

 FPGA based Supervisory Control and Data Acquisition System

FPGA BASED SUPERVISORY CONTROL

AND

DATA ACQUISITION SYSTEM

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF ENGINEERING
IN

CONTROL & INSTRUMENTATION

SUBMITTED BY

SHWETA SHARMA
(Roll NO. 3344)

UNDER THE ESTEEMED GUIDANCE

OF

Dr. PARMOD KUMAR
(PROFESSOR & HEAD)

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI
2004-2005

 1

 FPGA based Supervisory Control and Data Acquisition System

CERTIFICATE

It is certified that Shweta Sharma, Roll No.3344, student of M.E, Control and

Instrumentation, Department of Electrical Engineering, Delhi College of

Engineering, has submitted the dissertation entitled “FPGA based Supervisory

Control and Data Acquisition System”, under my guidance towards partial

fulfilment of the requirements for the award of the degree of Master of

Engineering (Control & Instrumentation Engineering).

This dissertation is a bonafide record of project work carried out by her under my

guidance and supervision. Her work is found to be excellent and her discipline

impeccable during the course of the project.

I wish her success in all her endeavors.

Date: (Dr. Parmod Kumar)
 Professor & Head
 Deptt. of Electrical Engineering
 Delhi College of Engineering
 Delhi -110042

 2

 FPGA based Supervisory Control and Data Acquisition System

ACKNOWLEDGEMENTS

Any accomplishment requires the efforts of many people and this work is no

exception. I appreciate the contribution and support, which various individuals

have provided for the successful completion of this dissertation. It may not be

possible to mention all by name but the following were singled out for their

exceptional help.

My primary thanks goes to my project guide Dr. Parmod Kumar, Professor &

Head, Department of Electrical Engineering, DCE, who provided me an

opportunity to work under his guidance. His scholastic guidance and sagacious

suggestions helped me to complete the project in this advanced field. His immense

generosity and affection bestowed on me goes beyond his formal obligations as

guide.

I would like to thank Mr. Vishal Verma, Assistant professor, Department of

Electrical Engineering, DCE for his perpetual encouragement, generous help and

inspiring guidance.

I express my gratitude to Mrs. Rajeshwary Pandey, Lecturer, Department of

Electronics and Communication, DCE for her kind help and cooperation.

My sincere thanks to Mr. Ajay J., Customer Support Engineer, Silicon Micro

Systems (SIMS), for his initial help that eventually led to this project.

I am grateful to Mr. Rajen Bhatt, Research Scholar, IIT Delhi for his kind

cooperation and guidance, whenever needed.

I want to express my regards to Dr. Ashok De, Head, Computer Centre, DCE for

providing the internet access, without which everything could have been difficult.

 3

 FPGA based Supervisory Control and Data Acquisition System

I am thankful to Mr. R.K Shukla, Librarian, DCE, for facilitating me

unconditionally with various literary resources.

I also want to say thanks to Mr. Karan Singh, Laboratory Assistant, Department

of Electrical Engineering, DCE for his kind cooperation during the development

of project.

I would like to extend my sincere appreciation to Ms. Beena Antony for

reviewing this report and providing valuable comments and thoughtful criticism,

which have resulted in an improved version.

 I want to say thanks to my friends Sandeep Sharma, Zelalem Girma, Sunita

Verma, Supriya Sharma, Shraddha Singhai, Payal Singla and Anshu Dev for

their support in all my endeavors.

There are times in a project when the clock beats our time and we run out of

energy, wishing to finish it once and forever. My family made me endure such

times with their unconditional support, love and unfailing humour.

Date: (Shweta Sharma)

 4

 FPGA based Supervisory Control and Data Acquisition System

ABSTRACT

A prototype Supervisory Control and Data Acquisition (SCADA) System has

been designed and programmed into the ACEX50K FPGA chip. The designed

system provides the basic facilities of SCADA along with the advantages of great

speed, high accuracy, negligible & predictable delay, no mechanical components,

purely digitalized system facilitated by the FPGA. FPGA has excellent logic

capabilities, enormous processing resources, and very high clock speed, therefore

suitable for implementing data capture system.

The system is implemented using UVLSI-201 trainer kit and a general-purpose

input-output board. The analog data is acquired from eight multiplexed external

channels provided on the GPIO board. Selecting a particular channel and

addressing it for reading data, is the responsibility of FPGA. As FPGA can deal

only with digital information, the analog data is converted to the digital form by

ADC 0808 provided on the GPIO board. This ADC is FPGA controlled and the

digital data is stored in FPGA by programming the device.

The data is displayed on the GPIO board in hexadecimal form using multiplexed 4

digits, seven segment display. Data is processed and checked for any limit

violation within the chip itself. If any limit violation is there, output LED glows,

indicating a fault in the system. Also, a 5-volt analog control signal is generated to

check the fault.

The system has been modeled using VHDL, a hardware description language.

 5

 FPGA based Supervisory Control and Data Acquisition System

CONTENTS

 Page No.

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER 1: INTRODUCTION 1

1.1 Introduction to SCADA 1

1.2 Benefits of SCADA 4

1.3 Introduction to FPGA 5

1.4 Advantages of FPGA 6

1.5 Scope of FPGA in SCADA 7

1.6 FPGA based SCADA System Overview 8

1.7 Objectives of the study 9

1.8 Dissection of Dissertation 10

CHAPTER 2: LITERATURE REVIEW 11
2.1 SCADA: A brief history 11

2.2 FPGA: A brief history 12

CHAPTER 3: PROGRAMMABLE LOGIC DEVICES 15

3.1 Standard Logic ICs 15

3.2 Application Specific ICs 16

3.3 Programmable Logic Devices 17

3.3.1 Types of PLDs 18

3.3.2 Advantages & Disadvantages 19

CHAPTER 4: FIELD PROGRMMABLE GATE ARRAY 22
4.1 Introduction 22

4.2 Technologies Used 22

 4.2.1 SRAM 22

 6

 FPGA based Supervisory Control and Data Acquisition System

4.2.2 Anti-fuse 23

4.2.3 EPROM/EEPROM 23

4.3 Applications 23

4.3.1 Prototyping 23

4.3.2 Embedded Cores 23

4.3.3 Hybrid Chips 24

4.3.4 Reconfigurable Computing 24

4.3.5 Other Applications 24

4.4 ACEX50K Device 25

4.4.1 Salient Features 25

4.4.2 General Description 27

4.4.3 Functional Description 29

 4.4.3.1 Embedded Array Block 31

 4.4.3.2 Logic Array Block 33

 4.4.3.3 Logic Element 34

4.4.3.4 FastTrack Interconnect Routing Structure 39

4.4.3.5 I/O Element 41

4.4.4 ClockLock & ClockBoost Features 43

 4.4.5 JTAG Boundary-Scan Support 44

 4.4.6 Operating Conditions 44

4.4.7 Timing Model 44

 4.4.8 Power Consumption 45

4.4.9 Configuration & Operation 46

4.4.9.1 Operating Modes 46

4.4.9.2 Configuration Schemes 47

 4.4.10 Device Pin-out 48

CHAPTER 5: SOFTWARE 53
5.1 Introduction 53

5.2 QuartusII Software 53

5.2.1 Graphical User Interface Design Flow 53

5.2.2 Procedure 54

 7

 FPGA based Supervisory Control and Data Acquisition System

5.3 VHDL 60

5.3.1 Introduction 60

5.3.2 Salient Features 60

CHAPTER 6: UVLSI TRAINER 63

6.1 Introduction 63

6.1.1 Power Supply Unit 63

6.1.2 Hardware Access Unit 63

6.1.3 List of Cables 64

6.2 Salient Features 65

6.2.1 Connectors 65

6.2.2 Switches 66

6.2.3 LCD Display 66

6.2.4 Daughter Board Connectors 66

6.2.5 Jumpers 66

6.2.6 On Board Programmer 66

6.2.7 RS-232 Connector 66

CHAPTER 7: GPIO BOARD 67

7.1 Introduction 67
7.2 Details of GPIO board 67

7.2.1 16 DIP Switch Inputs 69

7.2.2 16 LED Outputs 69

7.2.3 4-Key Interface 69

7.2.4 Multiplexed (4 digit) 7 Segment Display 69

7.2.5 8-Bit ADC Interface 69

7.2.6 8-Bit DAC Interface 70

CHAPTER 8: FPGA BASED SCADA SYSTEM 71
8.1 Introduction 71

8.2 Data Acquisition 72

8.2.1 Channel Scanning 72

8.2.2 Analog to Digital Conversion 72

 8

 FPGA based Supervisory Control and Data Acquisition System

8.2.3 Seven Segment Display 73

8.3 Data Processing 74

8.4 Analysis and Control 75

8.5 Pin Locking in FPGA 77

Results and Discussion 79

Conclusion 88

Scope for Further Work 89

Appendix: Source Code 90

References 98

 9

 FPGA based Supervisory Control and Data Acquisition System

 10

 FPGA based Supervisory Control and Data Acquisition System

LIST OF FIGURES

Sr. No Figure PageNo
1 General Architecture of FPGA 6

2 ICs Classification 15

3 Programmable Logic Device 18

4 ACEX50K Block Diagram 30

5 ACEX50K EAB in Dual-Port RAM Mode 32

6 ACEX50K EAB Memory Configurations 32

7 Examples of Combining EABs 33

8 ACEX50K Logic Array Block 34

9 ACEX50K Logic Element 35

10 ACEX50K Carry Chain Operation 37

11 ACEX50K AND Cascade Chain Operation 38

12 ACEX50K OR Cascade Chain Operation 38

13 ACEX50K LAB Connections to Row & Column Interconnect 40

14 ACEX50K Row-to-IOE Connections 42

15 ACEX50K Column-to-IOE Connections 43

16 ACEX50K Device Timing Model 45

17 Using Wizard Create New Project 56

18 Create Directory and Project Name 56

19 Select the Family of the Device 57

20 Summary of the New Project Wizard 57

21 Select the VHDL file 58

22 Write the VHDL Code 58

23 Compilation Process 59

24 Assignment of Pins for the Device 59

 11

 FPGA based Supervisory Control and Data Acquisition System

Sr. No Figure Page No

25 VLSI Design Flow 62

26 Layout of UVLSI 201 64

27 GPIO401 Board Lay out 68

28 Input DIP Switches 69

29 Output LEDs 69

30 Block Diagram of ADC0808 73

31 Seven Segment Display 74

32 Block Diagram of DAC0800 76

33 Compilation Process 81

34 Flow Elapsed Time 81

35 Floor Planning 82

36 Internal view of LABs 82

37 Carry Chain Usage 83

38 Logic Array Blocks Usage 83

39 Resource Usage Summary 84

40 Programming of FPGA 84

41 No Limit Violation in Channel 0 85

42 No Limit Violation in Channel 1 85

43 Limit Violation in Channel 0 86

44 Limit Violation in Channel 1 86

45 Limit Violation in Channel 0 87

 12

 FPGA based Supervisory Control and Data Acquisition System

LIST OF TABLES

Sr. No Table Page No

1 ACEX50K Features 26

2 ACEX50K Performance 28

3 ACEX50K FastTrack Interconnect Resources 41

4 ACEX50K Device Absolute Maximum Rating 44

5 Data Sources for ACEX50K Configuration 47

6 ACEX50K Pin-out 48

7 Pin Locking in FPGA 77

 13

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 1

INTRODUCTION
Introduction
SCADA (Supervisory Control and Data Acquisition) system is an intelligent

system, which provides the facility of continuously monitoring, supervising and

controlling the process plant. The main components of the SCADA system are

[32]:

(1) Master Computer Station or Master Terminal Unit (MTU)

(2) Remote Terminal Unit (RTU)

(3) Communication Media

(4) Human Machine Interface (HMI)

Each component is discussed briefly below:

(1) Master Computer Station or Master Terminal Unit (MTU)

The main incentive for the process control is the optimization of the plant’s

economic performance. For performance analysis on the process plant, the

information from the distributed RTUs should reach a central location where it

can be consolidated and analyzed to generate the reports on the plant performance.

The analysis may include histogram generation, standard deviation calculation,

plotting one parameter with respect to another and so on. Software can be written

depending on the type of analysis required.

Many times the human operator cannot find the best operating policy for a plant,

which will minimize the operating cost. This deficiency is due to the enormous

complexity of a typical process plant. Therefore, to analyze the situation and find

out the best policy, the speed and the programmed intelligence of the digital

computer is used; this computer is called Master Computer Station or Master

Terminal Unit. It monitors, controls and coordinates the activities of various

RTUs and provides the supervisory control facility to the process plant. The MTU

is located at the operator’s central control facility and provides a man-machine

software interface, two-way data communication.

(2) Remote Terminal Unit (RTU)

RTU is a field interface device, which collects information from the machine that

is to be monitored. The RTUs are basically nodes of the distributed SCADA

 14

 FPGA based Supervisory Control and Data Acquisition System

system that are located at a remote site to gather data from field devices like

pumps, valves, alarms etc. They should be rugged and able to work unattended for

a long duration. Since these RTUs have to operate for a long duration unattended,

the basic requirements would be that they consume minimum power and have

considerable self diagnostic capability. There are two modes in which remote

terminal units work: Under command from central computer and stand alone

mode.

The RTUs should have some special software facilities, which are mentioned

below:

(i) Quiescent Mode Operation: Since the transmitter consumes maximum power

in RTU, especially in terrestrial and satellite communications, it is switched on

only when the RTU has some information packets ready for sending. The RTU

receives all the information from the central computer. Since the receiver is kept

on all the time, this information is received and proper action is initiated. The

quiescent mode saves considerable amount of power for RTUs.

(ii) Downloading of Limits from Central Computer: Generally the RTUs

behave much like stand alone SCADA. They collect the data from various

sensors, perform signal conditioning, filtering, conversion to engineering units and

store them in the memory. They also perform the limit checking on these values

and inform central computer on violation of limits, if any, immediately. Since

these RTUs are at remote locations it should be possible to change these limits

remotely from central computer. This is called downloading of limits. The central

computer makes a special request to the RTU to change the limits. The RTU then

enters in a special mode for the change of basic parameters and performs the

function in an interactive way.

(iii) Exceptional Reporting: The RTUs normally have intelligence to perform all

the functions including limit checking and when the limits are violated the central

computer is informed. The other message that goes regularly is regarding all well

condition of RTUs. Thus RTUs perform self diagnosis by executing different

diagnostic software.

 15

 FPGA based Supervisory Control and Data Acquisition System

(3) Communication Media

Communication Media is an important component of the SCADA system and has

the interface available with 2-wire/4-wire communication line. The

communications media transmits the information from RTU to central computer

or in the reverse direction. The way the MTU/RTU transmission network or

topology is set up can vary, but the system must feature uninterrupted, bi-

directional communication in order to properly function. Methods to accomplish

this include private medium, where the end user owns, operates, licenses and

services the medium or public medium, where the customer pays for a monthly,

per time or volume use [32]. Following are the basic communication strategies

that are used depending on the application need:

(i) Wireline Communications: The wireline communication may have a number

of options and these options can be selected depending upon the distance between

central computer and RTU. It is usually limited to low bandwidth applications.

These options are enlisted below:

RS232C/442: RTU can support communication via standard RS232C/442. The

I/O ports can select the average levels as well as the baud rates.

Switch Line Modem: When the user wants to use the existing telephone lines for

communication, the switch line modem can be effective. In such cases, RTUs

contain the facilities like auto answer, auto dial and auto select baud rates. The

modem is ideal for data networks configured in time or event reporting RTUs.

2-Wire or 4-Wire Communication: The modem residing in the RTU can be

configured to 2 or 4-wire communication on dedicated lines.

(ii) Wireless Communications:

UHF/VHF radio: The RTU may support a complete line of UHF/VHF terrestrial

radios. UHF/VHF radio is an electromagnetic transmission with frequencies of

175MHz-450MHz-900MHz received by special antennas. Its coverage is limited

to special geographical boundaries.

The communication protocol is transparent to the user and supports CRC

intelligence, error checking, and packet protocol for error free data transmission.

Microwave Radio: Microwave Radio transmits at high frequencies through

parabolic dishes mounted on towers or on top of buildings. This media uses point-

 16

 FPGA based Supervisory Control and Data Acquisition System

to-point, line-of-sight technology and communication may become interrupted

sometimes due to misalignment and/or atmospheric conditions.

