig.6.4 graph of Best and Average fitness of f(x1,x2)  for different parameter  
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CHAPTER-VII 

FUZZY-GENETIC CONTROLLER 
 

INTRODUCTION 

Different approaches have been proposed to automate the design of fuzzy systems. Many 

of these approaches take the genetic algorithm as a base of the learning process. A GA 

was used to optimize the fuzzy logic input membership functions, the fuzzy rules, the 

output membership functions and universe of discourse. The use of an Evolutionary 

Algorithm to solve the above optimization problem is suggested for the investigation of 

randomly chosen sets of controller parameter values. Fuzzy systems (FS) which use GAs 

for automatic tuning/learning the FS components are known as Genetic Fuzzy Systems 

(GFS). Further, evolutionary algorithms provide a universal optimization technique that 

mimics the type of genetic adaptation that occurs in natural evolution [23], [31]. Unlike 

specialized methods designed for particular types of optimization tasks, they require no 

particular knowledge. Recently numerous publications propose evolutionary algorithms 

to automate the knowledge acquisition step in fuzzy system design [30], [26], [19]. These 

methods are described by the general term genetic-fuzzy systems. Genetic fuzzy systems 

are applicable to control design problems in which the objective is to maximize some 

performance index of the closed loop process itself, as the evolutionary optimization is 

solely based on a scalar objective function. 
 

7.2. OBJECTIVE OF GENETIC FUZZY SYSTEM 

The objective of a genetic fuzzy system is to automate the knowledge acquisition step in 

fuzzy system design, a task that is usually accomplished through an interview or 

observation of a human expert controlling the system. An evolutionary algorithm adapts 

either part or all of the components of the fuzzy knowledge base. At this point, it is 

important to notice that a fuzzy knowledge base is not a monolithic structure but is 

composed of the data base and the rule base which each play a specific role in the fuzzy 

reasoning process. 
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7.3 TYPES OF GENETIC FUZZY SYSTEM 

 According to the distinction between data base and rule base, genetic fuzzy systems are 

discriminated along two major approaches,  

o genetic tuning processes and  

o genetic learning processes. 

The first method is targeted at optimizing the performance of an already existing fuzzy 

system. The tuning process involves the adaptation of the fuzzy database, namely 

parameters of membership functions and input-output scaling factors.  

The second method is concerned with the automatic derivation of fuzzy rules in the rule 

base. A genetic learning process faces a much more difficult task as it has to establish the 

proper relationship between input and output states from scratch, rather than optimizing 

the performance of a fuzzy system that already operates at least approximately correct. 

 
Fig. 7-1. Genetic fuzzy system 

Figure 7-1 shows the major components of a genetic fuzzy system. The fuzzy system lies 

at the core of the hybrid structure; it fuzzifies the input state, performs the inference based 

on the fuzzy rules and aggregates the result of the inference process into a crisp output. 

Depending on the context, the environment can be a plant to be controlled, a system to be 

modeled or a set of data to be classified. An external critic or trainer evaluates the 

performance of the fuzzy system with regard to the control task, the model accuracy or 

the classification error. The performance is aggregated into a scalar fitness value on 

which basis the evolutionary algorithm selects better adapted chromosomes.  
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A chromosome either codes  

o parameters of membership functions, 

o scaling factors, 

o  Fuzzy rules or a combination thereof. 

By means of crossover and mutation, the evolutionary algorithm generates new 

parameters for the database and/or rule base which usefulness is tested in the fuzzy 

system. 

The optimal configuration of fuzzy sets and/or rules and in that sense can be regarded as 

an optimization problem. The optimization criterion is the problem to be solved at hand 

and the search space is the set of parameters that code the membership functions, scaling 

functions and fuzzy rules. The genetic learning process emerges from the hybridization of 

an evolutionary algorithm, which by means of selection and genetic operators optimizes 

parameters of the knowledge base, with the fuzzy system supposed to demonstrate a 

desired behavior. 

The majority of publications are concerned with fuzzy rule based control system design. 

For two reasons, a fuzzy representation is particularly useful for evolutionary 

optimization compared to other possible parameterizations of a controller. For many real-

world problems a mathematical precise and complete solution is not only unnecessary, 

but often also unfeasible. Fuzzy systems exploit this tolerance for imprecision by 

aggregation of similar states into coarse granules defined by fuzzy sets. The remaining 

task for the evolutionary algorithm becomes to learn the appropriate local relationships 

between input and output states established by fuzzy if-then rules. The locality and 

granularity of fuzzy rules, not only decreases the complexity of the search space but at the 

same time lessens the interdependency of the very genes that encode these rules. In 

return, limited interaction among genes expedites the evolutionary optimization process 

according to the building block hypothesis. 
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7.4 MEMBERSHIP PARAMETERS OPTIMIZATION 

GAs are applied to modify the membership functions. When modifying the membership 

functions, these functions are parameterized with one to four coefficients (fig. below), 

and each of these coefficients will constitute a gene of the chromosome for the GA. 

 
Fig.7.2 Some parameterized membership functions 

Fuzzy membership functions provide the characterization of fuzzy sets by establishing a 

connection between linguistic terms (such as \slow", \medium", \fast" for a speed 

variable) and precise numerical values of variables in a physical system. A fuzzy 

membership function approximates the confidence with which a numerical value is 

described by a linguistic term [44]. 

A typical example of triangular fuzzy membership functions for a speed variable is given 

in Figure7.3. 

 
 
 
Fig 7-3: Membership functions for a physical variable \speed. 
 
Notice that membership functions not necessarily have to be (isosceles) triangles as in 

this example. For instance, Gaussian membership functions 

 
provide an important alternative . A further possibility for the shape of membership 

functions is to choose trapezoidal [4]. 

The correct choice of the membership functions, however, is by no means trivial but plays 

a crucial role in the success of an application. Several example applications demonstrate 
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that evolutionary algorithms are capable of optimizing the membership functions of fuzzy 

logic controllers. The basic idea is to represent the complete set of membership functions 

by an individual and to evolve shape and location of the triangles (respectively the 

Gaussian curves). 

Each triangle may be described by its anchor points on the abscissa axis, and the Gaussian 

membership functions are characterized by c and σ. 

 

We conclude this section by referring to a problem which may arise from unconstrained 

variations of the membership function shape by the optimization algorithm: The 

completeness property, which requires that a fuzzy logic controller always be able to infer 

a control action for every state of the process might be violated if the anchor points of 

membership functions are shifted such that the possible range of values is no longer 

completely covered. 

In order to solve this problem, one might consider to introduce special constraints to the 

evolutionary algorithms' objective function. 

 

7.5 FUZZY RULE BASE OPTIMIZATION 

Besides learning the membership functions, an even more challenging problem consists in 

the automatic learning of fuzzy control rules, i.e., the linguistic statements which are 

normally derived from expert knowledge. This idea comes close to so-called classifier 

systems, rule-based systems that use a genetic algorithm as a rule-generation mechanism, 

such that the classifier system is capable of inductive learning. 

Different methods are defined to apply GA to the rule base optimization, depending on its 

representation. For example, GA are used to modify the decision table of an FLC, which 

is applied to control a system with two input (trial-and error) and one input (command 

action) variables. A chromosome is formed from the decision table by going row-wise 

and coding each output fuzzy set as an integer in 0, 1… n, where n is the number of 

membership functions defined for the output variable of the FLC. Value 0 indicates that 

there is no output, and value k indicates that the output fuzzy set has the k-th membership. 
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The application of the GA in the optimization of the FLC controllers can be reformulated 

as follows: 

1. Start with an initial population of solutions that constitutes the first generation (P(0)). 

2. Evaluate P(0): 

a) Take each chromosome (KB) from the population and introduce it into the FLC, 

b) Apply the FLC to the controlled system for an adequate evaluation period, 

c) Evaluate the behavior of the controlled system by producing a performance index to 

the KB. 

3. While the termination condition is not met, do 

a) Create a new generation (P(t+1)) by applying the evolution operators(selection, 

 crossover and mutation) to the individuals in P(t), 

b) Evaluate P(t+1) 

c) t = t+1. 

4. End. 

 

 7.6 LEARNING WITH GA 

Although GAs are not learning algorithms , they may offer a powerful and domain 

independent search method for a variety of learning tasks[ 41]. Three alternative 

approaches , in which GAs have been applied  to learning process, have been proposed , 

the Michigan, the Pittsburg, and Iterative rule learning (IRL) approaches. In the first one, 

the chromosome corresponds to classifier rule, which are evolved as a whole, whereas   in 

Pittsburgh approaches, each chromosome encodes a complete set of classifiers. In the IRL 

approach each chromosome represents  only one rule learning , but contrary to the first 

,only the best individual is considered as the solution , discarding the remaining 

chromosomes in the population. Below, we will describe them briefly. 
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Fig.7-4: Evolutionary learning of an FLC 

 

Most authors propose a genetic learning method for the Data Base (DB) of Mamdani 

fuzzy rule base system that allows us to define: 

• The numbers of labels for each linguistic variable. 

