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Abstract 

 
FPGAs (Filed programmable Gate Array) have become a competitive alternative for high 

performance DSP applications, previously dominated by general purpose DSP and ASIC 

(Application Specific Integrated Circuit) devices. This thesis describes the benefits of 

using an FPGA as a DSP Co-processor, as well as, a stand-alone DSP Engine. Different 

type of filters namely Low Pass, High pass, Band pass, Band stop filters have been 

designed and implemented to illustrate the possibility of designing digital filters on Field 

Programmable Gate Array without losing its desired characteristics and performances. 

The whole work has been done in two parts both in theoretical approach and practical 

approach. Finally, a comparison has been done with the conventional implementation 

approach to clarify the situation where we should use FPGA based technique. 
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1 Introduction 
1.1 Introduction to Field Programmable Gate Array 

Field-Programmable Gate Arrays (FPGAs) are a revolutionary new type of user-

programmable integrated circuits that provide fast, inexpensive access to customized 

VLSI. An FPGA consists of an array of logic cells that can be interconnected via 

programmable routing switches, where the routing structures are sufficiently general to 

allow the configuration of multiple levels of the FPGA’s logic cells. FPGAs represent a 

combination of the features of Mask Programmable Gate Arrays (MPGAs) and 

Programmable Logic Devices (PLDs). From MPGAs, FPGAs have adopted a two-

dimensional array of logic cells, and from PLDs the user-programmability. The work 

reported in this thesis is focused on FPGA based system design in one particular 

application area, Digital Filter design. 

Following their introduction in 1985, by the Xilinx Company [Cart86], FPGAs have 

evolved considerably as various new devices have been developed [ElGa88] [ElGa89]  

[Plus90]. FPGAs have quickly gained widespread use, which can be attributed to the 

reduced manufacturing time and relatively low costs of these large-capacity user-

programmable devices. As an implementation medium for customized VLSI circuits, 

FPGAs offer following unique advantages over the alternative technologies (MPGAs, 

standard cells, and full custom design): 

(1) FPGAs provide a reduction in the cost of manufacturing a customized VLSI circuit 

from tens of thousands of dollars to about one hundred dollars. 

(2) FPGAs reduce the manufacturing time from months to minutes.  

These advantages, which are attributable to the user-programmability of FPGAs, 

provide a faster time-to-market and less pressure on designers, because multiple design 

iterations can be done quickly and inexpensively. However, user-programmability also 

has drawbacks: the logic density and speed performance of FPGAs is considerably lower 

than those of the alternatives. While developments over the last few years have shown 

significant improvements in FPGAs, much research is still needed before the best FPGA 

designs are discovered.  
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1.2 Motivation of Thesis 

Digital Signal Processing is omnipresent in the modern world. Almost everything – 

from satellites to telephones, from household appliances to sophisticated instruments, 

from the medical world to the musical world, uses digital signal processing in some form 

or other.  

Filtering is the most widely used and most important operation of Digital Signal 

Processing. Other operations include basic operations like amplification, summation, 

product, differentiation, integration, modulation etc. Although in this thesis the main 

concentration is on filtering.   

 Digital filters are versatile, immune to environmental changes like temperature, 

aging, etc. and can be reproduced in large quantities. Another main advantage is its small 

size – highly complex filters can be implemented on a small chip. One chip may contain 

a number of filters, or it may be timeshared among multiple signals. Thus, the reason for 

choosing a digital implementation over its analog counterpart is self-evident. 

 The accuracy of a digital system depends on the word length used by its data. This 

can be increased by increasing the word length. Digital systems are not affected by 

loading when cascaded. They almost always contain memory modules, which can be 

used to store processed data almost indefinitely for offline processing later. Also filter 

coefficients can be stored in such memory to facilitate adaptive control – in which the 

filter characteristics can be changed on the fly, depending on the change in conditions.  

 Digital Filtering involves the execution of a number of algorithms, which require 

many calculations. For example the basic algorithm of a FIR filter is given by 

 

( ) ( ) ( )∑
−

=

−=
1

0

N

k
knxkhny  

 

 This evidently involves a number of multiplications, additions, and also memory 

elements to remember the last few values of the input, the coefficients, etc. Traditionally 

this calculation is done on a microprocessor called a DSP (Digital Signal Processor). 

However, a much faster and better implementation is obtained on an FPGA with some 

other added advantages. 
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 FPGAs or Field Programmable Gate Arrays are a class of reconfigurable hardware 

device, which is increasingly being used to perform various digital signal-processing 

tasks. The digital processing algorithms are implemented using logic-gates, flip-flops, 

and other elementary hardware elements. In a DSP processor, algorithms are written in 

programming languages like ‘C’ and each instruction is crunched by the machine serially, 

whereas in an FPGA, being a hardware implementation, operations are performed in 

parallel. Herein lies the advantage of an FPGA – it provides the flexibility of software at 

the speed of hardware.  

 A well-made FPGA design is often as much as 1000 times faster than a corresponding 

DSP design. Also it consumes much less power, typically 20% of a microprocessor based 

DSP at the same sampling rate.  

 As FPGAs are a relatively new technology the necessary software tools are not 

always readily available. Traditional software algorithms cannot be used, or if used, 

result in poor performance, as FPGAs follow an entirely different philosophy. Good 

FPGA algorithms must take into account the parallel nature of the system – such 

algorithms have not yet reached the tried and tested maturity of the traditional algorithms. 

However with the rapid infiltration of FPGAs in the industry, such disadvantages will 

disappear as more experience is gathered in the field. The focus of this thesis is to study 

the different algorithm available in the literature for digital filters, which suits the FPGA 

architecture and then implementing it practically using those algorithms without loss of 

its generality. Then it can also be implemented in particular situation where it fits with 

added potentiality.  

 As mentioned earlier, traditional software algorithms are not very efficient in an 

FPGA implementation. For example, multiplication is a computationally intensive 

process in any platform. Digital Signal Processing operations like filtering requires a 

number of multiplication operations as is evident from the equation above. To speed up 

this process, a multiplication algorithm is being used in this thesis, which works very well 

on an FPGA – Discrete time convolution equation. Details of the Discrete time 

convolution equation algorithm will be discussed in chapter 3. The primary focus of this 

thesis is to show that various digital filters can be implemented on FPGA using the 

available algorithms with comparable performance as on DSPs. A theoretical study also 
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has been done to compare the use of FPGA based filter with the conventional DSP based 

filter design in terms of cost, speed (filter throughput) and adaptability. 

 

1.3 Work Approach 

 FPGA based filters are studied in this thesis using both an experimental and a 

theoretical approach. For the theoretical study, a comparison has been established 

between conventional MAC (multiply and accumulation) based approach and a new 

algorithm, Discrete time convolution equation based approach in terms of filter 

throughput. Filter throughput basically determines how faster the filter is. For the 

experimental study, different kind of filter (Low pass, Band pass, Hi pass, Notch filters) 

has been designed using the new algorithm, discrete time convolution equation. The 

Xilinx’ Virtex-E chip has been used for hardware implementation.  

 

1.4 Organization of Thesis 

This thesis is organized in 7 chapters. Chapters 2, 3 summarize the literature survey 

and necessary background on Digital Filters, Field Programmable Gate Arrays and 

Algorithms. Chapter 4 presents design and implementation of different filters on FPGA. 

Chapter 5 presents the simulated and experimental results on performance of the different 

filters. Chapter 6 and Chapter 7 are in nature of conclusion and future work. 

 Chapter 2 summarizes from available literature the necessary background 

information, including Field Programmable Gate Architecture and a brief introduction to 

Digital Filters. It also describes design, practical implementation concerns and 

application of digital filters. 

 Chapter 3 summarizes the basics of the Discrete time convolution equation algorithm 

from the available literature, especially for implementation of digital filters on FPGA. 

The algorithm is unique in that it solves the hardware constraints problems of FPGA. 

This chapter also describes different approach of using Discrete time convolution 

equation in filter implementation on different aspect, cost and speed. At the end an 

optimized algorithm is also described which takes care of both speed of the filter and the 

total hardware cost. 
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 In this thesis the algorithm described in Chapter 3 has been used to design the filters. 

The design and implementation part is described in chapter 4 in detail. This chapter has 

two subsections Hardware and the Software. How different discrete chips are interfaced 

in particular mode has been described in detail. The software subsection describes the 

total FPGA design flow. 

 Chapter 5 presents the result of practical implementation of different filters with its 

characteristics. Different Filter has been studied and compare with the ideal response 

without truncating the coefficient width. 

 Chapter 6 provides concluding remarks. 

 Field Programmable Gate Array based design is completely new comparable to 

conventional approach. So the question comes here how much adaptability is there with 

this newer kind of devices, how much cost we need to implement it and obviously in 

which particular case we should use FPGA. Chapter 7 considers all these aspects. The 

scope of future work also has been suggested at the end of this Chapter. References and 

Datasheets are provided at the end of the thesis. 
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2 FPGA and Digital Filter Basics 
2.1 Introduction 

 This chapter introduces the two main fields, FPGA architecture and Digital Filter 

Design. Section 2.2 provides some necessary background information on FPGA 

Architecture. Section 2.3 provides a brief introduction to Digital Filters and design of 

filters. At the end of this section application of digital filters has been given in brief. 