Satellite Communications: In the applications where wireline and terrestrial

radio communications are impossible or cost prohibitive, the satellite

communication may be desirable.

Some of the RTUs provide the facility to be interfaced to one-way or two way

satellite communication using Very Small Aperture Terminal (VSAT). These

terminals use one meter antennas and have data rates from 50 to 60 kbps.

 Fiber-Optic Communications: For applications where electromagnetic

interferences or hazardous electrical potentials exist, the RTUs can be networked

using fiber-optic cables.

(4) Human Machine Interface (HMI)

For efficient process monitoring and control, effective communication is

necessary between the process operator and the process to be automated [4]. The

man-machine dialogue between the process operator and the automation system is

carried out with the Human Machine Interface. HMI allows operators to view the

state of any part of the plant equipment.

The employment of an easy-to-use SCADA software package on PC, known as

the human machine interface, provides a reliable representation of the real system

at work [32]. An HMI allows the operator to view virtually all system alerts,

warnings, urgent messages and functions as well as change set points and analyze,

archive or present data trends. Some common HMI software packages are

Cimplicity (GE-Fanuc), RSView (Rockwell Automation), IFIX (Intellution) and

InTouch (Wonderware). Most of these software packages use standard data

manipulation/presentation tools for reporting and archiving and integrate well

with Microsoft Excel, Access and Word.

1.2 Benefits of SCADA
SCADA is an industrial measurement and control system and has become the

backbone for monitoring, controlling and meeting the desired objectives of the

process plant. The major productivity issue facing the process industries today is

plant automation i.e. the development of coordinated plant control system.

 17

 FPGA based Supervisory Control and Data Acquisition System

The process industries are going for automation to maintain their competitive

edge. Some of the benefits provided with the SCADA are given below [26]:

 A properly designed SCADA system saves time and money by eliminating

the need for service personnel to visit each site for inspection, data

collection/ logging or make adjustments.

 Provides the facility of real-time monitoring, system modifications,

troubleshooting, automatic report generating

 Reduces operational costs

 Provides immediate knowledge of system performance

 Improves system efficiency and performance

 Increases equipment life and reduces costly repairs

 Reduces the number of man-hours (labor costs) required for

troubleshooting or service and frees up personnel for other important tasks

 Facilitates compliance with regulatory agencies through automated report

generation

1.3 Introduction to FPGA
FPGAs are one of today’s most important digital logic implementation options.

An FPGA is a general purpose, multilevel, programmable logic device that is

customized in the package by the end users. An FPGA consists of an array of

programmable logic blocks and a programmable routing network. The

programmable interconnect between blocks allows users to implement multi level

logic, removing many of the size limitations of the PLD derived two level logic

structure. This extensible architecture can currently support thousands of logic

gates at system speed in the tens of megahertz [13].

The size, structure, number of logic blocks and connectivity of the interconnect

vary considerably among the architectures. This difference in architectures is

driven by different programming technologies and different target applications of

the parts.

 18

 FPGA based Supervisory Control and Data Acquisition System

Figure1.1. Basic Architecture of FPGA

FPGAs offer the benefits of both programmable logic arrays and gate arrays. They

implement thousands of gates of logic in a single integrated circuit. FPGAs are

programmable by designers at their site, eliminating the long delays and tooling

costs. These advantages have made FPGAs very popular [13].

1.4 Advantages of FPGAs
1) Low Tooling Costs

There is no custom tooling required for an FPGA, so there are no associated

tooling costs, making FPGA cost effective for most logic designs.

2) Rapid Turnaround

An FPGA can be programmed in a few minutes. On an FPGA, a modification to

correct a design flaw or to address a late specification change can be made quickly

and cheaply. Faster design turnaround leads to faster product development and

shorter time to market for new FPGA products.

3) Low Risks

The benefits of low initial Non Recurring Engineering (NRE) charges and rapid

turnarounds mean that design iteration due to an error incurs neither a large

expense nor a long delay. Low cost encourages early system integration and

 19

 FPGA based Supervisory Control and Data Acquisition System

prototyping. The low cost of error encourages more aggressive logic design,

which may yield better performance and more cost effective designs.

4) Effective Design Verification

Instead of simulating large amounts of time, FPGA user may choose to use in

circuit verification. Designers can implement the design and can use any

functioning part as a prototype. The prototype operates at full speed and with

excellent timing accuracy. A prototype can be inserted into the system to verify

functionality of the system as a whole, eliminating a class of system errors early.

5) Low Testing Cost

All ICs must be tested to verify proper manufacturing and packaging. The test

program for FPGAs is the same for all design and test the FPGA for all users of

the part. Because there is only one test program, it is reasonable to invest a

considerable amount of effort in it and it can be continually improved over the

lifetime of the FPGA. The resulting test program achieves excellent test coverage

leading to high quality ICs. The manufacturer’s test program verifies that every

FPGA will be functional for all possible designs that may be implemented on it.

FPGA users are not required to write design specific test for their designs.

Therefore, designers need not built the testability into the design eliminating

“design for testability” and the design effort and overhead associated with it.

6) Life Cycle Advantages

The cost effectiveness of FPGAs in low volume and the flexibility provided by

field programmability provide advantages over all phases of product lifetime.

When introducing a product, an FPGA user may order a few parts at a time while

testing the design for functionality and the product for market viability. During

production, the FPGA user can accommodate rapid changes in sales easily

because long lead times are not required. An FPGA user can make enhancements

by shipping an upgraded design on the same FPGA device. This upgrade requires

no inventory changes, no new hardware and does not interrupt production.

1.5 Scope of FPGA in SCADA
Development in the field of FPGAs has provided great logic capabilities,

enormous processing resources, significant on-chip independent RAM banks and

very high clock speeds. FPGAs are therefore suitable for implementing data

 20

 FPGA based Supervisory Control and Data Acquisition System

capture systems [23]. With the basic understanding of FPGA capabilities, I

consider utilizing an FPGA based SCADA system [32] over a basic RTU or a

proprietary system for the following reasons:

 FPGAs, like Master Terminal Units can continuously collect, process and

store data, operating independently from the MTU through intelligent

programming.

 FPGAs can provide security and monitoring of door switches, heat and

motion detectors. Managers/operators can be informed 24 hours a day

through automatic e-mail, paging and dial-up call features.

 Multiple users can easily be added and, if open architecture protocol is

used, future equipment can easily be integrated. Since FPGAs have no

moving parts, they are extremely reliable.

 FPGA based SCADA system can reduce the number of man-hours needed

for on-site visual inspections, adjustments, data collection and logging.

Continually monitoring and troubleshooting potential problems, increases

equipment life, reduces service calls, reduces customer complaints and

increases system efficiency. Simply put, FPGA based SCADA systems are

an excellent means for process control facilities to save time and money.

 Redesigning of the SCADA system can be done easily according to the

needs, as FPGA is reprogrammable.

 FPGA based SCADA system mainly consists of digital components and

therefore it is more accurate and reliable.

Engineered SCADA systems today not only control processes but are also used

for measuring, forecasting, billing, analyzing and planning [32]. Today’s SCADA

system must meet a whole new level of control automation while interfacing with

yesterday’s obsolete equipment yet remain flexible enough to adapt to tomorrow’s

developments.

1.6 FPGA based SCADA System Overview

FPGA are revolutionizing the way system designers implement logic [3]. FPGAs

provide a new capability that facilitates simple and trouble free implementation of

digital systems.

 21

 FPGA based Supervisory Control and Data Acquisition System

An FPGA based SCADA system has been designed in this project. The system

utilizes the great logic capability and re-programmability of the FPGA to design

the SCADA system. The project is divided into three parts; Data Acquisition,

Processing and Control.

The system has been designed and implemented using the UVLSI 201 trainer.

This universal PLD kit is an ideal trainer to implement and test simple and

complex designs. It is possible to execute and verify digital experiments on this kit

using VHDL, Verilog, AHDL, the standard hardware description languages. It is

an assembled ready for various interfaces that include ADC/DAC, display,

keyboard, serial communication, VGA, PS/2.

For data acquisition, general purpose input-output board is used. It has almost all

the primary interfaces that a PLD may be used for. This board is designed to

interface PLDs of any company, any gate count and any package. Input switches

are provided to give steady state inputs and LEDs can indicate high or low

outputs.

GPIO board has eight channels to communicate with outside world. Channels,

from which data is to be captured, are interfaced with GPIO. FPGA is a digital

device, it can handle only digital data; therefore the analog data is converted into

the digital form by using a successive approximation ADC. SAR ADC0808 is

provided on the GPIO board. It receives all its control signals e.g. start

conversion, address latch enable etc. from the FPGA. The digital data is stored in

the FPGA chip.

The data is processed for control purpose, in the chip itself. Software is written

depending upon the type of analysis required in the system. Any fault in the

system e.g. limit violation is indicated by an LED. FPGA is programmed using the

VHDL, a hardware description language.

1.7 Objectives of the Study

The present study sets the following objectives:

• An exhaustive study of FPGA

• Scope of FPGA in SCADA

• Designing of FPGA based SCADA system

 22

 FPGA based Supervisory Control and Data Acquisition System

1.8 Dissection of Dissertation
Chapter 2 presents the literature review. It explains the developments and

advancements in SCADA systems in chronological order. Then it describes how

FPGAs emerged and became the greatest logic implementation device.

Chapter 3 describes the different types of ICs i.e. Standard Logic ICs,

Application Specific ICs, PLDs and compares their architecture, functionality and

applications. PLDs have been further classified into SPLDs, CPLDs, FPGAs and

each is briefly covered. Advantages and disadvantages of PLDs are listed.

Chapter 4 considers the FPGA in detail. Essential characteristics, different

technologies and applications of FPGAs are explained.

ACEX50K device, used in this project is explained. Salient features, architecture,

functionality, input-output capabilities, operating conditions, power consumption

and pin configuration have been considered. Detailed functional description of

Logic Array Block, Embedded Array Block, Logic Element, I/O Element is

presented.

Chapter 5 deals with the Altera QuartusII software used for programming the

ACEX device. Steps to use this software for implementing any digital logic are

defined. Salient features, design process and need of VHDL are explained.

Chapter 7 introduces the features of UVLSI 201 trainer kit, which make it

extremely convenient for testing and implementing the VLSI designs.

Chapter 8 describes the features of the general-purpose input-output board

(GPIO) and its capabilities to communicate with outside world.

Chapter 9 A newer approach to the design and implementation of the Supervisory

Control and Data Acquisition system has been discovered. It uses an FPGA for

data acquisition, processing and control. The details of each stage; data

acquisition, processing and control are presented.

Results and Discussion

Conclusion

Scope for Future Work

Appendix: VHDL source code to implement the FPGA based SCADA system

References

 23

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 2

Literature Review
Supervisory Control and Data Acquisition (SCADA) is a process control system

that enables a site operator to monitor and control processes distributed among

various remote sites.

A properly designed SCADA system saves time and money by eliminating the

need for service personnel to visit each site for inspection, data collection/logging

or make adjustments. Real-time monitoring, system modifications,

troubleshooting, increased equipment life and automatic report generating are just

a few of the benefits that come with the SCADA systems [26].

2.1 SCADA: A brief history
SCADA began in the early 1960s as an electronic system operating as

input/output transmissions between a master station and a remote station. The

master station would receive the data from remote station through a telemetry

network and then store the data on mainframe computers[32].

In the early 1970s, distributed control systems (DCS) were developed to control

separate remote subsystems. They have similar functions to SCADA systems, but

the field data gathering or control units are usually located within a more confined

area. Communications may be via a local area network (LAN), normally reliable

and high speed.

In 1977, John Muench, Chairman and Chief Executive Officer, Advanced

Control Systems, delivered the industry's first microprocessor based master

station and first microprocessor based RTU[28].

In the 1980s, with the development of the microcomputer, process control could

be distributed among remote sites. Further development enabled DCS to use

programmable logic controllers (PLC), which have the ability to control sites

without taking direction from a master.

In the late 1990s, SCADA systems were built with DCS capabilities and systems

were customized based on certain proprietary control features built in by the

designer. With the internet being utilized more as a communication tool, SCADA

and telemetry systems are using automated software with certain portals to

download information or control a process.

 24

 FPGA based Supervisory Control and Data Acquisition System

In 1997, Advanced Control Systems delivered the first SCADA system with DNP

implemented in Master Station and RTUs [28].

In 2000, F Morgan, T Bennett, A Shearer, M Redfern, Communications and

Signal Processing Research Unit, Department of Electronic Engineering, National

University of Ireland, Galway, implemented an “FPGA-based Time Resolved

Data Acquisition System for Astronomical and Other Applications”.

They described a programmable FPGA-based high-resolution, time resolved

photon image capture system which supported current and future generations of

astronomical photometry, biological and a range of SCADA applications. The

system recorded and time stamped photon data arriving from a number of

detectors and transmitted this data to an archive device for post processing. Time

resolved data acquisition functionality was implemented and verified using the

RC1000-PP Xilinx FPGA-based development platform and Handel-C

programming environment [23].

2.2 FPGA: A brief history
One of the most significant components in early digital computers was the

magnetic core [16]. This tiny doughnut shaped ferrite material was used from the

1950s through the 1970s to construct the main memory of large computers. Each

of these cores could store a binary bit of information by using the direction of

magnetization of the core to indicate a 0 or a 1. The direction of the magnetic field

inside the core could be changed by controlling the direction of current through

the wires that were wound around a portion of the core. For many years, magnetic

core storage was the dominant type of main memory for the computer.

As the technology for core storage was improved, the price continued to drop and

some impressive computers became available. The IBM system 360 appeared in

1965 with one scientific model capable of storing about 64 million bits in its main

memory. This system was sold for a price that varied between $1,000,000 and

$2,000,000, depending on several options. The magnetic core cost about 1 to 2

cents per bit, wired into the memory. The 64-megabit storage system added

approximately $7,000,000 to the cost of the system. It was obvious that a

reduction of the main memory costs would greatly reduce the overall cost of a

computer. Furthermore, the core storage system required a set of high current

 25

 FPGA based Supervisory Control and Data Acquisition System

driver circuits that lead to high power dissipation and expensive circuit

components.

Ironically, this same year (1965) saw the first proposal to use semiconductor

memory. The obvious size benefits of integration led some engineers to believe

that perhaps the integrated circuit might be used to produce low cost storage

components. The first IC memories were more expensive and had much less

storage capacity than the core memory and did not immediately replace this

workhorse of the computer industry. One of the first commercial uses of a small

semiconductor main memory was in IBM 360/85 in 1969.

As IC fabrication and design techniques improved over the years, the

semiconductor memory became smaller and cheaper, leading to the demise of core

storage. Without this development, it would be difficult to produce the highly

capable personal computers and workstations that are now available.

Before the semiconductor memory was made large enough to replace the main

memory of the computer, it became obvious that the small IC memory would be

useful in circuit applications. Several companies implemented small memories

such as 64 bit devices that were targeted for use in digital circuits rather than in

computer memories. One of the first such devices was the read only memory

(ROM). Small IC read write memories, called semiconductor RAMs also

appeared at the same time. As the price dropped and the size increased,

semiconductor memories began replacing core memories. In the late 1970s, the

semiconductor memory was used almost exclusively in the personal computer. By

the early 1980s, even large mainframe computers were produced with exclusively

semiconductor main memories.

It became obvious in the late 1970s that the ROMs were also useful in logic

function realization. As small ROMs were used for this purpose, the

combinational PLA and PAL chips were developed to reduce the number of

devices needed on a chip. Fabrication methods improved to allow the inclusion of

the flip-flops on PLA and PAL chips in the 1980s. As industry looked for faster

methods of developing digital products, the registered PLA and PAL, the PLS and

the FPGA was conceived. In 1985, Xilinx company introduced the first FPGA.

After this many companies like Actel, Altera launched their FPGAs in the market.

 26

 FPGA based Supervisory Control and Data Acquisition System

These devices became very popular in the late 1980s and continue to be

significant in digital system logic design.

Today the worldwide market for programmable logic devices is about $3.5 billion,

according the market researcher Gartner/Dataquest. The market for fixed logic

devices is about $12 billion. However, in recent years, sales of PLDs have

outpaced those of fixed logic devices built with older gate array technology. The

high performance FPGAs, made with the more advanced standard cell technology

are now beginning to take market share from fixed logic devices [35].