• The universe of discourse. 

• The form of each fuzzy membership function. 

In GA, we only need to select some suitable parameters, such as generations, population 

size, crossover rate, mutation rate, and coding length of chromosome, then the searching 

algorithm will search out a parameter set to satisfy the designer's specification or the 

system requirement. 

To automate the optimization process, a meaningful performance-index algorithm is 

required, which assesses the performance for different operating conditions in the same 

way as experts. To address this requirement, a fuzzy performance-index is designed. 

Furthermore, an optimization strategy is required, which tunes the controller parameters 

stepwise, so that finally the best possible solution is obtained. An Evolutionary Algorithm 

is used for this task..  The determination of the values of the controller parameters by an 

Evolutionary Algorithm, as well as the evaluation of the resulting performance by the 

designed performance-index, is performed by a Personal Computer. 

The performance of a fuzzy controller is improved by tuning parameterized membership 

functions and input-output scaling factors with respect to the desired control behavior. A 

population of competing chromosomes that encode the tuning parameters evolves by 
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means of selection, recombination and mutation. The fitness of an individual is evaluated 

by observing the performance of the fuzzy controller while regulating the process using 

the membership functions and scaling factors encoded in the chromosome. Over the 

course of evolution the evolutionary algorithm identifies those set of parameters, for 

which the fuzzy controller performs optimal with respect to the given performance index. 

 

7.6.1. MICHIGAN APPROACH  

The population is composed of a set of individual rules that compete with each other to 

suggest the optimal control action. The method is suitable for on-line learning tasks as the 

evolutionary algorithm incrementally improves the performance of the fuzzy controller 

constituted by the population of rules. The chromosomes are individual rules and a rule 

set is represented by the entire population the collections of rules are modified over time 

via interaction with environment. . In Michigan approach, data base and rule base are two 

clearly separate entities. All rules share the same membership functions defined in a 

common data base. Fuzzy sets are associated with linguistic terms such as small, medium, 

large. A fuzzy if-then rule combines multiple linguistic labels in a way that facilitates an 

intuitive interpretation of the relationship between input and output states defined by this 

rule.  

 

7.6.2. PITTSBURG LEARNING APPROACHES 

The Pitt learning approaches operate on a population of rule bases. As the evolutionary 

algorithm evaluates the performance of the fuzzy controller as a whole, rather than that of 

isolated fuzzy rules, the credit assignment mechanism becomes obsolete. In this approach 

each chromosome encodes a whole RB or KB. Crossover serves to provide a new 

combination of rules and mutation provides new rule.   

The genetic representation of the fuzzy knowledge base is another important issue in the 

conception of a genetic fuzzy system. The main distinction is made between descriptive 

and approximate knowledge bases. In a Pittsburg approach fuzzy system, each rule 

operates with its own fuzzy sets. Data base and rule base merge as the rule itself contains 

the parameters of the underlying membership functions. Such a representation possesses 

more degrees of freedom which permits a more accurate approximation of the desired 

input-output relationship, hence the term approximative. 

The price of increased accuracy is that the resulting fuzzy system becomes more difficult 

to analyze as an individual fuzzy set no longer coincides with a linguistic concept. 
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7.6.3 ITERATIVE RULE LEARNING APPROACH  

 In this approach, as in Michigan one , each chromosome in the population represents a 

single rule, but contrary to the Michigan one , only the best individual is considered to 

form part of the solution, discarding the remaining chromosome in the population. 

Therefore, in the iterative approach, the GA provides a partial solution to the problem of 

learning. In order to obtain a set of rules, which will be a true solution to the problem, the 

GA has to be placed with in an iterative scheme similar to the following; 

1. use GA to obtain the rule of the system 

2. incorporate the rules into the final set of rules 

3. penalize this rule 

4. if the set of rules obtained till now is adequate to be a solution to the problem, the 

system ends up returning  the set of rules as the solution. Otherwise return to step 

1.  

A very easy way to penalize the rules already obtained, and thus be able to learn new 

rules when performing inductive learning, consist of eliminating from the training set all 

those examples that covered by the set of rule obtained previously. The main difference 

with respect to the Michigan approach is that the fitness of each chromosome is computed 

individually, without taking in to account cooperation with other one. This substantially 

reduces the search space because in each sequence of iterations only one rule is searched.  

 

7.7 DESIGN OF THE PERFORMANCE-INDEX 

It is the task of the performance-index to assess the control performance in the same way 

as so far experts do. The performance-index has to consider to what extent the 

requirements, such as stability and satisfactory responses to different stimulus signals, or 

satisfactory responses to disturbances, in consideration of the physical limits of the 

controlled system, are met. Common performance- indices usually include only parts of 

these requirements. In comparison, we deal with the task of considering all of the relevant 

aspects and summarizing them in a single performance-index, that satisfies the following 

requirements. The value of the performance-index, which is obtained for the considered 

set of controller parameter values, is used as fitness value of the individual. Here the 

fuzzy performance-index serves as fitness function. 
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A performance index is a quantitative measure of the performance of a system [42]. It 

must be a number that is always positive or zero. A system is considered an optimum 

control system when the parameters are adjusted so that the index reaches an extremum 

value, commonly a minimum value.  

The following are the known performance indices:  

• ISE (Integral of the square of the error)  

• IAE (Integral of the absolute magnitude of the error)  

• ITAE (Integral of time multiplied by absolute error)  

• ITSE (Integral of time multiplied by the squared error)  

Among the four enumerated indices, ISE is the most common criterion in 

optimizing a control system. It is minimized by minimizing Areas 1, 2 and 3, as shown in 

Figure 7.5.  

 

 
 
 

Fig 7.5. The graph of ideal step response (input) and actual step response.  
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7.8 OPTIMIZATION TECHNIQUES  
In optimizing the above performance indices there is a correspondingly appropriate 

technique or techniques for each of them, which would give a fast or at least guarantee 

convergence. There are two categories of optimization techniques, namely; the derivative-

based and derivative-free optimizations [43]. The former is capable of determining search 

directions according to an objective function’s derivative information, while the latter is 

stochastic, which means that it uses random number generators in determining subsequent 

search directions. The most popular derivative-free optimization methods are the 

following: genetic algorithms (GA), simulated annealing (SA), random search method, 

and downhill simplex search. They share these common characteristics; derivative 

freeness, intuitive guidelines, flexibility, randomness and analytic capacity. The random 

search method and downhill simplex search concepts and implementations are simple but 

GAs and SA are regarded better for all problems all the time [43]. Due to the parallel-

search procedures of GA, it is expected to converge faster and less likely to get trapped in 

local minima than SA. GAs provide a stochastic optimization method where if they get 

stuck at a     local optimum, they try to simultaneously find other parts of the search space 

and jump out of the local optimum to a global one  
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CHAPTER-VIII 

FUZZY-GENETIC OPTIMIZATION OF LIQUID LEVEL 

CONTROLLER 

 
INTRODUCTION: 

In order to demonstrate the utility of fuzzy-genetic algorithm,  a  prototype liquid flow 

in a closed vessel has been considered. The MATLAB software version 6.5 has been 

used in this project, which have inbuilt fuzzy logic and a external genetic tool boxes. 

This has been released by MATWORK company USA..   

 

8.2 PROBLEM FORMATION: 

• Design and development of Fuzzy logic controller for the given prototype process 

level control.  

• Optimization of Fuzzy logic controller by using genetic algorithm. :Genetic 

algorithm has been used to tune the output membership function to obtain 

minimum integral square error (ISE) as performance index.  

 

8.3 PROCESS DETAILS 

The system includes an inflow and outflow, both of which is adjustable by using 

electronic valves. The controller that is developed has applied to a scaled down version of 

the simulated tank. The actual tank has digital sensor and pumps that accept digital 

control. The Objective of this project is to develop a heuristic fuzzy logic controller 

capable of driving the liquid level in the tank to a given set point.  In this project the level 

of the liquid will be controlled by adjusting only the input or inlet valve. The prototype of 

the process is shown below 
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Fig8-1.A tank containing liquid  
 

 

 

The liquid level and the rate at which this level is changing are initially set to arbitrary 

values. The control objective is to drive the system to a given set point in the shortest time 

possible by adjusting the inflow and outflow.  

It is not particularly difficult for human to develop rules that when applied to the system 

drive the liquid level to a value that is relatively close to the set point. The rules for 

controlling the system are almost trivial: if the level is above the set point then remove 

liquid, if it is below the set point then add liquid. 