 

2.2 General FPGA Architecture  

 Virtex-E devices feature a flexible, regular architecture that comprises an array of 

configurable logic blocks (CLBs) surrounded by programmable input/output blocks 

(IOBs), all interconnected by a rich hierarchy of fast, versatile routing resources. The 

 
Figure 2.1: Simplified Block Diagram of a CLB 

 

abundance of routing resources permits the Virtex-E family to accommodate even the 

largest and most complex designs. Virtex-E FPGAs are SRAM-based, and are 
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customized by loading configuration data into internal memory cells.  Con- figuration 

data can be read from an external SPROM (master serial mode), or can be written into the 

FPGA SelectMAP™, slave serial, and JTAG modes). The standard Xilinx Foundation 

Series™ and Alliance Series™ Development systems deliver complete design support for 

  

 
Figure 2.2: Simplified Block Diagram of a IOB 

 

Virtex-E, covering every aspect from behavioral and schematic entry, through simulation, 

automatic design translation and implementation, to the creation and downloading of a 

configuration bit stream. 

 

2.2.1 Features of Virtex-E Series FPGAs 

Within one year of launching the original Virtex series, Xilinx has raised the bar yet 

again by introducing the next generation 1.8-volt Virtex-E family that enhances all 

aspects of the Virtex attributes. Fabricated on a leading edge 0.18 um, six-layer metal 

silicon process, the Virtex-E family has significantly increased both performance and 

density, while providing a high-performance system level feature set that further 
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addresses the bandwidth requirements of the next generation data communication and 

DSP applications. The advanced high-performance feature set of the Virtex series 

includes:   

• Densities ranging from 50,000 to 3.2 million system gates   

• Support for 20 I/O standards, including three differential signaling standards   

• Over 311 Mbps single-ended I/O performance   

• Up to 832 Kbits of internal True Dual-Port(TM) BlockRAM   

• 8 DLLs for 311+ MHz clock management   

• Up to 804 single-ended I/Os or 344 differential I/O pairs   

• Direct interfacing to high performance memory devices   

Here in this implementation Xilinx XCV300EPQ240 has been used for prototyping. 

The details of this device could be referred from   [DB2000, Xilinx]. 
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Figure 2.3: Functional Block Diagram of Virtex-E FPGAs 
 
Since it is fully supported by Xilinx(TM) Alliance Series(TM) and Foundation Series(TM) 

software, as well as all of the EDA tools from Xilinx Alliance partners, the Virtex series 

is a complete solution ready to meet the challenges of next generation designs. The 

available software also includes the built-in CORE Generator(TM) tool with a variety of 

web downloadable Smart-IP(TM) BaseBlox(TM) cores. The Virtex solution helps system 

designers quickly create very complex designs with guaranteed results.   

 

2.2.2 Delay Locked Loop 

 As FPGAs grow in size, quality on-chip clock distribution becomes increasingly 

important. Clock skew and clock delay impact device performance and the task of 

managing clock skew and clock delay with conventional clock trees becomes more 

difficult in large devices. The Virtex-E series of devices resolve this potential problem by 

providing up to eight fully digital dedicated on-chip Delay-Locked Loop DLL) circuits 

which provide zero propagation delay and low clock skew between output clock signals 

distributed throughout the device. Each DLL can drive up to two global clock routing 

networks within the device. The global clock distribution network minimizes clock skews 

due to loading differences. By monitoring a sample of the DLL output clock, the DLL 

can compensate for the delay on the routing network, effectively eliminating the delay 

from the external input port to the individual clock loads within the device. In addition to 

providing zero delay with respect to a user source clock, the DLL can provide multiple 

phases of the source clock. The DLL can also act as a clock doubler or it can divide the 

user source clock by up to 16. Clock multiplication gives the designer a number of 

designs alternatives. For instance, a 50 MHz source clock doubled by the DLL can drive 

an FPGA design operating at 100 MHz. This technique can simplify board design 

because the clock path on the board no longer distributes such a high-speed signal. A 

multiplied clock also provides designers the option of time-domain-multiplexing, using 

one circuit twice per clock cycle, consuming less area than two copies of the same circuit. 

Two DLLs in can be connected in series to increase the effective clock multiplication 

factor to four. The DLL can also act as a clock mirror. By driving the DLL output off-
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chip and then back in again, the DLL can be used to de-skew a board level clock between 

multiple devices.  

2.3 Introduction to Digital Filters 

A filter is a system of network that selectively changes the wave shape, phase-

frequency and amplitude – frequency characteristics of a signal as desired by the design 

Engineer. Filtering has the following effect on the input signal: 

 

 Improves the quality of signal,  

 Reduces noise, 

 Extracts information, 

 Separates multiple signals to get efficient information out of them. 

 

Filtering can be done in two ways: 

 Analog filtering. 

 Digital filtering. 

 

A digital filter is a mathematical algorithm implemented in hardware and software to 

operate on a digital input signal to produce a digital output thus achieving the above-

mentioned objectives. Digital filters more often work on the digitized version of analog 

signals obtained after sampling or on just numbers, stored in the computer memory. The 

interface circuit performing the conversion of a continuous time analog signal (CTS) into 

its digitized version is called analog to digital converters (A/D) and the processed 

digitized output to its analog version is done by digital to analog converters (D/A). As A 

to D conversion takes some time (depending on the type of ADC used) it is necessary to 

keep the analog signal at the input of the ADC constant in amplitude until the conversion 

is complete for better results (at least at high frequencies>100Hz). This is achieved by the 

sample and hold (S/H) circuit which samples the input CTS at regular interval and holds 

the analog sampled data constant at its output for sufficient time to permit accurate 

conversion. The different AD, DA, S/H circuit specifications used in the work is 

discussed later on.  
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A block diagrammatic representation of the real time digital filter is shown in figure  

Sample 
& Hold 

ADC Digital Filter DAC Analog 
Input 

Analog 
output 

Figure 2.4: Block diagram of a digital filter 

 
 The S/H circuit consists of operational amplifiers, capacitors etc to provide better 

isolation and tracking of the input signal. The total time needed to switch from the hold 

mode to sample mode and to acquire the input with considerable accuracy is called 

acquisition time and it depends on RC time constant of the circuit. The converse of the 

above is known as aperture time .The A to D converter takes the output of the S/H circuit 

as its input. For signal processing applications the output of ADC is in binary code. The 

output is a sequence of words with each word representing a sample of sequence is a 

collection of bits, which limits the dynamic range, and accuracy of the converter. 

 The Sample and Hold circuit along with the Analog to Digital converter or the ADC 

produces a discrete time signal as most of the digital filters work on DTS. A discrete-time 

signal is a sequence of values that correspond to particular instants in time. The time 

instants at which the signal is defined are called the signal’s sample times; traditionally, a 

discrete-time signal is considered to be undefined at points in time between these instants. 

For a periodically sampled signal, the equal interval between any pair of sample times is 

the signal’s sample period, Ts. The sample rate, Fs, is the reciprocal of the sample 

period, or 1/Ts.The figure 2.5 will give an example of DTS. 
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Ts

Time

Figure 2.5: Example of DTS 

 
 Digital filters are now an integral part of Digital Signal Processing (DSP) where they 

are preferred compared to Analog filters in number of applications. The table below 

tabulates the different advantages and disadvantages of digital filters compared to their 

analog counterparts. 

 

Advantages Disadvantages 

Truly linear phase response and 

performance repeatable from unit to unit. 

Lower speed of response due to speed 

constraint of ADC and DAC. 

Inert to environmental changes and can 

operate at very low frequencies. 

The maximum bandwidth is in real time 

much lower than Analog filters. 

Can work over wide range of frequencies 

just by changing the sampling frequency. 

They are subjected to ADC noise, 

Quantization error, round off noise whose 

cumulative effect can make the filter 

unstable. 

Single hardware can operate over a number 

of channels. 

The hardware design and development is 

more time consuming. 

They are more precise as their precision is 

limited by word length used. 

 

 

 

Digital filters are broadly divided into two classes: 

 Finite impulse Response (FIR) filters. 

 Infinite Impulse response (IIR) filters. 
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 Both the type of filters can be represented by the formula,  

  ∑
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Where h(k) is the impulse response sequence (k=0, 1, 2, 3, . . . . . . . ) of the filters. In FIR 

filters h(k) is finite, i.e.  

( ) 0=kh  for k > N2 and k < N1 where N1 < N2. 

In an IIR filter, however, h(k) is infinite.  

 The z-transform realization of such a filter is given by the transfer function H(z) and 

is represented  in the z domain as  
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and x[n] and y[n] are the input and output sequences and the filter is always BIBO stable 

over the whole frequency range of interest. This is because, all poles of the system lie on 

z = 0 in the z plane. Thus the region of convergence is the whole of the z plane except 

z=0. 

