
FPGA IMPLEMENTATION OF DIGITAL FILTERS

USING DISCRETE TIME CONVOLUTION EQUATION

A dissertation submitted in partial fulfillment of the requirement for the award of the
degree of

MASTER OF ENGINEERING

CONTROL & INSTRUMENTATION

By

MOHD. MAHFOOZ ALAM

Under the guidance of

Prof. PARMOD KUMAR

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI COLLEGE OF ENGINEERING

NEW DELHI – 110 042

 1

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

 CERTIFICATE

This is to certify that this report entitled,” FPGA

IMPLEMENTATION OF DIGITAL FILTERS USING

DISCRETE TIME CONVOLUTION EQUATION ” ,submitted

by , Mohd.Mahfooz Alam in the partial fulfillment of the

requirement for the award of the degree of Master of

Engineering in Control and Instrumentation ,embodies the

work done under my supervision.

 Prof. Parmod Kumar

 Head of Department

 Date: DCE, Delhi.

 2

Abstract

FPGAs (Filed programmable Gate Array) have become a competitive alternative for high

performance DSP applications, previously dominated by general purpose DSP and ASIC

(Application Specific Integrated Circuit) devices. This thesis describes the benefits of

using an FPGA as a DSP Co-processor, as well as, a stand-alone DSP Engine. Different

type of filters namely Low Pass, High pass, Band pass, Band stop filters have been

designed and implemented to illustrate the possibility of designing digital filters on Field

Programmable Gate Array without losing its desired characteristics and performances.

The whole work has been done in two parts both in theoretical approach and practical

approach. Finally, a comparison has been done with the conventional implementation

approach to clarify the situation where we should use FPGA based technique.

 3

CONTENTS

 Chapters

1 Introduction

1.1 Introduction to Field Programmable Gate Arrays

1.2 Motivation of Thesis

1.3 Work Approach

1.4 Organization of the Thesis

2 FPGA and Digital Filter Basics

2.1 Introduction

2.2 General FPGA Architecture

2.2.1 Features of Virtex-E FPGAs

2.2.2 Delay Locked Loop

2.3 Introduction to Digital Filters

2.3.1 Filter Structures

2.3.2 Comparison between FIR and IIR Filters

2.3.3 Filter selection Criteria

2.3.4 Sampling Theorem and Nyquist Rate

2.3.5 Digital Filter Design

2.3.6 FIR Filter Design

2.3.6.1 Filter Design by Windowing Method

2.3.7 IIR Filter Design

2.3.8 Practical Implementation Concerns

2.3.9 Application of Digital Filters

3 Digital Filter Design Using Distributed Arithmetic Algorithm

3.1 Introduction

3.2 Cost vs. Speed

3.3 FIR Filter

 4

3.3.1 Direct form FIR Filter

3.3.2 Using Filter Symmetry

4 Hardware Architecture of Digital Filters and Interfacing Hardware

4.1 Introduction

4.2 Hardware

4.2.1 Sample and Hold Circuit

4.2.1.1 Design Considerations

4.2.2 Analog to Digital Conversion

4.2.2.1 Practical consideration of an ADC

4.2.2.2 Determination of sampling rates

4.2.2.3 Output of ADC

4.2.3 Digital to Analog Conversion

4.2.3.1 Connection of the DAC

4.2.3.2 Practical consideration of DAC

4.2.3.3 Schematic of the interface circuit

5 Simulations and Experimental Results on Performance of Filters

5.1 Introduction

5.2 FIR Filters

5.2.1 Low Pass FIR Filters

5.2.2 High Pass FIR Filters

5.2.3 Band Pass FIR Filters

5.2.4 Band Stop FIR Filters

5.2.5 Amplitude vs. Frequency Response Plot

5.3 Relative Performances

5.3.1 Filter Throughput

5.3.2 Q Factor

5.3.3 CLB Count

 5

6 Conclusions

7 Discussions and Future Work

7.1 Introduction

7.1.1 Implementation through Programmable DSPs

7.1.2 Implementation through FPGAs

7.1.3 Cost Comparison

7.2 Suggestions for Future Work

8 References

 6

1 Introduction
1.1 Introduction to Field Programmable Gate Array

Field-Programmable Gate Arrays (FPGAs) are a revolutionary new type of user-

programmable integrated circuits that provide fast, inexpensive access to customized

VLSI. An FPGA consists of an array of logic cells that can be interconnected via

programmable routing switches, where the routing structures are sufficiently general to

allow the configuration of multiple levels of the FPGA’s logic cells. FPGAs represent a

combination of the features of Mask Programmable Gate Arrays (MPGAs) and

Programmable Logic Devices (PLDs). From MPGAs, FPGAs have adopted a two-

dimensional array of logic cells, and from PLDs the user-programmability. The work

reported in this thesis is focused on FPGA based system design in one particular

application area, Digital Filter design.

Following their introduction in 1985, by the Xilinx Company [Cart86], FPGAs have

evolved considerably as various new devices have been developed [ElGa88] [ElGa89]

[Plus90]. FPGAs have quickly gained widespread use, which can be attributed to the

reduced manufacturing time and relatively low costs of these large-capacity user-

programmable devices. As an implementation medium for customized VLSI circuits,

FPGAs offer following unique advantages over the alternative technologies (MPGAs,

standard cells, and full custom design):

(1) FPGAs provide a reduction in the cost of manufacturing a customized VLSI circuit

from tens of thousands of dollars to about one hundred dollars.

(2) FPGAs reduce the manufacturing time from months to minutes.

These advantages, which are attributable to the user-programmability of FPGAs,

provide a faster time-to-market and less pressure on designers, because multiple design

iterations can be done quickly and inexpensively. However, user-programmability also

has drawbacks: the logic density and speed performance of FPGAs is considerably lower

than those of the alternatives. While developments over the last few years have shown

significant improvements in FPGAs, much research is still needed before the best FPGA

designs are discovered.

 7

1.2 Motivation of Thesis

Digital Signal Processing is omnipresent in the modern world. Almost everything –

from satellites to telephones, from household appliances to sophisticated instruments,

from the medical world to the musical world, uses digital signal processing in some form

or other.

Filtering is the most widely used and most important operation of Digital Signal

Processing. Other operations include basic operations like amplification, summation,

product, differentiation, integration, modulation etc. Although in this thesis the main

concentration is on filtering.

 Digital filters are versatile, immune to environmental changes like temperature,

aging, etc. and can be reproduced in large quantities. Another main advantage is its small

size – highly complex filters can be implemented on a small chip. One chip may contain

a number of filters, or it may be timeshared among multiple signals. Thus, the reason for

choosing a digital implementation over its analog counterpart is self-evident.

 The accuracy of a digital system depends on the word length used by its data. This

can be increased by increasing the word length. Digital systems are not affected by

loading when cascaded. They almost always contain memory modules, which can be

used to store processed data almost indefinitely for offline processing later. Also filter

coefficients can be stored in such memory to facilitate adaptive control – in which the

filter characteristics can be changed on the fly, depending on the change in conditions.

 Digital Filtering involves the execution of a number of algorithms, which require

many calculations. For example the basic algorithm of a FIR filter is given by

() () ()∑
−

=

−=
1

0

N

k
knxkhny

 This evidently involves a number of multiplications, additions, and also memory

elements to remember the last few values of the input, the coefficients, etc. Traditionally

this calculation is done on a microprocessor called a DSP (Digital Signal Processor).

However, a much faster and better implementation is obtained on an FPGA with some

other added advantages.

 8

 FPGAs or Field Programmable Gate Arrays are a class of reconfigurable hardware

device, which is increasingly being used to perform various digital signal-processing

tasks. The digital processing algorithms are implemented using logic-gates, flip-flops,

and other elementary hardware elements. In a DSP processor, algorithms are written in

programming languages like ‘C’ and each instruction is crunched by the machine serially,

whereas in an FPGA, being a hardware implementation, operations are performed in

parallel. Herein lies the advantage of an FPGA – it provides the flexibility of software at

the speed of hardware.

 A well-made FPGA design is often as much as 1000 times faster than a corresponding

DSP design. Also it consumes much less power, typically 20% of a microprocessor based

DSP at the same sampling rate.

 As FPGAs are a relatively new technology the necessary software tools are not

always readily available. Traditional software algorithms cannot be used, or if used,

result in poor performance, as FPGAs follow an entirely different philosophy. Good

FPGA algorithms must take into account the parallel nature of the system – such

algorithms have not yet reached the tried and tested maturity of the traditional algorithms.

However with the rapid infiltration of FPGAs in the industry, such disadvantages will

disappear as more experience is gathered in the field. The focus of this thesis is to study

the different algorithm available in the literature for digital filters, which suits the FPGA

architecture and then implementing it practically using those algorithms without loss of

its generality. Then it can also be implemented in particular situation where it fits with

added potentiality.

 As mentioned earlier, traditional software algorithms are not very efficient in an

FPGA implementation. For example, multiplication is a computationally intensive

process in any platform. Digital Signal Processing operations like filtering requires a

number of multiplication operations as is evident from the equation above. To speed up

this process, a multiplication algorithm is being used in this thesis, which works very well

on an FPGA – Discrete time convolution equation. Details of the Discrete time

convolution equation algorithm will be discussed in chapter 3. The primary focus of this

thesis is to show that various digital filters can be implemented on FPGA using the

available algorithms with comparable performance as on DSPs. A theoretical study also

 9

has been done to compare the use of FPGA based filter with the conventional DSP based

filter design in terms of cost, speed (filter throughput) and adaptability.