 

There are numerous approaches to FLC development but in this project we will use 

straight forward approach to develop FLC for liquid level system.  A step by step 

procedure for fuzzy control of the liquid level system is provided below. In designing 

special care has been taken to relate the mechanics of FLC to the method of human might 

use to control the liquid level system. We think of our system as models of the action 

taken by expert human operator and later we will use genetic algorithm to optimize the 

performance of the system.  
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8.4 DESIGN OF FUZZY LOGIC CONTROLLER  

The first step in developing the liquid level Fuzzy Logic Controller is to select the 

variables that will be important in choosing an effective control action. The variables are 

known as the condition variables. Two condition variables are readily identified as being 

important in the liquid level system. Since the control rules depend not on the current 

value of ‘h’(height)  and ∆h (rate of change of height), rather on the respective distance 

from the set point (ERROR) , the rules presented for the proposed system use the 

following two condition variables; 

1. ERROR(E)……. E=hset- h 

2. CHANGE IN ERROR (∆E)…… ∆E=dE/dt 

Where hset is the desired fixed set point for the level h  

           ∆E=dE/dt  is the rate of change of error 

 

These variables are input variables to FLC controller, both of which are to be driven to 

zero in our system. 

 

Once the condition variables have been chosen, the second step is to choose the action 

variable.  In our liquid level system identifying the output variable (action) is straight 

forward task. Fore there are two things the controller can adjust to alter the state of liquid 

level system; either the input flow rate Qi (adjustment of input electronic valve) or the 

output flow rate Qo(adjustment of output electronic valve), which can be increased or 

decreased by adjusting the valve. The task of our controller is to adjust the input 

electronic valve according to desire set point value.  

 

Once the important conditions and actions have been identified the next step is to define 

the linguistic terms (values) used to describe these linguistic variables i.e. fuzzy sets for 

each variables. These fuzzy sets are written to describe the condition variables E and ∆E 

and action variable input Knob setting( kQin)  . It must be understood that a greater 

number of linguistic terms can be expected to give precise control. However, when more 

linguistic terms are used describe condition variables more rules are needed by fuzzy 

logic controller. Since the number of rules or complexity increases exponentially with the 

number of variable and linguistic terms as much as possible moderate linguistic terms 

should be used in design, most literatures shown, linguistic terms in the range of 3-7 
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works fine for many control system. Choosing the number of linguistic terms used to 

describe each variable is not an arbitrary decision it is based on knowledge gained 

through working with physical system. 

For our case, we will choose  

i. four fuzzy sets to characterize E 

Ngative Big(NB) 

Ngative Small(NS) 

Positive Small(PS) 

Positive Big(PB) 

ii. five fuzzy sets to characterize ∆E 

 Ngative Big(NB) 

 Ngative Small(NS) 

Near Zero(NZ) 

 Positive Small(PS) 

 Positive Big(PB) 

iii. five fuzzy sets to characterize kQin 

  Ngative Big(NB) 

 Ngative Small(NS) 

 No change(NC) 

 Positive Small(PS) 

 Positive Big(PB) 

All the above fuzzy sets were chosen because they are similar to the descriptive terms 

human operator might use to control the liquid level system. 

After choosing the number and name of linguistic terms the next step is to delimit the 

range in which the corresponding linguistic term can take a value for each linguistic 

variable. The following tables indicate the range and the shape of each fuzzy set for 

corresponding variable. The ranges are normalized so that to lie between [-1 1]. 
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Table 8.1. ERROR – total range [-1 1] 

 

Linguistic term  range Shape and parameter value 

NB [-1  -0.4]  Triangular –param -[-1 -1 -0.4] 

NS [-0.8  0.2] Triangular –param -[-0.8 -0.4 0.2] 

PS [-0.2  0.8] Triangular –param -[-0.2 0.4 0.8] 

PB [0.4   1] Triangular –param -[0.4 1 1] 

 

 

Table8. 2. CHANGE IN ERROR (∆E) - total range [-1 1] 

 

Linguistic term  range Shape and parameter value 

NB [-1  -0.5]  Triangular –param -[-1 -1 -0.5] 

NS [-0.8  -0.2] Triangular –param -[-0.8 -0.5  -0.2] 

NZ [-0.4  0.4] Triangular –param -[-0.4 0  0.4] 

PS [0.2   0.8] Triangular –param -[0.2 0.5  0.8] 

PB [0.5 1] Triangular –param -[0.5 1 1] 

 

Table 8.3. adjustment of input electronic valve (kQin) - total range [-1 1] 

 

Linguistic term  range Shape and parameter value 

NB [-1  -0.5]  Triangular –param -[-1 -1 -0.5] 

NS [-0.77   -0.25] Triangular –param -[-0.75 -0.5  -0.25] 

NC [-0.5  0.5] Triangular –param -[-0.5 0  0.5] 

PS [0.25   0.75] Triangular –param -[0.25 0.5  0.75] 

PB [0.5 1] Triangular –param -[0.5 1 1] 

 

 

The above number of linguistic terms for each variable allowed for an FLC of reasonable 

size while providing adequate size while providing adequate control for liquid level 

system. With thus choice of fuzzy sets 5 x 4= 20 different production rules are required to 

describe all of the possible conditions that in the liquid level system. With 4 fuzzy sets for 
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E and 5 fuzzy sets for ∆E  as shown above there are 4x5=20 possible conditions in the 

liquid level system and a human expert provide a desired action for each condition based 

on prior experience.  

The rules are of the form; 

            IF E is A and ∆E is B THEN kQin is C. 

Where A ,B and C are linguistic terms represented by fuzzy sets.  

 

An example of fuzzy production rule used in liquid level system is as shown below; 

                IF E is PB and ∆E is PB THEN is kQin NB. 

This rule simply says that if the liquid is well above the set point and rising rapidly the net 

flow in to the tank should be made Negative Big.  

The complete rule set for the liquid level FLC is depicted below 

                   

Table8. 4. Rule matrix 

 

                                                        ERROR ( E) 

                                 NB                 NS                PS                  PB 

                     NB 
PB PB PS NS 

PB PS NC NS 

PB PS NS NB 

PS NC NS NB 

PS NS NB NB 

 

         ∆ E        NS 

                  

                      NZ 

                       

                      PS 

 

                       PB 

 

 

This rule matrix is used by locating the descriptive term E along he top matrix ,locating 

the descriptive term for ∆ E along the left side of the matrix and then extracting the 

appropriate value kQint  for the given condition. 
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The method for giving precise meaning to the fuzzy, linguistic variables involves the use 

of fuzzy membership function. The fuzzy membership function  used in the liquid level 

control system ,which gives meaning to linguistic terms used in the rule, are shown in the 

figure below   
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Fig 8.3 membership function of input 2 CHANGE IN ERROR 

 

 
 
 Fig 8.4 membership function of input valve setting ( kQin) 

The above fuzzy membership functions allow the crisp value of E and ∆ E to be 

transformed in to a fuzzy membership value between 0 and 1. Actually  the fuzzy 

membership can be thought of as determining the degree to which a discrete value of a 

variable is described by a particular fuzzy linguistic terms. The crisp conditions (definite 

value of E and ∆ E) existing in liquid level system at any given time can be accounted for 
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using production rule that include fuzzy linguistic terms. Now process for determining a 

crisp action to take on liquid level system must be developed. In other word the crisp 

conditions have been fuzzified and then defuzzified to yield a single action to the system. 

The set of fuzzy production rules provides a fuzzy action for any condition that could 

possibly exist in the problem environment. 

Unlike conventional expert system where only one rule is applicable for any given set of 

conditions, all of the rules in the FLC take effect to some degree at every time step. There 

fore there still remains the task of converting the 20 fuzzy actions prescribed by the fuzzy 

production rules in to a single crisp action to be taken on the liquid level system. 

In our system center of area or gravity (COA/COG) method of defuzzification is used 

which is also found in fuzzy tool box of MATLAB 7. 
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This value defines the single crisp value of the out put may be voltage value to adjust the 

input electronic valve according to the desire set value.  The rules that create triangles 

with large area, those arising from conclusions that are most applicable, have the greatest 

effect on the action. 

We have a means for converting a crisp set of measurement in the liquid level system to a 

set of fuzzy condition and a set of fuzzy production rules prescribing a fuzzy action 

associated with a particular set fuzzy condition has been developed. This step will be 

done by using ‘MATLAB ‘fuzzy control tool box which automatically calculate the 

required value of variable by using built in function according to written program. 

The following diagram is the result of program in appendix A  m-file wlc.m which shows 

the fuzzification and defuzzification phase of the controller. 
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Fig8.5. fuzzification ad defuzzificaation phase of FLC for liquid level system for 

 particular crisp inputs. 

 
The yellow shade indicates those rules that have been fired for a given particular input 

and the blue  shade clipped triangle indicates the fuzzified output value where as the red 

line with blue triangle indicates the defuzzified value. 

