DELHI COLLEGE OF ENGINEERING

DELHI

Department of Electrical Engineering

CERTIFICATE

It is certified that **Mr. UDIT GOEL Roll No. 8460**, student of M.E Electrical Engineering (Control and Instrumentation), Delhi College of Engineering, has submitted the dissertation entitled **"FULLY DIFFERENTIAL ACTIVE BUILDING BLOCKS AND THEIR APPLICATIONS IN SIGNAL PROCESSING"** under my guidance in partial fulfillment of the requirements for the award of the degree of Master of Engineering in Electrical Engineering (Control and Instrumentation). This dissertation is a record of his work carried out by him under my guidance and supervision and has not been presented earlier for the award of any degree / diploma.

Prof. (Dr.) NARENDRA KUMAR

Head of Department Department of Electrical Engineering Delhi College of Engineering Delhi-110042

Dr. PRAGATI KUMAR

Assistant Professor Department of Electrical Engineering Delhi College of Engineering Delhi-110042

ACKNOWLEDGEMENT

I am thankful to the Almighty because without his blessings this work was not possible. It is a great pleasure to have the opportunity to extent my heartfelt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my project supervisor *Dr. Pragati Kumar* for his invaluable guidance, encouragement and patient reviews. His continuous inspiration has made me complete this dissertation. He kept on boosting me time and again for putting an extra ounce of effort to realize his work.

I would also like to take this opportunity to present my sincere regards to *Prof. Narendra Kumar*, Head Electrical Engineering Department, D.C.E. Delhi for his support and encouragement.

At last but not least, I am grateful to my **Parents**, and friends for their encouragement and cooperation which has helped me in a great way to spare my time for cooperation of this work.

UDIT GOEL College Roll No. 12/C&I/08 University Roll No: - 8460

CONTENT

CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
CONTENT	iv
LIST OF FIGURES	viii
ABSTRACT	xii

S.No.	Title	Page No.
Chapter-1	Introduction	1
1.1	Introduction	1
1.2	An overview of the prominent developments in the area of analog circuits and signal processing:	2
1.3	Single-ended versus fully balanced signal processing	5
1.4	References	9
Chapter-2	Fully differential active building blocks and their applications	10
2.1	Introduction	10
2.2	Fully differential signal processing	10
2.2.1	Differential voltage Current Conveyor	11

2.2.2	Differential difference current conveyor	13
2.2.3	Fully differential second generation Current Conveyor	14
2.2.4	Differential difference amplifier	17
2.2.5	Differential Difference Operational Floating Amplifier (DDOFA)	18
2.2.6	Differential Difference Complementary Current Feedback Operational Amplifier	19
2.2.7	Current differencing buffered amplifier	20
2.3	References	28
Chapter-3	CMOS/bipolar implementation of some fully differential active building blocks and their applications	33
3.1.	Introduction	33
3.2	Second generation fully differential current conveyor (FDCCII)	34

3.2.1	Simulation results	36
3.2.1.1	Current mode amplifier using two seperate CCIIs of FDCCII	36

3.2.1.2	Fully differential amplifier	38
---------	------------------------------	----

3.3	Differential voltage current conveyor	40
3.3.1	The CMOS implementation of DVCC	40
3.3.2	Simulation results	41
3.3.2.1	Current mode amplifier using DVCC	41
3.3.2.2	Current mode integrator using DVCC	42
3.3.2.3	Differentiator using DVCC	43
3.3.2.4	Summer/substructure	43
3.3.2.5	Universal filter using DVCC	45
3.4	Current differencing buffered amplifier (CDBA)	47
3.4.1	The CMOS implementation of CDBA	48
3.4.2	Simulation	49
3.4.2.1	Voltage mode amplifier using CDBA	49
3.4.2.2	Notch filter using CDBA	50
3.5	Conclusion	52
3.6	References	53

Chapter-4	Current differencing current conveyor and its applications	55
4.1	Introduction	55
4.2	DVCC implementation of CDCC	55
4.3	Simulation results	57
4.3.1	Current-mode fully differential amplifier using CDCC	57
4.3.2	Current-mode fully differential universal filter using CDCC	59
4.3.3	Current-mode fully differential universal filter with gain tunability	61
4.4	Conclusion	64
4.5	References	65
Chapter-5	Conclusion	66
5.1	Introduction	66
5.2	Scope for further work	67

LIST OF FIGURES

S.No.	Title	Page No.
Fig.1.1(a)	Symbol of OP-AMP	2
Fig.1.1(b)	Port relation	2
Fig.1.2(a)	Characterizing equation of OTA	3
Fig1.2(b)	Port relations	3
Fig.1.3	Basic block and port relations of current conveyor	5
Fig.1.4(a)	Inverting op amp integrator and mirror image	7
Fig 1.4(b)	Fully balanced version of integrators	7