1.3 Work Approach

 FPGA based filters are studied in this thesis using both an experimental and a

theoretical approach. For the theoretical study, a comparison has been established

between conventional MAC (multiply and accumulation) based approach and a new

algorithm, Discrete time convolution equation based approach in terms of filter

throughput. Filter throughput basically determines how faster the filter is. For the

experimental study, different kind of filter (Low pass, Band pass, Hi pass, Notch filters)

has been designed using the new algorithm, discrete time convolution equation. The

Xilinx’ Virtex-E chip has been used for hardware implementation.

1.4 Organization of Thesis

This thesis is organized in 7 chapters. Chapters 2, 3 summarize the literature survey

and necessary background on Digital Filters, Field Programmable Gate Arrays and

Algorithms. Chapter 4 presents design and implementation of different filters on FPGA.

Chapter 5 presents the simulated and experimental results on performance of the different

filters. Chapter 6 and Chapter 7 are in nature of conclusion and future work.

 Chapter 2 summarizes from available literature the necessary background

information, including Field Programmable Gate Architecture and a brief introduction to

Digital Filters. It also describes design, practical implementation concerns and

application of digital filters.

 Chapter 3 summarizes the basics of the Discrete time convolution equation algorithm

from the available literature, especially for implementation of digital filters on FPGA.

The algorithm is unique in that it solves the hardware constraints problems of FPGA.

This chapter also describes different approach of using Discrete time convolution

equation in filter implementation on different aspect, cost and speed. At the end an

optimized algorithm is also described which takes care of both speed of the filter and the

total hardware cost.

 10

 In this thesis the algorithm described in Chapter 3 has been used to design the filters.

The design and implementation part is described in chapter 4 in detail. This chapter has

two subsections Hardware and the Software. How different discrete chips are interfaced

in particular mode has been described in detail. The software subsection describes the

total FPGA design flow.

 Chapter 5 presents the result of practical implementation of different filters with its

characteristics. Different Filter has been studied and compare with the ideal response

without truncating the coefficient width.

 Chapter 6 provides concluding remarks.

 Field Programmable Gate Array based design is completely new comparable to

conventional approach. So the question comes here how much adaptability is there with

this newer kind of devices, how much cost we need to implement it and obviously in

which particular case we should use FPGA. Chapter 7 considers all these aspects. The

scope of future work also has been suggested at the end of this Chapter. References and

Datasheets are provided at the end of the thesis.

 11

2 FPGA and Digital Filter Basics
2.1 Introduction

 This chapter introduces the two main fields, FPGA architecture and Digital Filter

Design. Section 2.2 provides some necessary background information on FPGA

Architecture. Section 2.3 provides a brief introduction to Digital Filters and design of

filters. At the end of this section application of digital filters has been given in brief.

2.2 General FPGA Architecture

 Virtex-E devices feature a flexible, regular architecture that comprises an array of

configurable logic blocks (CLBs) surrounded by programmable input/output blocks

(IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The

Figure 2.1: Simplified Block Diagram of a CLB

abundance of routing resources permits the Virtex-E family to accommodate even the

largest and most complex designs. Virtex-E FPGAs are SRAM-based, and are

 12

customized by loading configuration data into internal memory cells. Con- figuration

data can be read from an external SPROM (master serial mode), or can be written into the

FPGA SelectMAP™, slave serial, and JTAG modes). The standard Xilinx Foundation

Series™ and Alliance Series™ Development systems deliver complete design support for

Figure 2.2: Simplified Block Diagram of a IOB

Virtex-E, covering every aspect from behavioral and schematic entry, through simulation,

automatic design translation and implementation, to the creation and downloading of a

configuration bit stream.

2.2.1 Features of Virtex-E Series FPGAs

Within one year of launching the original Virtex series, Xilinx has raised the bar yet

again by introducing the next generation 1.8-volt Virtex-E family that enhances all

aspects of the Virtex attributes. Fabricated on a leading edge 0.18 um, six-layer metal

silicon process, the Virtex-E family has significantly increased both performance and

density, while providing a high-performance system level feature set that further

 13

addresses the bandwidth requirements of the next generation data communication and

DSP applications. The advanced high-performance feature set of the Virtex series

includes:

• Densities ranging from 50,000 to 3.2 million system gates

• Support for 20 I/O standards, including three differential signaling standards

• Over 311 Mbps single-ended I/O performance

• Up to 832 Kbits of internal True Dual-Port(TM) BlockRAM

• 8 DLLs for 311+ MHz clock management

• Up to 804 single-ended I/Os or 344 differential I/O pairs

• Direct interfacing to high performance memory devices

Here in this implementation Xilinx XCV300EPQ240 has been used for prototyping.

The details of this device could be referred from [DB2000, Xilinx].

 14

Figure 2.3: Functional Block Diagram of Virtex-E FPGAs

Since it is fully supported by Xilinx(TM) Alliance Series(TM) and Foundation Series(TM)

software, as well as all of the EDA tools from Xilinx Alliance partners, the Virtex series

is a complete solution ready to meet the challenges of next generation designs. The

available software also includes the built-in CORE Generator(TM) tool with a variety of

web downloadable Smart-IP(TM) BaseBlox(TM) cores. The Virtex solution helps system

designers quickly create very complex designs with guaranteed results.

2.2.2 Delay Locked Loop

 As FPGAs grow in size, quality on-chip clock distribution becomes increasingly

important. Clock skew and clock delay impact device performance and the task of

managing clock skew and clock delay with conventional clock trees becomes more

difficult in large devices. The Virtex-E series of devices resolve this potential problem by

providing up to eight fully digital dedicated on-chip Delay-Locked Loop DLL) circuits

which provide zero propagation delay and low clock skew between output clock signals

distributed throughout the device. Each DLL can drive up to two global clock routing

networks within the device. The global clock distribution network minimizes clock skews

due to loading differences. By monitoring a sample of the DLL output clock, the DLL

can compensate for the delay on the routing network, effectively eliminating the delay

from the external input port to the individual clock loads within the device. In addition to

providing zero delay with respect to a user source clock, the DLL can provide multiple

phases of the source clock. The DLL can also act as a clock doubler or it can divide the

user source clock by up to 16. Clock multiplication gives the designer a number of

designs alternatives. For instance, a 50 MHz source clock doubled by the DLL can drive

an FPGA design operating at 100 MHz. This technique can simplify board design

because the clock path on the board no longer distributes such a high-speed signal. A

multiplied clock also provides designers the option of time-domain-multiplexing, using

one circuit twice per clock cycle, consuming less area than two copies of the same circuit.

Two DLLs in can be connected in series to increase the effective clock multiplication

factor to four. The DLL can also act as a clock mirror. By driving the DLL output off-

 15

chip and then back in again, the DLL can be used to de-skew a board level clock between

multiple devices.

2.3 Introduction to Digital Filters

A filter is a system of network that selectively changes the wave shape, phase-

frequency and amplitude – frequency characteristics of a signal as desired by the design

Engineer. Filtering has the following effect on the input signal:

 Improves the quality of signal,

 Reduces noise,

 Extracts information,

 Separates multiple signals to get efficient information out of them.

Filtering can be done in two ways:

 Analog filtering.

 Digital filtering.

A digital filter is a mathematical algorithm implemented in hardware and software to

operate on a digital input signal to produce a digital output thus achieving the above-

mentioned objectives. Digital filters more often work on the digitized version of analog

signals obtained after sampling or on just numbers, stored in the computer memory. The

interface circuit performing the conversion of a continuous time analog signal (CTS) into

its digitized version is called analog to digital converters (A/D) and the processed

digitized output to its analog version is done by digital to analog converters (D/A). As A

to D conversion takes some time (depending on the type of ADC used) it is necessary to

keep the analog signal at the input of the ADC constant in amplitude until the conversion

is complete for better results (at least at high frequencies>100Hz). This is achieved by the

sample and hold (S/H) circuit which samples the input CTS at regular interval and holds

the analog sampled data constant at its output for sufficient time to permit accurate

conversion. The different AD, DA, S/H circuit specifications used in the work is

discussed later on.

 16

A block diagrammatic representation of the real time digital filter is shown in figure

Sample
& Hold

ADC Digital Filter DAC Analog
Input

Analog
output

Figure 2.4: Block diagram of a digital filter

 The S/H circuit consists of operational amplifiers, capacitors etc to provide better

isolation and tracking of the input signal. The total time needed to switch from the hold

mode to sample mode and to acquire the input with considerable accuracy is called

acquisition time and it depends on RC time constant of the circuit. The converse of the

above is known as aperture time .The A to D converter takes the output of the S/H circuit

as its input. For signal processing applications the output of ADC is in binary code. The

output is a sequence of words with each word representing a sample of sequence is a

collection of bits, which limits the dynamic range, and accuracy of the converter.

 The Sample and Hold circuit along with the Analog to Digital converter or the ADC

produces a discrete time signal as most of the digital filters work on DTS. A discrete-time

signal is a sequence of values that correspond to particular instants in time. The time

instants at which the signal is defined are called the signal’s sample times; traditionally, a

discrete-time signal is considered to be undefined at points in time between these instants.

For a periodically sampled signal, the equal interval between any pair of sample times is

the signal’s sample period, Ts. The sample rate, Fs, is the reciprocal of the sample

period, or 1/Ts.The figure 2.5 will give an example of DTS.

 17

Ts

Time

Figure 2.5: Example of DTS

 Digital filters are now an integral part of Digital Signal Processing (DSP) where they

are preferred compared to Analog filters in number of applications. The table below

tabulates the different advantages and disadvantages of digital filters compared to their

analog counterparts.

Advantages Disadvantages

Truly linear phase response and

performance repeatable from unit to unit.

Lower speed of response due to speed

constraint of ADC and DAC.

Inert to environmental changes and can

operate at very low frequencies.

The maximum bandwidth is in real time

much lower than Analog filters.

Can work over wide range of frequencies

just by changing the sampling frequency.