MATLAB fuzzy tool box has also an option to visualize the interaction between inputs 

and outputs by displaying the surface view of the variable .For liquid level control system 

the surface view is shown below 
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   Fig8.6. surface view of E and ∆ E 

The step by step procedure described above for developing an FLC is summarized as 

1. Determine the condition variables to be considered. These are the variables that 

are measured when a change to the system considered. 

2. Determine the action variables. These are the variable that are manipulated to 

elicit a change in the system state 

3. Describe the fuzzy sets for both the condition and action variables 

4. Establish fuzzy production rules that cover all of the possible conditions that exist 

in the problem environment 

5. Define the fuzzy membership function 

6. determine all condition membership value for each rule 

7. apply fuzzy production rule by taking the weighted average of the action 

prescribed by all of the rules. The fuzzy production rule are generally written in 

matrix form table and apply deffuzification method suitable for the problem at 

hand. 
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8.5 GENETIC OPTIMIZATION OF FLC FOR LIQUID LEVEL CONTROL 

The objective of genetic fuzzy system is to automate knowledge acquisition step in fuzzy 

system design ask that is usually accomplishes through an interview or observation of a 

human expert controlling the system. It adapts either all part or the entire component of 

the fuzzy knowledge base. As mention in the previous chapters the knowledge base 

contains the data base and rule base. According to the distinction between the data base 

and the rule base in fuzzy system, genetic fuzzy systems are discriminated along two 

major approaches; 

• genetic tuning process and 

• genetic learning process 

The first method is targeted at optimizing the existing fuzzy system. The tuning process 

involves the adaptation of the fuzzy data base, namely parameter of membership function 

and input output scaling factor. 

The second method is concerned with the automatic derivation of fuzzy rules in the rule 

base. A genetic learning process faces a much more difficult task as it has to establish the 

proper relation ship between input and out put state from the scratch rather than 

optimizing the performance fuzzy system that already operates at least approximately 

correct.    

In both cases, the optimization criteria is the problem to be solved at hand and the search 

space is the set of parameters that code ; 

i) the membership function parameters  

ii) scaling function  

iii) fuzzy rules 

in our design we will use the first approach i.e. tuning the data base of  fuzzy controller. 

As pointed in different literatures, when applying GAs to FLC there are two basic 

decisions to made; 

1) how to code the problem solutions to the problem as finite bit string 

2) how to evaluate the merit of each bit string, the fitness function 

the tuning method using GA fits the membership functions of the fuzzy rules dealing with 

the parameters of the membership functions and obtaining high performance that is 

making minimum an error function defined by means of input -output    data set for 

evaluation. 
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The heuristic fuzzy controller designed for liquid level system in pervious section may 

not be work in optimal condition. The reason is that the rule that is loaded in to the rule 

base and the membership function for each input and out put simply came from operator 

of the plant or from the knowledge gained by the designer through experience. This 

means the efficiency of the controller to meet the given objective is depend up on the 

interviewed operator and the knowledge of con trolling the particular plant differs from 

operator to operator. This is the reason to search some means to optimize the controller 

efficiency in order to meet the given performance criteria. 

As seen in the heuristic FLC design section the development was straight forward and 

produced a controller that worked well. However, there are factors that dramatically 

affect performance and so must be carefully adjusted by the developer for optimal 

control. The factors are; 

o the shape of the membership function 

o the location of the membership function  

o the action value that characterize each linguistic rule 

The shape and location of membership function determines the nature of the interpolation 

between the anchor points. The action value of the rules locate the anchor points. 

At the beginning of this project a through literature search was conducted to discover 

published results involving fuzzy system tuning. However, this search failed to reveal any 

accepted or even an efficient algorithm for defining membership functions. At best the 

selection of membership function was a difficult time consuming task ; at worst , it was 

the task entwined with other facts of fuzzy system such as the choice of implication 

operator.       

However, genetic algorithm was a natural tool to use to define the membership function 

and rule of the controller. The use of GA solves a rather difficult and time consuming 

aspect of fuzzy system development. The difficult is the tuning of fuzzy a fuzzy system so 

that it efficiently solves a particular control problem. Tuning of a fuzzy system mainly 

refers to the definition of the membership function and to the formulation of efficient rule 

set. Both the membership function and the rule set must be adjusted simultaneously to 

obtain a well tuned and efficient fuzzy controller.  

 

This section focus on the details necessary for employing a GA to improve the 

performance of the simple liquid level FLC presented in the previous section. The key 

issue of selecting the coding scheme a fitness function for this problem will be addressed. 
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Results will be presented comparing the effectiveness of the heuristic FLC  with GA 

optimized FLC for liquid level control system. 

 

8.5.1 Genetic algorithm for membership function adjustment. 

As mentioned in the previous section, to optimize any problem by using genetic algorithm 

one should address the points how to present or code possible solutions to search the 

problems as a string of character and how to evaluate the effectiveness of possible 

solution using a fitness function. Thus considering the above two points in relation to 

fuzzy membership function determination for liquid level fuzzy control, the coding 

scheme and constraints as well as fitness function will be addressed in the following 

section. 

  

Coding scheme 

The liquid level fuzzy controller presented in previous section employed triangular 

membership function. Thus, the following presentation describes the use of a GA to 

adjust triangular membership function. However, the same method can be applied to other 

type of membership functions.  

The un-optimized, arbitrary selected triangular membership function used initially for 

(heuristic FLC) the liquid level controller were shown in the fig 8.2, 8.3 and 8.4. There 

are four fuzzy sets to describe error E ,five fuzzy sets used to describe the time rate of 

change of error (∆E) and five fuzzy sets used to describe the valve setting ( kQin). These 

fuzzy sets provide linguistic terms that can describe both condition (E and ∆E) and the 

action (kQin) variable. With this definition, there are 20 rules in the controller. The 

membership function determines under precisely what condition and to what extent each 

rule is applied for particular value of E and ∆E. Improving these memberships function 

improves the performance of the controller. 

 

   Constraints in optimizing membership function by GA for liquid level control (LLC) 

1) As a constraint on GA’s search, the membership function in the liquid level 

controller were forced to maintain their triangular shape and their height but the 

size of the base and their position relative to one another was allowed to change. 

2) The triangles describing the extreme membership function; those right triangles at 

the upper and lower limit of the variable (NB and PB) were forced to remain fixed 
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to their associated extreme limits. In other word , they were forced to remain right 

angle triangle with their apex at either the lower or upper limit of the condition or 

action variable they describe. Thus the definition of each triangle requires a single 

point a left or right base point.  

3) Membership function defining interior membership functions were forced to 

remain isosceles triangles thus the definition of interior membership function 

requires two points both left and right base point.  

The number of point that must be defined under these constraints are shown below to 

completely define the membership function for E  , ∆E and kQin. 

 

 

 
 
 
Fig 8.7 a, b, c ,d ,e,  and f – parameters of error membership function for GA optimization 
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When the member ship function associated with E , ∆E and  kQin  are considered the 

result is the search problem with 20 parameters i.e. 6 points (a-f) for E. 8 points  (g-n) for 

∆E and 6 points  (o-t) for kQin. .However in this project we will only optimize the output 

membership function by using genetic algorithm. 
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Thus the search for efficient membership function for the liquid level control problem 

defined in the previous section for heuristic FLC involves the selection of 20 parameters 

for optimal control. This is a much larger search problem than the simple function 

optimization dealt in chapter 6. However, the application of genetic algorithm to search 

problems requires only the coding of the parameter and definition of fitness function; the 

size of the problem does not prevent the use of GA.  

 

In section 6.1 the simple function optimization we have solved with GA using a 

concatenated, mapped, unsigned binary coding. In this coding parameter that varies 

continuously between some minimum and maximum value are represented with bit string. 

This same approach is applicable to the points defining triangular membership function in 

the current problem. A substring is allocated a specified number of bits, L,  and mapped 

using the familiar formula  
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Each of the remaining parameters can be represented with similar substrings, and the 

entire parameter set can be represented by a string formed through concatenation of the 

individual substrings. Again, the GA manipulates the population of strings using the 

familiar of reproduction, crossover and mutation.  

 

The remaining task includes determining the number of bits to be allocated for each of the 

20 parameters and the selection of appropriate minimum and maximum value for each 

parameter. To keep things simple and because there is no apparent reason for using 

substrings of different length, each substring is represented with 4-bits thus the resulting 

string are thus  20 x4bit=80-bit in length. These are chromosomes that the genetic 

algorithm will use fore optimization. In other problem it is possible to use substrings with 

more or fewer bits as well as different length of substring.  
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Initially, the selection of minimum and maximum value for each of the parameter seems 

to be an obvious decision; it seems that the minimum and maximum parameter value 

should simply coincide with the lower and upper limits of available range i.e. the 

minimum value of the parameter for the membership function describing E is -1 and the 

maximum value is 1 and the same for other variables. However the selection of minimum 

and maximum value for each membership function is at present subjected to the 

following three constraints.    