 27

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 3

 PROGRAMMABLE LOGIC DEVICES
An electronic system designer has several options for implementing digital logic

[13]. These options include Integrated Circuits (ICs), which can be broadly

classified in the following categories:

• Standard logic ICs

• Application Specific ICs

• Programmable Logic Devices

Figure3.1. ICs Classification

3.1 Standard Logic ICs
Standard logic ICs have permanent circuits built in them, they perform one

specific function or set of specified functions. Once manufactured, the function of

standard ICs cannot be changed. A specific logic is contained in the IC package

when it is purchased and it can never be changed. The operation of Standard

Logic devices depends entirely on the IC chips used and the electrical connections

between chips. The designer has no access to the internal interconnections of the

IC chips. In designing a digital system we must specify each IC to be used and

 28

 FPGA based Supervisory Control and Data Acquisition System

indicate a wiring diagram to show how each circuit is to be connected. Once the

design is completed, the system performs the function intended. If it is desired to

modify the function of the circuit, the design must be modified. New circuits may

be needed and some connections will certainly require changes. This type of

system is often referred to as a Hardwired System [16].

Examples of standard ICs include ROMs, DRAM, SRAM, Microprocessors.

With fixed logic devices, the time required to go from design, to prototypes, to a

final manufacturing run can take from several months to more than a year,

depending on the complexity of the device. And, if the device does not work

properly, or if the requirements change, a new design must be developed. The up-

front work of designing and verifying fixed logic devices involves substantial

"non-recurring engineering" costs, or NRE. NRE represents all the costs

customers incur before the final fixed logic device emerges from a silicon

foundry, including engineering resources, expensive software design tools,

expensive photolithography mask sets for manufacturing the various metal layers

of the chip, and the cost of initial prototype devices. These NRE costs can run

from a few hundred to several million dollars [35].
3.2 Application Specific Integrated Circuits (ASICs)
ASICs are the integrated circuits that are customized or tailored to a particular

system or application rather than using standard ICs alone. These ASICs are

specially designed to perform a function that cannot be done using standard

components (Standard ICs). Microelectronic system design then can be done by

implementing some functions using standard ICs and the remaining logic

functions using one or more custom ICs [11].

Examples of ASICs include a chip for a toy bear that talks, a chip for a satellite, a

chip designed to handle the interface between memory and a microprocessor for a

workstation CPU and a chip containing microprocessor as a cell together with

other logic.

ASICs are used in system design to improve the performance of a circuit, to

reduce the volume, weight and power requirements so that it increases the

reliability of a system by integrating a large number of functions on a single chip.

 29

 FPGA based Supervisory Control and Data Acquisition System

ASICs are classified into two types: Full Custom ASICs and Semi Custom ASICs.

A full custom IC includes possibly all logic cells that are customized and all mask

layers that are customized. A microprocessor is an example of a full custom IC.

For semi custom ASICs all of the logic cells are pre designed and some (possibly

all) of the mask layers are customized. Using pre-designed cells from a cell library

makes design much easier [11].

There are many situations in which it is not appropriate to use a custom IC for

each and every part of a microelectronic system. For example, if a large amount of

memory is needed, it is still best to use standard memory ICs, either DRAM or

SRAM, in conjunction with custom ICs.

3.3 Programmable Logic Devices (PLDs)
Programmable Logic Devices (PLDs) consist of an array of identical function

cells. The cell array usually contains an AND-OR network and often includes a

flip-flop. Some PLDs can perform only combinational logic functions, others can

perform combinational and sequential functions.

In Programmable Logic Devices (PLDs), logic function is programmed by the

user and in some cases, can be reprogrammed many times. Such a device includes

array of logic elements on a chip and allows the user to specify or program many

internal connections between the components on the chip. The logic elements

could be various gates, inverters, buffers, flip-flops. A system configuration can

be created on the chip simply by programming the chip or telling the chip where

the interconnections are to be made.

A PLD can be defined as: A PLD is an IC chip that includes arrays of logic

elements and allows a user to specify the connections among many of these

elements [16].

Figure 3.2 shows the basic architecture of PLD.

 30

 FPGA based Supervisory Control and Data Acquisition System

Figure3.2. Programmable Logic Device

With programmable logic devices, designers use inexpensive software tools to

quickly develop, simulate, and test their designs. Then, a design can be quickly

programmed into a device, and immediately tested in a live circuit. The PLD that

is used for this prototyping is the exact same PLD that will be used in the final

production of a piece of end equipment, such as a network router, a DSL modem,

a DVD player, or an automotive navigation system. There are no NRE costs and

the final design is completed much faster than that of a custom, fixed logic device

[12].

3.3.1) Types of PLDs

Programmable logic devices are divided into three broad categories [5]:

3.3.1.1) Simple Programmable Logic Devices (SPLDs)

 These are the least complex form of PLDs. An SPLD can replace several fixed

function SSI or MSI devices and their interconnections. A few categories of SPLD

are listed below:

• PAL (Programmable Array Logic)

• GAL (Generic Array Logic)

 31

 FPGA based Supervisory Control and Data Acquisition System

• PLA (Programmable Logic Array)

• PROM (Programmable Read only Memory)

3.3.1.2) Complex Programmable Logic Devices (CPLDs)

These have a much higher capacity than SPLDs, permitting more complex logic

circuits to be programmed into them. A typical CPLD is equivalent of from 2 to

64 SPLDs. CPLDs generally come in 44-pin to160-pin packages depending on the

complexity [5].

CPLDs offer logic up to about 10,000 gates. CPLDs offer very predictable timing

characteristics and are therefore ideal for critical control applications. CPLDs also

require extremely low amounts of power and are very inexpensive, making them

ideal for cost-sensitive, battery-operated, portable applications such as mobile

phones and digital handheld assistants.

3.3.1.3) Field Programmable Gate Arrays (FPGAs)

These are different from SPLDs and CPLDs in their internal organization and

have greatest logic capability. FPGAs consist of an array of anywhere from 64 to

thousands of logic gates groups that are called logic blocks.

Although the generalized architecture of the simpler PLDs is fairly standardized,

that of FPGAs and CPLDs continues to evolve and differs considerably from one

manufacturer to other [12]. The architecture has a mesh of horizontal and vertical

interconnect tracks. At each junction, there is a fuse. With the aid of software

tools, the user can select which junctions will not be connected, by blowing all

unwanted fuses. This is done by a device programmer.

Input pins are connected to the vertical interconnect and the horizontal tracks are

connected to AND-OR gates, also called product terms. These in turn connect to

dedicated flip-flops whose outputs are connected to output pins.

All FPGA contain a regular structure of programmable basic logic cells

surrounded by programmable interconnect. The exact type, size and the number of

programmable basic logic cells varies tremendously.

3.3.2) Advantages & Disadvantages of PLDs

Fixed logic devices and PLDs both have their advantages and disadvantages.

Fixed logic devices, for example, are often more appropriate for large volume

applications because they can be mass-produced more economically. For certain

 32

 FPGA based Supervisory Control and Data Acquisition System

applications where the very highest performance is required, fixed logic devices

may be the best choice [35].

However, programmable logic devices offer a number of important advantages

over fixed logic devices [12]. It is desirable to use PLDs for the following reasons:

1. To decrease PC board cost by reducing the package count; 15 to 20 SSI

packages can be replaced by a single package. Many more logic circuits

can be stuffed into a smaller area with PLDs.

2. To improve reliability, fewer packages mean less interconnection and thus

greater reliability.

3. To allow design changes as reprogramming the PLDs is less time

consuming than re-designing a complete PC board using random logic or

MSI logic devices.

4. During the design phase customers can change the circuitry as often as

they want until the design operates to their satisfaction. That is because

PLDs are based on re-writable memory technology; to change the design,

the device is simply reprogrammed.

5. PLDs offer customers much more flexibility during the design cycle

because design iterations are simply a matter of changing the

programming file, and the results of design changes can be seen

immediately in working parts.

6. To shorten design time; PLDs do not require long lead times for prototypes

or production parts. The PLDs are already on a distributor's shelf and

ready for shipment [12].

7. PLDs do not require customers to pay for large NRE costs and purchase

expensive mask sets. PLDs suppliers incur those costs when they design

their programmable devices and are able to amortize those costs over the

multi-year lifespan of a given line of PLDs.

8. PLDs allow customers to order just the number of parts they need, when

they need them, allowing them to control inventory. Customers who use

fixed logic devices often end up with excess inventory which must be

scrapped, or if demand for their product surges, they may be caught short

of parts and face production delays.

 33

 FPGA based Supervisory Control and Data Acquisition System

9. PLDs can be reprogrammed even after a piece of equipment is shipped to a

customer. Because of programmable logic devices, it is very easy to add

new features or upgrade products that already are in the field. To do this,

simply upload a new programming file to the PLD, via the internet,

creating new hardware logic in the system.

10. Advanced process technologies help PLDs in a number of key areas:

faster performance, integration of more features, reduced power

consumption, and lower cost.

11. PLDs now have a growing library of intellectual property (IP) or cores.

These are predefined and tested software modules that customer can use to

create system functions instantly inside the PLD. Cores include everything

from complex digital signal processing algorithms and memory controllers

to bus interfaces and full-blown software-based microprocessors. Such

cores save customers a lot of time and expense.

The disadvantage of PLDs is that the interconnections between elements on the

chip must be specified or programmed [16]. Unlike conventional circuits, even

after PLDs are wired into the system, they will not function properly unless they

have been programmed.

 34

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 4

Field Programmable Gate Array (FPGA)
Introduction
Field Programmable Gate Array provides the next step in the Programmable

Logic Devices hierarchy. The word Field in the name refers to the ability of the

gate array to be programmed for a particular function by the user instead of by the

manufacturer of the device [11]. The word array is used to denote a series of

columns and rows of gates that can be configured by the end user.

All FPGAs contain a regular structure of programmable basic logic cells

surrounded by programmable interconnects. The exact type, size and the number

of programmable basic logic cells vary tremendously.

Essential characteristics of FPGAs:

1. None of the mask layers are customized.

2. A method for programming the basic logic cells and the interconnect is

required.

3. The core is a regular array of programmable basic logic cells that can

implement combinational as well as sequential logic.

4. A matrix of programmable interconnects surrounds the basic logic cells.

5. Programmable I/O cells surround the core.

4.2 Technologies Used
In all FPGAs, the interconnections and how they are programmed vary.

Depending upon the application, one FPGA technology may have features

desirable for that application. Currently there are following technologies in use

[12]:
4.2.1) Static RAM Technology

In the Static RAM FPGAs, programmable connections are made using pass

transistors, transmission gates or multiplexer that are controlled by SRAM cells.

The advantage of this technology is that it allows fast in-circuit re-configuration.

The major disadvantage is the size of the chip required by the RAM technology.

The FPGAs are customized by loading configuration data into the internal

memory cells. The FPGA can be programmed an unlimited number of times and

 35

 FPGA based Supervisory Control and Data Acquisition System

supports system clock rates up to 50 MHz. In the SRAM logic cell, instead of

conventional gates there is a look-up-table (LUT), which determines the output

based on the values of the inputs.

4.2.2) Anti-Fuse Technology

An anti-fuse resides in a high-impedance state, and can be programmed into low

impedance or fused state. A less expensive than the RAM technology, this device

is a program once device.

4.2.3) EPROM /EEPROM Technology

This method is the same as used in the EPROM memories. One advantage of this

technology is that it can be reprogrammed without external storage of

configuration, though the EPROM transistors cannot be re-programmed in-circuit.

There are two basic types of FPGAs: SRAM based re-programmable and One-

time programmable (OTP). These two types of FPGAs differ in the

implementation of the logic cell and the mechanism used to make connections in

the device.

4.3 Applications
Applications of FPGAs are so varied in embedded systems that it is impossible to

generalize. Following are some instances [29]:

4.3.1) Prototyping

Many times FPGAs are used in a prototype system. A small device may be

present to allow the designers to change a board's glue logic more easily during

product development and testing. Or a large device may be included to allow

prototyping of a system-on-a-chip design that will eventually find its way into an

ASIC. Either way, the basic idea is the same, allow the hardware to be flexible

during product development. When the product is ready to ship in large quantities,

the programmable device will be replaced with a less expensive, though

functionally equivalent, hard-wired alternative.

4.3.2) Embedded Cores

More and more vendors are selling or giving away their processors and

peripherals in a form that is ready to be integrated into a programmable logic

based design. They either recognize the potential for growth in the system-on-a-

chip area and want a piece of the royalties or want to promote the use of their

 36

 FPGA based Supervisory Control and Data Acquisition System

particular FPGA by providing libraries of ready-to-use building blocks. Either

way, lower system costs and faster time-to-market are achieved. We can buy an

equivalent piece of virtual silicon, so there is no need to develop own hardware.

The Intellectual Property (IP) market is growing rapidly. It is common to find

microprocessors and microcontrollers for sale in this form, as well as complex

peripherals like PCI controllers. Many of the IP cores are even configurable. We

can find the entire usual supporting cast of simple peripherals like serial

controllers and timer/counter units are available as well.

4.3.3) Hybrid Chips

There is also been some movement in the direction of hybrid chips, which

combine a dedicated processor core with an area of programmable logic.

According to the vendors of hybrid chips, a processor core embedded within a

programmable logic device will require far too many gates for typical

applications. So they have created hybrid chips that are part fixed logic and part

programmable logic. The fixed logic contains a fully functional processor and

perhaps even some on-chip memory. This part of the chip also interfaces to

dedicated address and data bus pins on the outside of the chip. Application-

specific peripherals can be inserted into the programmable logic portion of the

chip, either from a library of IP cores or the customer's own designs.

4.3.4) Reconfigurable Computing

As mentioned earlier, an SRAM-based programmable device can have its internal

design altered on-the-fly. This practice is known as reconfigurable computing.

Though originally proposed in the late 1960's by a researcher at UCLA, this is still

a relatively new field of study. The decades-long delay had mostly to do with a

lack of acceptable reconfigurable hardware. On-the-fly reprogrammable logic

chips have only recently reached gate densities making them suitable for anything

more than academic research. But the future of reconfigurable computing is bright

and it is already finding a niche in high-end communications, military, and

intelligence applications.

4.3.5) Other Applications

Application Specific Integrated Circuits (ASICs)

Implementation of random logic

 37

 FPGA based Supervisory Control and Data Acquisition System

Replacement of SSI for random logic

Onsite configuration of hardware

4.4 ACEX50K Device
Altera is a leading company in the production and advancements of PLDs. Altera

ACEX EP1K50, 144 pin, TQFP FPGA has been used in the development of this

project. The general and functional characteristics of this device are discussed in

detail below.

4.4.1) Salient Features

1. ACEX50K FPGAs provide low cost System-On-Programmable-Chip (SOPC)

integration in a single device.

• Enhanced embedded array for implementing megafunctions such as

efficient memory and specialized logic functions

• Dual-port capability with up to 16-bit width per embedded array block

(EAB)

• Logic array for implementing general logic functions

2. High density

• 10,000 to 100,000 typical gates

• Up to 49,152 RAM bits, 4,096 bits per EAB, all of which can be used

without reducing logic capacity

3. Cost-efficient programmable architecture for high-volume applications

• Cost-optimized process

• Low cost solution for high-performance communications applications

4. System-level features

• Multi Volt TM I/O pins can drive or be driven by 2.5V, 3.3V, or 5.0V

devices

• Low power consumption

• Bidirectional I/O performance up to 250 MHz

• Fully compliant with the peripheral component interconnect

5. Extended temperature range

 38

 FPGA based Supervisory Control and Data Acquisition System

Table4.1 ACEX Device Features

Features EP1K10 EP1K30 EP1K50 EP1K100

Typical gates 10,000 30,000 50,000 100,000

Max System Gates 56,000 119,000 199,000 257,000

Logic elements 576 1,728 2,880 4,992

EABs 3 6 10 12

Total RAM bits 12,288 24,576 40,960 49,152

Maximum user I/O pins 136 171 249 333

6. Fully compliant with the peripheral component interconnect Special Interest

Group (PCI SIG) PCI Local Bus Specification.