They are subjected to ADC noise,

Quantization error, round off noise whose

cumulative effect can make the filter

unstable.

Single hardware can operate over a number

of channels.

The hardware design and development is

more time consuming.

They are more precise as their precision is

limited by word length used.

Digital filters are broadly divided into two classes:

 Finite impulse Response (FIR) filters.

 Infinite Impulse response (IIR) filters.

 18

 Both the type of filters can be represented by the formula,

 ∑
−

=

−=
1

0
)()()(

N

k
knxkhny

Where h(k) is the impulse response sequence (k=0, 1, 2, 3,) of the filters. In FIR

filters h(k) is finite, i.e.

() 0=kh for k > N2 and k < N1 where N1 < N2.

In an IIR filter, however, h(k) is infinite.

 The z-transform realization of such a filter is given by the transfer function H(z) and

is represented in the z domain as

)()()(zXzHzY = Where, ∑
=

−=
N

Nk
zkhzH k

2

1

][)(

and x[n] and y[n] are the input and output sequences and the filter is always BIBO stable

over the whole frequency range of interest. This is because, all poles of the system lie on

z = 0 in the z plane. Thus the region of convergence is the whole of the z plane except

z=0.

 As stated before, in IIR filters the impulse response is of infinite duration. Thus, the

transfer function is generally expressed in a infinite series form.

M
N

N
N

zdzdzd
zpzpzpp

zD
zPzH −−−

−−−

+++
+++

==
.....................1

...........
)(
)()(2

2
1

1

2
2

1
10 =

∑

∑

=

−

=

−

+
M

k

k
k

N

k

k
k

za

zb

1

0

1

)(
)()(

zX
zWzP = and

)(
1

)(
)(

zDzX
zY

= where P(z) and appears to be FIR filters

separately.

)(zD

 In the time domain,

∑
∞

=

−=
0

)()()(
k

knxkhny = …………………….IIR ∑ ∑
= =

−−−
N

k

M

k
kk knyaknxb

0 1
)()(

 19

 An IIR filter of order N requires 2N+1 unique coefficients and requires 2N+1

multipliers and 2N adders for implementation. It can be seen from the above equation

that the output y(n) depends on past outputs y(n-k) and past input samples x(n-k) which

makes IIR filter some sort of feedback network.

 IIR filters are not inherently stable like FIR filters. This is because they contain M

poles; the region of convergence is exterior to the circle containing the pole farthest away

from the origin. If the region of convergence includes the unit circle, the system is stable.

2.3.1 Filter Structures

 The structure of a filter in its direct form from the equation mentioned above can be

represented as,

Figure 2.6: IIR structure using Direct Form I.

z-1

Multiplier

Delay

Adder/
Substractor

 In FIR structure, the feedback loop block of the diagram is not present.

 Another form, called the Direct form II reduces the delay elements by half. Filters can

also be made with cascade and parallel combinations of filters of smaller, usually second,

order. These implementations break the H(z) polynomial into forms like –

 ∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

= −−

−−

k kk

kk

zz
zz

zH p 2
2

1
1

2
2

1
1

0 1
1

)(
αα
ββ

 ……………Cascade Structure

 20

Or

 ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
+= −−

−

k kk

kk

zz
z

zH p 2
2

1
1

1
10

0 1
)(

αα
ββ

…………..Parallel Structure

2.3.2 Comparison between FIR and IIR filters.

FIR IIR

Exactly linear phase response with no

phase distortion even when causal.

Non-linear phase response at the band

edges.

Non-recursive realization makes them

stable.

Stability not always guaranteed.

Effect of round off and coefficient

quantization errors are less prominent.

Drastically changes the performance of the

filter.

Transients have a finite duration. Transients have infinite duration.

Requires more coefficients for sharp cutoff

than IIR.

Analog filters can be readily transformed

into digital IIR filters.

2.3.3 Filter selection criteria

 Sharp cutoff, high throughput - IIR with elliptic properties.

 Full phase linearity - FIR.

2.3.4 The Sampling Theorem and Nyquist Rate

 The available frequency band for analog filters extends from zero to infinity, but for

digital filters it varies from zero to the Nyquist frequency as governed by the sampling

theorem which states that the signal should be sampled at the rate of atleast 2fmax, where

fmax is the highest frequency component in a signal to get proper out put.

Fs≥ 2fmax

Where, Fs is the sampling frequency or rate. The quantity 2fmax is also called Nyquist rate

and the over sampling ratio is defined as:

 21

Over sampling ratio=
max2 f

Fs

In filter design approach the over sampling is more preferred.

2.3.5 Digital Filter Design

 To design a digital filter, we must first obtain the specifications of the filter we have

to design. The specifications of digital filter are based on the magnitude or phase

response of the system to be designed. The phase criteria are usually corrected after

meeting the magnitude specifications by cascading it with all-pass filter, called a phase

equalizer. The magnitude specifications are de

 An ideal filter has a “brick walled” response – it passes certain frequencies and do not

pass others. It is not possible to realize this magnitude response in practice, because the

impulse response of these filters are non-causal and have doubly infinite length. One of

the ways to obtain an approximate roll-off is to truncate the coefficients. This results in a

non-ideal response, which contains ripples in the passband and stopband. Also the sharp

response is replaced by a gradual roll-off. Filter design involves the design of filters,

which will conform, to certain tolerance levels, which are specified.

Filter specifications: Specification of a filter includes:

 Order of the filter (N) – This usually depends on the other specifications, but is very

important, increasing order leads to an increasing computational complexity and

hence additional burden on the resources.

 The sampling frequency (Fs). This must be such that the digital system is capable of

handling the bandwidth of the signal, i.e. the maximum frequency of the signal must

be less than the Nyquist frequency

 Pass band edge frequency (fp). The value upto which frequencies can pass

unattenuted through the filter

 Stop band edge frequency (fs). The value after which frequencies are not allowed to

pass at all.

 Pass band ripple (). The maximum deviation allowed in the pass band. pΔ

 Stop band ripple (). The maximum deviation allowed in the stop band. sΔ

 22

The specifications are visually described using the figure 2.7, which shows the

specifications for a low pass filter.

Actual
Response

Ideal
Response

Figure 2.7: Specifications of digital filter

In this case, the pass band is from 0 to Fp and the stop band from Fs to the 1. The band of

frequencies from Fp to Fs is known as the transition band and controls the sharpness of

fall(or rise) of the magnitude response. In the digital domain, frequencies are normally

measured in normalized frequencies. The relation between normalized frequency and

frequency in hertz is given by,

 ω =
sf
fπ2 Where fs is the sampling rate.

In the pass band, we require that the magnitude should approximate unity with a

maximum error of ±Δp. Mathematically,

 pp jG Δ+≤≤Δ− 1)(1 ω for pF≤ω

 and, sjG Δ≤)(ω for 1≤≤ ωsF

 23

2.3.6 FIR filter design

 Given the specifications of the filter, the most important choice is the order of the FIR

filter. The higher the order, the better the filter, but the computational time increases. To

get an sharp cut-off with transition band less than 100Hz and ripples less than .1, the

required orders are more than hundred. The difference that order makes on the response

is evident from figure 2.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized frequency (Nyquist == 1)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-60

-40

-20

0

Normalized frequency (Nyquist == 1)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5000

-4000

-3000

-2000

-1000

0

Normalized frequency (Nyquist == 1)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-60

-40

-20

0

Normalized frequency (Nyquist == 1)
M

ag
ni

tu
de

 R
es

po
ns

e
(d

B
)

Order (N) = 10 N = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized frequency (Nyquist == 1)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-60

-40

-20

0

Normalized frequency (Nyquist == 1)

M
ag

ni
tu

de
 R

es
po

ns
e

(d
B

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5000

-4000

-3000

-2000

-1000

0

Normalized frequency (Nyquist == 1)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-60

-40

-20

0

Normalized frequency (Nyquist == 1)
M

ag
ni

tu
de

 R
es

po
ns

e
(d

B
)

Order (N) = 10 N = 100

Figure 2.8: FIR filters with cutoff at ω=0.5

 To estimate the order, a simple formula has been provide by Kaiser, given by,

()

πωω 2/)(6.14

13log20 10

ps

spN
−

−∂∂−
≅

 This gives an approximation to the filter order for moderate passband filters. Order is

seen to be inversely proportional to the transition width (ωs - ωp) and also increases on

decrease of the allowable ripples.

 In MATLAB, two functions – remezord and kaiseord are provided which provide us

with the approximate order of the filter on specification of the ripples and the edge

frequencies. Remezord is Parks-McClellan optimal FIR filter order estimation and is

given as: [N, Fo, Ao, W] = remezord (F, A, DEV, Fs)

 24

Where normalized frequency band edges are given as Fo, frequency band magnitudes are

given by Ao and weights W.

2.3.6.1 Windowing method of filter design

 To design a FIR filter, we start with the ideal filter response -

πωω
ωωω

<<
<

⎩
⎨
⎧

=
c

cjeH
,0
,1

)(

Figure 2.9: Effect of rectangular window

 Low Pass is taken as an example and the following discussion is true for any type of

filter. The impulse response of this filter is doubly infinite and given by

 25

[] ∞<<−∞= n
n

n
nh c ,

sin
π
ω

 This is impossible to take, as we need to store a finite amount of coefficients. Thus,

we truncate the coefficients using a window function. The simplest window function is a

rectangular window, given by

[]
⎩
⎨
⎧ ≤≤

=
otherwise

Mn
nwR ,0

0,1

 This has the effect of leaving out some of the values of the series. The rectangular

window has sharp edges and gives rise to Gibbs phenomenon, i.e. an appreciable ripple is

introduced into the output as seen in the figure 2.9.

 To remedy this, we can use the Bartlett or triangular window, which does not have

any edges.