 

In this project only output membership function had been optimized by genetic algorithm 

thus the resulting string are 6x4bit=24 bit in length. The optimization of input 

membership functions is left for future work. 

 

Constraints in selecting min and max or lower and upper bound value for linguistic terms 

for liquid level control system 

 

1) The first constraints require that each parameter value fall in the range selected 

by the user to represent each variable. For example, for E the linguistic terms 

range should lie in between -1 and 1..[-1 1] and the same is true for other 

linguistic variable’s linguistic terms. 

2) The second constraint is that the definition of the linguistic term should be 

consistent with the normal meaning of the terms. For example, the membership 

function associated with the term NB should be ‘zero’ for positive numbers and 

non-zero for small negative number. 

3) The third constraint is that each point in the range being described should have 

at least one membership value assigned to it i.e. membership function must be 

constructed so that all relevant points have a membership value. 

 

According to the above constraints the following table shows the min and max (bounds) 

value of each linguistic variable’s linguistic terms. The point also assures that all points 

are associated with appropriate membership values. Here, each point is allowed to slide 

within pre-defined window bounded by values of min and max for each parameter. The 

permitted ranges are selected by taking in to account the range must assure that there will 

be some degree of overlap of the membership functions. 
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Table 8.5 Min and max value of input valve setting (kQin) linguistic variable- linguistic 

terms 

 

Parameter Name Minimum value  Maximum value Bound [ min  max] 

o -0.9 -0.6 [-0.9  -0.6] 

p -0.7 -0.4 [-0.7   -0.4] 

q -0.43 0 [-0.43   0.0] 

r 0.1 0.3 [0.1   0.3] 

s 0.3 0.6 [0.3  0.6] 

t 0.7 1 [ 0.7    1  ] 

 
 
 
 
8.6 FITNESS FUNCTION  AND SIMULATION OF LIQUID LEVEL CONTROL 

SYSTEM 
The fitness function selected for output fuzzy variable is defuzzification function  Df
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 to vary the parameter of membership function and ISE integral square of error as 
performance measure.  
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8.6.1 DERIVATION OF TRANSFER FUNCTION OF LIQUID LEVEL CONTROL 
SYSTEM 

  
The schematic diagram of liquid in the tank is shown below. 
 
 
 

 
 
 
 

The above figure indicate that the control of the height of liquid in the tank being filed. 

The parameter of the system are defined as follows 

o Q(t); the angular position of the valve in degree that controls the liquid in to the 

tank 

o Qin the rate of flow of liquid in to the tank at time t 

o Qout the rate of flow of liquid out of the tank at time t 

o h(t) the height of liquid at time t 

The liquid level in the tank is remains constant when the inflow rate qin ia equal to the 

outflow rate qout i.e. the error between inflow and outflow is zero. If the inflow rate is 

greater than outflow rate, the liquid level will rise from the set point. If the inflow rate is 

less than the outflow rate, the level will fall. During a certain time interval ∆t, the amount 

of liquid in the tank will change by an amount ∆V equal to the average difference 

between the inflow rate and the outflow rate multiplied by  ∆t. 

          ∆V=( qin- qout)avg*∆t   m3

the change in the liquid level in the tank ∆h is equal to the change in volume (∆V) divided 

by the cross sectional area of the tank( A); 
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the average rate of change of the level in the tank is equal to the change in level  ∆h 

divided by the time interval ∆t i.e 

  
 
 

At
hlevelofrateaverage qout)avg -qin (

=
Λ
Λ

=

 
for example if the level changed 0.26m during a time interval of 100sec, the average rate 

of change of level would be 026/100  =0.0026m.  

When the time interval diminishes to 0 sec we call it an instant of time. As time interval 

∆t diminishes to an instant of time ,the average rate of change become instantaneous rate 

of change of liquid level is called derivative of level h with respect to time t, designated 

by dh/dt. If the time interval   ∆t diminishes to an instant ,the average rate of change of 

level becomes the instantaneous rate of change dh/dt i.e. 

                                      
Adt

dhtas qout) -qin (0 =→Λ  

   
let us assume the out flow from the tank is linear (laminar flow)[51] the outflow rate qout 

is given by the equation; 

                               sec/
R

gh 3

L

mq out
ζ

=  

 
where qout;output liquid flow rate m3/sec 

            ζ ; liquid density kg/m3

              g; gravitational acceleration  

              h; liquid level in m 

              RL; laminar flow résistance pa.s/m3

There fore 

          

                                           sec/
R

gh 3

L

mq
dt
dh

in
ζ

−=   
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⎣

⎡
ζζ

 

The term g
A
ζ  is the capacitance of the CL of the tank  

The entire term
⎥
⎦

⎤
⎢
⎣

⎡
g
ARL ζ =RL CL is called the time constant τ of the liquid 

The term 
⎥
⎦

⎤
⎢
⎣

⎡
g

RL

ζ  is the steady state gain G of the system 

Substituting  τ and G in the preceding equation gives us the final form of the differential 

equation of the liquid tank; 

 

inGqh
dt
dh

=+τ
 

 
 
let us take the laplace transform of the above equation for further analysis . let us assume 

before time t=0 sec , the thank is empty and the input flow rate is zero i.e.   

h=qin=0 for t<0 . at time t=0 , the input valve is opened and the input flow rate changes to 

K cubic meter/sec i.e. qin=K for t>0. this type of change is step change in the input signal 

qin. one may ask what is the level of the liquid in the thank after a step change in input i.e. 

h(t)? for t>0.  
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To answer this question let us take laplace transform of the above differential equation 

 input 

 

 K 

 

 0 time 

 
 
 
  qin=0    t<0 
       =K   t>0                     Qin=K/s …….step input 

 inGqh
dt
dh

=+τ  τsH(s) + H(s)=GQin(s) 

 
 
 Operational calculus algebra 
 
 h=GK(1-e-t/τ) 
                           inverse laplace transform H=GK/s(τs +1) 
 
 
 
the laplace transform is of the form 
                     
 
 

( )1
)(

+
=

ss
GKsH
τ  

 
 
 
Where   

τ=
⎥
⎦

⎤
⎢
⎣

⎡
g
ARL ζ =RL CL is called the time constant  of the liquid 

    τ=   RL CL      
 
RL; laminar flow résistance pa.s/m3      

CL = g
A
ζ  is the capacitance of the tank  
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G= 
⎥
⎦

⎤
⎢
⎣

⎡
g

RL

ζ  is the steady state gain of the system 

Assuming the liquid as water the above constants will be [51]( taken from design data 
table) 
 
ζ =1000kg/m3

g=9.81m/s2 

A=2m2

RL=5.6 x105 pa.s/m3 

CL= g
A
ζ =2/1000*9.8 

     =2.04e-4 

τ=   RL CL   
   =5.6 x105 pa.s/m3x 2.04e-4 
    =114s 

G= 
⎥
⎦

⎤
⎢
⎣

⎡
g

RL

ζ  
     =5.6 x105 pa.s/m3/1000*9.8 
     =57s/m2 

 
Assuming step input K=1 
 

( )1
)(

+
=

ss
GKsH
τ =

)1114(
157)(
+

×
=

ss
sH  
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sH

+
= 2114

57)(  
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8.6.2 SIMULATION OF LIQUID LEVEL CONTROL SYSTEM 
 

With the selected GA operator combination, the developed simulator will be 

allowed to autonomously optimize the parameter of the controller. Further tuning will be 

done to reach a satisfactory optimum ISE. Several trials will be run for every adjustment 

to have conclusive results. ISE and generations has been tabulated for analysis. The 

system block diagram in Figure 9.2 was generated with the aid of Simulink. This represents a 

liquid level control system. As seen from the figure, the diagram consists the following blocks:  

 

 
 
Fig 8.10. Liquid control system simulink block diagram. 

 
• Step Source  ,  Math Function   , Integrator  , Output  Fuzzy Logic Controller, 

Saturation  ,transfer function of plant 
The step source block simulated the input flow  to be supplied to the plant under control 

which is a thank containing  liquid and is depicted by the zero-pole block-set. As the 

chosen performance index criterion of this study, the ISE was calculated by the math 

function and integrator block-sets. These two block-sets implemented the ISE formula,  
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where T is the finite time chosen arbitrarily so that the integral approaches a steady-state 

value. The computed value of the ISE was then captured by the output block labeled ISE. 

To control the height of the liquid in the tank, FLC was used in this study. It is 

represented by the fuzzy logic controller block in the diagram above. Non-linear 

application is the area where FLC proves to be more effective than many traditional 

control techniques. To be in that benchmark, the system was made non-linear by 

integrating a saturation block into the system. 