• -1 speed grade devices are compliant with PCI Local Bus Specification

• Built-in Joint Test Action Group (JTAG) boundary scan test (BST)

circuitry compliant with IEEE Std. 1149.1-1990, available without

consuming additional device logic

• Operate with a 2.5V internal supply voltage

• In-circuit reconfigurability (ICR) via external configuration devices,

intelligent controller or, JTAG port

• ClockLockTM and ClockBoostTM options for reduced clock delay, clock

skew, and clock multiplication

• Built-in, low-skew clock distribution trees

• 100% functional testing of all devices, so test vectors or scan chains are

not required

7. Flexible interconnect

• FastTrack Interconnect continuous routing structure for fast, predictable

interconnect delays

• Dedicated carry chain that implements arithmetic functions such as fast

adders, counters, and comparators, that are automatically used by software

tools and megafunctions

• Dedicated cascade chain that implements high-speed, high-fan-in logic

functions, automatically used by software tools and megafunctions

• Tri-state emulation that implements internal tri-state buses

 39

 FPGA based Supervisory Control and Data Acquisition System

• Up to six global clock signals and four global clear signals

8. Powerful I/O pins

• Individual tri-state output enable control for each pin

• Open-drain option on each I/O pin

• Programmable output slew-rate control to reduce switching noise

• Clamp to VCCI/O user-selectable on a pin-by-pin basis

• Supports hot-socketing

9. Software design support and automatic place-and-route provided by Altera

development systems for Windows-based PCs and Sun SPARCstation, and HP

9000 Series 700/800 workstations.

10. Additional design entry and simulation support provided by EDIF 200 and 300

netlist files, library of parameterized modules (LPM), DesignWare components,

Verilog HDL, VHDL, and other interfaces to popular EDA tools from

manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD,

Synopsys, Synplicity, and Viewlogic [18].

4.4.2) General Description

Altera ACEX50K devices provide a die-efficient, low-cost architecture by

combining look-up-table (LUT) architecture with EABs. LUT-based logic

provides optimized performance and efficiency for data-path, register intensive,

mathematical, or digital signal processing (DSP) designs, while EABs implement

RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These

elements make ACEX50K suitable for complex logic functions and memory

functions such as digital signal processing, wide data path manipulation, data

transformation and microcontrollers, as required in high-performance

communications applications.

Based on reconfigurable CMOS SRAM elements, the ACEX50K architecture

incorporates all features necessary to implement common gate array

megafunctions, along with a high pin count to enable an effective interface with

system components. The advanced process and the low voltage requirement of the

2.5V core allow ACEX 50K devices to meet the requirements of low cost, high-

volume applications ranging from DSL modems to low-cost switches.

 40

 FPGA based Supervisory Control and Data Acquisition System

The ability to reconfigure ACEX50K devices enables complete testing prior to

shipment and allows the designer to focus on simulation and design verification.

Reconfigurability eliminates inventory management for gate array designs and test

vector generation for fault coverage.

Table 4.2 shows ACEX50K device performance for some common designs.

Special design techniques are not required to implement the applications, the

designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera

Hardware Description Language (AHDL), or schematic design file.

Table4.2 ACEX50K Performance

Application

Resources

Used

LEs EABs

Performance

Speed Grade

-1 -2 -3 Units

16 Bit loadable Counter 16 0 285 232 185 (MHz)

16 Bit Accumulator 16 0 285 232 185 (MHz)

16 to 1 Multiplexer 10 0 3.5 4.5 6.6 (ns)

256*16 RAM read cycle speed 0 1 278 196 143 (MHz)

256*16 RAM write cycle speed 0 1 185 143 111 (MHz)

Each ACEX50K device contains an embedded array and a logic array. The

embedded array is used to implement a variety of memory functions or complex

logic functions, such as digital signal processing (DSP), wide data-path

manipulation, microcontroller applications, and data transformation functions. The

logic array performs the same function as the sea-of-gates in the gate array and is

used to implement general logic such as counters, adders, state machines, and

multiplexers. The combination of embedded and logic arrays provides the high

performance and high density of embedded gate arrays, enabling designers to

implement an entire system on a single device.

ACEX50K devices are configured at system power-up with data stored in an

Altera serial configuration device or provided by a system controller. Altera offers

EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure

ACEX50K devices via a serial data stream. Configuration data can also be

 41

 FPGA based Supervisory Control and Data Acquisition System

downloaded from system RAM via the Altera MasterBlasterTM,

ByteBlasterMVTM, or BitBlasterTM download cables. After an ACEX50K

device has been configured, it can be reconfigured in-circuit by resetting the

device and loading new data. Because reconfiguration requires less than 40 ms,

real-time changes can be made during system operation [18].

ACEX50K devices are supported by Altera development systems, which are

integrated packages that offer schematic, text (including AHDL), and waveform

design entry, compilation and logic synthesis, full simulation and worst-case

timing analysis, and device configuration. The Altera software works easily with

common gate array EDA tools for synthesis and simulation. For example, the

Altera software can generate Verilog HDL files for simulation with tools such as

Cadence Verilog XL. Additionally, the Altera software contains EDA libraries

that use device specific features such as carry chains, which are used for fast

counter and arithmetic functions. The Altera development systems run on

Windows-based PCs and Sun SPARCstation, and HP 9000 Series 700/800

workstations.

4.4.3) Functional Description

Each ACEX50K device contains an enhanced embedded array that implements

memory and specialized logic functions, and a logic array that implements general

logic. The embedded array consists of a series of EABs. When implementing

memory functions, each EAB provides 4,096 bits, which can be used to create

RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When

implementing logic, each EAB can contribute 100 to 600 gates towards complex

logic functions such as multipliers, microcontrollers, state machines and DSP

functions. EABs can be used independently or multiple EABs can be combined to

implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight

LEs and a local interconnect. An LE consists of a 4-input LUT, a programmable

flip-flop, and dedicated signal paths for carry and cascade functions. The eight

LEs can be used to create medium sized blocks of logic such as 8-bit counters,

address decoders, or state machines or combined across LABs to create larger

logic blocks. Each LAB represents about 96 usable logic gates.

 42

 FPGA based Supervisory Control and Data Acquisition System

Signal interconnections within ACEX50K devices (as well as to and from device

pins) are provided by the FastTrack Interconnect routing structure, which is a

series of fast, continuous row and column channels that run the entire length and

width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end

of each row and column of the FastTrack Interconnect routing structure. Each IOE

contains a bidirectional I/O buffer and a flip-flop that can be used as either an

output or input register to feed input, output, or bidirectional signals. When used

with a dedicated clock pin, these registers provide exceptional performance. As

inputs, they provide setup times as low as 1.1 ns and hold times of 0 ns. As

outputs, these registers provide clock-to-output times as low as 2.5 ns. IOEs

provide a variety of features such as JTAG BST support, slew-rate control, tri-

state buffers, and open-drain outputs.

Figure 4.1 shows the block diagram of the ACEX50K device.

Figure4.1 ACEX50K Device Block Diagram

 43

 FPGA based Supervisory Control and Data Acquisition System

Each group of LEs is combined into an LAB; groups of LABs are arranged into

rows and columns. Each row also contains a single EAB. The LABs and EABs are

interconnected by the FastTrack Interconnect routing structure. IOEs are located

at the end of each row and column of the FastTrack Interconnect routing structure.

ACEX50K devices provide six dedicated inputs that drive the flip-flop’s control

inputs and ensure the efficient distribution of high-speed, low skew (less than 1.0

ns) control signals. These signals use dedicated routing channels that provide

shorter delays and lower skews than the FastTrack Interconnect routing structure.

Four of the dedicated inputs drive four global signals. These four global signals

can also be driven by internal logic, providing an ideal solution for a clock divider

or an internally generated asynchronous clear signal that clears many registers in

the device.

4.4.3.1) Embedded Array Block (EAB)

The EAB is a flexible block of RAM, with registers on the input and output ports,

that is used to implement common gate array megafunctions. Because it is large

and flexible, the EAB is suitable for functions such as multipliers, vector scalars,

and error correction circuits. These functions can be combined in applications

such as digital filters and microcontrollers.

Logic functions are implemented by programming the EAB with a read only

pattern during configuration, thereby creating a large LUT. With LUTs,

combinatorial functions are implemented by looking up the results rather than by

computing them. This implementation of combinatorial functions can be faster

than using algorithms implemented in general logic, a performance advantage that

is further enhanced by the fast access times of EABs.

The large capacity of EABs enables designers to implement complex functions in

a single logic level without the routing delays associated with linked LEs. For

example, a single EAB can implement any function with 8 inputs and 16 outputs.

The ACEX50K enhanced EAB supports dual-port RAM. The dual-port structure

is ideal for FIFO buffers with one or two clocks. The EAB can also support up to

16 bit wide RAM blocks. It can act in dual-port or single-port mode. When in

dual-port mode, separate clocks may be used for read and write sections, allowing

the EAB to be written and read at different rates. The EAB can also be used for

 44

 FPGA based Supervisory Control and Data Acquisition System

bidirectional, dual-port memory applications where two ports read or write

simultaneously. To implement this type of dual-port memory, two EABs are used

to support two simultaneous reads or writes. Alternatively, one clock and clock

enable can be used to control the input registers of the EAB, while a different

clock and clock enable control the output registers.

Figure4.2 ACEX50K EAB in Dual-Port RAM Mode

EABs can be used to implement synchronous RAM, which is easier to use than

asynchronous RAM. A circuit using asynchronous RAM must generate the RAM

write enable signal, while ensuring that its data and address signals meet setup and

hold time specifications relative to the write enable signal. In contrast, the EAB’s

synchronous RAM generates its own write enable signal and is self-timed with

respect to the input or write clock. When used as RAM, each EAB can be

configured in any of the following sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 ×

2. Figure 4.3 shows the ACEX50K EAB memory configurations.

Figure4.3 ACEX50K EAB Memory Configurations

 45

 FPGA based Supervisory Control and Data Acquisition System

Larger blocks of RAM are created by combining multiple EABs. For example,

two 256 × 16 RAM blocks can be combined to form a 256 × 32 block, and two

512 × 8 RAM blocks can be combined to form a 512 × 16 block Figure 4.4 shows

examples of multiple EAB combination.

Figure4.4 Examples of Combining EABs

Altera software automatically combines EABs to meet the designer’s RAM

specifications. An EAB is fed by a row interconnect and can drive out to row and

column interconnects. Each EAB output can drive up to two row channels and up

to two column channels; the unused row channel can be driven by other LEs. This

feature increases the routing resources available for EAB outputs [18].

4.4.3.2) Logic Array Block (LAB)

An LAB consists of eight LEs, their associated carry and cascade chains, LAB

control signals, and the LAB local interconnect. The LAB provides the coarse-

grained structure to the ACEX50K architecture, facilitating efficient routing with

optimum device utilization and high performance.

Each LAB provides four control signals with programmable inversion that can be

used in all eight LEs. Two of these signals can be used as clocks; the other two

can be used for clear/preset control. The LAB clocks can be driven by the

dedicated clock input pins, global signals, I/O signals, or internal signals via the

LAB local interconnect. The LAB preset and clear control signals can be driven

by the global signals, I/O signals, or internal signals via the LAB local

interconnect. The global control signals are typically used for global clock, clear,

or preset signals because they provide asynchronous control with very low skew

across the device. If logic is required on a control signal, it can be generated in

 46

 FPGA based Supervisory Control and Data Acquisition System

one or more LEs in any LAB and driven into the local interconnect of the target

LAB. In addition, the global control signals can be generated from LE outputs.

 Figure 4.5 shows theACEX50K Logic Array Block.

Figure4.5 ACEX50K Logic Array Block

4.4.3.3) Logic Element

The LE, the smallest unit of logic in the ACEX50K architecture, has a compact

size that provides efficient logic utilization. Each LE contains a 4-input LUT,

which is a function generator that can quickly compute any function of four

variables. In addition, each LE contains a programmable flip-flop with a

synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both

the local and the FastTrack Interconnect routing structure.

The programmable flip-flop in the LE can be configured for D, T, JK, or SR

operation. The clock, clear and preset control signals on the flip-flop can be driven

 47

 FPGA based Supervisory Control and Data Acquisition System

by global signals, general-purpose I/O pins, or any internal logic. For

combinatorial functions, the flip-flop is bypassed and the LUT’s output drives the

LE’s output. The LE has two outputs that drive the interconnect: one drives the

local interconnect, and the other drives either the row or column FastTrack

Interconnect routing structure. The two outputs can be controlled independently.

For example, the LUT can drive one output while the register drives the other

output. This feature, called register packing, can improve LE utilization because

the register and the LUT can be used for unrelated functions.

Figure 4.6 shows the ACEX50K Logic Element.

Figure4.6 ACEX50K Logic Element

The ACEX50K architecture provides two types of dedicated high-speed data paths

that connect adjacent LEs without using local interconnect paths: carry chains and

cascade chains. The carry chain supports high speed counters and adders, and the

cascade chain implements wide-input functions with minimum delay. Carry and

cascade chains connect all LEs in a LAB and all LABs in the same row. Intensive

use of carry and cascade chains can reduce routing flexibility. Therefore, the use

of these chains should be limited to speed-critical portions of a design.

 48

 FPGA based Supervisory Control and Data Acquisition System

1) Carry Chain

The carry chain provides a very fast (as low as 0.2 ns) carry-forward function

between LEs. The carry-in signal from a lower-order bit drives forward into the

higher-order bit via the carry chain, and feeds into both the LUT and the next

portion of the carry chain. This feature allows the ACEX50K architecture to

efficiently implement high-speed counters, adders, and comparators of arbitrary

width.

Carry chains longer than eight LEs are automatically implemented by linking

LABs together. A carry chain longer than one LAB skips either from even-

numbered LAB to even-numbered LAB, or from odd numbered LAB to odd-

numbered LAB. The carry chain does not cross the EAB at the middle of the row.

For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB

and a new carry chain begins at the nineteenth LAB.

Figure 4.7 shows how an n-bit full adder can be implemented in n + 1 LEs with

the carry chain. One portion of the LUT generates the sum of two bits using the

input signals and the carry-in signal; the sum is routed to the output of the LE.

Another portion of the LUT and the carry chain logic generates the carry-out

signal, which is routed directly to the carry-in signal of the next-higher-order bit.

The final carry-out signal is routed to an LE, where it can be used as a general-

purpose signal.

2) Cascade Chain

With the cascade chain, the ACEX50K architecture can implement functions that

have a very wide fan-in. Adjacent LUTs can be used to compute portions of the

function in parallel; the cascade chain serially connects the intermediate values.

The cascade chain can use a logical AND or logical OR to connect the outputs of

adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides

four more inputs to the effective width of a function.

Cascade chains longer than eight bits are implemented automatically by linking

several LABs together. For easier routing, a long cascade chain skips every other

LAB in a row. A cascade chain longer than one LAB skips either from even-

numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-

numbered LAB (for example, the last LE of the first LAB in a row cascades to the

 49

 FPGA based Supervisory Control and Data Acquisition System

first LE of the third LAB). The cascade chain does not cross the center of the row.

The cascade chain stops at the eighteenth LAB and a new one begins at the

nineteenth LAB. This break is due to the EAB’s placement in the middle of the

row.

Figures 4.8 and 4.9 show how the cascade function can connect adjacent LEs to

form functions with a wide fan-in. These examples show functions of 4n variables

implemented with n LEs. The LE delay is 1.3 ns, the cascade chain delay is 0.6 ns.

With the cascade chain, decoding a 16-bit address requires 3.1 ns.

Figure4.7 ACEX50K Carry Chain Operation (n-Bit Full Adder)

 50

 FPGA based Supervisory Control and Data Acquisition System

13

Figure4.8 ACEX50K AND Cascade Chain Operation

Figure4.9 ACEX50K OR Cascade Chain Operation

 51

 FPGA based Supervisory Control and Data Acquisition System

4.4.3.4) FastTrack Interconnect Routing Structure

In the ACEX50K architecture, connections between LEs, EABs, and device I/O

pins are provided by the FastTrack Interconnect routing structure, which is a

series of continuous horizontal and vertical routing channels that traverse the

device. This global routing structure provides predictable performance, even in

complex designs. In contrast, the segmented routing in FPGAs requires switch

matrices to connect a variable number of routing paths, increasing the delays

between logic resources and reducing performance. The FastTrack Interconnect

routing structure consists of row and column interconnect channels that span the

entire device.

Each row of LABs is served by a dedicated row interconnect. The row

interconnect can drive I/O pins and feed other LABs in the row. The column

interconnect routes signals between rows and can drive I/O pins. Row channels

drive into the LAB or EAB local interconnect. The row signal is buffered at every

LAB or EAB to reduce the effect of fan-out on delay. A row channel can be

driven by an LE or by one of three column channels. These four signals feed dual

4-to-1 multiplexers that connect to two specific row channels. These multiplexers,

which are connected to each LE, allow column channels to drive row channels

even when all eight LEs in a LAB drive the row interconnect [18].