[]
⎪
⎩

⎪
⎨

⎧
≤<−

<≤
=

otherwise
MnMMn

MnMn
nwT

0
2//22

2/0/2

 This results in no ripple. However, the transition band is widened appreciably. Many

trade-offs between these two are available.

Hanning window - ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
+=

12
2cos1

2
1

M
nwn
π

Hamming window - ⎟
⎠
⎞

⎜
⎝
⎛

+
+=

12
2cos46.054.0
M

nwn
π

Blackman window - ⎟
⎠
⎞

⎜
⎝
⎛

+
+⎟

⎠
⎞

⎜
⎝
⎛

+
+=

12
4cos08.0

12
2cos5.042.0

M
n

M
nwn

ππ

Hamming window has been used in this case.

 In MATLAB the filter is be designed by fir1 function with the command B = FIR1

(N, Wn) which designs an N'th order low pass FIR digital filter and returns the filter

coefficients in length N+1 vector B. The cut-off frequency Wn must be between 0 < Wn

 26

< 1.0, with 1.0 corresponding to half the sample rate. The filter B is real and has linear

phase, i.e., even symmetric coefficients obeying B(k) = B(N+2-k), k = 1,2,...,N+1.

B = FIR1 (N, Wn,'high') designs a highpass filter.

B = FIR1 (N, Wn,'stop') is a bandstop filter if Wn = [W1 W2].

B = FIR1 (N, Wn) is a bandpass filter if Wn = [W1 W2].

Where in both the above cases passband is W1 < W < W2.

By default FIR1 uses a Hamming window. Other available windows, including Boxcar,

Hanning, Bartlett, Blackman, Kaiser and Chebwin.

2.3.7 IIR filter design

 IIR filters are usually designed by using the Analog filter design. There are

broadly two ways to design an IIR filter, IIT and BLT.

2.3.8 Practical implementation concerns

 The functions realized in practice by MATLAB give coefficients to a very high

precision but as actual implementation is done in digital domain, a constraint of limited

number of bits degrades the performance of the filters and to some extent makes them

unstable. The sources are discussed below:

 Overflow: ADC, DAC and filter design constraints the number of bits in a

wordlength. But if due to addition permissible word length is exceeded wrong output

samples are generated which leads to instability in IIR filters.

 ADC quantization: The analog to digital conversion process quantizes each signal

into 2bits of ADC and hence this introduces an error seen as ADC noise.

 Coefficient quantization: The coefficients obtained from Matlab are correct up to

many places of decimals, but to implement the digital filter, the coefficients must be

represented by a fixed number of bits determined by the software inbuilt filter

wordlength. This introduces considerable amount of noise with large transients,

changed frequency response, sharp transition widths and brings the poles close to the

unit circle. This effect is more severe in IIR filters than in FIR filters and might push

them towards instability. It also changes the stop band and pass band attenuation.

 27

Scaling factor = 2^5 - Spikes present

Scaling factor = 2^10 - Slow Roll-off

Scaling factor = 2^15 - Small amount of pass ripple

Scaling factor = 2^20 - Ideal

Figure 2.10: Illustration of Truncation effect

 28

 Coefficient Scaling and truncation effect: The coefficient quantization problem

as mentioned above leads to a very important practical consideration in filter

design, i.e. coefficient scaling. The FPGA is fixed point device, which implies it

cannot accept floating-point numbers. Essentially, we can only provide the

coefficients as integers, and we have to remember the decimal point.

 Most of the coefficients in the design are around 1 or much smaller. This implies we

have to multiply them by a certain constant to represent them as a constant. Apparently

the easiest solution is to shift the decimal point by an adequate number of places – which

translates as a multiply by 10. However, while providing output the FPGA has to scale

down the value by 10. Moreover, many scale-ups and scale-downs may be necessary

inside the FPGA. All these would require Multipliers and Dividers. Thus, we scale up

and down by factors of 2. This means, scaling up can be done by the FPGA by placing

adequate number of zeros after the number. Also, scaling down would involve simply

neglecting the required number of LSBs. Thus, a great deal of hardware is saved.

 As already mentioned, it is impossible to take numbers with the precision of

MATLAB. Thus, after performing the scale-up operation, we have to truncate the trailing

decimal values. This results in highly distorted response if the scaling factor is small. The

effect of truncation is shown by figure 2.10. The response of an IIR elliptic filter is taken

as the example and the truncation effects are simulated on MATLAB.

2.3.9 Application of digital filters:

1. Digital Audio Technology:

 Digital filters find considerable use in digital graphic equalizers, CD players and

digital audio system. IIR filters are very much in use in Audio frequency splitting of

the whole range into bands.

2. Instrumentation:

 The digital filters are exclusively used in digital control system to built digital

controllers.

 29

 Frequency Generation: IIR filters with poles at the unit circle is unstable and this fact

is exploited in designing sine wave frequency oscillators with considerably high

accuracy.

3. Telecommunication:

 Digital Telephony: Digital communications use PCM data communication. IIR filters

provide the necessary low pass, band pass filters at the transmitting and receiving

end.

 30

3 Digital Filter Design Using Discrete Time Convolution Equation
3.1 Cost vs. Speed

 Traditionally, digital signal processing (DSP) algorithms are most commonly

implemented using general-purpose (programmable) DSP chips for low rate applications,

or special-purpose (fixed function) DSP chip-sets and application-specific integrated

circuits (ASICs) for higher rates. But with the technological advancements of FPGA, they

are now efficiently used in the design of custom DSP devices. The main advantage of

FPGA is speed. The speed requirement is worth giving attention when the filter order

increases. For higher order filters FPGA based designs are much faster compared to DSP

chips. Also the FPGA advantage grows for multiple filter channels.

 The fully parallel model leads to highest speed where the data rate matches the clock

rate (which can be greater than 100MS/S in today’s FPGAs). But in this case the number

of DALUTs is maximum. In serial implementation, only one DALUT is needed. So

hardware requirement is reduced. But the price to be paid for this is the reduction in

speed. If the input data is B bits wide, the computation of output takes at least B clock

cycles. So the data rate = (Clock rate of the FPGA)/ (No. of Bits in Input Data)

 31

3.2 FIR Filter

A causal FIR filter of order N is characterized by a transfer function H(z).

 H(z) = ---(1) ∑
=

−
N

k

kzkh
0

][

which is a polynomial in z-1. In the time domain, the input output relation of the above

FIR filter is given by

 y[n] = ---(2)][][
0

knxkh
N

k
−∑

=

where y[n] and x[n] are the output and input sequences, respectively.

 There are several realization methods for FIR filters. These are direct form

realization, cascade form realization, polyphase realization etc. Direct form realization is

discussed here.

3.2.1 Direct Form FIR filter

 An FIR filter of order N is characterized by N+1 coefficients and, in general, requires

N+1 multipliers and N two input adders for implementation. Structures in which the

multiplier coefficients are precisely the coefficients of the transfer function are called

direct form structures.

z-1 z-1z-1z-1

h(0) h(1) h(2) h(N) h(3)

x(n)

y(n)

Figure 3.1: Direct form FIR structure

 32

The structure of Figure 3.1 is also called a tapped delay line or transversal filter. Its

transpose gives a second direct form structure. Both direct form structures are canonic

with respect to delays.
 Even though the figure is a useful conceptualization of the computation performed by

the core, the actual FPGA realization is quite different. A discrete time convolution

equation (DA) realization is employed. With this approach there are no explicit

multipliers employed in the design, only lookup tables (LUTs), shift registers and a

scaling accumulator.

3.2.2 Using Filter Symmetry

 The impulse response of many filters posses significant symmetry. This symmetry

can be exploited to minimize arithmetic requirements and produce area efficient filter

realizations. The following figure 3.2 shows the impulse response of a 7 tap symmetric

FIR filter.

h0

h1

h2 h3 h4
(= h2)

 h5
(= h1)

 h6
(= h0)

Figure 3.2: Symmetric FIR- odd number of terms

 Instead of implementing this filter using the architecture shown in Figure 3.1, the

more efficient signal flow-graph in Figure 3.2 can be used. In general the former

approach requires N+1multiplications and N additions. In contrast, the architecture in

Figure 3.2 requires only (N+1)/2 multiplications and approximately N additions. This

significant reduction in the computation workload can be exploited to generate efficient

filter hardware implementations.

 33

 Figure 3.3. shows the impulse response of an 8 tap negative symmetric or odd

symmetric FIR filter.

z-1

z-1

z-1z-1

z-1 z-1

h(0) h(1) h(2) h(3)

Figure 3.3: Exploiting coeff. symmetry- odd number of filter taps

 34

z-1

z-1

z-1

z-1 z-1

h(0) h(1) h(2) h(3)

+ + + ---

Figure 3.4: Exploiting coeff. Symmetry-even number of filter taps

h(0)

h(1)

h(2)

h(3)

h(4)=−h(3)

h(5)= −h(2)

h(6)=−h(1)

h(7)= −h(0)

Figure 3.5: Negative Symmetric Impulse Response

 35

This symmetry is easily exploited in a manner similar to that shown in Figure 3.2 and

Figure 3.3. In this case the middle layer of adders is replaced by subtractors as illustrated

in Figure 3.4.

 The example considered here illustrates a filter with an even number of terms, the

filter structure for an odd number of terms is a simple extension of the same principle.

 The core generator filter module allows the filter symmetry to be specified. When the

impulse response does exhibit symmetry, the filter logic requirements can be significantly

reduced in comparison to an implementation that does not exploit the impulse response

structure. For example a 100 tap non-symmetric filter with 12-bit data samples and 12-bit

coefficients consumes 519 Virtex logic slices [Source: Xilinx Product Guide, Xilinx Inc.