 

8.7 OPTIMIZATION PROGRAM CODING 
This work proposed a methodology on how to apply GA, derivative-free optimization 

technique, to tune fuzzy controller in a MATLAB environment. In this study, liquid level 

control system whose transfer functions are modeled in section 8.5 is used as a testing set-

up. The fuzzy controller is designed to have a triangular output membership function with 

a variable width, a fixed 20 fuzzy rules and a fixed triangular input membership function. 

A genetic optimization program has been developed to automatically tune the controller. 

As illustrated in Figure 9.1 below, this program update the controller’s parameters, which 

are the width of the output membership functions. It will then simulate the model 

developed in Simulink. The model will get the parameters for simulation and return ISE. 

This iterative process will go on until the desired minimum ISE is attained.  

Since this study intends to apply GA in the optimization of a fuzzy controller, a genetic 

optimization program has been developed. This program has been coded using 

MATLAB. It utilizes functions from the Genetic Algorithm Optimization Toolbox for 

MATLAB. The mechanics of this program is described and illustrated in Figure 9.1. A 

program had been coded under a filename, gafuz.m. Refer to Appendix C for the source 

code of this routine. This program utilized the genetic function from the Genetic 

Algorithm optimization tool box for MATLAB. With the selected GA operator 

combination, gafuz.m was allowed to autonomously optimize the ISE of the system. 

Further tuning on the termination option was done since satisfactory optimum ISE was 

not reached. Five  trials were run for every tuning. ISE and generations were then 

tabulated for analysis 
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 4. Return ISE 

 

 

 

 1. Update parameter 
 3. Model gets parameter for   
                                                                                                   simulation 
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                                 MATLAB work space 
 
  
                               Fig 8.11 Fuzzy controller tuning diagram 
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8.8 RESULTS AND DISCUSSION 
 
 
Before using GA to optimize the parameter of fuzzy controller (i.e. parameter of output 

membership function)  for liquid level control system  the efficiency of GA has been 

checked by using known simple function with several picks ad valleys. The program 

coding is found in APPENDEX B1 and as expected genetic algorithm searches the global 

minimum of the given multi modal function. The effect of parameters of GA algorithm 

also investigated so that one can select appropriate parameters while optimizing a given 

function at ha The result and graph of best fitness value verses generation are given 

below. f(x1,x2)=x1
2+x2

2-0.3*cos(3*pi*x1)-0.4cos(4*pi*x2)+0.7 
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Result of genetic optimization of the above function 

 

 

s.no pc pm generation Population 

size 

Bit 

length

Best 

fitness 

value 

Average 

fitness 

value 

Worst 

fitness 

value  

1 0.8 0.01 50 10 12 0.000932 0.777718 0.865227

2 0.4 0.9 50 10 12 0.003424 1.149183 2.007528

3 0 1 50 10 12 0.623899 1.075680 1.843257

4 1 0 50 10 12 0.008560 0.059543 0.145596

5 0.8 0.01 100 10 12 0.000039 0.328916 1.301278

6 0.4 0.9 100 10 12 0.002000 1.177807 1.832853

7 0.8 0.01 50 40 12 0.001423 1.061131 1.926886

 

As seen from the above table the selection of GA parameter should be done carefully so 

that to get the desired result. For more detail refer chapter 6.  
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0

0.5

1

1.5

2

2.5

3

generation

best fitness
worest
averege

 115



Genetic Optimization Of Fuzzy Controller For Liquid Level Control  
 

Heuristic FLC verses GA optimized FLC 

Heuristic fuzzy controller can be designed by getting rules from plant operator or 

intuitively designing the rule base and membership function for input and output from the 

knowledge gained from the dynamics of the plant.  However, when this heuristically 

designed FLC for liquid level control system put in simulation environment  the 

parameter of controller could not give us the required performance i.e. minimum ISE. 

Most often the tuning of fuzzy controller has been done by trial and error, by changing 

rule base or the parameter of membership function or both manually. However, this 

method is too difficult and time consuming when the plant complexity increases. 

Therefore, another method of automatic tuning of FLC should be devised and in this 

project GA based tuning of out put membership function parameter has been developed. 

As expected genetic algorithm automatically tunes the parameter of the given FLC until 

the desired performance index i.e. minimum ISE reached. The result of genetic tuning of 

FLC for liquid level control system has been shown in the following table for different 

run. The program code is found in APPENDIX C .   

When heuristic fuzzy controller designed in section 8.1 put under simulation environment 

it generates big ISE, which we want to minimize by using fuzzy- genetic simulation in 

the next section. The ISE result of heuristic FLC is ISE=0.59  

Simulated genetic optimization results  

With the selected genetic operator as seen in the program in APPENDIX C, the following 

results are obtained after running different number of generation.  As seen from the table 

below the minimum value of ISE was obtained after 400 generation and the 

corresponding optimum parameter for output membership function are tabulated below. 
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Table 8.6  parameter for output membership function for different number of generation 

Number of 
generation 

ISE Parameter of corresponding output membership function 

BN                      SN                           NC                SP                  BP 

100 3.31 -1 -1 -0.58 -0.8,-0.5,-0.43 -0.58 ,0, 0.48 -0.1,0.5 0.8 -0.4, 1,1 

200 0.59 -1,-1,-0.7 -0.8,-0.5,-0.43 -0.7 ,0, 0.46 0.126,0.5,0.7 0.46,1,1 

300 0.31 -1,-1,0.64 -0.74,-0.5,-0.43 -0.64 ,0, 0.38 0.13,0.5,0.78 0.38,1,1 

400 0.23 -1,-1,-0.7 -0.86,-0.5,-0.34 -0.7 ,0, 0.42 0.12,0.5,0.78 0.42,1,1 

500 0.29 -1,-1,-0.62 -0.9,-0.5,-0.37 -0.62,0,0.42 0.14,0.5,0.7 0.4,1,1 

 
 
 

 

As seen from the above table the minimum value of ISE is obtained at 400 generation 

with value ISE=0.23 and the optimum output membership function is shown below           
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8.9 FURTHER WORK 
 
In this project we have tried to show how to use genetic algorithm to tune the 

membership function fuzzy logic controller fro liquid level system. In order to optimally 

tune fuzzy controller most literatures suggest that both the rule base and membership 

function must be tuned. In the future one can tune the same controller rule base and 

membership function and compare it with the one tuned membership function parameter. 

In addition to this different kind of membership function such as trapezoidal, Gaussian 

and etc can be used together instead of single triangular type membership function.  

Investigate  whether  any  of  the  assumptions  made  in  designing  FLCs  such  as using  

only  triangular membership  functions  or  only  allowing  an  odd  number  of these  

sets  have  a  significant  impact  on  the  performance  obtainable  from  the controllers. 

One can also investigate more thoroughly if GAs can be applied to FLCs or other types 

of nonlinear controllers so that they may successfully control fully the liquid level 

system. 
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8.10 CONCLUSION  
Optimization of a fuzzy logic controller can prove a lengthy process when performed 

heuristically. In this study it has been shown that the use of genetic algorithms offers a 

feasible method for the optimization of the membership function fuzzy logic controllers. 

Genetic Algorithms have been shown to be powerful search tools that can reduce the 

time  and  effort  involved  in  designing  systems  for  which  no  systematic  design 

procedure  exists. They  can  quickly  find  close-to-optimal  solutions  and  if  set-up 

well can  avoid  local  optima.  They are certainly useful  tools  when  trying  to  solve 

analytically difficult problems. Fuzzy  Logic  Controllers  can  provide  more  effective  

control  of  non-linear  systems than  linear  controllers,  as  there  is more  flexibility  in  

designing  the mapping  from  the input  to  the output  space. Whereas expert knowledge  

is usually  required  to design a fuzzy controller using  traditional methods,  it has been  

shown  in  this  report  that even without  using  any  knowledge  of  the  system,  GAs  

can  build  an  effective  controller relatively  quickly.  This  technique  may  lead  an  

increase  in  the  use  of  FLCs  as  the previously time-consuming design procedure can 

be reduced dramatically. This study intends to establish a methodology on how to apply 

GA in the search of a global optimal solution of a fuzzy controller in a liquid level 

control system. As a result, this population-based optimization algorithm was able to 

converge satisfactorily to the lowest ISE of 0.23 in 400 generations. Even though  the 

performance reported here did not arrive at a significantly minimal index, the trend of the 

optimization process encountered in this study showed a very promising result. To fully 

optimize fuzzy controller with genetic algorithm both the rule base and membership 

function should be optimized simultaneously. This will give better performance index. 