 As stated before, in IIR filters the impulse response is of infinite duration. Thus, the 

transfer function is generally expressed in a infinite series form.  
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 An IIR filter of order N requires 2N+1 unique coefficients and requires 2N+1 

multipliers and 2N adders for implementation. It can be seen from the above equation 

that the output y(n) depends  on past outputs y(n-k) and past input samples x(n-k) which 

makes IIR filter some sort of feedback network.  

 IIR filters are not inherently stable like FIR filters. This is because they contain M 

poles; the region of convergence is exterior to the circle containing the pole farthest away 

from the origin. If the region of convergence includes the unit circle, the system is stable. 

 

2.3.1 Filter Structures 

 The structure of a filter in its direct form from the equation mentioned above can be 

represented as, 

 

Figure 2.6: IIR structure using Direct Form I. 

z-1

Multiplier 

Delay 

Adder/ 
Substractor

 
 In FIR structure, the feedback loop block of the diagram is not present. 

 Another form, called the Direct form II reduces the delay elements by half. Filters can 

also be made with cascade and parallel combinations of filters of smaller, usually second, 

order. These implementations break the H(z) polynomial into forms like –  
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Or 
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2.3.2 Comparison between FIR and IIR filters. 

 

FIR IIR 

Exactly linear phase response with no 

phase distortion even when causal. 

Non-linear phase response at the band 

edges. 

Non-recursive realization makes them 

stable. 

Stability not always guaranteed. 

Effect of round off and coefficient 

quantization errors are less prominent. 

Drastically changes the performance of the 

filter.  

Transients have a finite duration. Transients have infinite duration. 

Requires more coefficients for sharp cutoff 

than IIR.  

Analog filters can be readily transformed 

into digital IIR filters. 

 

2.3.3 Filter selection criteria 

 Sharp cutoff, high throughput  - IIR with elliptic properties. 

 Full phase linearity - FIR. 

 

2.3.4 The Sampling Theorem and Nyquist Rate 

 The available frequency band for analog filters extends from zero to infinity, but for 

digital filters it varies from zero to the Nyquist frequency as governed by the sampling 

theorem which states that the signal should be sampled at the rate of atleast 2fmax, where 

fmax is the highest frequency component in a signal to get proper out put. 

Fs≥  2fmax 

Where, Fs is the sampling frequency or rate. The quantity 2fmax  is also called Nyquist rate 

and the over sampling ratio is defined as: 
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Over sampling ratio=
max2 f

Fs  

In filter design approach the over sampling is more preferred. 

 

2.3.5 Digital Filter Design 

 To design a digital filter, we must first obtain the specifications of the filter we have 

to design. The specifications of digital filter are based on the magnitude or phase 

response of the system to be designed. The phase criteria are usually corrected after 

meeting the magnitude specifications by cascading it with all-pass filter, called a phase 

equalizer. The magnitude specifications are de 

 An ideal filter has a “brick walled” response – it passes certain frequencies and do not 

pass others. It is not possible to realize this magnitude response in practice, because the 

impulse response of these filters are non-causal and have doubly infinite length. One of 

the ways to obtain an approximate roll-off is to truncate the coefficients. This results in a 

non-ideal response, which contains ripples in the passband and stopband. Also the sharp 

response is replaced by a gradual roll-off. Filter design involves the design of filters, 

which will conform, to certain tolerance levels, which are specified.  

Filter specifications: Specification of a filter includes: 

 Order of the filter (N) – This usually depends on the other specifications, but is very 

important, increasing order leads to an increasing computational complexity and 

hence additional burden on the resources. 

 The sampling frequency (Fs). This must be such that the digital system is capable of 

handling the bandwidth of the signal, i.e. the maximum frequency of the signal must 

be less than the Nyquist frequency 

 Pass band edge frequency (fp). The value upto which frequencies can pass 

unattenuted through the filter 

 Stop band edge frequency (fs). The value after which frequencies are not allowed to 

pass at all. 

 Pass band ripple ( ). The maximum deviation allowed in the pass band. pΔ

 Stop band ripple ( ). The maximum deviation allowed in the stop band. sΔ
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The specifications are visually described using the figure 2.7, which shows the 

specifications for a low pass filter.   

 

 

Actual 
Response 

Ideal 
Response 

Figure 2.7: Specifications of digital filter 

 
In this case, the pass band is from 0 to Fp and the stop band from Fs to the 1. The band of 

frequencies from Fp to Fs is known as the transition band and controls the sharpness of 

fall(or rise) of the magnitude response. In the digital domain, frequencies are normally 

measured in normalized frequencies. The relation between normalized frequency and 

frequency in hertz is given by, 

     ω = 
sf
fπ2  Where fs is the sampling rate. 

In the pass band, we require that the magnitude should approximate unity with a 

maximum error of ±Δp. Mathematically,  

     pp jG Δ+≤≤Δ− 1)(1 ω  for pF≤ω  

     and, sjG Δ≤)( ω  for 1≤≤ ωsF  
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2.3.6 FIR filter design  

 Given the specifications of the filter, the most important choice is the order of the FIR 

filter. The higher the order, the better the filter, but the computational time increases. To 

get an sharp cut-off with transition band less than 100Hz and ripples less than .1, the 

required orders are more than hundred. The difference that order makes on the response 

is evident from figure 2.8.  
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Figure 2.8: FIR filters with cutoff at ω=0.5 

 To estimate the order, a simple formula has been provide by Kaiser, given by,  

     
( )

πωω 2/)(6.14

13log20 10

ps

spN
−

−∂∂−
≅  

 This gives an approximation to the filter order for moderate passband filters. Order is 

seen to be inversely proportional to the transition width (ωs - ωp) and also increases on 

decrease of the allowable ripples. 

 In MATLAB, two functions – remezord and kaiseord are provided which provide us 

with the approximate order of the filter on specification of the ripples and the edge 

frequencies. Remezord is Parks-McClellan optimal FIR filter order estimation and is 

given as: [N, Fo, Ao, W] = remezord (F, A, DEV, Fs) 
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Where normalized frequency band edges are given as Fo, frequency band magnitudes are 

given by Ao and weights W.  

 

2.3.6.1 Windowing method of filter design 

 To design a FIR filter, we start with the ideal filter response  -  

πωω
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Figure 2.9: Effect of rectangular window 

  
 

 Low Pass is taken as an example and the following discussion is true for any type of 

filter. The impulse response of this filter is doubly infinite and given by 
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 This is impossible to take, as we need to store a finite amount of coefficients. Thus, 

we truncate the coefficients using a window function. The simplest window function is a 

rectangular window, given by 
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 This has the effect of leaving out some of the values of the series. The rectangular 

window has sharp edges and gives rise to Gibbs phenomenon, i.e. an appreciable ripple is 

introduced into the output as seen in the figure 2.9. 

 

 To remedy this, we can use the Bartlett or triangular window, which does not have 

any edges.  
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 This results in no ripple. However, the transition band is widened appreciably. Many 

trade-offs between these two are available.  
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Hamming window has been used in this case. 

 In MATLAB the filter is be designed by fir1 function with the command B = FIR1 

(N, Wn) which designs an N'th order low pass FIR digital filter and returns the filter 

coefficients in length N+1 vector B. The cut-off frequency Wn must be between 0 < Wn 
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< 1.0, with 1.0 corresponding to half the sample rate.  The filter B is real and has linear 

phase, i.e., even symmetric coefficients obeying B(k) = B(N+2-k), k = 1,2,...,N+1.  

B = FIR1 (N, Wn,'high') designs a highpass filter. 

B = FIR1 (N, Wn,'stop') is a bandstop filter if Wn = [W1 W2]. 

B = FIR1 (N, Wn) is a bandpass filter if Wn = [W1 W2]. 

Where in both the above cases passband is W1 < W < W2. 

By default FIR1 uses a Hamming window.  Other available windows, including Boxcar, 

Hanning, Bartlett, Blackman, Kaiser and Chebwin. 

 

2.3.7 IIR filter design 

 IIR filters are usually designed by using the Analog filter design. There are 

broadly two ways to design an IIR filter, IIT and BLT.  

 

2.3.8 Practical implementation concerns 

 The functions realized in practice by MATLAB give coefficients to a very high 

precision but as actual implementation is done in digital domain, a constraint of limited 

number of bits degrades the performance of the filters and to some extent makes them 

unstable. The sources are discussed below: 

 Overflow: ADC, DAC and filter design constraints the number of bits in a 

wordlength. But if due to addition permissible word length is exceeded wrong output 

samples are generated which leads to instability in IIR filters. 

 ADC quantization: The analog to digital conversion process quantizes each signal 

into 2bits of ADC and hence this introduces an error seen as ADC noise. 