Fig2.1	DVCC notation and port relation	11
Fig.2.2	Summer substructure using DVCC	11
Fig.2.3	ICCII notation and port relation	12
Fig.2.4	DCCII notation and port relation	12
Fig.2.5	MDCC notation and port relation	13
Fig.2.6	DDCC symbol and port relation	13
Fig.2.7	CM biquad filter using DDCC	14
Fig.2.8	FDCCII notation and port relation	15
Fig.2.9	Fully differential amplifier using FDCCII	15
Fig.2.10	MCCIII notation and port relation	16
Fig.2.11	CCCII notation and port relation	16
Fig.2.12	CGCII notation and port relation	17

Fig.2.13	A programmable instrumentation amplifier using DDA	18
Fig.2.14	DDOFA symbol and port relation	19
Fig.2.15	Lossless integrator using DDOFA	19
Fig.2.16	DDCCFA notation and port relation	20
Fig.2.17	CDBA notation and port relation	20
Fig.2.18	Current mode second order notch filter using CDBA	21
Fig.2.19	OTRA notation and port relation	21
Fig.2.20	CCCDBA notation and port relation	22
Fig.2.21	DC-CDBA notation and port relation	23
Fig.2.22	CDTA notation and port relation	24
Fig.2.23	CCCDTA notation and port relation	25
Fig.2.24	DC- CDTA notation and port relation	25
Fig.2.25	CTTA notation and port relation	26
Fig.2.26	CCTA notation and port relation	26
Fig.2.27	CCCCTA notation and port relation	27
Fig.3.1	FDCCII block and port relations	34
Fig.3.2	CMOS Realization of FDCCII	35
Fig.3.3	CM Amplifier using CCII	36
Fig.3.4	Frequency response of current amplifier	37
Fig.3.5	Transient response of current amplifier	37

Fig.3.6	Fully differential amplifier	38
Fig.3.7	Frequency response of voltage amplifier	39
Fig.3.8	Transient response of voltage amplifier	39
Fig.3.9	Basic block of DVCC and related equation	40
Fig.3.10	The CMOS implementation of DVCC	40
Fig.3.11	DVCC based basic current processing block	41
Fig.3.12	Frequency response of current amplifier	42
Fig.3.13	Output of differentiator	43
Fig.3.14	DVCC based CM summer/substructure circuit	44
Fig.3.15	Input and Output waveform of summer/substructure	44
Fig.3.16	The proposed CM universal filter based on DVCC	46
Fig.3.17	Frequency response of current-mode universal filter using DVCC	46
Fig.3.18	Transient response of current-mode universal filter using DVCC	47
Fig.3.19	Basic block of CDBA and related equation	47
Fig.3.20	The CMOS implementation of CDBA	48
Fig.3.21	Voltage Mode Amplifier using CDBA	49
Fig.3.22	Frequency response of Voltage Mode Amplifier	49
Fig.3.23	Transient response of Voltage Mode Amplifier	50
Fig.3.24	Current Mode Second Order Notch Filter	51
Fig.3.25	Frequency response of notch filter using CDBA	51

Fig.4.1	Basic CDCC block and port relation	55
Fig.4.2	DVCC implementation of CDCC	56
Fig.4.3	The CMOS implementation of DVCC	56
Fig.4.4	Current mode fully differential amplifier using CDCC	57
Fig.4.5	Frequency response of amplifier	58
Fig.4.6	Transient response of amplifier	58
Fig.4.7	Current mode fully differential universal filter	60
Fig.4.8(a)	Frequency response of fully differential universal filter	60
Fig.4.8(b)	Transient response	61
Fig.4.9	Current mode fully differential universal filter with gain tuneability	61
Fig.4.10(a)	Frequency response of universal filter with tuneable gain	63
Fig.4.10(b)	Transient response	63

ABSTRACT

In the present dissertation some studies have been carried out on "fully differential active building blocks and their applications in signal processing".

Traditionally in instrumentation systems various signal processing functions such as amplification of the output of transducers, signal generation, filtering of signals are being performed by active circuit elements like operational amplifiers. The most commonly used operational amplifier is the general purpose internally compensated operational amplifier of the 741 type. Though this operational amplifier is a very versatile circuit element but it has some serious limitations like low frequency operation, very small slew rate, ground referred output etc. To overcome these limitations various other active building blocks which have different architecture have been proposed by various researchers from time to time. These include current conveyors, operational transconductance amplifier, various derivatives of current conveyors, operations floating amplifiers/operational mirrored amplifier/four terminal floating nullor, operational transresistance amplifier etc. Each one of these active building blocks has some characteristics those claim to be an improvement over certain disadvantages of traditional operational amplifiers. Noise is another factor that limits the performance of an instrumentation system. Noise from extraneous sources tends to be injected into the analog signal processing circuitry, where they may cause a serious deterioration of the signal to noise ratio. To reduce these problems, designers of analog ICs usually build their circuitry as differential rather than single-ended structure. A further improvement is obtained if the circuitry is not simply differential but fully balanced. In fully balanced architectures the output of the amplifiers is also in differential form making the cascadability of fully differential structures possible. This area of research is in the process of development. In the present dissertation some studies on fully differential active building blocks and their application in signal processing has been presented.