1999]. In contrast, a 100 tap symmetric filter is realized with 354 slices. This represents

approximately a 30% savings in area.

z-1

z-1 z-1 z-1

z-1

z-1

z-1

+ + + +

h(0) h(1) h(2) h(3)

Figure 3.6: FIR Architecture- Exploiting Negative Symmetry

x(n)

y(n)

 36

4 Hardware Architecture of Digital Filters
4.1 Introduction

 The aim of the project is to design and implement various digital filters on Field

Programmable Gate Array. This chapter has two subsections, Hardware architecture and

Interfacing Hardware. In the Hardware Architecture section is Modular description of 4-

Tap FIR Digital filter and functional units. In the interfacing circuits has been explained.

4.2 Hardware Architecture of 4-Tap FIR Digital Filter

In order to implement the top-level design specifications, we break down our design into

simple modules, each of which is a well-defined functional unit. Our modular diagram is

shown in Figure 4.1.

Figure 4.1: Modular Architecture of a 4-Tap FIR Digital Filter

 37

Now we can Estimate the number of transistors necessary in each module.

• Input Memory: 4 8-bit registers = 32 D Flip-Flops 576 devices

• Coefficient Memory: 4 8-bit registers = 32 D Flip-Flops 576 devices

• Control Logic: Mod-4 Counter + Decoder + 20 Logic Gates 400 devices

• 8-bit Multiplier: 56 1-bit Adders + 64 AND gates 1,768 devices

• 16-bit Register: 16*(D flip-flop + 2 transmission gates) 330 devices

• 17-bit Adder: 17 1-bit Adders 510 devices

• 17-bit Register: 17*(D flip-flop + 2 transmission gates) 350 devices

• Truncation Logic: 3 Transmit ion Gates + 10-input OR + 10-input NAND

70 devices

This list yields an estimate of approximately 4,600 devices total.

 The input memory holds the four latest input coefficients x[n] for purposes

of multiplication. The coefficient memory holds the four impulse response coefficients

h[n]. The control logic functions as the driver for the filtering process: it contains a

counter, a decoder, and appropriate logic to direct traffic over the buses, through the

adder and multiplier, and into appropriate registers. The 8-bit multiplier is of the array

type, and is made up primarily of 1-bit adders and AND gates. Since the output of the

multiplier is a 16-bit quantity, we need a 16-bit register to store the intermediate result.

The largest 8-bit quantities we can multiply are 0x7f. The largest product of these two

multiplicands is 0x3f01. In the worst case, we would add 4 of these products together for

our accumulator result, yielding a worst-case answer of 0xfc04, which is a 16-bit

unsigned number. Adding a sign bit for two's complement numbers yields a minimum

result-storage mechanism of 17 bits. Therefore, we have a 17-bit ripple-carry adder

linked to a 17-bit accumulator register. To input the 16-bit multiplier register into the 17-

bit adder, we simply sign-extend the 16-bit quantity. Finally, we need to convert our

signed 2's complement 17-bit quantity into a signed 2's complement 8-bit quantity. The

logic for this operation is contained in the “Truncation Logic" block, which will

essentially test for two cases, numbers higher than 0x7f and lower than 0x80.

 38

4.2.1Coefficent and Input Memory Units

The first functional blocks to be implemented are the two memory blocks, which store

the four previous input values and the four coefficients for computation purposes. Each

memory is essentially a collection of four 8-bit registers with appropriate input enable

and output select lines to control the input and output of the 8-bit values into and out of

the registers.

A block-level diagram of the input memory is shown in Figure 4.2 The input memory is

designed to get a new input value at each computational clock cycle and to shift each

previous input down one level, discarding the oldest inputs as necessary. As shown, the

output to the multiplier is selected by the two select lines c0 and c1.

Figure 4.2: Input Memory Block Diagram

The coefficient memory, on the other hand, expects input values only when the COEFIN

select pin is HIGH on the chip. A block diagram of the coefficient memory is shown in

Figure 4.3. Since, unlike in the input memory case, any arbitrary coefficient can be input

directly without changing the other coefficients, a second bus select line (depicted in the

figure by the DEMUX) is necessary for the inputs, controlled by the input select lines c0

and c1.

The basic building block of the memory units is the register. In each 8-bit register, there

are 8 D flip-flops, 10 transmission gates, 2 inverters, and an AND gate for a total of 174

 39

devices. Our registers have both output and input enables, which leaves them quite

flexible for use throughout our project for things other than the memory units.

The Coefficient Memory has 800 devices total, and the Input Memory has 840 devices

total. The input memory is larger because of the more complicated internal register

transfer capability.

Figure 4.3: Coefficient Memory Block Diagram

4.2.2 Control Logic

The control logic essentially implements the algorithm of the FIR filter. The basic

functionality of the control logic involves the maintenance of two counters, one mod-8

and one mod-4, counting the clock pulses coming in to the chip. One “clock cycle"

occurs when the mod-4 counter has cycled once, since it is the “tap counter." Since we

have four taps, each increment of the mod-4 counter corresponds to a tap of our FIR

filters. The mod-8 counter cycles once for each tap, for a total of 24 clock pulses per

clock cycle.

A block diagram of the controller is shown in Figure 4.4. The output of the mod-8

counter is fed through a 3-8 decoder, and the resulting lines function as “phase switches"

for the clock cycle.

 40

Figure 4.4: Controller Block Diagram

Clock Phase Output Signals for Control Logic

T0 If (CoefIn) then CoefInEna and CounterReset
else, InputInEna and if c1c0==00 then AddRegClear

T1 Multiplier Propagation Delay

T2 Multiplier Propagation Delay

T3 Multiplier Propagation Delay

T4 MultRegInEna

T5 AddRegInEna (Adder Propagation Delay)

T6 If c1c0==11 then OutRegInEna

T7 TapCounterIncrement

Table 1 enumerates the eight-phase algorithm iterated once for each filter tap.

 41

4.2.3 Array Multiplier

The largest single block of our filter is the array multiplier. We decided upon an array

multiplier design because of the sheer amount of multiplication present in the operation

of a finite impulse response filter (four multiplications per output). Our 8-bit array

multiplier takes two 8-bit signed two's complement numbers and produces a 16-bit

answer. The actual array of 1-bit adders actually cannot accommodate signed two's

Complement numbers, a “feature" we originally discovered during our simulation! As a

result, we added appropriate logic before and after the multiplier to accommodate signed

arithmetic. This logic analyzes the sign of the multiplier and multiplicand to determine

the expected sign of the result, and takes the two's complement of each value as

necessary to ensure the proper form of output. The actual multiplier core contains 56 1-

bit adders and 64 AND gates but has a propagation delay of only an 8-bit ripple-carry

adder! The additional sign logic adds two more adder propagation delays because each

Conversion to or from two's complement form requires an addition. The array multiplier

core consists of 2176 total transistors. With the additional sign logic included inside our

implementation, our multiplier block contains 3424 transistors total.

4.2.4 17-Bit Adder (Critical path)

The 17-bit adder is comprised of 17 1-bit adders. Because the multiplier is given three

clock phases for its propagation delay, the 17-bit adder becomes the speed bottleneck for

the speed at which our clock may be run. For a conservative estimate of clock rate, we

quadruple this propagation delay (allowing a 4.5 ns level hold time) for our clock period.

This 6ns clock corresponds to a 166 MHz clock rate! Theoretically, then, our FIR filter

should be able to run at approximately 166 MHz, neglecting heat dissipation and load

capacitance effects. Because there are 32 clock rises per output, we calculate an output

Frequency of roughly 5.2 MHz, or 5.2 million outputs per second. This sampling

frequency is more than enough to handle most 8-bit audio and video signal processing

demands.

 42

4.2.5 Truncate Logic

The last step taken before the value is sent to the output register is the truncation of the

17-bit Accumulator register value into an 8-bit two's complement quantity. To

accomplish this feat, we examine bits b7 through b15 and the sign bit b16. If the sign bit

indicates a negative answer, then if there are any zeroes present in b7 to b15 we have

negative overflow. On the other hand, if the sign bit b16 indicates a positive answer, then

any ones present in b7 to b15 would signify positive overflow. Any other case represents

a normal value within our 8-bit range, so we need do nothing. The flowchart is shown in

Figure 4.5. Our logic implementation uses transmission gates to select the appropriate

output depending upon the status of overflow. For positive overflow, we set the output to

(0b01111111), which is the largest 8-bit positive quantity we can represent. For negative

overflow, we set the output to (0b10000000), which is the most negative quantity

possible for signed two's complement 8-bit numbers. In the case of no overflow, we pass

the first eight bits of our answer to the output register unchanged.

Figure 4.5: Truncate Logic Flow Diagram

 43

4.3 Interfacing Methodology

The basic block diagram used is shown below. An analog signal is input into the system.

This analog signal may be obtained from any source, but here a function generator has

been used as a signal source.

Figure 4.6

Analog
Input

12 bit Digital Signal

Analog
Output

Sample/Hold ADC

FPGA

DAC

Control Signal

Analog Signal

Filter
Assembly

Control
Signals

 The analog input is fed into a sample and hold circuit, so that it can be digitized by

the Analog to Digital Converter (ADC). Both the Sample and hold and ADC require

control signals for their operation. These are generated by the FPGA itself.

 Thus the function of the FPGA is two-fold. It is used to generate control signals for

the peripherals as well as to condition the input digital signal by the use of filters. The

“filter assembly” shown in the figure has been implemented in various ways. FIR filters

and IIR filters have been implemented by using discrete time convolution equation

method.

 44

 The output of the FPGA, which is the processed signal, is then passed through a

Digital to Analog converter (DAC) and the required analog output is obtained.