 Coefficient quantization:  The coefficients obtained from Matlab are correct up to 

many places of decimals, but to implement the digital filter, the coefficients must be 

represented by a fixed number of bits determined by the software inbuilt filter 

wordlength. This introduces considerable amount of noise with large transients, 

changed frequency response, sharp transition widths and brings the poles close to the 

unit circle. This effect is more severe in IIR filters than in FIR filters and might push 

them towards instability. It also changes the stop band and pass band attenuation. 
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Scaling factor = 2^5 - Spikes present

Scaling factor = 2^10 - Slow Roll-off

Scaling factor = 2^15 - Small amount of pass ripple

Scaling factor = 2^20 - Ideal

Figure 2.10: Illustration of Truncation effect 
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 Coefficient Scaling and truncation effect: The coefficient quantization problem 

as mentioned above leads to a very important practical consideration in filter 

design, i.e. coefficient scaling. The FPGA is fixed point device, which implies it 

cannot accept floating-point numbers. Essentially, we can only provide the 

coefficients as integers, and we have to remember the decimal point.  

 Most of the coefficients in the design are around 1 or much smaller. This implies we 

have to multiply them by a certain constant to represent them as a constant. Apparently 

the easiest solution is to shift the decimal point by an adequate number of places – which 

translates as a multiply by 10. However, while providing output the FPGA has to scale 

down the value by 10. Moreover, many scale-ups and scale-downs may be necessary 

inside the FPGA. All these would require Multipliers and Dividers. Thus, we scale up 

and down by factors of 2. This means, scaling up can be done by the FPGA by placing 

adequate number of zeros after the number. Also, scaling down would involve simply 

neglecting the required number of LSBs. Thus, a great deal of hardware is saved. 

 As already mentioned, it is impossible to take numbers with the precision of 

MATLAB. Thus, after performing the scale-up operation, we have to truncate the trailing 

decimal values. This results in highly distorted response if the scaling factor is small. The 

effect of truncation is shown by figure 2.10. The response of an IIR elliptic filter is taken 

as the example and the truncation effects are simulated on MATLAB.  

 

2.3.9 Application of digital filters: 

 

1. Digital Audio Technology: 

 Digital filters find considerable use in digital graphic equalizers, CD players and 

digital audio system. IIR filters are very much in use in Audio frequency splitting of 

the whole range into bands. 

 

2. Instrumentation: 

 The digital filters are exclusively used in digital control system to built digital 

controllers. 
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 Frequency Generation: IIR filters with poles at the unit circle is unstable and this fact 

is exploited in designing sine wave frequency oscillators with considerably high 

accuracy. 

 

3. Telecommunication: 

 Digital Telephony: Digital communications use PCM data communication. IIR filters 

provide the necessary low pass, band pass filters at the transmitting and receiving 

end. 
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3 Digital Filter Design Using Discrete Time Convolution Equation 
3.1 Cost vs. Speed 

 Traditionally, digital signal processing (DSP) algorithms are most commonly 

implemented using general-purpose (programmable) DSP chips for low rate applications, 

or special-purpose (fixed function) DSP chip-sets and application-specific integrated 

circuits (ASICs) for higher rates. But with the technological advancements of FPGA, they 

are now efficiently used in the design of custom DSP devices. The main advantage of 

FPGA is speed. The speed requirement is worth giving attention when the filter order 

increases. For higher order filters FPGA based designs are much faster compared to DSP 

chips. Also the FPGA advantage grows for multiple filter channels. 

 The fully parallel model leads to highest speed where the data rate matches the clock 

rate (which can be greater than 100MS/S in today’s FPGAs).  But in this case the number 

of DALUTs is maximum. In serial implementation, only one DALUT is needed. So 

hardware requirement is reduced. But the price to be paid for this is the reduction in 

speed. If the input data is B bits wide, the computation of output takes at least B clock 

cycles. So the data rate = (Clock rate of the FPGA)/ (No. of Bits in Input Data) 
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3.2 FIR Filter 

A causal FIR filter of order N is characterized by a transfer function H(z). 

  H(z)  =        ---(1) ∑
=

−
N

k

kzkh
0

][

which is a polynomial in z-1. In the time domain, the input output relation of the above 

FIR filter is given by 

   

  y[n]  =       ---(2) ][][
0

knxkh
N

k
−∑

=

where y[n] and x[n] are the output and input sequences, respectively. 

 There are several realization methods for FIR filters. These are direct form 

realization, cascade form realization, polyphase realization etc. Direct form realization is 

discussed here. 

 

3.2.1 Direct Form FIR filter 

 An FIR filter of order N is characterized by N+1 coefficients and, in general, requires 

N+1 multipliers and N two input adders for implementation. Structures in which the 

multiplier coefficients are precisely the coefficients of the transfer function are called 

direct form structures.  

 

 

 

z-1 z-1z-1z-1

h(0) h(1) h(2) h(N) h(3)

x(n) 

y(n)

Figure 3.1: Direct form FIR structure 
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The structure of Figure 3.1 is also called a tapped delay line or transversal filter. Its 

transpose gives a second direct form structure. Both direct form structures are canonic 

with respect to delays. 
 Even though the figure is a useful conceptualization of the computation performed by 

the core, the actual FPGA realization is quite different. A discrete time convolution 

equation (DA) realization is employed. With this approach there are no explicit 

multipliers employed in the design, only lookup tables (LUTs), shift registers and a 

scaling accumulator. 

 

3.2.2 Using Filter Symmetry 

 The impulse response of many filters posses significant symmetry. This symmetry 

can be exploited to minimize arithmetic requirements and produce area efficient filter 

realizations. The following figure 3.2 shows the impulse response of a 7 tap symmetric 

FIR filter. 

h0

h1

h2 h3   h4  
(= h2)

  h5  
(= h1)

  h6  
(= h0)

Figure 3.2: Symmetric FIR- odd number of terms 
 

 

 

 Instead of implementing this filter using the architecture shown in Figure 3.1, the 

more efficient signal flow-graph in Figure 3.2 can be used. In general the former 

approach requires N+1multiplications and N additions. In contrast, the architecture in 

Figure 3.2 requires only (N+1)/2 multiplications and approximately N additions. This 

significant reduction in the computation workload can be exploited to generate efficient 

filter hardware implementations. 
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 Figure 3.3. shows the impulse response of an 8 tap negative symmetric or odd 

symmetric FIR filter. 
 

 

z-1

z-1

z-1z-1

z-1 z-1

h(0) h(1) h(2) h(3) 

Figure 3.3: Exploiting coeff. symmetry- odd number of filter taps 
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z-1

z-1

z-1

z-1 z-1

h(0) h(1) h(2) h(3) 

+ + + --- 

Figure 3.4: Exploiting coeff.  Symmetry-even number of filter taps 
 

 

h(0) 

h(1) 

h(2) 

h(3) 

h(4)=−h(3) 

h(5)= −h(2) 

h(6)=−h(1) 

h(7)= −h(0) 

 
Figure 3.5: Negative Symmetric Impulse Response  
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This symmetry is easily exploited in a manner similar to that shown in Figure 3.2 and 

Figure 3.3. In this case the middle layer of adders is replaced by subtractors as illustrated 

in Figure 3.4. 

 The example considered here illustrates a filter with an even number of terms, the 

filter structure for an odd number of terms is a simple extension of the same principle. 

 The core generator filter module allows the filter symmetry to be specified. When the 

impulse response does exhibit symmetry, the filter logic requirements can be significantly 

reduced in comparison to an implementation that does not exploit the impulse response 

structure. For example a 100 tap non-symmetric filter with 12-bit data samples and 12-bit 

coefficients consumes 519 Virtex logic slices [Source: Xilinx Product Guide, Xilinx Inc. 

1999]. In contrast, a 100 tap symmetric filter is realized with 354 slices. This represents 

approximately a 30% savings in area. 

 

z-1

z-1 z-1 z-1

z-1

z-1

z-1

+ + + + 

 

h(0) h(1) h(2) h(3) 

 
Figure 3.6: FIR Architecture- Exploiting Negative Symmetry 

x(n) 

y(n) 
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4  Hardware Architecture of Digital Filters  
4.1 Introduction 

 The aim of the project is to design and implement various digital filters on Field 

Programmable Gate Array. This chapter has two subsections, Hardware architecture and 

Interfacing Hardware. In the Hardware Architecture section is Modular description of 4-

Tap FIR Digital filter and functional units. In the interfacing circuits has been explained.  

 

4.2 Hardware Architecture of 4-Tap FIR Digital Filter 

In order to implement the top-level design specifications, we break down our design into 

simple modules, each of which is a well-defined functional unit. Our modular diagram is 

shown in Figure 4.1. 

 

 
 

Figure 4.1: Modular Architecture of a 4-Tap FIR Digital Filter 
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Now we can Estimate the number of transistors necessary in each module. 