Weaknesses were also seen in GA based on the results. It sometimes terminated in an 

unsatisfactory step response. By mistakenly picking MATLAB functions to be used for 

selection, crossover, and mutation operations, this algorithm would even fail to converge. 
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APPENDIX A 
 
 
% simulation program for liquid level FLC  
% written by Zelalem Girma 
% 11/06/05 
% wlc7.m 
clear all; 
close all; 
sys=newfis('wlc7'); % to creat a new FIS with file name 
"wlflc.fis" for level control 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%definition of Membership function for the input variable "error" 
to the FLC controller 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
sys=addvar(sys,'input','ERROR',[-1 1]);   % range of input 
variable "ERROR" 
sys=addmf(sys,'input',1,'NB','trimf',[-1 -1 -0.4]); % the 
left,mid, right value of mbership 
                                                  
%function(trianglular NB )for first input "ERROR" 
sys=addmf(sys,'input',1,'NS','trimf',[-0.8 -0.4 0.2]); 
sys=addmf(sys,'input',1,'PS','trimf',[-0.2 0.4 0.8]); 
sys=addmf(sys,'input',1,'PB','trimf',[0.4 1 1]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%definition of Membership function for the input variable "change 
in error" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% 
sys=addvar(sys,'input','CHANGE IN ERROR',[-1 1]);            % 
range of input variable "change in error" 
sys=addmf(sys,'input',2,'NB','trimf',[-1 -1 -0.5]);     % the 
left,mid, right value of mbership 
                                                    
%function(trianglular NB )forsecond input "change in error" 
sys=addmf(sys,'input',2,'NS','trimf',[-0.8 -0.5 -0.2]);  
sys=addmf(sys,'input',2,'NZ','trimf',[-0.4 0 0.4]); 
sys=addmf(sys,'input',2,'PS','trimf',[0.2 0.5 0.8]); 
sys=addmf(sys,'input',2,'PB','trimf',[0.5 1 1]); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%% 
%definition of Membership function for the output variable 
"Knobsetting" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
 
sys=addvar(sys,'output','Qnet',[-1 1]); 
sys=addmf(sys,'output',1,'BN','trimf',[-1 -1 -0.5]); 
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sys=addmf(sys,'output',1,'SN','trimf',[-0.75 -0.5 -0.25]);  
sys=addmf(sys,'output',1,'NC','trimf',[-0.5 0.0 0.5]); 
 
sys=addmf(sys,'output',1,'SP','trimf',[0.25 0.5 0.75]); 
sys=addmf(sys,'output',1,'BP','trimf',[0.5 1 1]); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% definition of fuzzy rules 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rulelist=[1 1 5 1 1;... 
          1 2 5 1 1;... 
          1 3 5 1 1;... 
          1 4 4 1 1;... 
          1 5 4 1 1;... 
          2 1 5 1 1;... 
          2 2 4 1 1;... 
          2 3 4 1 1;... 
          2 4 3 1 1;... 
          2 5 2 1 1;... 
          3 1 4 1 1;... 
          3 2 3 1 1;... 
          3 3 2 1 1;... 
          3 4 2 1 1;... 
          3 5 1 1 1;... 
          4 1 2 1 1;... 
          4 2 2 1 1;... 
          4 3 1 1 1;... 
          4 4 1 1 1;... 
          4 5 1 1 1]; 
           
                       
 sys=addrule(sys,rulelist); 
 
 % plot FIS Input Output diagram 
 figure(1); 
 plotfis(sys); 
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APENDIX B1 
 
% Note that the functions called by main program downloaded 
(genetic tool box) directly from the MATWORKS web site 
www.matworks.com except the last two functions   
% minimize the following function by using genetic algorithm 
% f(x1,x2)=x1^2+x2^2-0.3*cos(3*pi*x1)-0.4cos(4*pi*x2)+0.7 
% where X1,x2element of[-1 1] 
%main program 
%geneticexample.m 
popsize=10; 
maxgen=50; 
lengtha=12; 
pcross=0.8; 
pm=0.01; 
bits=[lengtha lengtha]; 
vlb=[-1 -1]; 
vub=[1 1]; 
phen=init(vlb, vub,popsize,2); %find phenotype of each initial 
population 
                                %create random population 
[gen, lchrom,coarse, nround]=encode(phen,vlb,vub,bits) %convert 
          %phenotype 
into binery 
[ fitness, object]=score(phen, popsize) % evaluation of fitness 
and          %objective 
function 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%display of the contour graph of objective fuction          % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%               
 
x= -1:0.1:1;     
y=-1:0.1:1; 
[x1, y1]=meshgrid(x,y); 
z=x1.^2+y1.^2-0.3*cos(3*pi*x1)-0.4*cos(4*pi*y1)+0.7; 
figure(1); 
contour(x,y,z); 
title('\bf the contour plot of the objective function'); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%store the best candidate of the initial population % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[best_obj(1),index]=min(object);  
 best_gen=gen(index,:);   % returns the row of binary (gentype) 
best       %candidate 
 best_phen=phen(index, :); %% returns the row of 
decimal(phenotype)       %best candidate  
that gives the best        %objective 
function value(eg (x,y)) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % the worst population of the initial candidate % 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 [worest_obj(1), index1]=max(object);   
 
worest_cur_gen=gen(index1); 
 worest_cur_phen=phen(index1); 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %calculate the average performance of the population% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 avg_obj(1)=0;  
 for k=1:popsize 
    avg_obj(1)= avg_obj(1)+object(k); 
 end; 
 avg_obj(1)=avg_obj(1)/popsize; 
 best_x(1)=best_phen(1); %store best of the first variable on 
best_x(1) 
 best_y(1)=best_phen(2);  %store best of the second variable on 
best_y(1) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
 % display the BEST:  WOREST: AVERAGE: value of objective       
 function  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
 for i1=1:2 
     fprintf(1,'%f' ,best_phen(i1)); 
 end; 
 fprintf('\n'); 
 fprintf(1,'BEST:  %f  WORST: %f    AVG:  %f 
\n',best_obj(1),worest_obj(1),avg_obj(1)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% START OF MAIN GENETIC ALGORITHM LOOP                        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
 for ii=1:maxgen           
     newgen=reproduc(gen,fitness);  %REPRODUCTION OPERATION 
     gen=mate(gen);                  %mate-Randomly reorders 
(mates)  
                                   %two member of  the population  
                                      % 
     gen=xover(gen,pcross);          %CROSSOVER operation 
     gen=mutate(gen,pm)              %MUTUATION operation 
     [phen , coa]=decode(gen, vlb,vub,bits); %decode the        
         %genotype(binary 
string) of      %the new population into 
phenotype (decimal) 
     [ fitness, object]=score(phen, popsize) % evaluation of 
                  %fitness      
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[best_cur_obj,index]=min(object); %store the best candidate of 
the        %current  population 
 best_cur_gen=gen(index,:); 
 best_cur_phen=phen(index, :); 
 [worest_obj(ii+1), index1]=max(object);   
 worest_cur_gen=gen(index1); 
 worest_cur_phen=(index1); 
 avg_obj(ii+1)=0;  %calculate the average performance of the 
current      population 
   for k=1:popsize 
 
avg_obj(ii+1)=avg_obj(ii+1)+object(k); 
       end; 
 avg_obj(ii+1)=avg_obj(ii+1)/popsize; 
 if (best_cur_obj>best_obj(ii))    %apply elitist strategy 
     phen(index1,:)=best_phen; 
     gen(index1,:)=best_gen; 
     object(index1)=best_obj(ii); 
     best_obj(ii+1)=best_obj(ii); 
 elseif(best_cur_obj<=best_obj(ii)) 
     best_phen=best_cur_phen; 
     best_gen=best_cur_gen; 
     best_obj(ii+1)=best_cur_obj; 
 end; 
best_x(ii+1)=best_phen(1); %display evolution of the best 
solution on surface countur        best_y(ii+1)=best_phen(2);
     %graph  
 surfc(x,y,z); 
 hold; 
line(best_x,best_y); 
 for i1=1:2  
     fprintf(1,'%f  ',best_phen(i1)); 
 end; 
 fprintf(1,'---> %f\n',best_obj(ii+1)); 
 fprintf('\n'); 
 fprintf(1,'BEST:  %f  WORST: %f    AVG:  %f 
\n',best_obj(ii+1),worest_obj(ii+1), avg_obj(ii+1)); 
  end 
 
 xx=1:maxgen +1 ; %display evolution of objective function for 
the     %worst , average and best solution 
 figure(2); 
 plot(xx,best_obj,'b--',xx,worest_obj,'o-',xx,avg_obj,'g+'); 
 xlabel('generation'); 
 legend('best fitness','worest','averege'); 
  
 grid on; 
________________________// end//_____________________________ 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% init.m this function creates a random initial population 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function phen=init(vlb,vub,siz,sea) %  
for ii=1:siz 
    phen(ii,:)=(vub-vlb).*rand(1, sea) + vlb 
end 
 