 Any real world signal is an analog one. To use a digital system to process an analog

signal, we need a Analog to Digital converter (ADC). The output of a digital system is

also usually a real-world analog signal. To obtain this signal, a Digital to Analog

converter (DAC) is required. Most ADCs require a Sample and Hold (S/H) circuit to

sample the signal before conversion.

 On the output side, the DAC receives new data in every sampling period. Thus the

output of the DAC is a staircase output. The required analog output signal is obtained

from the DAC by using an analog low pass filter, which gets rid of the unwanted high

frequency components. This filter is known as the reconstruction or a smoothing filter.

 It can be shown, that if the sampling frequency is fs, the maximum bandwidth of the

digital system is fs/2, ie, only frequencies upto fs/2 are interpreted correctly by the system.

It can be shown, that if a discrete sequence has a frequency of

⎟
⎠
⎞

⎜
⎝
⎛ + k

f s

2
 Where 0 < k <

2
sf

,

the sequence will be exactly like another sequence with frequency ⎟
⎠
⎞

⎜
⎝
⎛ − k

f s

2
.

This phenomenon is called folding. Similarly, it can also be shown, that a discrete signal

with a frequency of f, (0 < f < fs), is same as a signal with frequency f + kfs, (k is an

integer). This phenomenon is known as aliasing.

 While designing a digital system, we must choose the sampling frequency such that it

is twice that of the highest relevant frequency of the signal. If in the analog signal, there

are high frequency components, which are greater than
2

sf
, it would appear to be a lower

frequency signal and would create a distortion in the relevant signal information. This is

prevented by using an anti-aliasing filter, which is an analog lowpass filter, which

eliminates the higher frequency components of the input signal, and aliasing is reduced.

4.3.1 Sample and Hold (S/H) Circuit

 45

 If an analog signal is connected directly to the input of most ADCs, like the

successive approximations (SA) type ADC, the conversion process can be adversely

affected if the analog signal changes during the conversion time. Thus a S/H circuit is

needed which procures a value of the analog signal at a time instant (called sampling) and

retains that value for the time required by the ADC to convert it in the digital form (called

holding).

Vin

Vout

Figure 4.7: Sample and Hold circuit.

CH

Control Input

 The IC used for S/H operation in the implementation is LF398N. It utilizes high-

voltage, ion-implant JFET technology to obtain high DC accuracy with fast acquisition

time low droop rate. The datasheet of the IC is given in appendix.

4.2.1.1 Design Considerations

 The main consideration in design of the circuit is the choice of the hold capacitor Ch.

The main tradeoffs are the acquisition time, hold step and droop rate. If the value of the

capacitance is low, the acquisition time is lower, i.e. the sampling is faster. However, the

hold step will increase due to the stray capacitive coupling between the input logic

signals and the hold capacitor. The magnitude of hold step is inversely proportional to the

hold capacitor value.

 The logic signals are generated form the XILINX FPGA which uses LVTTL (Low

Voltage TTL) and thus logic high is 3.3V and logic low is 0V. The logic pin is high

during sampling and low during the hold operation.

 46

Figure 4.8: Output of sample and hold

 The input of the SHA and the corresponding staircase output is shown in the figure.

The figure 4.3 has been taken from a digital oscilloscope.

4.3.2 Analog to Digital Converter

 The next step in the digital processing of an analog signal is the conversion of the

output of the S/H circuit in its hold mode to a digital form. This is done by the analog to

digital converter. The digital output consists of a number of bits, which is usually in

binary code. The numbers of bits limit the achievable dynamic range as well as the

accuracy of the converter.

 Different methods have been developed for A/D conversion. The fastest type of A/D

is the Flash Type A/D. It requires (2n-1) comparators for n bit output. More than 10 bit

flash type A/D is difficult to implement and is very expensive. Most IC flash type A/D is

available in 2-8 bits output. For higher resolution, other types of ADCs are used.

Integration type ADCs The counting type of ADC may also be used, in which a digital

counter is employed which increases the value of a digital word at each clock pulse. A

DAC calculates the analog equivalent of the digital word and compares it to the input

 47

analog voltage. The counting stops as soon as the two voltages are equal. The conversion

time depends on the value of the analog input. A relatively new type of high speed ADC

is the oversampling sigma-delta ADC in which the sampling rate is much higher than the

nyquist rate which enables the difference of the consequent samples to be expressed as 1

bit.

4.3.2.1 Practical Considerations for an ADC

 All ADCs have an inherent limitation of resolution. A digital system cannot take any

arbitrary value as an analog system can. A digital system recognizes a finite number of

steps, and an analog value falling in-between two steps takes the closest one. The error

arising due to this is known as the quantization error and is equal to ±1/2 of the value of

the LSB. The only way to reduce this error is to increase the word length.

 ADCs also have linearity error which occurs if the differences between two

consecutive transition values are not same for the whole range of input. In AD574A this

error is limited to ±1 LSB.

 Offset error occurs if all transitions are shifted from their ideal locations by a equal

amount. If this shift is not equal for all transitions gain error occurs.

 In the implementation, successive approximation type ADC AD574A has been used.

The datasheet is given in Appendix. The AD574A is a 12-bit analog to digital with tri-

state output buffers, containing an on-chip high precision voltage reference and clock.

In systems where interfacing is done using a bus, the ADC is operated in “full control

mode”. However, in our FPGA system, we use a 12 dedicated input pins, and thus, the

ADC is operated in the standalone mode, which do not support full bus interface. In this

mode the CE and 8/12 are wired high and the CS and AO are wired low. The conversion

is controlled using CR / .

 There are two types of control in this mode. Conversion can be initiated with either a

low pulse or a high pulse. In this implementaion the low pulse form is used. After

initiation of the conversion with a low pulse, the data remains valid upto a time tHDR. The

width of the low pulse is tHDL which must be at least 200ns. A time tDS after CR / goes

low, the STS signal goes high, indicating that conversion has begun. At this time the

output is driven into a high impedance state and the data is invalid. A time tC afterwards,

 48

STS goes low. This is actually a period tHS after the data becomes valid. The timing

diagram is show in the figure 4.4.

Figure 4.9: Timing Diagram of the ADC in stand-alone mode.

R/C

STS

tHDL

Data Valid Data Valid

tDS

tHDR

tC
tHS

DB11-DB0

High Z

 The minimum, typical and/or maximum values of each of the times are shown in the

table. It is evident from the table that after the data is valid and the conversion is

initiated, a maximum of 600 ns is required for the STS to assert and a maximum 35µs for

the conversion to take place. Thus, output digital form is obtained 35.6µs after valid data

is input.

Table 4.2 : Timing values in stand alone mode

4.3.2.2 Determination of the Sampling rate

 The sampling rate is limited mainly by the speed constraints of the the SHA and the

ADC. It is obvious that for digital data to be obtained from an analog input, the

acquisition time of the SHA and the total conversion time of the ADC is to be taken into

 49

account. As mentioned before the SHA has a typical acquisition time of 4µs but is

guaranteed only at 10µs. Thus the Sample and Hold Logic signal HS / must be kept high

for 10µs. The sample has to be held for a minimum of 35.6µs for the ADC to finish

conversion. The minimum total time that must be granted is thus 45.6 µs.

 It may be noticed that we have used the maximum time or the worst-case values for

each chip. A faster data acquisition could have been obtained if the sampling pulse

(set HS / to high) have initiated at the falling edge of the STS signal. Hence potentially

we could have a total conversion time of 25µs (including the acquisition time). This

corresponds to a frequency of 40kHz.

 However, this cannot be applied in this implementation. This is because in this case

the digital data samples would not be acquired at regular intervals. However, for filtering

applications, the requirement is to have an uniform sampling frequency. Thus to ensure

valid data at every sample we consider the worst case values for both SHA and ADC and

the maximum sampling rate becomes 21.93KHz.

 In this implementation, a little more leeway, the sampling rate has been fixed at

14.237 KHz.

4.3.2.3 Output of the ADC

 The output of the ADC is a 12-bit bipolar left justified data with range of -10V to

10V. This means that all zero output means -10V, and all ones signify 10V. The values of

the digital words are tabulated below.

Digital Word Analog Equivalent

000000000000 -10V

100000000000 0V

100000000001 4.88 mV

111111111111 9.997 V

Table 4.2: Digital Word vs. Analog Voltage

 50

4.3.3 The Digital to Analog Converter (DAC)

 The output of the XILINX FPGA is converted to analog form using DAC. The analog

output of the D/A is proportional to the binary number fed to its input.

 Analog output =K* digital input

 Where K is a proportionality factor and is a constant for a given DAC.

 There are a number of types of DACs. The most widely used DAC is the R-2R ladder

type D/A converter that will be briefly discussed here. The circuit diagram is shown in the

Figure:

 This D/A employs only two values of resistors. So it is easy to fabricate. Here

absolute values of the resistors are not important, but their ratio is important which is

maintained at a value of 2.If the temperature changes, both the resistor values change in

the same proportion. So their ratio remains more or less the same.

 The current IOUT depends upon the positions of the SPDT switches. The switches are

controlled by the binary inputs of the D/A. The voltage VOUT at the output of the Op-

Amp is given by,

 VOUT = (-VREF)
()

4096
22..........222 0

0
1

1
9

91
10

10
11

11 BBBBB ++++

 Which is proportional to the digital input. The same logic can be extended for any

number of input binary bits. The D/A converter used in the project is DAC7541A. The

datasheet of the IC DAC7541A is given in the appendix. It is a 12-bit multiplying D/A

consisting of a highly stable thin film R-2R ladder network and 12 pairs of current

steering switches on a monolithic chip.

4.3.3.1 Connections of the DAC

 There are different circuit connections of the DAC that have been recommended;

such as unipolar two-quadrant operation, unipolar two-quadrant operation with gain

adjustment, bipolar four-quadrature operation etc. Among these, the unipolar two-

quadrant operation circuit is used mainly, since it is the most simple circuit configuration.