• Input Memory: 4 8-bit registers = 32 D Flip-Flops  576 devices 

• Coefficient Memory: 4 8-bit registers = 32 D Flip-Flops   576 devices 

• Control Logic: Mod-4 Counter + Decoder + 20 Logic Gates  400 devices 

• 8-bit Multiplier: 56 1-bit Adders + 64 AND gates  1,768 devices 

• 16-bit Register: 16*(D flip-flop + 2 transmission gates)  330 devices 

• 17-bit Adder: 17 1-bit Adders  510 devices 

• 17-bit Register: 17*(D flip-flop + 2 transmission gates)  350 devices 

• Truncation Logic: 3 Transmit ion Gates + 10-input OR + 10-input NAND   

70 devices 

This list yields an estimate of approximately 4,600 devices total. 

 
                    The input memory holds the four latest input coefficients x[n] for purposes 

of multiplication. The coefficient memory holds the four impulse response coefficients 

h[n]. The control logic functions as the driver for the filtering process: it contains a 

counter, a decoder, and appropriate logic to direct traffic over the buses, through the 

adder and multiplier, and into appropriate registers. The 8-bit multiplier is of the array 

type, and is made up primarily of 1-bit adders and AND gates. Since the output of the 

multiplier is a 16-bit quantity, we need a 16-bit register to store the intermediate result. 

The largest 8-bit quantities we can multiply are 0x7f. The largest product of these two 

multiplicands is 0x3f01. In the worst case, we would add 4 of these products together for 

our accumulator result, yielding a worst-case answer of 0xfc04, which is a 16-bit 

unsigned number. Adding a sign bit for two's complement numbers yields a minimum 

result-storage mechanism of 17 bits. Therefore, we have a 17-bit ripple-carry adder 

linked to a 17-bit accumulator register. To input the 16-bit multiplier register into the 17-

bit adder, we simply sign-extend the 16-bit quantity. Finally, we need to convert our 

signed 2's complement 17-bit quantity into a signed 2's complement 8-bit quantity. The 

logic for this operation is contained in the “Truncation Logic" block, which will 

essentially test for two cases, numbers higher than 0x7f and lower than 0x80. 
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4.2.1Coefficent and Input Memory Units 

The first functional blocks to be implemented are the two memory blocks, which store 

the four previous input values and the four coefficients for computation purposes. Each 

memory is essentially a collection of four 8-bit registers with appropriate input enable 

and output select lines to control the input and output of the 8-bit values into and out of 

the registers. 

A block-level diagram of the input memory is shown in Figure 4.2 The input memory is 

designed to get a new input value at each computational clock cycle and to shift each 

previous input down one level, discarding the oldest inputs as necessary. As shown, the 

output to the multiplier is selected by the two select lines c0 and c1. 

 

 
 
Figure 4.2: Input Memory Block Diagram  
 

 

The coefficient memory, on the other hand, expects input values only when the COEFIN 

select pin is HIGH on the chip. A block diagram of the coefficient memory is shown in 

Figure 4.3. Since, unlike in the input memory case, any arbitrary coefficient can be input 

directly without changing the other coefficients, a second bus select line (depicted in the 

figure by the DEMUX) is necessary for the inputs, controlled by the input select lines c0 

and c1. 

The basic building block of the memory units is the register. In each 8-bit register, there 

are 8 D flip-flops, 10 transmission gates, 2 inverters, and an AND gate for a total of 174 
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devices. Our registers have both output and input enables, which leaves them quite 

flexible for use throughout our project for things other than the memory units. 

The Coefficient Memory has 800 devices total, and the Input Memory has 840 devices 

total. The input memory is larger because of the more complicated internal register 

transfer capability. 

 

 
 

Figure 4.3: Coefficient Memory Block Diagram  
 
 
 
 
4.2.2 Control Logic 

The control logic essentially implements the algorithm of the FIR filter. The basic 

functionality of the control logic involves the maintenance of two counters, one mod-8 

and one mod-4, counting the clock pulses coming in to the chip. One “clock cycle" 

occurs when the mod-4 counter has cycled once, since it is the “tap counter." Since we 

have four taps, each increment of the mod-4 counter corresponds to a tap of our FIR 

filters. The mod-8 counter cycles once for each tap, for a total of 24 clock pulses per 

clock cycle.  

A block diagram of the controller is shown in Figure 4.4. The output of the mod-8 

counter is fed through a 3-8 decoder, and the resulting lines function as “phase switches" 

for the clock cycle.  
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Figure 4.4: Controller Block Diagram  
 
 
 
Clock Phase Output Signals for Control Logic 

T0 If (CoefIn) then CoefInEna and CounterReset 
else, InputInEna and if c1c0==00 then AddRegClear 

T1 Multiplier Propagation Delay 

T2 Multiplier Propagation Delay 

T3 Multiplier Propagation Delay 

T4 MultRegInEna 

T5 AddRegInEna (Adder Propagation Delay) 

T6 If c1c0==11 then OutRegInEna 

T7 TapCounterIncrement 

 

Table 1 enumerates the eight-phase algorithm iterated once for each filter tap. 
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4.2.3 Array Multiplier 

The largest single block of our filter is the array multiplier. We decided upon an array 

multiplier design because of the sheer amount of multiplication present in the operation 

of a finite impulse response filter (four multiplications per output). Our 8-bit array 

multiplier takes two 8-bit signed two's complement numbers and produces a 16-bit 

answer. The actual array of 1-bit adders actually cannot accommodate signed two's 

Complement numbers, a “feature" we originally discovered during our simulation! As a 

result, we added appropriate logic before and after the multiplier to accommodate signed 

arithmetic. This logic analyzes the sign of the multiplier and multiplicand to determine 

the expected sign of the result, and takes the two's complement of each value as 

necessary to ensure the proper form of output. The actual multiplier core contains 56 1-

bit adders and 64 AND gates but has a propagation delay of only an 8-bit ripple-carry 

adder! The additional sign logic adds two more adder propagation delays because each 

Conversion to or from two's complement form requires an addition. The array multiplier 

core consists of 2176 total transistors. With the additional sign logic included inside our 

implementation, our multiplier block contains 3424 transistors total. 

 

4.2.4 17-Bit Adder (Critical path) 

The 17-bit adder is comprised of 17 1-bit adders. Because the multiplier is given three 

clock phases for its propagation delay, the 17-bit adder becomes the speed bottleneck for 

the speed at which our clock may be run. For a conservative estimate of clock rate, we 

quadruple this propagation delay (allowing a 4.5 ns level hold time) for our clock period. 

This 6ns clock corresponds to a 166 MHz clock rate! Theoretically, then, our FIR filter 

should be able to run at approximately 166 MHz, neglecting heat dissipation and load 

capacitance effects. Because there are 32 clock rises per output, we calculate an output 

Frequency of roughly 5.2 MHz, or 5.2 million outputs per second. This sampling 

frequency is more than enough to handle most 8-bit audio and video signal processing 

demands. 
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4.2.5 Truncate Logic 

The last step taken before the value is sent to the output register is the truncation of the 

17-bit Accumulator register value into an 8-bit two's complement quantity. To 

accomplish this feat, we examine bits b7 through b15 and the sign bit b16. If the sign bit 

indicates a negative answer, then if there are any zeroes present in b7 to b15 we have 

negative overflow. On the other hand, if the sign bit b16 indicates a positive answer, then 

any ones present in b7 to b15 would signify positive overflow. Any other case represents 

a normal value within our 8-bit range, so we need do nothing. The flowchart is shown in 

Figure 4.5. Our logic implementation uses transmission gates to select the appropriate 

output depending upon the status of overflow. For positive overflow, we set the output to 

(0b01111111), which is the largest 8-bit positive quantity we can represent. For negative 

overflow, we set the output to (0b10000000), which is the most negative quantity 

possible for signed two's complement 8-bit numbers. In the case of no overflow, we pass 

the first eight bits of our answer to the output register unchanged. 

 

 
Figure 4.5: Truncate Logic Flow Diagram  
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4.3 Interfacing Methodology  

The basic block diagram used is shown below. An analog signal is input into the system. 

This analog signal may be obtained from any source, but here a function generator has 

been used as a signal source.  

 

 

Figure 4.6

Analog 
Input 

12 bit Digital Signal 

Analog 
Output

Sample/Hold ADC 

FPGA

DAC 

Control Signal 

Analog Signal 

Filter 
Assembly

Control 
Signals

 
  

 The analog input is fed into a sample and hold circuit, so that it can be digitized by 

the Analog to Digital Converter (ADC). Both the Sample and hold and ADC require 

control signals for their operation. These are generated by the FPGA itself.  

 Thus the function of the FPGA is two-fold. It is used to generate control signals for 

the peripherals as well as to condition the input digital signal by the use of filters. The 

“filter assembly” shown in the figure has been implemented in various ways. FIR filters 

and IIR filters have been implemented by using discrete time convolution equation 

method.  
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 The output of the FPGA, which is the processed signal, is then passed through a 

Digital to Analog converter (DAC) and the required analog output is obtained.  

 Any real world signal is an analog one. To use a digital system to process an analog 

signal, we need a Analog to Digital converter (ADC). The output of a digital system is 

also usually a real-world analog signal. To obtain this signal, a Digital to Analog 

converter (DAC) is required. Most ADCs require a Sample and Hold (S/H) circuit to 

sample the signal before conversion.  