Each column of LABs or EABs is served by a dedicated column interconnect. The

column interconnect that serves the EABs has twice as many channels as other

column interconnects. The column interconnect can then drive I/O pins or another

row’s interconnect to route the signals to other LABs or EABs in the device. A

signal from the column interconnect, which can be either the output of a LE or an

input from I/O pin, must be routed to the row interconnect before it can enter a

LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one

specific column channel. Access to row and column channels can be switched

between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive

the row and column channels normally driven by a particular LE in the adjacent

LAB in the same row and vice versa. This flexibility enables routing resources to

be used more efficiently.

 52

 FPGA based Supervisory Control and Data Acquisition System

Figure4.10 ACEX50K LAB Connections to Row & Column Interconnect

For improved routing, the row interconnect consists of a combination of full-

length and half-length channels. The full-length channels connect to all LABs in a

row; the half-length channels connect to the LABs in half of the row. The EAB

can be driven by the half-length channels in the left half of the row and by the

full-length channels. The EAB drives out to the full-length channels. In addition to

providing a predictable, row-wide interconnect, this architecture provides

increased routing resources. Two neighboring LABs can be connected using a

 53

 FPGA based Supervisory Control and Data Acquisition System

half-row channel, thereby saving the other half of the channel for the other half of

the row.

In addition to general-purpose I/O pins, ACEX50K devices have six dedicated

input pins that provide low-skew signal distribution across the device. These six

inputs can be used for global clock, clear, preset, and peripheral output-enable and

clock-enable control signals. These signals are available as control signals for all

LABs and IOEs in the device. The dedicated inputs can also be used as general-

purpose data inputs because they can feed the local interconnect of each LAB in

the device.

Table 4.3 summarizes the FastTrack Interconnect routing structure resources

available in each ACEX device.

Table4.3 ACEX FastTrack Interconnect Resources

Device Rows Channels per Row Columns Channels per Column

EP1K10 3 144 24 24

EP1K30 6 216 36 24

EP1K50 10 216 36 24

EP1K100 12 312 52 24

4.4.3.5) I/O Element

An IOE contains a bidirectional I/O buffer and a register that can be used either as

an input register for external data that requires a fast set-up time or as an output

register for data that requires fast clock-to-output performance. For bi-directional

registered I/O implementation, the output register should be in the IOE and the

data input and output enable registers should be LE registers, placed adjacent to

the bidirectional pin. On all ACEX50K devices, the input path from the I/O pad to

the FastTrack Interconnect has a programmable delay element that can be used to

guarantee a zero hold time. Depending on the placement of the IOE relative to

what it is driving, the designer may choose to turn on the programmable delay to

ensure a zero hold time or turn it off to minimize setup time. This feature is used

to reduce setup time for complex pin-to register paths, for example, PCI designs.

Each IOE selects the clock, clear, clock enable, and output enable controls from a

 54

 FPGA based Supervisory Control and Data Acquisition System

network of I/O control signals called the peripheral control bus. The peripheral

control bus uses high-speed drivers to minimize signal skew across devices and

provides up to 12 peripheral control signals.

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels.

The signal is accessible by all LEs within that row. When an IOE is used as an

output, the signal is driven by a multiplexer that selects a signal from the row

channels. Up to eight IOEs connect to each side of each row channel.

Figure4.11 ACEX50K Row-to-IOE Connections

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels.

When an IOE is used as an output, the signal is driven by a multiplexer that

selects a signal from the column channels. Two IOEs connect to each side of the

column channels. Each IOE can be driven by column channels via a multiplexer.

The set of column channels is different for each IOE. Figure 4.12 shows the

column to IOE connections in ACEX50K device.

 55

 FPGA based Supervisory Control and Data Acquisition System

Figure4.12 ACEX50K Column-to-IOE Connections

4.4.4) ClockLock & ClockBoost Features

To support high-speed designs, ACEX50K devices offer ClockLock and

ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase

design speed and reduce resource usage. The ClockLock circuitry uses a

synchronizing PLL that reduces the clock delay and skew within a device. This

reduction minimizes clock-to-output and setup times while maintaining zero hold

times. The ClockBoost circuitry, which provides a clock multiplier, allows the

designer to enhance device area efficiency by sharing resources within the device.

The ClockBoost feature allows the designer to distribute a low-speed clock and

multiply that clock on-device. Combined, the ClockLock and ClockBoost features

provide significant improvements in system performance and bandwidth [18].

The ClockLock and ClockBoost features in ACEX50K devices are enabled

through the Altera software. External devices are not required to use these

features. The ClockLock and ClockBoost circuitry lock onto the rising edge of the

incoming clock.

 56

 FPGA based Supervisory Control and Data Acquisition System

4.4.5) JTAG Boundary-Scan Support

All ACEX50K devices provide JTAG BST circuitry that complies with the IEEE

Std. 1149.1-1990 specification. ACEX50K devices can also be configured using

the JTAG pins through the ByteBlasterMV or BitBlaster download cable or via

hardware that uses the JamTM Standard Test and Programming Language

(STAPL), JEDEC standard JESD-71. ACEX50K devices support the JTAG

instructions. The instruction register length of ACEX50K devices is 10 bits. The

USERCODE register length in ACEX50K devices is 32 bits; 7 bits are determined

by the user, and 25 bits are pre-determined.

4.4.6) Operating Conditions

Table 4.4 provides the information on absolute maximum ratings for 2.5V

ACEX50K device.

Table4.4 ACEX50K Absolute Maximum Rating

Symbol Parameter Conditions Min Max Unit

VCCINT -0.5 3.6 V

VCCIO
Supply Voltage With respect to ground

-0.5 4.6 V

VI DC input voltage -2.0 5.75 V

IOUT DC output current -25 25 mA

TSTG Storage temperature No bias -65 150 Cels

TAMB Ambient temperature Under bias -65 135 Cels

TJ Junction temperature
PQFP, TQFP & BGA

packages, under bias
 135 Cels

4.4.7) Timing Model

 The continuous, high-performance FastTrack Interconnect routing resources

ensure accurate simulation and timing analysis as well as predictable performance.

This predictable performance contrasts with that of other FPGAs, which use a

segmented connection scheme and therefore, have an unpredictable performance.

Device performance can be estimated by following the signal path from a source,

through the interconnect, to the destination. For example, the registered

performance between two LEs on the same row can be calculated by adding the

following parameters:

 57

 FPGA based Supervisory Control and Data Acquisition System

• LE register clock-to-output delay (tCO)

• Interconnect delay (tSAMEROW)

• LE look-up table delay (tLUT)

• LE register setup time (tSU)

The routing delay depends on the placement of the source and destination LEs. A

more complex registered path may involve multiple combinatorial LEs between

the source and destination LEs. Timing simulation and delay prediction are

available with the simulator and timing analyzer. The Simulator offers both pre-

synthesis functional simulation to evaluate logic design accuracy and post-

synthesis timing simulation with 0.1 ns resolution. The Timing Analyzer provides

point-to-point timing delay information, setup and hold time analysis, and device-

wide performance analysis. Figure 4.13 shows the overall timing model, which

maps the possible paths to and from the various elements of the ACEX50K

device.

Figure4.13 ACEX50K Device Timing Model

4.4.8) Power Consumption

The supply power (P) for ACEX50K devices can be calculated with the following

equation:

P = PINT + PIO = (ICCSTANDBY + ICCACTIVE) × VCC + PIO

The ICCACTIVE value depends on the switching frequency and the application logic.

This value is calculated on the basis of amount of current that each LE typically

consumes. The PIO value depends on the device output load characteristics and

switching frequency. Compared to the rest of the device, the embedded array

 58

 FPGA based Supervisory Control and Data Acquisition System

consumes a negligible amount of power. Therefore, the embedded array can be

ignored when calculating supply current.

The ICCACTIVE value can be calculated with the following equation:

ICCACTIVE = K × fMAX × N × toglc (µA),

Where, fMAX = Maximum operating frequency in MHz

 N = Total number of LEs used in the device

 toglc = Average percent of LEs toggling at each clock (typically 12.5%)

 K = Constant (For EP1K50 device, value of K is 4.5)

This supply power calculation provides an ICC estimate based on typical conditions

with no output load. The actual ICC should be verified during operation because

this measurement is sensitive to the actual pattern in the device and the

environmental operating conditions. To better reflect actual designs, the power

model for continuous interconnect ACEX50K devices assumes that LEs drive

FastTrack Interconnect channels. In contrast, the power model of segmented

FPGAs assumes that all LEs drive only one short interconnect segment. This

assumption may lead to inaccurate results when compared to measured power

consumption for actual designs in segmented FPGAs.

4.4.9) Configuration & Operation

The ACEX50K architecture supports several configuration schemes. This section

summarizes the device operating modes and available device configuration

schemes.

4.4.9.1) Operating Modes

The ACEX50K architecture uses SRAM configuration elements that require

configuration data to be loaded every time the circuit powers up. The process of

physically loading the SRAM data into the device is called configuration. Before

configuration, as VCC rises, the device initiates a Power-On Reset (POR). This

POR event clears the device and prepares it for configuration. The ACEX50K

POR time does not exceed 50 µs. During initialization, which occurs immediately

after configuration, the device resets registers, enables I/O pins, and begins to

operate as a logic device. Before and during configuration, all I/O pins (except

dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up

 59

 FPGA based Supervisory Control and Data Acquisition System

resistor. Together, the configuration and initialization processes are called

command mode; normal device operation is called user mode.

SRAM configuration elements allow ACEX50K devices to be reconfigured in-

circuit by loading new configuration data into the device. Real-time

reconfiguration is performed by forcing the device into command mode with a

device pin, loading different configuration data, re-initializing the device, and

resuming user-mode operation. The entire reconfiguration process requires less

than 40 ms and can be used to reconfigure an entire system dynamically.

4.4.9.2) Configuration Schemes

The configuration data for an ACEX50K device can be loaded with one of five

configuration schemes, chosen on the basis of the target application. An EPC16,

EPC2, EPC1 or EPC1441 configuration device, intelligent controller, or the JTAG

port can be used to control the configuration of an ACEX device, allowing

automatic configuration on system power-up.

Table4.5 Data Sources for ACEX Configuration

Configuration Scheme Data Source

Configuration device EPC16, EPC2, EPC1 or EPC1441 devices

Passive serial (PS)
BitBlaster or ByteBlasterMV download cables

or serial data source

Passive parallel asynchronous Parallel data source

Passive parallel synchronous Parallel data source

JTAG
BitBlaster or ByteBlasterMV download cables

or Microprocessor with a Jam STAPL file

 60

 FPGA based Supervisory Control and Data Acquisition System

4.4.10) ACEX50K Device Pin-out

Switch on UVLSI201 Device Pin No Property FPGA Signal

RESET1 56 GCLK1 CLRN

124 DED I/P3 RESET_N RESET2

126 DED I/P4 RESET

Reference LED 87 I/O

External Clock Input 125 DED CLK2 CLK2

On Board Clock Input 55 DED CLK1 CLK1

 61

 FPGA based Supervisory Control and Data Acquisition System

Connector Device Pin Property Signal

P14/1 128 I/O EXT I/O 1

P14/2 122 I/O EXT I/O 2

P14/3 121 I/O EXT I/O 3

P14/4 120 I/O EXT I/O 4

P14/5 119 I/O EXT I/O 5

P14/6 118 I/O EXT I/O 6

P14/7 117 I/O EXT I/O 7

P14/8 116 I/O EXT I/O 8

P14/9 5V Vcc Vcc

P14/10 GND Ground Ground

P15/1 26 Dedicated O Buffered O/P 9

P15/2 23 Dedicated O Buffered O/P 10

P15/3 22 Dedicated O Buffered O/P 11

P15/4 21 Dedicated O Buffered O/P 12

P15/5 20 Dedicated O Buffered O/P 13

P15/6 19 Dedicated O Buffered O/P 14

P15/7 18 Dedicated O Buffered O/P 15

P15/8 17 Dedicated O Buffered O/P 16

P15/9 5V Vcc Vcc

P15/10 GND Ground Ground

P16/1 36 Dedicated O Buffered O/P 1

P16/2 33 Dedicated O Buffered O/P 2

P16/3 32 Dedicated O Buffered O/P 3

P16/4 31 Dedicated O Buffered O/P 4

P16/5 30 Dedicated O Buffered O/P 5

P16/6 29 Dedicated O Buffered O/P 6

P16/7 28 Dedicated O Buffered O/P 7

P16/8 27 Dedicated O Buffered O/P 8

P16/9 5V Vcc Vcc

P16/10 GND Ground Ground

 62

 FPGA based Supervisory Control and Data Acquisition System

Connector Device Pin Property Signals from GPIO Board

 P17/1 9 INPUT 1 SW1 digital input I16

P17/2 8 INPUT 2 SW1 digital input I15

P17/3 7 INPUT 3 SW1 digital input I14

P17/4 144 INPUT 4 SW1 digital input I13

P17/5 143 INPUT 5 SW1 digital input I12

P17/6 142 INPUT 6 SW1 digital input I11

P17/7 141 INPUT 7 SW1 digital input I10

P17/8 140 INPUT 8 SW1 digital input I9

P17/9 138 INPUT 9 SW1 digital input I8

P17/10 137 INPUT 10 SW1 digital input I7

P17/11 136 INPUT 11 SW1 digital input I6

P17/12 135 INPUT 12 SW1 digital input I5

P17/13 133 INPUT 13 SW1 digital input I4

P17/14 132 INPUT 14 SW1 digital input I3

P17/15 131 INPUT 15 SW1 digital input I2

P17/16 130 INPUT 16 SW1 digital input I1

P17/17 110 OUTPUT16 Output LED O16

P17/18 109 OUTPUT15 Output LED O15

P17/19 102 OUTPUT14 Output LED O14

P17/20 101 OUTPUT13 Output LED O13

P17/21 100 OUTPUT12 Output LED O12

P17/22 99 OUTPUT11 Output LED O11

P17/23 98 OUTPUT10 Output LED O10

P17/24 97 OUTPUT 9 Output LED O9

P17/25 96 OUTPUT 8 Output LED O8

P17/26 95 OUTPUT 7 Output LED O7

P17/27 92 OUTPUT 6 Output LED O6

P17/28 91 OUTPUT 5 Output LED O5

P17/29 90 OUTPUT 4 Output LED O4

P17/30 89 OUTPUT 3 Output LED O3

 63

 FPGA based Supervisory Control and Data Acquisition System

Connector Device Pin Property Signals from GPIO Board

P17/31 88 OUTPUT 2 Output LED O2

P17/32 86 OUTPUT 1 Output LED O1

P17/33 83 SEG A 7 Segment O/P => ‘a’

P17/34 82 SEG B 7 Segment O/P => ‘b’

P17/35 81 SEG C 7 Segment O/P => ‘c’

P17/36 80 SEG D 7 Segment O/P => ‘d’

P17/37 79 SEG E 7 Segment O/P => ‘e’

P17/38 78 SEG F 7 Segment O/P => ‘f’

P17/39 73 SEG G 7 Segment O/P => ‘g’

P17/40 72 SEG DP 7 Segment O/P => ‘dp’

P17/41 36 DISP 1 Digit 0 select o/p

P17/42 33 DISP 2 Digit 1 select o/p

P17/43 32 DISP 3 Digit 2 select o/p

P17/44 31 DISP 4 Digit 3 select o/p

P17/45 114 KEY 1 Key k1

P17/46 113 KEY 2 Key k2

P17/47 112 KEY 3 Key k3

P17/48 111 KEY 4 Key k4

P17/49 5V Vcc Vcc

P17/50 GND Ground Ground

P18/1 37 DAC0 DAC data0 o/p from FPGA

P18/2 38 DAC1 DAC data1 o/p from FPGA

P18/3 39 DAC2 DAC data2 o/p from FPGA

P18/4 41 DAC 3 DAC data3 o/p from FPGA

P18/5 42 DAC4 DAC data4 o/p from FPGA

P18/6 43 DAC5 DAC data5 o/p from FPGA

P18/7 44 DAC6 DAC data6 o/p from FPGA

P18/8 46 DAC7 DAC data7 o/p from FPGA

P18/9 47 ADC_D0 Data 0 from ADC 0808

P18/10 48 ADC_D1 Data 1 from ADC 0808

 64

 FPGA based Supervisory Control and Data Acquisition System

Connector Device Pin Property Signals from GPIO Board

P18/11 49 ADC_D2 Data 2 from ADC 0808

P18/12 51 ADC_D3 Data 3 from ADC 0808

P18/13 54 ADC_D4 Data 4 from ADC 0808

P18/14 59 ADC_D5 Data 5 from ADC 0808

P18/15 60 ADC_D6 Data 6 from ADC 0808

P18/16 62 ADC_D7 Data 7 from ADC 0808

P18/17 63 ADC_A0 ADC Channel Select Bit

P18/18 67 ADC_START Write for ADC (SOC)

P18/19 64 ADC_A1 ADC Channel Select Bit

P18/20 68 ADC_ALE ADC ALE Signal

P18/21 65 ADC_A2 ADC Channel select Bit

P18/22 69 ADC_EOC Interrupt Signal from ADC (EOC)

P18/23 125 EXT CLK 555 Frequency o/p to FPGA

P18/24 70 ADC_OE ADC Output Enable (OE)

P18/25 5V Vcc Vcc

P18/26 GND Ground Ground

 65

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 5

 SOFTWARE

Introduction
This chapter is intended to become familiar with the VHDL for specifying

programmable logic design. For serious work, use of EDA Tools like Altera is

essential because PLDs contain many thousands of programmable fuses. The

process of producing fuse maps is therefore highly impossible to manage by hand.