The input/output relationship is shown in the following table.

 51

5 BINARY INPUT 6 ANALOG OUTPUT

MSB LSB

1111 1111 1111
-

4096
4095 VREF()

1000 0000 0000 -
2
1 VREF

0000 0000 0001 -
4096

1 VREF

0000 0000 0000

0V

Table 4.4: Binary Input vs. Analog Output

The circuit diagram for the unipolar two-quadrant configuration of the D/A converter is

shown in figure 4.5. The D/A converter has no input control signal, nor does it provide

any signal to indicate end of conversion. Conversion time of D/A is much less than that

of A/D and hence handshaking signals are not necessary.

 The following constants have been used in the circuit diagrams

 V+ = +15 V

 V- = -15 V

 L = Logic Low – connected to Digital Ground

 H = Logic High – connected to +5V.

 It is seen that all input from the ADC to the FPGA has been stepped down using a

voltage divider circuit. This is because the output of the ADC is TTL compatible and thus

logic high is of the order of 5V. The FPGA is LVTTL compatible and logic high is 3.3V.

Application of 5V to the input pins of the FPGA is harmful and must be avoided. The

voltage from ADC is thus reduced by a factor of
51
33 to transform it form TTL to LVTTL.

 In the implementation, analog ground and digital ground have been separated and

connected at one common point. This is because, digital systems produce high frequency

switching noise. Digital systems being robust are not affected by such noise. However,

 52

analog systems are affected by this type of noise. If the grounds of both digital and

analog parts were connected to the same wire, due to the non-ideal nature of the ground

connection, high frequency interference from the digital part would creep into the analog

part. However, both the digital and analog needs the same reference. Thus analog and

digital grounds are separated, but they are connected at one point.

 53

5 Simulation and Experimental Results on Performance of the Filters
5.1 Introduction

 In this Chapter, the frequency responses of each of the filters implemented have

given. The responses of the filters are also compared with the ideal responses and their

analog equivalent, both taken from MATLAB. The ideal responses have been generated

using a modified version of the freqz function named myfreqz. In this the magnitude

response is plotted on a semilog graph instead of the normal linear graph. The frequency

in Hertz is plotted instead of the normalized frequency. No change has been made to the

Phase response part of the graph. This is plotted on a linear graph paper to show the

linearity of phase in FIR filters.

5.2 FIR Filters

 The fir filters that have been implemented are of very high order, near about 100. In

each of the filters, the order has been estimated using the remezord function. The order is

estimated for a transition band between of 100 Hz and a pass and stop band deviation of

0.1. The fir1 function is used to generate the coefficients and they are written using a

MATLAB program in the specified format.

5.2.1 Low Pass FIR Filter

 In this example the cut-off frequency is 550 Hz, the transition band is from 500Hz to

600Hz, and the allowed deviations are .1 in both stop and pass bands.

 The impulse response of the system is shown in figure 5.1. The impulse response

actually gives the coefficients, so we have an idea about the magnitudes of the

coefficients from the figure. The impulse response is generated by using the filter

function, using a unit impulse as input and the scaled up coefficients. The impulse

response, i.e. the coefficients, are symmetric and resembles a truncated sinc function. The

impulse response shows that the filter is stable, as the output comes back 0.

 54

Figure 5.1: Impulse response of FIR Low Pass Filter.

 55

Ideal response from MATLAB

Figure 5.2: Experimental Magnitude response of FIR Lowpass filter

 The “ideal” response shown above uses the truncated coefficients. This is very nearly

equal to the response shown by MATLAB using high precision floating point values.

 56

Only the stop band characteristics are a little distorted. The -3dB point is approximately

525Hz as opposed to the ideal 550Hz.

Ideal response from MATLAB

Figure 5.3: Experimental Phase response of FIR Low pass filter

 57

 The phase response could not be calculated for the stop band frequencies. This is

because of the noise at these levels. Only the pass band response is shown. All readings

were based on phase angles between -180° and +180°. However, as MATLAB represents

the data in unwrapped phase angles, it can be also shown it as such by adding

appropriated multiples of 360° at the required points. This shows the linear phase

response of the filter in the pass band.

5.2.2 High Pass FIR Filter

 In this example the cut-off frequency is 550 Hz, the transition band is from 500Hz to

600Hz, and the allowed deviations are .1 in both stop and pass bands.

 The impulse response is shown in figure 5.4. The impulse response is obviously

symmetric. The middle value is very high (945) and is shown in full, so that the shape of

the impulse response can be properly seen.

Figure 5.4: Impulse response of FIR High Pass Filter.

 58

Ideal response from MATLAB

Figure 5.5: Experimental Magnitude response of FIR High pass filter

 In figure, the ideal and the experimental magnitude responses are shown. The dotted

lines show the -3dB magnitude. The -3dB point is measured to be 580Hz rather than the

 59

550Hz of the design. In the readings, it is difficult to measure values below -30dB.

Actually, readings shown are scaled to make the pass band attenuation to be 0dB.

Ideal response from MATLAB

Figure 5.6: Experimental Phase response of FIR High pass filter

 However, in reality, the output is attenuated due to the properties of the DAC, and the

 60

readings lower than -30dB cannot be distinguished from noise.

5.2.3 Band Pass FIR filter

 In this design, we have the cutoff frequencies of 300Hz and 3000Hz. Thus the and the

transition width of 100Hz around both the cut-offs. The pass band is from 250Hz to

2950Hz.

Figure 5.7: Impulse response of FIR Band Pass filter

Figure 5.7 shows the impulse response of the system. The Magnitude response of the

system is shown along with the ideal. The comb-like responses present in the ideal are

not present our response because it is below the noise level. The magnitude response is

shown on a normal graph instead of a semi-log plot.

 61

Ideal response from MATLAB

Figure 5.8: Experimental Magnitude response of FIR Bandpass filter

The -3dB points are found to be 324Hz and 2990 Hz for the two transitions.

 62

Ideal response from MATLAB

Figure 5.9: Experimental Phase response of FIR Bandpass filter

The phase response shown in figure 5.9 is approximately linear.

 63

5.2.4 Band Stop FIR filter

 In this design, we have the cutoff frequencies of 500Hz and 3000Hz. Thus the and the

transition width of 100Hz around both the cut-offs. The stop band is from 550Hz to

2950Hz.

Figure 5.10: Impulse response of FIR Band Stop filter

 Figure shows the impulse response of the system. The Magnitude response of the

system is shown along with the ideal on a normal graph, like the band pass filter.

 64

Ideal response from MATLAB

Figure 5.11: Experimental Magnitude response of FIR Bandpass filter

The -3dB points are found to be 475Hz and 3100 Hz for the two transitions.

 65

Ideal response from MATLAB

Figure 5.12: Experimental Phase response of FIR Band stop filter

The phase response shown in figure 5.12 is approximately linear.

 66

in

clk

oe

reset

out

X

ns5 10 15 20 25 30 35 40 45

FFFF FFFE FFFD

00000000 FFFFFFFF FFFFFFFC

00000002

Figure 5.13: Experimental HDL Simulated response of FIR filter

 67

5.3 Relative performance

 In this section, the performance of the filters has been presented in both theoretical

and experimental way. The filter throughput has been determined by theoretical

approach. The quality or performance of the filters has been determined through

implementation. Also from the MAP report the CLB count has been given in tabular

format.

5.3.1 Filter Throughput

Specifications DSP’s performance FPGA’s performances

16-Tap, 8bit FIR 3.125MSPS 129MSPS

256 Taps, 16bit FIR 15.5MSPS @ fclk = 1 GHZ 300MSPS @ fclk = 300MHz

5.3.2 Q Factor
Specifications Q Factor

102-Tap, 12bit FIR, Low Pass 14.2

106- Tap, 12 bit FIR, High Pass 12.5

204- Tap, 12 bit FIR, Band Pass 10

254-Tap, 12 bit FIR, Notch 10

5.3.3 CLB count
Specifications CLB Count

16-Tap, 8-bit FIR, Serial Arch 400

16 Tap, 8 bit FIR, Optimized Arch 320

16 Tap, 8 bit FIR Full Parallel arch 270

 68

6 Conclusions
 In this project work, we have implemented various basic filters viz. Low Pass, High

Pass, Band Pass, Stop Band Filters using Discrete time convolution equation algorithm

on Field Programmable Gate Array. Conclusions of our thesis are:

 We are able to implement Digital Filters on FPGA with comparable performance

as on conventional DSPs. The comparison between the ideal and the experimental

results given in Chapter 5 shows the satisfactory performance of the filters.

 We have shown the Discrete time convolution equation algorithm described in

Chapter 3 suits the architecture of Field Programmable Gate Array especially for

the design of Digital Filters and it can efficiently use the resources available in the

device.

 We have also shown how to interface the real analog signals with the FPGA after

proper conditioning and again how it can be converted back to analog form after

processing it digitally in the FPGA. Chapter 4 describes the approach of

interfacing the analog signals with the FPGA and implementation of the Discrete

time convolution equation based Filters on FPGA in detail.

 69

7 Discussions and Future Work
7.1 Introduction

 As a designer of Digital Signal Processing systems, we have a large number of

choices to implement our solution. Each solution has its strengths and weaknesses. The

purpose of this chapter is to bring out where FPGAs can be used for DSP based

applications. In the following sections, a comparison of the implementation of a simple

DSP function in both Programmable DSP (pDSP) and Field Programmable Gate Array

has been described.