______________//    //______________ 
 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
% score.m this function compute fitness and objective function 
values of population 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% 
 
function [fitness, object]=score(phen,popsize)  
for ii=1:popsize 
 object(ii)=phen(ii,1)^2+phen(ii,2)^2-0.3*cos(3*pi*phen(ii,1))-  
0.4*cos(4*pi*phen(ii,2)) +0.7; 
    fitness(ii)=1/(object(ii)+1); 
end 
________________//    //______________ 
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APPENDIX B2 
 
 
% This is the genetic algorithm program which searches global 
optimum  of the given function by following flow chart of simple 
genetic algorithm 
 
% Genetic.m 
function 
[opt_param]=genetic(popsize,objfunc,N,minmax,nbit,pc,pm,maxg) 
gc=1  % initialize generetaion counter  
stop=0; %stopping flag 
for ii=1:popsize 
    for jj=1:N 
        initialvar(ii,jj)=round(rand*(2^nbit(jj)-1)); 
    end; 
end; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
% convert decimal values to binary bits and generate 
popsizezxlchrom   % 
% bitmatrix where lchrom is the length of chromosome           
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
 
lchrom=sum(nbit)   % length of chromosome 
bitmatrix=zeros(popsize,lchrom); % initialize bitmatrix zeros of 
matrix popsize X lcrom 
for ii=1:popsize 
    k=lchrom; 
    for jj=N:-1:1 
        x=initialvar(ii,jj); 
        for m=1:nbit(jj) 
            bitmatrix(ii,k)=rem(x,2)    
            x=fix(x/2);     
            k=k-1;       % reduce the length of chromosome by one  
        end; 
    end; 
end; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% MAIN GENETIC ALGORITHM LOOPS STARTS HERE                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    while (stop==0) 
        gc 
  
for jj=1:N 
    for ii=1:popsize 
    param(ii,jj)=minmax(jj,1)+(minmax(jj,2)-
minmax(jj,1))/(2^nbit(jj)-1)*initialvar(ii,jj); 
    end; 
     
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% FITNESS VALUE CALCULATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
sumfitness=0; 
for ii=1:popsize 
    argument=param(ii,1:N); 
    fitness(ii)=feval('objfun',argument); 
    sumfitness=sumfitness+fitness(ii); 
end; 
avgfitness=sumfitness/popsize;     % calculation of average 
fitness 
[maxfitness,index]=max(fitness) % parameters giving maximum 
fitness given out as optimum parameter 
opt_param=param(index,:) % returns the row number of optimum 
parameter 
fitnessratio=avgfitness/maxfitness; % fitness ratio will be used 
as termination criteria 
 
avgfit(gc)=avgfitness; % array of average fitness in each 
generation ,recorded generation-wise 
maxfit(gc)=maxfitness;  %% array of maximum fitness in each 
generation ,recorded generation-wise 
 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
% GENERATE MATING POOL THROUGH ROULETTE WHEEL SELECTION     & 
%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 
sum=0; 
for ii=1:popsize 
    ps=fitness(ii)/sumfitness; %computation of probability of 
selection of the ii-th chromosome 
    sum=sum+ps;  
    cumulativesum(ii)=sum; % cumulative sum of the selection 
probabilities 
end; 
mplocation=randperm(popsize) % return random sequencing of the 
number from 1 to population size 
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%****************************************************************  
THE RANDOMLY SPUN ROULETTE WHEEL SELECTS JJ-TH CHROMOSOME AND 
PLACES IT AT RANDOM LOCATION IN MATING POOL SIMULATED AS FOLLOWS 
           
%****************************************************************
for ii=1:popsize 
    rwspin=rand; 
    for jj=1:popsize 
        if(rwspin<=cumulativesum(jj)) 
            for k=1:lchrom 
            matingpool(mplocation(ii), k)=bitmatrix(jj,k); 
             
        end; 
         
        break; 
       else 
       end; 
    end; 
end; 
     
 
  %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
  % CROSS OVER OPERATOR         $ 
  %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
   
  nc=round(pc*popsize/2); % number of cross over 
   
  for ii=1:2:nc   % increment by two since crossover is pairwise 
      crossite=round(rand*lchrom); 
      for jj=1:crossite 
          temp=matingpool(ii,jj); 
          matingpool(ii,jj)=matingpool(ii+1,jj); 
          mattingpool((ii+1),jj)=temp; 
           
      end; 
  end; 
% for jj=1:popsize 
   %for k=1:lchrom   
    % matingpool(mplocation(ii), k)=bitmatrix(jj,k);    
 end; 
end; 
   
   %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
   % MUTATION OPERATOR            $ 
   %$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 
   nm=round(pm*lchrom*popsize); % number of mutation 
   while (nm>0) 
       for ii=1:nm 
           mutationsite=round(rand*lchrom*popsize); %mutation 
    %being worked out not just within a 
 %particular chromosome but over the entire  
                                
            if(mutationsite==0) 
                mutationsite=1; % perform at least one mutation 
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            end; 
         %location of the bit to be mutated 
         colm=rem(mutationsite,lchrom) %column number 
         if(colm==0) 
             clom=lchrom; 
             row=fix(mutationsite/lchrom); 
         else 
             row=fix(mutationsite/lchrom)+1; 
         end; 
         if (matingpool(row,colm)==0) 
            matingpool(row,colm)=1; 
        else 
           matingpool(row,colm)=0; 
       end; 
   end; 
   nm=0; 
end; 
   
%DECODING 
for ii=1:popsize 
    b1=0; 
    bn=0; 
    for jj=1:N 
        sum=0; 
        n=nbit(jj); 
        if(jj==1) 
            b1=1; 
        else 
            n1=b1+nbit(jj-1); 
        end; 
        bn=bn+nbit(jj); 
  % DECIMAL VALUE CALCULAION 
        for k=b1:bn 
            n=n-1; 
            sum=sum+(matingpool(ii,k))*(2^n); 
        end; 
        variable(ii,jj)=sum; 
    end; 
end; 
gc=gc+1 %increment the generation counter 
initialcar=variable; 
bitmatrix=matingpool; 
% STOPPING CRITERIA 
if( (gc>maxg) |(fitnessratio>0.9999)) 
    stop=1; 
else 
    stop=0; 
end; 
end; 
if(gc>maxg) 
    disp('GOAL NOT REACHED') 
end; 
generation=1:gc-1; 
plot(generation,maxfit,'b',generation,avgfit,'r') 
legend('maxmum fitness','average fitness')         
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APPENDIX C 
 
 
% program which optimizes the parameter of output mebership 
function by GA 
%gafuz.m 
echo on 
options = foptions([1 1e-3]); 
options(13) = 0.01; 
options(14) = 400; 
options(11)=20; 
options(12)=1; 
vlb = [-0.9 -0.7 -0.43 0.1 0.3 0.7]; 
vub = [-0.6 -0.4 0.0 0.3 0.6 1]; 
bits =4*ones(1,6); 
pause % Hit any key to continue 
%while(options(14)<200) 
[x,stats,options,bf,fgen,igen]=genetic('defo',[],options,vlb,vub,
bits); 
 
% A few notes: 
% First notice that x is returned as a real between -1 and 1 
x 
 
pause % Hit any key to continue 
% Also the initial and final generations, fgen and lgen, are 
% returned as reals between 0 and 1 
fgen 
pause % Hit any key to continue 
 
% The total number of times the fitness function was evaluated is 
% equal to the ((number of generations)+1)*size_pop 
% re: initial population also requires size_pop function 
evaluations 
% 
% In the present case, the fitness function was called 
num_fit_call = (options(10)+1)*options(11) 
pause % Hit any key to continue 
[gen,lchrom,coarse,nround] = encode(igen,vlb,vub,bits) 
[gen,lchrom,coarse,nround] = encode(fgen,vlb,vub,bits) 
 
sys = readfis('wlc7.fis') 
 
sys.output.mf(1).params=[-1 -1 x(2)]; 
sys.output.mf(2).params=[x(1) -0.5 x(3)]; 
sys.output.mf(3).params=[x(2) 0.0 x(5)]; 
sys.output.mf(4).params=[x(4) 0.5 x(6)]; 
sys.output.mf(5).params=[x(5) 1 1]; 
open_system('model')         %open simulink for simulation 
pause 
 
     plotmf(sys,'output',1) 
     title('output optimized mebership function') 
     sys.output.mf.params    % update parameters 
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%defo.m  
%fitness function for genetic algorithm 
function def=fitness(x) 

numerator=0.35*x(1)+x(2)*0.5 +x(3)*0.8 +x(4)*0.8 
 +x(5)*0.2+x(6)*0.75 

              deno=0.35+0.5+0.8+0.8+0.2+0.75 
        obj=numerator/deno; 
        if deno > numerator 
           def=1/(1+ obj); 
       else 
           def=obj; 
       end 
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