 On the output side, the DAC receives new data in every sampling period. Thus the 

output of the DAC is a staircase output. The required analog output signal is obtained 

from the DAC by using an analog low pass filter, which gets rid of the unwanted high 

frequency components. This filter is known as the reconstruction or a smoothing filter.  

 It can be shown, that if the sampling frequency is fs, the maximum bandwidth of the 

digital system is fs/2, ie, only frequencies upto fs/2 are interpreted correctly by the system. 

It can be shown, that if a discrete sequence has a frequency of  

⎟
⎠
⎞

⎜
⎝
⎛ + k

f s

2
 Where 0  < k  <

2
sf

, 

the sequence will be exactly like another sequence with frequency ⎟
⎠
⎞

⎜
⎝
⎛ − k

f s

2
.  

 

This phenomenon is called folding. Similarly, it can also be shown, that a discrete signal 

with a frequency of f, (0 < f < fs), is same as a signal with frequency f + kfs, (k is an 

integer). This phenomenon is known as aliasing.   

 While designing a digital system, we must choose the sampling frequency such that it 

is twice that of the highest relevant frequency of the signal. If in the analog signal, there 

are high frequency components, which are greater than 
2

sf
, it would appear to be a lower 

frequency signal and would create a distortion in the relevant signal information. This is 

prevented by using an anti-aliasing filter, which is an analog lowpass filter, which 

eliminates the higher frequency components of the input signal, and aliasing is reduced.  

 

4.3.1 Sample and Hold (S/H) Circuit 
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 If an analog signal is connected directly to the input of most ADCs, like the 

successive approximations (SA) type ADC, the conversion process can be adversely 

affected if the analog signal changes during the conversion time. Thus a S/H circuit is 

needed which procures a value of the analog signal at a time instant (called sampling) and 

retains that value for the time required by the ADC to convert it in the digital form (called 

holding).  

 

Vin

Vout

Figure 4.7:  Sample and Hold circuit. 

CH

Control Input 

  
 The IC used for S/H operation in the implementation is LF398N. It utilizes high-

voltage, ion-implant JFET technology to obtain high DC accuracy with fast acquisition 

time low droop rate.  The datasheet of the IC is given in appendix. 

  

4.2.1.1 Design Considerations 

 The main consideration in design of the circuit is the choice of the hold capacitor Ch. 

The main tradeoffs are the acquisition time, hold step and droop rate. If the value of the 

capacitance is low, the acquisition time is lower, i.e. the sampling is faster.  However, the 

hold step will increase due to the stray capacitive coupling between the input logic 

signals and the hold capacitor. The magnitude of hold step is inversely proportional to the 

hold capacitor value.  

 The logic signals are generated form the XILINX FPGA which uses LVTTL (Low 

Voltage TTL) and thus logic high is 3.3V and logic low is 0V. The logic pin is high 

during sampling and low during the hold operation.   
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Figure 4.8: Output of sample and hold 

 
 The input of the SHA and the corresponding staircase output is shown in the figure. 

The figure 4.3 has been taken from a digital oscilloscope.  

 

4.3.2 Analog to Digital Converter 

 The next step in the digital processing of an analog signal is the conversion of the 

output of the S/H circuit in its hold mode to a digital form. This is done by the analog to 

digital converter. The digital output consists of a number of bits, which is usually in 

binary code. The numbers of bits limit the achievable dynamic range as well as the 

accuracy of the converter. 

  Different methods have been developed for A/D conversion. The fastest type of A/D 

is the Flash Type A/D. It requires (2n-1) comparators for n bit output. More than 10 bit 

flash type A/D is difficult to implement and is very expensive. Most IC flash type A/D is 

available in 2-8 bits output. For higher resolution, other types of ADCs are used. 

Integration type ADCs The counting type of ADC may also be used, in which a digital 

counter is employed which increases the value of a digital word at each clock pulse. A 

DAC calculates the analog equivalent of the digital word and compares it to the input 
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analog voltage. The counting stops as soon as the two voltages are equal. The conversion 

time depends on the value of the analog input. A relatively new type of high speed ADC 

is the oversampling sigma-delta ADC in which the sampling rate is much higher than the 

nyquist rate which enables the difference of the consequent samples to be expressed as 1 

bit.  

 

4.3.2.1 Practical Considerations for an ADC 

 All ADCs have an inherent limitation of resolution. A digital system cannot take any 

arbitrary value as an analog system can. A digital system recognizes a finite number of 

steps, and an analog value falling in-between two steps takes the closest one. The error 

arising due to this is known as the quantization error and is equal to ±1/2 of the value of 

the LSB. The only way to reduce this error is to increase the word length. 

 ADCs also have linearity error which occurs if the differences between two 

consecutive transition values are not same for the whole range of input. In AD574A this 

error is limited to ±1 LSB.  

 Offset error occurs if all transitions are shifted from their ideal locations by a equal 

amount. If this shift is not equal for all transitions gain error occurs.   

 In the implementation, successive approximation type ADC AD574A has been used. 

The datasheet is given in Appendix. The AD574A is a 12-bit analog to digital with tri-

state output buffers, containing an on-chip high precision voltage reference and clock.  

In systems where interfacing is done using a bus, the ADC is operated in “full control 

mode”. However, in our FPGA system, we use a 12 dedicated input pins, and thus, the 

ADC is operated in the standalone mode, which do not support full bus interface. In this 

mode the CE and 8/12 are wired high and the CS and AO are wired low. The conversion 

is controlled using CR / .  

 There are two types of control in this mode. Conversion can be initiated with either a 

low pulse or a high pulse. In this implementaion the low pulse form is used. After 

initiation of the conversion with a low pulse, the data remains valid upto a time tHDR. The 

width of the low pulse is tHDL which must be at least 200ns. A time tDS after CR / goes 

low, the STS signal goes high, indicating that conversion has begun. At this time the 

output is driven into a high impedance state and the data is invalid. A time tC afterwards, 
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STS goes low. This is actually a period tHS after the data becomes valid. The timing 

diagram is show in the figure 4.4. 

 
Figure 4.9: Timing Diagram of the ADC in stand-alone mode. 

R/C 

STS 

tHDL

Data Valid Data Valid 

tDS

tHDR

tC 
tHS

DB11-DB0 

High Z 

 The minimum, typical and/or maximum values of each of the times are shown in the 

table. It is evident from the table that after the data is valid and the conversion is 

initiated, a maximum of 600 ns is required for the STS to assert and a maximum 35µs for 

the conversion to take place. Thus, output digital form is obtained 35.6µs after valid data 

is input.  

Table 4.2 : Timing values in stand alone mode 

  
4.3.2.2 Determination of the Sampling rate 

 The sampling rate is limited mainly by the speed constraints of the the SHA and the 

ADC. It is obvious that for digital data to be obtained from an analog input, the 

acquisition time of the SHA and the total conversion time of the ADC is to be taken into 
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account. As mentioned before the SHA has a typical acquisition time of 4µs but is 

guaranteed only at 10µs. Thus the Sample and Hold Logic signal HS / must be kept high 

for 10µs. The sample has to be held for a minimum of 35.6µs for the ADC to finish 

conversion. The minimum total time that must be granted is thus 45.6 µs.  

 It may be noticed that we have used the maximum time or the worst-case values for 

each chip. A faster data acquisition could have been obtained if the sampling pulse 

(set HS / to high) have initiated at the falling edge of the STS signal. Hence potentially 

we could have a total conversion time of 25µs (including the acquisition time). This 

corresponds to a frequency of 40kHz.  

 However, this cannot be applied in this implementation. This is because in this case 

the digital data samples would not be acquired at regular intervals. However, for filtering 

applications, the requirement is to have an uniform sampling frequency. Thus to ensure 

valid data at every sample we consider the worst case values for both SHA and ADC and 

the maximum sampling rate becomes 21.93KHz.  

 In this implementation, a little more leeway, the sampling rate has been fixed at 

14.237 KHz.   

 

 

4.3.2.3 Output of the ADC 

 The output of the ADC is a 12-bit bipolar left justified data with range of -10V to 

10V. This means that all zero output means -10V, and all ones signify 10V. The values of 

the digital words are tabulated below.  

 

Digital Word Analog Equivalent 

000000000000 -10V 

100000000000 0V 

100000000001 4.88 mV 

111111111111 9.997 V 

 

Table 4.2: Digital Word vs. Analog Voltage 
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4.3.3 The Digital to Analog Converter (DAC) 

 The output of the XILINX FPGA is converted to analog form using DAC. The analog 

output of the D/A is proportional to the binary number fed to its input.  

                             Analog output =K* digital input 

      Where K is a proportionality factor and is a constant for a given DAC.  