7.1.1 Implementation through Programmable DSPs

 The most common vehicle for implementation of a DSP design is the programmable

DSP or pDSP. The pDSP is an off-the-shelf part that is essentially a microprocessor

tuned to DSP applications. PDSPs are highly flexible because you can program them

again and again using a familiar high-level language like C. They allow fast design

iterations and reduce time to market. Typically a pDSP contains several functional units

to process the signal stream. The designer encodes the algorithm into a program, which is

executed by the pDSP and is limited to a theoretical maximum data rate based on the

speed and the number of multiplier/ accumulators in the device. Applications, which

require several computations, must be broken up into a sequential stream of

computations. For example, an 8-tap FIR filter requires 8 multiplications and one 8-way

addition per data sample.

 The implementation of this FIR filter might require 8 or more cycles on a pDSP as

shown in Figure 6.1. At each data sample, all eight taps require multiplication by their

coefficients. If the number of taps for this filter were increased, then the number of cycles

would also be increased, hereby reducing the data rate. Programmable DSP chips are

intrinsically limited in performance. The more you want to do to a data sample, the more

cycles you need and the slower your data is processed. One way to overcome this

limitation is to employ more pDSP parts to implement the algorithm. Another method is

to use Gate Array technology to implement the algorithm in hardware.

 70

Figure 7.1: Filter structure

MultAcc Reg(0), C(0)

MultAcc Reg(1), C(1)

: : :

MultAcc Reg(7), C(7)

 The downside of a Gate Array is that it is a custom part. Once designed, it must be

custom or semi-custom fabricated at a silicon foundry. Due to the unique nature of the

device a custom Gate Array typically requires several weeks to be fabricated from the

prototype plans, and due to the expense of the overall process the design must be

carefully verified prior to the manufacture of even small quantities. Design flaws found

after fabrication require costly and time-consuming “spins” of the design.

7.1.2 Implementation through FPGAs

 Field Programmable Gate Arrays are a technology, which gives the designer a

combination of the benefits of a gate array solution and the ease of pDSP design. An

FPGA design starts with the same input as a Gate Array design - i.e. a circuit schematic

or high-level design description. Automatic synthesis, place, and route tools are used to

translate the designer’s original circuit into an FPGA specific configuration. The big

 71

difference between the Gate Array and FPGA design process is that the user specific

custom manufacturing process is eliminated. FPGAs are generic commodity parts and are

customized by downloading a user defined configuration in the form of a binary

bitstream, much the same as you would load a pDSP with its program with a process that

typically takes only a few milliseconds How much of an advantage does the FPGA’s

ability for direct implementation buy you? The answer really depends on how many tries

you think you will need to converge on a correct implementation. Most DSP designs are

part of a complex system. Experience shows that it is very common for complex systems

to go through several design iterations before product completion. Figure below

compares the development cycle of anew design as implemented on Gate Array versus

FPGA technology. This development cycle includes extra iterations to fix bugs. By virtue

of immediate implementation, an FPGA based design solution is ready for delivery much

earlier than a Gate Array design. Why, if FPGAs provide such benefits, would anyone

use Gate Arrays? The answer is that for very high production volumes, FPGAs do not

exhibit as high of a performance/cost ratio as Gate Array or full custom Application

Specific Integrated Circuit (ASIC) designs. The lower performance/cost of FPGAs comes

in part because FPGAs must sacrifice some silicon area in order to be highly flexible.

However, this should not be a concern to the designer expecting to ramp up to high

volume. FPGA offers a design migration product called Hardwire, which retains much of

the performance/cost advantage of Gate Arrays. Once the designer has converged on a.

Figure 7.2: Comparison between Gate Array and GPGA based development cycle

 72

working FPGA design, he can then translate the design to an equivalent Hardwire device

without the need to redesign or debug the system as shown in Figure 6.2. In summary,

FPGAs offer the rapid design cycle of programmable DSPs with the flexibility and raw

performance of Gate Array products

A. Other advantages of FPGAs include:

1. Parts may be reprogrammed over and over. If you want to upgrade your design, you do

not need to replace FPGAs, just reprogram them.

2. FPGAs are pre-tested. Traditional Gate Array design methodology requires that you

also develop costly manufacturing test suites. This task is not required with FPGAs.

3. FPGAs are a commodity part. Xilinx or Altera sells millions of FPGAs annually. This

high production volume results in a lower per part cost and those savings are passed on to

the customer.

4. FPGAs can be dynamically reconfigured within the system. Sophisticated designers

can build systems, which adapt to changing conditions by altering the circuit configured

within the FPGA. This re-configurable design approach is becoming more and more

popular since many systems need to perform several different functions, but never all of

them at the same time.

5. In one FPGA you can build several filters or several systems. Then the SOC design

will be more compact. Because a whole system can be made on a single chip.

B. FPGAs possess the following features, which enable high performance DSP

design:

1. Flexible logic blocks with bit level arithmetic features - allows Discrete time

convolution equation implementations of DSP algorithms.

2. Fine grained distributed RAM and ROM - Increases operand bandwidth.

3. A register rich architecture - enables a high degree of pipelining leading to increased

performance.

 73

7.1.3 Cost Comparison

 Performance gains of more than one order of magnitude are available with FPGA

based DSP at a small fraction of the cost compared to multiple processor solutions. The

FPGA based DSP design methodology also has fewer and less complicated steps.

Figure 6.4: Cost and Performance (Source Xilinx Inc.) [DS2003]

In addition to the high capacity XC4000 family, Xilinx DSP now also supports the low

cost Spartan family of FPGAs that competes directly with custom gate arrays. Further

reducing the cost per MEGA-MAC in DSP applications. Any Spartan FPGA device is

available for less than $20.00 in gate array volumes, and in many applications the S40

can do the work of two high-end DSP processors

7.2 Suggestions for Future Work

 In this thesis all implementations have been done on Xilinx FPGA. But with the

growing industry, architecture of the FPGA also has been changing. Different

manufacturers are using different architecture to make their product versatile. Here comes

the question of universality. The algorithm we have used is it independent of the device

architecture. So, further work can be done to apply the same algorithm to different

architecture and compare the relative performances.

 Our main concentration in this work was FIR and IIR filters. The same algorithm can

also be applied to other related areas in the field of Digital Signal Processing like FFT,

Adaptive Filtering, Kalman Filtering, and Fuzzy Filtering. A future enhancement of this

project can be the application of the discrete time convolution equation to other related

applications.

 74

 We have used easily available ADCs and DACs for our implementations and the

Filter throughput we have calculated theoretically. This can also be tested practically if

we can use much faster ADCs and DACs.

 Here, in our implementation we implemented different filters on the FPGA, but never

tested in an assembly of filters. Here is a broad domain comes into picture how much

area we can reduce to accommodate several filters or systems on a single chip without

sacrificing the desired characteristics.

 75

References
[Cart86]

W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T. Ngo

and S. L. Sze, "A User Programmable Reconfigurable Gate Array," Proc. 1986

Custom Integrated Circuits Conference, May 1986, pp. 233-235.

[DB2000, Xilinx]

The Programmable Logic Data Book 2000, Xilinx Inc.

[DS2003]

 Xilinx Data Source CDROM, 2003

[ElGa88]

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, "An

Architecture for Electrically Configurable Gate Arrays," Proc. 1988 Custom

Integrated Circuits Conference, May 1988, pp. 15.4.1 - 15.4.4.

[ElGa89]

A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat and A. Mohsen, "An

Architecture for Electrically Configurable Gate Arrays," IEEE Journal of Solid

State Circuits Vol. 24, No. 2, April 1988, pp. 394-398.

[Fran90]

R.J. Francis, J. Rose and K. Chung, "Chortle: A Technology Mapping Program

for Lookup Table-Based Field-Programmable Gate Arrays," Proc. 27th Design

Automation

Conference, June 1990, pp. 613-619.

[Goslin95]

Gregory Ray Goslin, “A Guide to using Field Programmable Gate Arrays for

Application Specific Digital Signal Processing Performances”, 2100 Logic Dr.,

San Jose, CA 95124, 1995

[Plus90]

Plus Logic FPGA2020 Preliminary Data Sheet, 1990.

[Xili89]

The Programmable Gate Array Data Book, Xilinx Co., 1989.

 76

	FPGA IMPLEMENTATION OF DIGITAL FILTERS USING DISCRETE TIME CONVOLUTION EQUATION
	A dissertation submitted in partial fulfillment of the requirement for the award of the degree of
	MASTER OF ENGINEERING
	
	CONTROL & INSTRUMENTATION
	MOHD. MAHFOOZ ALAM
	Under the guidance of
	NEW DELHI – 110 042

	
	
	
	
	DEPARTMENT OF ELECTRICAL ENGINEERING
	DELHI COLLEGE OF ENGINEERING
	

	CONTENTS
	 Chapters
	1 Introduction
	2 FPGA and Digital Filter Basics
	3 Digital Filter Design Using Distributed Arithmetic Algorithm
	4 Hardware Architecture of Digital Filters and Interfacing Hardware
	5 Simulations and Experimental Results on Performance of Filters
	6 Conclusions
	7 Discussions and Future Work
	8 References
	
	
	
	1 Introduction
	Figure 2.3: Functional Block Diagram of Virtex-E FPGAs

	2.3.4 The Sampling Theorem and Nyquist Rate
	3.1 Cost vs. Speed
	
	
	
	
	
	
	
	
	
	
	3.2 FIR Filter
	3.2.1 Direct Form FIR filter
	3.2.2 Using Filter Symmetry
	4.2.1.1 Design Considerations
	Table 4.2: Digital Word vs. Analog Voltage

	5 BINARY INPUT
	6 ANALOG OUTPUT
	Table 4.4: Binary Input vs. Analog Output
	Figure 5.13: Experimental HDL Simulated response of FIR filter
	Specifications
	DSP’s performance
	FPGA’s performances
	Specifications
	Q Factor
	Specifications
	CLB Count