The purpose of EDA tool is to interpret the logic design and convert it into a

format which may be loaded in the PLD directly, called In-System-Programming

(ISP), or indirectly via a separate device programmer.

5.2 Altera Quartus II Software
The Altera Quartus II design software provides a complete, multi platform design

environment that easily adapts to our specific design needs. It is a comprehensive

environment for system on a programmable chip (SOPC) design. This software

includes solutions for all phases of FPGA and CPLD design.

In addition, Quartus II software allows us to use the graphical user interface, EDA

tool interface or command line interface for each phase of the design flow. We

can use one of these interfaces for the entire flow or we can use different options

at different phases of the design flow.

Graphical user interface has been used for this project. We will study it in detail.

5.2.1) Graphical User Interface Design Flow

We can use the Quartus II software to perform all stages of the design flow. It is a

complete, easy to use, stand alone solution [12]. The Quartus II graphical user

interface provides the following features for each stage of design flow.

(1) Design Entry

• Text Editor

• Block and Symbol Editor

• MegaWizard Plug In Manager

• Assignment Editor

• Floor plan Editor

(2) Synthesis

 66

 FPGA based Supervisory Control and Data Acquisition System

• Analysis and Synthesis

• VHDL, Verilog HDL & AHDL

• Design Assistant

(3) Place and Route

• Fitter

• Assignment Editor

• Floor plan Editor

• Chip Editor

• Report Window

• Incremental Fitting

(4) Timing Analysis

• Timing Analyzer

• Report Window

(5) Simulation

• Simulator

• Waveform Editor

(6) Programming

• Assembler

• Programmer

• Convert programming Files

5.2.2) Procedure

The following steps describe the basic design flow for the Quartus II graphical

user interface:

1. Create a new project and specify a target device or device family by using

the New Project wizard.

2. Create a VHDL, Verilog HDL or AHDL design by using the text editor.

We can use the Block Editor to create a block diagram with symbols that

represent other design files or to create a schematic.

3. Specify initial design constraints using the assignment editor, the setting

dialogue box and the floor plan editor.

4. Create a system level design by using the SOPC builder or DSP builder.

 67

 FPGA based Supervisory Control and Data Acquisition System

5. Create software and programming files for Excalibur device processors by

using the software builder.

6. Synthesize the design by using Analysis and Synthesis.

7. Perform functional simulation on the design by using the Simulator.

8. Perform place and route on the design by using the fitter. For a small

change to the source code we can also use incremental fitting.

9. Perform timing analysis on the design by Timing Analyzer.

10. Perform timing simulation on the design by using the simulator.

11. Make timing improvements to achieve timing closure by using physical

synthesis, the timing closure floor plan, the setting dialogue box and the

assignment Editor.

12. Create programming files for the design by using the assembler.

13. Program the device by using programming files, the Programmer and

Altera hardware or convert programming files to other file formats for use

by other systems.

14. Debug the design by using the Signal Tap II logic Analyzer, the signal

probe feature or the chip editor.

15. Manage engineering changes by using the chip editor, the resource

property editor and the change manager (optional).

Figures 5.1 to 5.8 show the steps to use the QuartusII software.

 68

 FPGA based Supervisory Control and Data Acquisition System

Figure5.1 Using Wizard Create New Project

Figure5.2 Create Directory and Project Name

 69

 FPGA based Supervisory Control and Data Acquisition System

Figure5.3 Select the Family of the Device

Figure 5.4 Summary of the New Project Wizard

 70

 FPGA based Supervisory Control and Data Acquisition System

Figure5.5 Select the VHDL file

Figure5.6 Write the VHDL Code

 71

 FPGA based Supervisory Control and Data Acquisition System

Figure5.7 Compilation Process

Figure5.8 Assignment of Pins for the Device

 72

 FPGA based Supervisory Control and Data Acquisition System

5.3 VHDL
Introduction

VHDL is a Hardware Description Language that can be used to model a system.

The digital system can be as simple as a logic gate or as complex as a complete

electronics system [2]. VHDL is an acronym for VHSIC Hardware Description

Language; VHSIC is an acronym for Very High Speed Integrated Circuits. It can

be used to model a digital system at many levels of abstraction, ranging from the

algorithmic level to the gate level. The digital system can also be described

hierarchically. Timing can also be explicitly modeled in the same description. The

VHDL language can be regarded as an integrated amalgamation of the many

languages.

VHDL = Sequential language + Concurrent language + Net list language +

Timing specifications + Waveform generation language

Therefore, the language has constructs that enable us to express the concurrent or

sequential behavior of a digital system with or without timing. The language not

only defines the syntax but also defines very clear simulation semantics for each

language construct. Therefore, models written in this language can be verified

using a VHDL simulator.

It is a strongly typed language and is often verbose to write. It inherits many of its

features, especially the sequential language part from the Ada Programming

language. Because VHDL provides an extensive range of modeling capabilities, it

is often difficult to understand. Fortunately, it is possible to quickly assimilate a

core subset of the language that is both easy and simple to understand without

learning the more complex features. This subset is usually sufficient to model

most applications. The complete language has sufficient power to capture the

descriptions of the most complex chips to a complete electronic system.

5.3.2) Salient Features

The following are the major capabilities that the language provides along with the

features that differentiate it from other hardware description languages.

 The language can be used as an exchange medium between chip vendors

and CAD tool users. Different chip vendors can provide VHDL

descriptions of their components to system designers. CAD tool user can

 73

 FPGA based Supervisory Control and Data Acquisition System

use it to capture the behavior of the design at a high level of abstraction for

functional simulation.

 The language can also be used as a communication medium between

different CAD and CAE tools. For example, a schematic capture program

may be used to generate a VHDL description for the design, which can be

used as an input to a simulation program [2].

 The language supports hierarchy, that is, a digital system can be modeled

as a set of interconnected components, and each component can be

modeled as a set of interconnected subcomponents.

 The language supports flexible design methodologies; top down, bottom

up or mixed.

 The language is not technology specific, but is capable of supporting

technology specific features. It can also support various hardware

technologies, for example we may define new logic types and new

components.

 Various digital modeling techniques, such as finite state machine

descriptions, algorithmic descriptions and boolean equations can be

modeled using the language.

 The language is publicly available, human readable, machine readable and

above all, it is not proprietary.

 It is an IEEE and ANSI standard; therefore models described using this

language are portable.

 Test benches can be written using the same language to test other VHDL

models.

 The capability of defining new data types provides the power to describe

and simulate a new design technique at a very high level of abstraction

without any concern about the implementation details.

 74

 FPGA based Supervisory Control and Data Acquisition System

Figure5.9 VLSI Design Flow

 75

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 6

UVLSI TRAINER
Introduction
Programmable Logic Devices are playing major role in system design due to their

flexible architecture, re-programmability and fast time to market resulting in a

smaller design-cycle period. Also lower design risk is involved with the use of

PLDs [12].

This Universal PLD kit is an ideal trainer to implement and test the designs. This

kit makes it possible to execute and verify basic digital experiments using VHDL

and Verilog, the standard Hardware Description Languages. VHDL code can be

written and the results can be verified on this kit using FPGA or CPLD. We can

verify various experiments involving combinational and sequential logic using

this kit. It is assembled ready for various interfaces that include ADC/DAC,

display, keyboard, serial communication, VGA, PS2 etc.

The Universal PLD Trainer System consists of

• Power Supply Unit

• Hardware Access Unit

• Connecting cables

• Universal Board (UVLSI 201)

• FPGA Daughter Board

Each is discussed in brief below:

(1) Power Supply Unit

SMPS power supply: Input 100V to 300V, 50 Hz and Output 9.6 V dc, 1.2A

(2) Hardware Access Unit

This is security unit used to configure the devices on the UVLSI 201. This unit

detects following things.

 Card in: When daughter card is inserted this led will glow.

 Altera LED: When Altera daughter board is inserted this led will glow.

 Altera SPROM: This led will glow, when Altera SPROM is being

programmed.

 Xilinx LED: When Xilinx daughter board is inserted this led will glow.

 76

 FPGA based Supervisory Control and Data Acquisition System

 Xilinx SPROM - This led will glow, when Xilinx SPROM is being

programmed.

Figure6.1 Layout of UVLSI 201

 77

 FPGA based Supervisory Control and Data Acquisition System

(3) List of cables

 A set of cables is provided to connect the UVLSI 201 board to the PC

through the hardware access unit and to the interfacing units.

 Parallel Port of the PC to Hardware Access Unit (25 pin FRC M-M)

 Hardware Access Unit to UVLSI 201 (25 pin FRC F-F)

 10 Pin FRC Cable to program the configuration devices

 50 and 26 Pin FRC cables to interface with the GPIO 401A module

6.2 Salient Features of Universal Board
The printed circuit board assembled in the enclosure Universal Board contains all

the devices available for interfacing, assembled with the supporting hardware and

the connectors for interfacing to the PLD board.

6.2.1) Connectors

(1) Input Port (P14)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10).

This port can be configured as input or as output port.

(2) Output Port (P15)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10).

This port is a dedicated output port with buffers (74LS245).

(3) Output Port2 (P16)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10).

This port is a dedicated output port with buffers (74LS245).

(4) I/O Port1 (P17)

This is 50 pin header with 48 I/O lines and Vcc [+5V] (pin 49), GND (pin50).

This port can be configured as input or output.

(5) I/O Port2 (P18)

This is 26 pin header with 24 I/O lines and Vcc [+5V] (pin 25), GND (pin26).

This port can be configured as input or output.

(6) PS2 Port (P13)

This is used to interface a PS2 standard keyboard or a mouse.

(7) Serial Port (P4)

This is a RS-232 standard serial communication port.

(8) Programming Cable (P3)

 78

 FPGA based Supervisory Control and Data Acquisition System

This is D type 25-pin male, used to configure the PLDs and to program the

configuration devices.

(9) VGA Port (P2)

This is used to interface VGA standard graphics devices.

(10) SPROM Programmer Connectors

Xilinx SPROM: Connect P9 and P10 through a 10-pin FRC cable when

programming the Xilinx Configuration devices.

Altera SPROM: Connect P11 and P12 through a 10-pin FRC cable when

programming the Altera Configuration devices.

6.2.2) Switches

(1) Altera Mode Select: This switch is used when configuring the Altera FPGAs,

through the configuration Device.

(2) Xilinx Mode Select: This switch is used to select the mode when configuring

the Xilinx FPGAs.

6.2.3) LCD Display

UVLSI 201 supports on board 16X1 characters LCD display. Data has to be sent

nibble by nibble from the PLD to the LCD module on its MS byte.

6.2.4) Daughter Board Connectors

Connectors J1, J2, J3 and J4 are provided to accommodate the daughter boards of

various vendors.

6.2.5) Jumpers

Clock Select: This can be used to select different on board clock frequencies

4MHz, 16MHz, 25MHz.

6.2.6) On Board Programmer

UVLSI 201 features Onboard Programmer to program the Altera (EPC2) and

Xilinx (XC18V01) Configuration devices.

6.2.7) RS-232 Connector

 RS-232 interface standard is provided for implementing serial communication to

and from computer. DB9 connector is used for connection of RS-232 interface.

 79

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 7

 GPIO BOARD
Introduction
As the name says this is a Multi purpose I/O board i.e. it has almost all the

primary interfaces that a PLD may be used for. This board is designed to interface

PLDs of any make (Xilinx, Altera, Lattice, Actel etc), any gate count and any

package. It has all input and output interfaces brought on to the two connectors on

the board. The FPGA can be configured to fit on these connectors to complete the

interface circuit [12]. The interfaces depend on the device gate count and the

number of I/Os used in the design.

7.2 Details of GPIO 401A Board
 The General Purpose I/O Board provides following interfaces.

 16 digital inputs: Two 8 way DIP Switch with 3mm LED indication

 16 digital outputs: 16 output LEDs

 4 key switches: 4 tactile key switches

 4 digits Multiplexed 7 Segment display (common anode type)

 8 Channel 8 Bit ADC (Analog to Digital Converter)

 Single channel 8 bit DAC (Digital to Analog Converter)

 80

 FPGA based Supervisory Control and Data Acquisition System

Figure 7.1 GPIO 401 Board Lay out

 81

 FPGA based Supervisory Control and Data Acquisition System

7.2.1) 16 DIP Switch Inputs

 8 + 8 DIP switches, indented as (I16 ….I9, I8 ….I1) are available to give steady

state inputs. They are all active high switches. The LEDs indicate the position of

individual switches i.e. ON or OFF. The LED glows when the switch is ON.

Figure7.2 Input DIP Switches

7.2.2) 16 Output LEDs

16 Red LEDs, indented as (O16…O9, O8…O1) are available to indicate the

steady state outputs. A high voltage level makes the LED glow.

Figure7.3 Output LEDs

7.2.3) 4 Key Interfaces

4 robust keys (K1 to K4) are arranged.

7.2.4) Multiplexed (4 digits) 7 Segment Display

7 segment display is available for multiplexed interface selectable through

connectors I/O port1. All the 4 digits can be used for multiplexed interface

connecting I/O port 1 from UVLSI 201 to I/O port 1 on the GPIO 401A.

A high output lights the segment. Similarly a high output also selects a digit. SEG

A to SEG DP and DISP1 to DISP4 are total 12 pins of the PLD which are used for

the 7 segment display function. For multiplexed displays, SEG A to SEG DP are

connected to segments of all the 4 displays and DISP1 TO DISP4 is connected to

the transistor base of display DISP1. Similarly DISP3 to DISP4 are connected to

other transistor bases respectively.

7.2.5) 8-Bit ADC Interface

To provide exposure to the projects of analog world an Analog to Digital

converter device interface is provided.

 82

 FPGA based Supervisory Control and Data Acquisition System

ADC0808 has been selected for this purpose. This is an 8-bit, successive

approximation ADC with tri-state outputs. Successive approximation register

(SAR) analog to digital converters (ADCs) are frequently used for medium-to-

high-resolution applications with sample rates under 5 mega samples per second

(Msps). SAR ADCs most commonly range in resolution from 8 to 16 bits and

provide low power consumption as well as a small form factor. This combination

makes them ideal for a wide variety of applications, such as portable/battery-

powered instruments, pen digitizers, industrial controls, and data/signal

acquisition.

 The ADC channel selection and the control signals have to come from the FPGA.

Analog input can be given from on board source and its value can be changed

through the potentiometer (ADC I/P). External Analog input 0 to +5V can be

given through the connector ADC EXT I/P with appropriate jumper settings. The

Clock for ADC operation is generated on board using a 555 timer, which can be

varied using the POT (timer frequency).

7.2.6) 8-Bit DAC Interface

Digital-to-Analog converter device interface is also provided on the GPIO to have

interface with analog world. DAC0800 is used for this purpose. DAC 0800 is a

single channel 8-bit DAC. The analog output of the DAC can be observed at pin

no.1 of connector J13.