 There are a number of types of DACs. The most widely used DAC is the R-2R ladder 

type D/A converter that will be briefly discussed here. The circuit diagram is shown in the 

Figure: 

 This D/A employs only two values of resistors. So it is easy to fabricate. Here 

absolute values of the resistors are not important, but their ratio is important which is 

maintained at a value of 2.If the temperature changes, both the resistor values change in 

the same proportion. So their ratio remains more or less the same. 

 The current IOUT depends upon the positions of the SPDT switches. The switches are 

controlled by the binary inputs of the D/A. The voltage VOUT at the output of the Op-

Amp is given by, 

 VOUT = (-VREF) 
( )

4096
22..........222 0

0
1

1
9

91
10

10
11

11 BBBBB ++++

 Which is proportional to the digital input. The same logic can be extended for any 

number of input binary bits. The D/A converter used in the project is DAC7541A. The 

datasheet of the IC DAC7541A is given in the appendix. It is a 12-bit multiplying D/A 

consisting of a highly stable thin film R-2R ladder network and 12 pairs of current 

steering switches on a monolithic chip.  

 

4.3.3.1 Connections of the DAC 

 There are different circuit connections of the DAC that have been recommended; 

such as unipolar two-quadrant operation, unipolar two-quadrant operation with gain 

adjustment, bipolar four-quadrature operation etc. Among these, the unipolar two-

quadrant operation circuit is used mainly, since it is the most simple circuit configuration. 

The input/output relationship is shown in the following table.  
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5 BINARY INPUT 6 ANALOG OUTPUT 

MSB                       LSB 

1111 1111 1111 
-

4096
4095 VREF() 

1000 0000 0000 -
2
1 VREF

0000 0000 0001 -
4096

1 VREF

0000 0000 0000 

 
0V 

 

Table 4.4: Binary Input vs. Analog Output 

 

The circuit diagram for the unipolar two-quadrant configuration of the D/A converter is 

shown in figure 4.5. The D/A converter has no input control signal, nor does it provide 

any signal to indicate end of conversion. Conversion time of D/A is much less than that 

of A/D and hence handshaking signals are not necessary. 

 

 The following constants have been used in the circuit diagrams 

 V+ = +15 V 

 V- = -15 V 

 L = Logic Low – connected to Digital Ground 

 H = Logic High – connected to +5V. 

 

 It is seen that all input from the ADC to the FPGA has been stepped down using a 

voltage divider circuit. This is because the output of the ADC is TTL compatible and thus 

logic high is of the order of 5V. The FPGA is LVTTL compatible and logic high is 3.3V. 

Application of 5V to the input pins of the FPGA is harmful and must be avoided. The 

voltage from ADC is thus reduced by a factor of 
51
33 to transform it form TTL to LVTTL.  

 In the implementation, analog ground and digital ground have been separated and 

connected at one common point. This is because, digital systems produce high frequency 

switching noise. Digital systems being robust are not affected by such noise. However, 
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analog systems are affected by this type of noise. If the grounds of both digital and 

analog parts were connected to the same wire, due to the non-ideal nature of the ground 

connection, high frequency interference from the digital part would creep into the analog 

part. However, both the digital and analog needs the same reference. Thus analog and 

digital grounds are separated, but they are connected at one point.   
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5 Simulation and Experimental Results on Performance of the Filters 
5.1 Introduction 

 In this Chapter, the frequency responses of each of the filters implemented have 

given. The responses of the filters are also compared with the ideal responses and their 

analog equivalent, both taken from MATLAB. The ideal responses have been generated 

using a modified version of the freqz function named myfreqz. In this the magnitude 

response is plotted on a semilog graph instead of the normal linear graph. The frequency 

in Hertz is plotted instead of the normalized frequency. No change has been made to the 

Phase response part of the graph. This is plotted on a linear graph paper to show the 

linearity of phase in FIR filters. 

 

5.2 FIR Filters 

 The fir filters that have been implemented are of very high order, near about 100. In 

each of the filters, the order has been estimated using the remezord function. The order is 

estimated for a transition band between of 100 Hz and a pass and stop band deviation of 

0.1. The fir1 function is used to generate the coefficients and they are written using a 

MATLAB program in the specified format. 

 

5.2.1 Low Pass FIR Filter 

 In this example the cut-off frequency is 550 Hz, the transition band is from 500Hz to 

600Hz, and the allowed deviations are .1 in both stop and pass bands.   

 The impulse response of the system is shown in figure 5.1. The impulse response 

actually gives the coefficients, so we have an idea about the magnitudes of the 

coefficients from the figure. The impulse response is generated by using the filter 

function, using a unit impulse as input and the scaled up coefficients. The impulse 

response, i.e. the coefficients, are symmetric and resembles a truncated sinc function. The 

impulse response shows that the filter is stable, as the output comes back 0.  
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Figure 5.1: Impulse response of FIR Low Pass Filter. 
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Ideal response from MATLAB 

Figure 5.2: Experimental Magnitude response of FIR Lowpass filter 

 
 The “ideal” response shown above uses the truncated coefficients. This is very nearly 

equal to the response shown by MATLAB using high precision floating point values. 
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Only the stop band characteristics are a little distorted. The -3dB point is approximately 

525Hz as opposed to the ideal 550Hz.  

Ideal response from MATLAB 

Figure 5.3: Experimental Phase response of FIR Low pass filter 
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 The phase response could not be calculated for the stop band frequencies. This is 

because of the noise at these levels. Only the pass band response is shown. All readings 

were based on phase angles between -180° and +180°. However, as MATLAB represents 

the data in unwrapped phase angles, it can be also shown it as such by adding 

appropriated multiples of 360° at the required points. This shows the linear phase 

response of the filter in the pass band.  

 
5.2.2 High Pass FIR Filter 

 In this example the cut-off frequency is 550 Hz, the transition band is from 500Hz to 

600Hz, and the allowed deviations are .1 in both stop and pass bands.   

 The impulse response is shown in figure 5.4. The impulse response is obviously 

symmetric.  The middle value is very high (945) and is shown in full, so that the shape of 

the impulse response can be properly seen.  

 
Figure 5.4: Impulse response of FIR High Pass Filter. 
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Ideal response from MATLAB 

Figure 5.5: Experimental Magnitude response of FIR High pass filter 

  In figure, the ideal and the experimental magnitude responses are shown. The dotted 

lines show the -3dB magnitude. The -3dB point is measured to be 580Hz rather than the 
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550Hz of the design. In the readings, it is difficult to measure values below -30dB. 

Actually, readings shown are scaled to make the pass band attenuation to be 0dB.  

Ideal response from MATLAB 

Figure 5.6: Experimental Phase response of FIR High pass filter 

 However, in reality, the output is attenuated due to the properties of the DAC, and the 
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readings lower than -30dB cannot be distinguished from noise. 

 
5.2.3 Band Pass FIR filter 

 In this design, we have the cutoff frequencies of 300Hz and 3000Hz. Thus the and the 

transition width of 100Hz around both the cut-offs. The pass band is from 250Hz to 

2950Hz.  

 

Figure 5.7: Impulse response of FIR Band Pass filter 

 
Figure 5.7 shows the impulse response of the system. The Magnitude response of the 

system is shown along with the ideal. The comb-like responses present in the ideal are 

not present our response because it is below the noise level. The magnitude response is 

shown on a normal graph instead of a semi-log plot.  
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Ideal response from MATLAB 

Figure 5.8: Experimental Magnitude response of FIR Bandpass filter 

 
The -3dB points are found to be 324Hz and 2990 Hz for the two transitions.  
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Ideal response from MATLAB 

Figure 5.9: Experimental Phase response of FIR Bandpass filter 

 
The phase response shown in figure 5.9 is approximately linear.  
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5.2.4 Band Stop FIR filter 
 

 In this design, we have the cutoff frequencies of 500Hz and 3000Hz. Thus the and the 

transition width of 100Hz around both the cut-offs. The stop band is from 550Hz to 

2950Hz.  

 

 
Figure 5.10: Impulse response of FIR Band Stop filter 

 Figure shows the impulse response of the system. The Magnitude response of the 

system is shown along with the ideal on a normal graph, like the band pass filter. 
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Ideal response from MATLAB 

Figure 5.11: Experimental Magnitude response of FIR Bandpass filter 

The -3dB points are found to be 475Hz and 3100 Hz for the two transitions.  
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Ideal response from MATLAB 

Figure 5.12: Experimental Phase response of FIR Band stop filter 

 
The phase response shown in figure 5.12 is approximately linear.  
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Figure 5.13: Experimental HDL Simulated  response of FIR  filter 
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5.3 Relative performance 

 In this section, the performance of the filters has been presented in both theoretical 

and experimental way. The filter throughput has been determined by theoretical 

approach. The quality or performance of the filters has been determined through 

implementation. Also from the MAP report the CLB count has been given in tabular 

format. 

 

5.3.1 Filter Throughput  

Specifications DSP’s performance FPGA’s performances 

16-Tap, 8bit FIR 3.125MSPS 129MSPS 

256 Taps, 16bit FIR 15.5MSPS @ fclk = 1 GHZ 300MSPS @ fclk = 300MHz 

 

5.3.2 Q Factor 
Specifications Q Factor 

102-Tap, 12bit FIR, Low Pass 14.2 

106- Tap, 12 bit FIR, High Pass 12.5 

204- Tap, 12 bit FIR, Band Pass 10 

254-Tap, 12 bit FIR, Notch 10 

 

5.3.3 CLB count 
Specifications CLB Count 

16-Tap, 8-bit FIR, Serial Arch 400 

16 Tap, 8 bit FIR, Optimized Arch 320 

16 Tap, 8 bit FIR Full Parallel arch 270 
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6 Conclusions 
 In this project work, we have implemented various basic filters viz. Low Pass, High 

Pass, Band Pass, Stop Band Filters using Discrete time convolution equation algorithm 

on Field Programmable Gate Array. Conclusions of our thesis are:  

 We are able to implement Digital Filters on FPGA with comparable performance 

as on conventional DSPs. The comparison between the ideal and the experimental 

results given in Chapter 5 shows the satisfactory performance of the filters. 

 We have shown the Discrete time convolution equation algorithm described in 

Chapter 3 suits the architecture of Field Programmable Gate Array especially for 

the design of Digital Filters and it can efficiently use the resources available in the 

device. 

 We have also shown how to interface the real analog signals with the FPGA after 

proper conditioning and again how it can be converted back to analog form after 

processing it digitally in the FPGA. Chapter 4 describes the approach of 

interfacing the analog signals with the FPGA and implementation of the Discrete 

time convolution equation based Filters on FPGA in detail. 
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7 Discussions and Future Work 
7.1 Introduction 

 As a designer of Digital Signal Processing systems, we have a large number of 

choices to implement our solution. Each solution has its strengths and weaknesses. The 

purpose of this chapter is to bring out where FPGAs can be used for DSP based 

applications. In the following sections, a comparison of the implementation of a simple 

DSP function in both Programmable DSP (pDSP) and Field Programmable Gate Array 

has been described. 

  

7.1.1 Implementation through Programmable DSPs 

 The most common vehicle for implementation of a DSP design is the programmable 

DSP or pDSP. The pDSP is an off-the-shelf part that is essentially a microprocessor 

tuned to DSP applications. PDSPs are highly flexible because you can program them 

again and again using a familiar high-level language like C. They allow fast design 

iterations and reduce time to market. Typically a pDSP contains several functional units 

to process the signal stream. The designer encodes the algorithm into a program, which is 

executed by the pDSP and is limited to a theoretical maximum data rate based on the 

speed and the number of multiplier/ accumulators in the device. Applications, which 

require several computations, must be broken up into a sequential stream of 

computations. For example, an 8-tap FIR filter requires 8 multiplications and one 8-way 

addition per data sample. 

 The implementation of this FIR filter might require 8 or more cycles on a pDSP as 

shown in Figure 6.1. At each data sample, all eight taps require multiplication by their 

coefficients. If the number of taps for this filter were increased, then the number of cycles 

would also be increased, hereby reducing the data rate.  Programmable DSP chips are 

intrinsically limited in performance. The more you want to do to a data sample, the more 

cycles you need and the slower your data is processed. One way to overcome this 

limitation is to employ more pDSP parts to implement the algorithm. Another method is 

to use Gate Array technology to implement the algorithm in hardware.  
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Figure 7.1: Filter structure 
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: : : 

MultAcc Reg(7), C(7) 

 

 The downside of a Gate Array is that it is a custom part. Once designed, it must be 

custom or semi-custom fabricated at a silicon foundry. Due to the unique nature of the 

device a custom Gate Array typically requires several weeks to be fabricated from the 

prototype plans, and due to the expense of the overall process the design must be 

carefully verified prior to the manufacture of even small quantities. Design flaws found 

after fabrication require costly and time-consuming “spins” of the design. 

 

7.1.2 Implementation through FPGAs 

 Field Programmable Gate Arrays are a technology, which gives the designer a 

combination of the benefits of a gate array solution and the ease of pDSP design. An 

FPGA design starts with the same input as a Gate Array design - i.e. a circuit schematic 

or high-level design description. Automatic synthesis, place, and route tools are used to 

translate the designer’s original circuit into an FPGA specific configuration. The big 
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difference between the Gate Array and FPGA design process is that the user specific 

custom manufacturing process is eliminated. FPGAs are generic commodity parts and are 

customized by downloading a user defined configuration in the form of a binary 

bitstream, much the same as you would load a pDSP with its program with a process that 

typically takes only a few milliseconds How much of an advantage does the FPGA’s 

ability for direct implementation buy you? The answer really depends on how many tries 

you think you will need to converge on a correct implementation. Most DSP designs are 

part of a complex system. Experience shows that it is very common for complex systems 

to go through several design iterations before product completion. Figure below 

compares the development cycle of anew design as implemented on Gate Array versus 

FPGA technology. This development cycle includes extra iterations to fix bugs. By virtue 

of immediate implementation, an FPGA based design solution is ready for delivery much 

earlier than a Gate Array design. Why, if FPGAs provide such benefits, would anyone 

use Gate Arrays? The answer is that for very high production volumes, FPGAs do not 

exhibit as high of a performance/cost ratio as Gate Array or full custom Application 

Specific Integrated Circuit (ASIC) designs. The lower performance/cost of FPGAs comes 

in part because FPGAs must sacrifice some silicon area in order to be highly flexible. 

However, this should not be a concern to the designer expecting to ramp up to high 

volume. FPGA offers a design migration product called Hardwire, which retains much of 

the performance/cost advantage of Gate Arrays. Once the designer has converged on a. 

 

 
Figure 7.2: Comparison between Gate Array and GPGA based development cycle 
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working FPGA design, he can then translate the design to an equivalent Hardwire device 

without the need to redesign or debug the system as shown in Figure 6.2. In summary, 

FPGAs offer the rapid design cycle of programmable DSPs with the flexibility and raw 

performance of Gate Array products 

 

A. Other advantages of FPGAs include: 

1. Parts may be reprogrammed over and over. If you want to upgrade your design, you do 

not need to replace FPGAs, just reprogram them. 

2. FPGAs are pre-tested. Traditional Gate Array design methodology requires that you 

also develop costly manufacturing test suites. This task is not required with FPGAs. 

3. FPGAs are a commodity part. Xilinx or Altera sells millions of FPGAs annually. This 

high production volume results in a lower per part cost and those savings are passed on to 

the customer.  

4. FPGAs can be dynamically reconfigured within the system. Sophisticated designers 

can build systems, which adapt to changing conditions by altering the circuit configured 

within the FPGA. This re-configurable design approach is becoming more and more 

popular since many systems need to perform several different functions, but never all of 

them at the same time. 

5. In one FPGA you can build several filters or several systems. Then the SOC design 

will be more compact. Because a whole system can be made on a single chip. 

 

B. FPGAs possess the following features, which enable high performance DSP 

design: 

1. Flexible logic blocks with bit level arithmetic features - allows Discrete time 

convolution equation implementations of DSP algorithms. 

2. Fine grained distributed RAM and ROM - Increases operand bandwidth.  

3. A register rich architecture - enables a high degree of pipelining leading to increased 

performance. 
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7.1.3 Cost Comparison 

 Performance gains of more than one order of magnitude are available with FPGA 

based DSP at a small fraction of the cost compared to multiple processor solutions. The 

FPGA based DSP design methodology also has fewer and less complicated steps. 

 
Figure 6.4: Cost and Performance (Source Xilinx Inc.) [DS2003] 

In addition to the high capacity XC4000 family, Xilinx DSP now also supports the low 

cost Spartan family of FPGAs that competes directly with custom gate arrays. Further 

reducing the cost per MEGA-MAC in DSP applications. Any Spartan FPGA device is 

available for less than $20.00 in gate array volumes, and in many applications the S40 

can do the work of two high-end DSP processors 

 

7.2 Suggestions for Future Work 

 In this thesis all implementations have been done on Xilinx FPGA. But with the 

growing industry, architecture of the FPGA also has been changing. Different 

manufacturers are using different architecture to make their product versatile. Here comes 

the question of universality. The algorithm we have used is it independent of the device 

architecture. So, further work can be done to apply the same algorithm to different 

architecture and compare the relative performances. 

 Our main concentration in this work was FIR and IIR filters. The same algorithm can 

also be applied to other related areas in the field of Digital Signal Processing like FFT, 

Adaptive Filtering, Kalman Filtering, and Fuzzy Filtering. A future enhancement of this 

project can be the application of the discrete time convolution equation to other related 

applications.  
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 We have used easily available ADCs and DACs for our implementations and the 

Filter throughput we have calculated theoretically. This can also be tested practically if 

we can use much faster ADCs and DACs. 

 Here, in our implementation we implemented different filters on the FPGA, but never 

tested in an assembly of filters. Here is a broad domain comes into picture how much 

area we can reduce to accommodate several filters or systems on a single chip without 

sacrificing the desired characteristics.  
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