 83

 FPGA based Supervisory Control and Data Acquisition System

CHAPTER 8

FPGA BASED SCADA SYSTEM
Introduction
SCADA is an acronym for Supervisory Control and Data Acquisition. SCADA

system is an intelligent system, which provides the facility of continuously

monitoring, supervising and controlling any process. It is the first step towards

automation. The SCADA system has become the backbone for monitoring,

controlling and meeting the desired objectives of the process plant.

The functioning of a SCADA system consists of three stages:

 Data Acquisition: Data Acquisition is scanning of the channels in the

specified order and at the specified frequency to acquire the data. There

are many ways in which various channels can be addressed to read the data

[4]. The analog data is converted to the digital form for processing and

control purposes in the FPGA chip.

 Data Processing: The output of ADC is converted to the equivalent

engineering units before any analysis is done. An ADC output value will

correspond to a particular engineering value based on calibration of

transmitter, ADC mode and digital output line. The data read from the

ADC output for various channels is processed by the FPGA to carry out

limit checking. For limit checking, limits for the channels are set using

software. When any limit is violated, appropriate indicator like LED,

alarm etc is activated.

 Analysis and Control: If the set limit is violated by the process output

variable, some corrective actions should be taken to keep the desired

performance. The system performance can also be analyzed. This analysis

will enable us to visualize the problems in the system, and to take

decisions regarding system modification or alternate operational strategy

to increase the system performance. The software for analysis and control

can be written depending on the type of analysis required.

The proposed scheme implements the SCADA system using UVLSI 201 kit,

which includes an Altera FPGA and a general purpose input-output board.

 84

 FPGA based Supervisory Control and Data Acquisition System

VHDL programming environment is used to model the system. Details regarding

each stage are presented below.

8.2 Data Acquisition
8.2.1) Channel Scanning

The FPGA scans the multiplexed channels continuously to capture the data. There

are many ways in which FPGA can address the various channels and read the

data. The most commonly used method is polling. In polling, the action of

selecting a channel and addressing it is the responsibility of FPGA.

The channel selection may be sequential or in any particular order decided by the

designer. It is also possible to assign priority to some channels over others i.e.

some channels can be scanned more frequently than others. It is also possible to

offer this facility of selecting the order of channel addressing and channel

priorities to the operator level i.e. make these facilities as dynamic [4]. The FPGA

may scan the channels continuously in the particular order or the channels may be

scanned after every fixed time period.

In the proposed scheme, analog data is acquired from two multiplexed channels

provided on the GPIO board. The FPGA scans these two channels, channel

number 0 and 1, at the fixed time interval of two seconds, to acquire the data. To

introduce the delay of two seconds, a counter circuit is implemented using VHDL.

FPGA sends the address of the selected channel to the multiplexer to interface this

channel to the ADC.

8.2.2) Analog to Digital Conversion

The captured analog data is converted to the digital form using ADC0808

interface, provided on the GPIO board. This requires the following actions to be

taken by the FPGA [7]:

 Sending the channel address to the multiplexer

 Sending start convert pulse to ADC

 Reading the digital data at ADC output

ADC0808 is an 8 bit, successive approximation type ADC with tri-state outputs.

Channel selection and control signals come from FPGA on the UVLSI 201.

Hence, ADC is controlled by the FPGA. The clock for ADC operation is

generated on board using a 555 timer, which can be varied using the POT [12].

 85

 FPGA based Supervisory Control and Data Acquisition System

Address of the selected channel is sent to the ADC0808 and signal ‘ale’ is sent to

latch this address in ADC. A pulse to the ‘start’ pin of the ADC is required to

start the conversion process and to disable the tri-state output buffer. At the end of

the conversion period, ‘end of conversion’ pin becomes active and the digital

output is made available at the output buffer. To read the digital data at ADC

output, the end of conversion signal of ADC chip is read by the FPGA and when it

is ‘high’, digital data is read and stored in the chip.

Figure8.1 Block Diagram of ADC0808

8.2.3) Seven Segment Display

7 segment displays are available for multiplexed interface selectable through

connectors I/O port1. All the 4 digits can be used for multiplexed interface

connecting I/O port1 from UVLSI 201 to I/O port1 on the GPIO 401A.

The displays are common anode type. A high output lights the segment. Similarly,

a high output also selects a digit. SEG A to SEG DP and DISP1 to DISP4 are total

12 pins of the FPGA, which are used for the seven segment display function.

 86

 FPGA based Supervisory Control and Data Acquisition System

For multiplexed displays, SEG A to SEG DP are connected to segments of all the

4 displays and DISP1 is connected to the transistor base of display DISP1.

Similarly DISP3 to DISP4 are connected to other transistor bases respectively

[12].

To select a particular digit for display, its base drive is made low through

programming. For example, to display ‘0’ on digit 1, DISP1 is made low and

segments “gfedcba” are set to “”0111111”.

Figure8.2 Seven Segment Display

Address of the selected channel is displayed on the first digit and the data acquired

is displayed in hexadecimal form using third and fourth digit. Second digit has not

been used.

The kit has an on-board clock of 4 MHz and above. It is not possible for human

eyes to observe and notice the changes at such high frequency. So, a clock divider

circuit is implemented, which generates another clock of less frequency. This

circuit divides the frequency of the on board clock by any desired number and the

low frequency clock is used for implementing the display logic.

 87

 FPGA based Supervisory Control and Data Acquisition System

8.3 Data Processing
The FPGA reads and stores the captured data in digital form. To check whether

the data is within the specified limits or not, it is processed by the FPGA.

In the interfaced process, if the captured data is less than or equal to the set limit,

it means that the process is working in the desired manner. But if the data crosses

the set limit, it means that the system is behaving in an unacceptable manner and it

need to be manipulated by some means.

To apply this logic, a comparator is implemented in VHDL which compares the

process output variable with the set limit. Whenever it becomes more than the set

limit, red LED glows. The glowing LED indicates that the process behavior is not

in accordance to our needs and it should be controlled by some means. In addition

to limit checking, the system performance may also be analyzed. This will help us

to visualize the problems in the system.

8.4 Analysis and Control
Whenever the captured data goes beyond the specified limit, process needs to be

manipulated and some corrective actions should be taken. For example, in a

temperature control system, if the temperature becomes more than the set limit,

fans should be switched on, or steam supply to the heater should be reduced. In a

level control system, if level becomes more than the set point, inlet valve opening

should be reduced or outlet valve opening should be increased.

To actuate these mechanical devices or to take any other corrective measure, a 5-

volt analog control signal is generated by the FPGA and DAC0800. DAC 0800 is

a single channel, 8-bit digital-to-analog converter provided on the GPIO to have

interface with analog world. Figure 8.3 shows the block diagram of the

DAC0800.

 88

 FPGA based Supervisory Control and Data Acquisition System

Figure8.3 Block Diagram of DAC0800

If the system is not performing in the desired way, the FPGA generates a 5-volt

digital control signal by applying signal “11111111” at DAC inputs. DAC 0800 is

a single channel, 8-bit DAC and converts this digital signal to analog form; this 5-

volt analog signal is available at the DAC output port. It can be used to manipulate

the process, so that the system behaves in the desired way.

 89

 FPGA based Supervisory Control and Data Acquisition System

8.5 Pin Locking in FPGA
ACEX50K FPGA has 144 pins that can be used for different functions. In this

project, 38 pins have been used; 1 output pin to indicate fault, 1 reset, 2 clocks, 8

ADC outputs, 7 ADC control signals, 8 DAC inputs, 11 for 4-digits, seven

segment display.

PIN NAME DEVICE

PIN NO

PROPERTY SIGNALS FROM GPIO
BOARD

clk 125 DED I/P 4 RESET

rst 126 DED CLK2 CLK2

ADC

data[0] 47 ADC_D0 Data 0 from ADC 0808

data[1] 48 ADC_D1 Data 1 from ADC 0808

data[2] 49 ADC_D2 Data 2 from ADC 0808

data[3] 51 ADC_D3 Data 3 from ADC 0808

data[4] 54 ADC_D4 Data 4 from ADC 0808

data[5] 59 ADC_D5 Data 5 from ADC 0808

data[6] 60 ADC_D6 Data 6 from ADC 0808

data[7] 62 ADC_D7 Data 7 from ADC 0808

eoc 69 ADC_EOC Interrupt signal from ADC
0808

start_conv 67 ADC_START SOC for ADC

ale 68 ADC_ALE ADC ALE signal

oe 70 ADC_OE ADC output enable

addr[0] 63 ADC_A0 ADC channel select bit

addr[1] 64 ADC_A1 ADC channel select bit

addr[2] 65 ADC_A2 ADC channel select bit

 90

 FPGA based Supervisory Control and Data Acquisition System

PIN NAME DEVICE

PIN NO

PROPERTY SIGNALS FROM GPIO
BOARD

DISPLAY

disp_clk 55 DED CLK1 CLK1

base[0] 36 DISP1 Digit 0 select o/p

base[1] 33 DISP 2 Digit 1 select o/p

base[2] 32 DISP 3 Digit 2 select o/p

base[3] 31 DISP 4 Digit 3 select o/p

seg[0] 83 SEG A Segment ‘a’

seg[1] 82 SEG B Segment ‘b’

seg[2] 81 SEG C Segment ‘c’

seg[3] 80 SEG D Segment ‘d’

seg[4] 79 SEG E Segment ‘e’

seg[5] 78 SEG F Segment ‘f’

seg[6] 73 SEG G Segment ‘g’

DAC

dac_in[0] 37 DAC0 DAC data0 from FPGA

dac_in[1] 38 DAC1 DAC data1 from FPGA

dac_in[2] 39 DAC2 DAC data2 from FPGA

dac_in[3] 41 DAC3 DAC data3 from FPGA

dac_in[4] 42 DAC4 DAC data4 from FPGA

dac_in[5] 43 DAC5 DAC data5 from FPGA

dac_in[6] 44 DAC6 DAC data6 from FPGA

dac_in[7] 46 DAC7 DAC data7 from FPGA

FAULT O/P

fault 110 O/P Output pin

 91

 FPGA based Supervisory Control and Data Acquisition System

 Results & Discussion

The designed SCADA system provides the facility of monitoring, processing and

controlling any process. The functioning of this system consists of three stages:

Data Acquisition, Data Processing and Analysis & Control. These three stages

have been implemented using UVLSI201 trainer kit, which includes an FPGA and

a general purpose input-output board.

FPGA scans two external channels, channel number 0 and 1 at fixed time interval

of two seconds. FPGA sends the address of the selected channel and control

signals for the ADC. ADC converts the captured analog data to the digital form.

The acquired data is displayed in the hexadecimal form using the multiplexed 4

digits, seven segment display.

The digital data is analyzed and processed by the FPGA to check any limit

violation. If the data crosses the specified limit, red LED glows indicating the

unacceptable behavior of the process. The process needs to be manipulated to

achieve the desired performance. A 5-volt analog signal is generated which may

control a valve, switch etc. to make the process behavior in accordance to our

needs.

The designed system has been implemented in the VHDL programming

environment. The results obtained for the designed FPGA based SCADA system

are presented in two stages; first ACEX device performance is considered and

after that the performance of SCADA system is analyzed.

1. ACEX50K Device Performance
Figures 1 to 8 show the performance of ACEX50K device in concern with the

project. Figure 1 shows the Compilation process. Compiler tool consists of mainly

four modules; Analysis & Synthesis, Fitter, Timing Analyzer and Assembler.

• Analysis & Synthesis module checks the code for any syntax error and

converts it into technology specific netlist.

• Fitter performs the mapping between logical description (netlist) and

physical description (floorplanning).

 92

 FPGA based Supervisory Control and Data Acquisition System

• The Timing Analyzer provides point-to-point timing delay information,

setup and hold time analysis.

• Assembler converts the VHDL code into binary file, which is downloaded

or programmed into the FPGA.

Time elapsed during each stage of compilation is shown in figure 2. The SCADA

code compilation process took only 11 seconds.

 Floorplanning of the device is shown in figure 3. ACEX EP1K50 device has 10

rows (A,B…J) and 36 columns (1,2…36). Figure 4 shows the translation of logic

design into the physical design and the routing of interconnections between

various LABs. Placing and routing of the nodes e.g. seg, eoc, oe, addr, base etc. is

shown clearly.

To make the data display steady, frequency of the onboard clock is reduced. This

approach requires a counter implementation and carry chains are used for it.

Figure 5, Carry Chain Usage shows the length of carry chain versus number of

carry chains. Figure 6 illustrates the LABs usage in this project. It shows the

number of logic elements versus number of logic array blocks.

ACEX device has 360 logic array blocks, 10 embedded array blocks, 2880 logic

elements, 3468 registers, 102 general purpose input-output pins, 40960 memory

bits. Figure 7 gives the resource usage summary for this project. It shows that only

133 logic elements and 38 input-output pins are used for the designed system.

Hence the great logic capability of the FPGA is proved.

The final output of compilation process is in the binary form, which is

downloaded or programmed in the FPGA. This process is called programming of

FPGA and is shown in figure 8. Passive serial configuration scheme is used for

programming and ByteBlasterMV download cables act as data source for FPGA.

 93

 FPGA based Supervisory Control and Data Acquisition System

Figure1 Compilation Process

Figure2 Flow Elapsed Time

 94

 FPGA based Supervisory Control and Data Acquisition System

Figure3 Floor Planning

Figure4 Internal view of LABs

 95

 FPGA based Supervisory Control and Data Acquisition System

Figure5 Carry Chain Usage

Figure6 Logic Array Blocks Usage

 96

 FPGA based Supervisory Control and Data Acquisition System

Figure7 Resource Usage Summary

Figure8 Programming of FPGA

 97

 FPGA based Supervisory Control and Data Acquisition System

2. SCADA System Performance
 The data is acquired from external channels at the fixed interval of two seconds

and processed within the FPGA to check any limit violation. The set limit is 3

volts i.e. 99h. Whenever the data goes beyond the set limit, red LED glows

indicating a fault in the process. First digit displays the channel number; third and

fourth digits display the acquired data in the hexadecimal form.

Figure9 Channel number 0 is scanned and the acquired data is 97h, which is

less than the set limit 99h i.e. 3 volts. So, no fault is indicated.

Figure10 Channel number 1 is scanned and the acquired data is 8Ah, which

is less than the set limit 99h i.e. 3 volts. So, no fault is indicated.

 98

 FPGA based Supervisory Control and Data Acquisition System

Figure11 Channel number 0 is scanned and the acquired data is 9dh, which is

greater than the set limit 99h i.e. 3 volts. So, LED glows indicating a fault.

Figure12 Channel number 1 is scanned and the acquired data is 9Ah, which

is greater than the set limit 99h i.e. 3 volts. So, LED glows, indicating a fault.

 99

 FPGA based Supervisory Control and Data Acquisition System

Figure13 Channel number 0 is scanned and the acquired data is FFh, which

is greater than the set limit 99h i.e. 3 volts. So, LED glows, indicating a fault.

It is clear from the above illustrations that FPGA has excellent logic capabilities,

enormous processing resources, negligible & predictable delay and very high

clock speed. So, it is suitable for real time data capturing and even a complex

digital system can be easily implemented with it. FPGA is reprogrammable and

can be reprogrammed in a few milliseconds, so the designed system can be

modified according to the requirements.

 100

 FPGA based Supervisory Control and Data Acquisition System

Conclusion

An FPGA based Supervisory Control and Data Acquisition system is successfully

designed and tested for the desired performance. The designed system provides

the facilities of data acquisition, processing and control along with the advantages

provided by the FPGA. FPGA based SCADA system is an excellent mean for

process control facilities to save time and money.

FPGA has the greatest logic capabilities, enormous processing resources, high

clock speed and negligible delay, so it is suitable for real system data capturing,

processing and control. The designed system used only 4% Logic Elements, 2%

registers, 37% Input/Output pins, 4 global signals, 0% Embedded Array Blocks,

0% Memory bits of the ACEX50K FPGA, which proves that the FPGA is an

excellent option to implement any digital circuit. Even complex circuits can be

easily implemented using FPGA. Redesigning of the SCADA system can be done

easily according to the needs, as FPGA is reprogrammable. The designed system

mainly consists of digital components; it is more accurate and reliable.

 101

 FPGA based Supervisory Control and Data Acquisition System

Scope for Further Work

The designed FPGA based SCADA system provides the facility of ON-OFF

control. Any real time application like temperature control system, level control

system can be interfaced with this system to maintain the temperature or level at

the desired set point. The system can be extended to provide the facility of PID

control. PID control can be implemented with VHDL and then, can be

programmed into the FPGA.

The designed SCADA system has interface with only eight external channels. In

any application, if the number of channels is quite large, then to interface them to

the FPGA we have to use multiplexers at different levels. To interface 256

channels, we will have to use 17 multiplexers of 16 channels each. This approach

will suit the processes which are basically slow. Even if a channel is scanned only

once in every scan it will be only after 255 channels have been scanned, limit

checking and analysis have been performed, a particular channel will be addressed

again. This may be acceptable in many processes.

However, many processes are quite fast and thus only alternative is to use more

than one SCADA system and distribute the channels among them. For

performance analysis on the process plant it is mandatory that the data from

various channels should reach a central location where it can be consolidated and

analyzed to generate the reports on plant performance.

 102

 FPGA based Supervisory Control and Data Acquisition System

Appendix: SOURCE CODE

1. ADC (ANALOG TO DIGITAL CONVERTER)

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

ENTITY ADC is port (

 //ADC
 clk: in STD_LOGIC; //ADC clock input

 rst: in STD_LOGIC; // reset input

 eoc: in STD_LOGIC; // End of Conversion from ADC

 data: in STD_LOGIC_VECTOR (7 downto 0);

 //Data available from ADC

 // DISPLAY

 disp_clk: in STD_LOGIC;

 base: buffer STD_LOGIC_VECTOR (3 downto 0);

 //Base drive to the seven segment display

 seg: out STD_LOGIC_VECTOR (6 downto 0);

 //7 segments of display

 //ADC control

 start_conv: buffer STD_LOGIC;

 //Start conversion from PLD

 addr: out STD_LOGIC_VECTOR (2 downto 0);

 //Channel selection address to the ADC

 ale: out STD_LOGIC; // Address Latch Enable

 oe: out STD_LOGIC); // Output enable

END ADC;

ARCHITTECTURE convert of ADC is

 SIGNAL clk_out: STD_LOGIC;

 SIGNAL clk_chnl: STD_LOGIC;

 SIGNAL cntr2 :STD_LOGIC_VECTOR(12 downto 0);

 SIGNAL cntr: STD_LOGIC_VECTOR (12 downto 0);

 SIGNAL base_cnt: STD_LOGIC_VECTOR (1 downto 0);

 SIGNAL muxseg_opt: STD_LOGIC_VECTOR (3 downto 0);

 SIGNAL nst, cst: STD_LOGIC_VECTOR (3 downto 0);

BEGIN

 //Divider counter

 PROCESS (disp_clk, rst)

 103

 FPGA based Supervisory Control and Data Acquisition System

 BEGIN

 IF (rst = ‘0’) THEN

 cntr <= (others => 0);

 ELSIF (disp_clk’ event and disp_clk = ‘1’)THEN

 cntr <= cntr + 1 ;

 ENDIF;

 END PROCESS;

// Divided clock o/p from 4 KHz

 clk_out <= cntr(11) ;

//Generating clk_chnl of 0.5 MHz

 PROCESS (clk_out, rst)

 BEGIN

 IF (rst = '0') THEN

 cntr2 <= (others => '0');

 ELSIF (clk_out 'event and clk_out ='1')THEN

 cntr2 <= cntr2 + 1;

 END IF;

 END PROCESS;

 clk_chnl <= cntr2(10);

 PROCESS (clk_chnl, rst)

 VARIABLE count: Natural: = 0;

 BEGIN

 IF (rst = '0') THEN

 count:= 0;

 ELSIF(clk_chnl 'event and clk_chnl = '1')THEN

 chnl_sel <= "000";

 count: = count + 1;

 IF (count = 2) THEN

 chnl_sel <= "001";

 count: =0;

 END IF;

 END IF;

 END PROCESS;

 PROCESS (clk_out, rst)

 BEGIN

 IF (rst = ’0’) THEN

 base_cnt <= “00”;

 ELSIF (clk_out’ event and clk_out = ‘1’)THEN

 104

 FPGA based Supervisory Control and Data Acquisition System

 base_cnt <= base_cnt + 1;

 ENDIF;

 END PROCESS;

 PROCESS (base, data, chnl_sel)

 BEGIN

 CASE base is

 WHEN “1110” =>

 muxseg_opt (2 downto 0) <= chnl_sel

 muxseg_opt (3) <= ‘0’;

 WHEN “1011” =>

 muxseg_opt <= data (7 downto 4);

 WHEN “0111” =>

 muxseg_opt <= data (3 downto 0);

 WHEN others =>

 muxseg_opt <= “0000”;

 END CASE;

 END PROCESS;

 base <= “1110” WHEN base_cnt = “00” ELSE

 <= “1101” WHEN base_cnt = “01” ELSE

 //Digit 3 not selected

 <= “0111” WHEN base_cnt = “11” ELSE

 “1111”;

 seg <= “0111111” WHEN muxseg_opt = “0000” ELSE

 seg <= “0000110” WHEN muxseg_opt = “0001” ELSE

 seg <= “1011011” WHEN muxseg_opt = “0010” ELSE

 seg <= “1001111” WHEN muxseg_opt = “0011” ELSE

 seg <= “1100110” WHEN muxseg_opt = “0100” ELSE

 seg <= “1101101” WHEN muxseg_opt = “0101” ELSE

 seg <= “1111101” WHEN muxseg_opt = “0110” ELSE

 seg <= “0000111” WHEN muxseg_opt = “0111” ELSE

 seg <= “1111111” WHEN muxseg_opt = “1000” ELSE

 seg <= “1100111” WHEN muxseg_opt = “1001” ELSE

 seg <= “1110111” WHEN muxseg_opt = “1010” ELSE

 seg <= “1111100” WHEN muxseg_opt = “1011” ELSE

 seg <= “0111001” WHEN muxseg_opt = “1100” ELSE

 seg <= “1011110” WHEN muxseg_opt = “1101” ELSE

 seg <= “1111001” WHEN muxseg_opt = “1110” ELSE

 105

 FPGA based Supervisory Control and Data Acquisition System

 seg <= “1110001” WHEN muxseg_opt = “1111” ELSE

 “0000000”;

addr <= chnl_sel;

oe <= ‘1’;

 // ADC section

 PROCESS (cst, eoc)

 CONSTANT s0: STD_LOGIC_VECTOR:= “0000”;

 CONSTANT s1: STD_LOGIC_VECTOR:= “0001”;

 CONSTANT s2: STD_LOGIC_VECTOR:= “0010”;

 CONSTANT s3: STD_LOGIC_VECTOR:= “0011”;

 CONSTANT s4: STD_LOGIC_VECTOR:= “0100”;

 CONSTANT s5: STD_LOGIC_VECTOR:= “0101”;

 CONSTANT s6: STD_LOGIC_VECTOR:= “0110”;

 CONSTANT s7: STD_LOGIC_VECTOR:= “0111”;

 BEGIN

 SIGNAL ale: STD_LOGIC;

 SIGNAL start_conv_1: STD_LOGIC;

 CASE cst is

 WHEN s0 => nst <= s1;

 WHEN s1 => ale_1 = ’1’; nst <= s2;

 WHEN s2 => ale_1 <= ‘1’; nst <= s3;

 WHEN s3 => start_conv_1 <= ‘1’; nst <= s4;

 WHEN s4 => nst <= s5;

 WHEN s5 => IF (eoc = ‘1’) THEN nst <= s6;

 ELSE nst <= s5;

 ENDIF;

 WHEN s6 => nst <= s7;

 WHEN others => nst <= “0000”;

 END CASE;

 END PROCESS;

 PROCESS (clk, rst)

 BEGIN

 IF (rst = ‘0’) THEN

 cst <= “0000”;

 ELSIF (clk’ event and clk = ‘1’) THEN

 cst<= nst;

 ENDIF;

 106

 FPGA based Supervisory Control and Data Acquisition System

 END PROCESS;

 //Registered output

 PROCESS (clk, rst)

 BEGIN

 IF (rst = ‘0’) THEN

 ale <= ‘0’;

 start_conv <=’0’;

 ELSIF (clk’ event and clk = ’1’) THEN

 ale <= ale_1;

 start_conv <= start_conv_1;

 ENDIF;

 END PROCESS;

 END convert;

 107

 FPGA based Supervisory Control and Data Acquisition System

2. Data Processing
library ieee;

use ieee.std_logic_1164.all;

ENTITY Data_Process is port (

 rst: in STD_LOGIC;

 disp_clk: in STD_LOGIC;

 data: in STD_LOGIC_VECTOR(7 downto 0);

 fault: out STD_LOGIC;

 dac_in: out STD_LOGIC_VECTOR(7 downto 0)

);

END Data_Process;

ARCHITECTURE BEHAVIOR of Data_Process is

 Signal cntr1: STD_LOGIC_VECTOR(13 downto 0);

 Signal clk_out1: STD_LOGIC;

BEGIN

 PROCESS (disp_clk, rst)

 BEGIN

 IF (rst = '0') THEN

 cntr1 <= (others => '0');

 ELSIF (disp_clk 'event and disp_clk ='1') THEN

 cntr1 <= cntr1 + 1;

 END IF;

 END PROCESS;

 clk_out1 <= cntr1(11);

 PROCESS (clk_out1, data)

 CONSTANT LIMIT: STD_LOGIC_VECTOR(7 downto 0):=

"10011001";

 BEGIN

 IF (clk_out1 'event and clk_out1 ='1') THEN

 IF (data > limit)THEN

 fault <= '1';

 dac_in <= “11111111”;

 ELSE fault <= '0';

 END IF;

 END IF;

 END PROCESS;

 END BEHAVIOR;

 108

 FPGA based Supervisory Control and Data Acquisition System

3. SCADA SYSTEM
library ieee;

use ieee.std_logic_1164.all;

ENTITY SCADA is port(

//Data Process Signals

 data: in STD_LOGIC_VECTOR (7 downto 0);

 fault: out STD_LOGIC;

 dac_in: out STD_LOGIC_VECTOR(7 downto 0);

//ADC clock input

 clk: in STD_LOGIC; //CLK for ADC from 555 timer

 rst: in STD_LOGIC; // reset input

 eoc: in STD_LOGIC; //End Of Conversion from ADC

 chnl_sel: in STD_LOGIC_VECTOR(2 downto 0);

 //channel selection external switch

//display

 disp_clk: in STD_LOGIC; //display refresh clock input

 base: out STD_LOGIC_VECTOR(3 downto 0);

 //Base drive to the 7 segment display

 seg: out STD_LOGIC_VECTOR(6 downto 0);

 //7 Segments of display

//ADC

 start_conv: out STD_LOGIC; //Start Conversion from PLD

 addr: out STD_LOGIC_VECTOR(2 downto 0);

 //Channel selection address to the ADC

 ale: out STD_LOGIC; //Address Latch Enable

 oe: out STD_LOGIC);

 //O/P enable when goes hi data is available at data lines

END SCADA;

ARCHITECTURE SCADA of SCADA is

COMPONENT Data_Process port (

 rst: in STD_LOGIC;

 disp_clk: in STD_LOGIC;

 data: in STD_LOGIC_VECTOR (7 downto 0);

 fault: out STD_LOGIC;

 dac_in: out STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

 109

 FPGA based Supervisory Control and Data Acquisition System

COMPONENT ADC port (

//ADC clock input

 clk: in STD_LOGIC;

 rst: in STD_LOGIC; //reset input

 eoc: in STD_LOGIC; //End Of Conversion from ADC

 chnl_sel: in STD_LOGIC_VECTOR (2 downto 0);

 //channel selection through external switch

 data: in STD_LOGIC_VECTOR(7 downto 0);

 //Data available from ADC

//display

 disp_clk: in STD_LOGIC; //display refresh clock input

base: out STD_LOGIC_VECTOR(3 downto 0);

 //Base drive to the 7 segment display

seg: out STD_LOGIC_VECTOR(6 downto 0);

 //7 Segments of display

//ADC

start_conv: out STD_LOGIC; //Start Conversion from PLD

addr: out STD_LOGIC_VECTOR(2 downto 0);

 //Channel selection address to the ADC

ale: out STD_LOGIC; //Address Latch Enable

oe: out STD_LOGIC);

//O/P enable when goes high data is available at

//data lines.

END COMPONENT;

BEGIN

ADC1: ADC port map (clk, rst, eoc, chnl_sel, data, disp_clk, base,

seg, start_conv, addr, ale, oe);

Data_Process1: Data_Process port map (rst, disp_clk, data, fault,

dac_in);

END SCADA;

 110

 FPGA based Supervisory Control and Data Acquisition System

References

[1] Barr, Michael "Programmable Logic: What's it to Ya?”, June 1999, pp. 75-84.

[2] Bhasker J., “A VHDL Primer”, Pearson Education Pte. Ltd., 3rd Ed., 2004.

[3] Brown D. Stephen, Francis J. Robert, Rose J., Vranesic G. Zvonko, “Field

Programmable Gate Arrays”, Kluwer Academic Publishers, 1997.

[4] Kant Krishan, “Computer Based Industrial Control”, ISTE Learning Materials

Centre, First Ed., 2001.

 [5] Floyd L. Thomas “Digital Fundamentals”, Pearson Education Publications, 8th

Ed., 2004.

[6] Floyd L. Thomas “Electronic Devices”, Pearson Education Publications, 6th

Ed., 2003.

[7] Gaonkar S. Ramesh, “Microprocessor Architecture, Programming &

Applications with the 8085”, Penram International Publishing, 4th Ed., 2000.

[8] Perry, D., “VHDL”, McGraw Hill Publications, 1991.

[9] Rabaey, Chandrakasan, Nikolic, “Digital Integrated Circuits: A Design

Perspective”, Pearson Education Pte. Ltd., 2nd Ed., 2003.

[10] Razavi, Behzad, “Principles of Data Conversion System Design”, IEEE

Press, 1995

[11] Sebastian Smith J. Michael, “Application Specific Integrated Circuits”,

Pearson Education Pte. Ltd., 9th Ed., 2004.

[12] Silicon Micro Systems, “UVLSI-201 Technical Reference Manual”.

[13] Trimberger M. Stephen, McCarty D., Whitney T., Hartmann R., “Field

Programmable Gate Array Technology” Kluwer Academic Publishers, 4th Ed.,

1999.

 [14] Plassche D. Van, Rudy, “Integrated Analog-to-Digital and Digital-to-Analog

Converters”, Kluwer Academic Publishers, 1994.

[15] Yarbrough M. John, “Digital Logic Applications and Design”, PWS

Publishing Company, 1997.

[16] Wakerly F. John, “Digital Design, Principles and Practices”, PHI

Publications, 3rd Ed., 2003.

[17] www.actel.com/products

[18] www.altera.com/literature/lit-acx.jsp

 111

 FPGA based Supervisory Control and Data Acquisition System

[19] www.altera.com/products/devices/dev.index.jsp

[20] www.angelfire.com/electronics/in/vlsi/books.html

[21] www.autosoln.com

[22] www.beyondlogic.org/serial/serial1.htm
[23] www.celoxica.com/techlib/files/CEL-W0307171HR6-FPGA

[24] www.eedesign.com

[25] www.eg3.com/fpga

[26] www.epgco.com

[27] www.iclinks.com

[28] www.nationjob.com/company/acns

[29] www.netrino.com/articles/programmableLogic

[30] www.ref.web.cern.ch/ref/CERN/CNL/2000/003/scada

[31] www.simsteam.com

[32] www.sensiblesoftware.com/articles

[33] www.sss-mag.com/scada.html

[34] www.webopedia.com/TERMS/S/SCADA.html

[35] www.xilinx.com/company/about/programmable.html

 112

 FPGA based Supervisory Control and Data Acquisition System

 113

 FPGA based Supervisory Control and Data Acquisition System

 114

 FPGA based Supervisory Control and Data Acquisition System

 115

 FPGA based Supervisory Control and Data Acquisition System

 116

 FPGA based Supervisory Control and Data Acquisition System

 117

 FPGA based Supervisory Control and Data Acquisition System

 118

 FPGA based Supervisory Control and Data Acquisition System

 119

 FPGA based Supervisory Control and Data Acquisition System

 120

 FPGA based Supervisory Control and Data Acquisition System

 121

