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ABSTRACT 
 

 

The proposed controller design aims to overcome the drawbacks of classical PID 

controller, such as: integrator windup due to the saturation in the actuator and the 

slow response to reject disturbances. The proposed controller consists of basic PID 

blocks: Proportional, Derivative, and Integral actions plus a fuzzy anticipation block 

to modify the control signal according to operating conditions. The fuzzy anticipation 

block provides feed-forward correction terms to speed-up the system response and to 

retain the desired output. This block receives all different signals in PID block and 

generates anti-windup action to improve the system behavior. This action also 

compensates rapidly the disturbance effect on the system response. The proposed 

control design methodology is tested on a numerical example via simulation. The 

simulation work is carried out using MATLAB SIMULINK environment. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 BACKGROUND 
 

              Control of a dynamic system requires manipulable inputs. The manipulation 

is usually transmitted (or transferred) to the system via constrained actuators. In many 

technical systems actuators are transducers which transforms a low power signal, 

usually electric, into high power action. Examples are valves for flow control and 

power electronics for electric power control. In most cases, properly dimensioned 

actuators will saturate even under normal operation. 

 

              What happens if, or when, actuators saturate depends critically on the ability 

of control strategy (the controller) to handle a saturation event as well as on the 

properties of controlled system. Some systems are easier to control via constrained 

actuators than others. Some controllers are better suited to handle saturation events 

than others. The following example illustrates this. 

 

              Consider [1] three equal linear systems given by 

 

G=1/(s+1) 

 

controlled by the three different controllers shown in Figure1.1. The first system is 

controlled by a pure feed-forward controller, the second by a PI-controller and the 

third by a P-controller. By ignoring the saturation in the loops, the transfer functions 

from the reference to the output are, however, the same in the three cases namely 

 

Gr=5/(s+5) 

 

 

 1



 
Figure1.1: Three different systems having equal linear response but  

                                 different saturation effects.  

The reference-step responses of the three systems are identical as shown in Figure1.2. 

 

 
Figure1.2: Equal linear response. 
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               But in the real case, when the inputs saturate, they behave quite differently 

from each other. From Figure1.3 one could say that the first system (y1) needs more 

feedback the second (y2) needs less and the third (y3) behaves well (at least what 

saturation concerns). The second system suffers from integrator windup, a 

phenomenon which has been discussed in the literature for many decades. These 

undesired phenomena and what cause them, and how to overcome them, are discussed 

in this thesis. 

 
Figure 1.3: Different saturation effects. 

 

1.2 GOAL OF THE PROJECT 
 

              The first goal of this project is to investigate the classical approaches to treat 

reset wind-up problem and to find out what its effect on settling time, overshoot and 

speed of response. 

 

              The main purpose of this project is to solve the problem encountered in 

classical methods to treat wind-up problems by introducing feed forward correction 

through the use of fuzzy logic. Beside that eliminating the effect of disturbance in 

minimum time. So aim is to design a controller, which act pre facto i.e. it give 

correction term before actuator enter in the saturating region. Secondly to act on 
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signals rather than on parameters to improve the PID behavior using fuzzy 

intervention in different situation. 

 

1.3 ORGANIZATIN OF THESIS 
 

              This project report has the following main parts: 

 

I. The first part includes an introduction to the subject. It explains the goals of 

this thesis and it describes the background used to reach those goals. 

II. The second part gives description of basic terms and it also illustrate reset 

windup phenomenon. 

III. The third part discusses different classical methods to treat reset windup 

problem. 

IV. The fourth parts of this thesis through some light on fuzzy logic .It also 

explain how fuzzy logic is different from conventional control methods, how 

does fuzzy logic work and what its advantages is. 

V. The fifth part explains fuzzy intervention in PID controller design. 

VI. The sixth give required description of SIMULINK and FUZZY LOGIC tool 

box. 

VII. The seventh part shows simulation works and results. 

VIII.  The final part gives conclusion, further scope and references. 

 

 

 

 

 

 

 

 

 

 

 

 4



CHAPTER  2 

BASIC TERMS 
 

2.1 PID CONTROLLER 
 

              PID controller is a one of the earliest industrial controllers. It has many 

advantages: Its cost is economic, simple easy to be tuned and robust. This controller 

has been proven to be remarkably effective in regulating a wide range of processes. It 

does not require an exact model and hence, it can be used for processes whose models 

are considerably difficult to be driven. However, in spit of the advantages of the PID 

controller, there remain several drawbacks. It can not cope well in some cases such as:  

              

              - Non-linear processes (changing in operating point). 

              - Time-varying parameters. 

              - Compensation of strong and rapid disturbances. 

              - Supervision in multivariable control. 

 

              PID controller is simple and linear; it can give a good performance for stable 

linear processes. Self-tuning and adaptive PID design approaches can overcome the 

operating point varying parameters. However this requires a high capacity of 

computations and makes the PID performance not guaranteed. PID controller consists 

of three terms:  

              

               - Proportional action. 

               - Derivative action to speed up the response. 

               - Integral action to eliminate the steady state error. 

2.1.1 Proportional Band 

              With proportional band, the controller output is proportional to the 

error or a change in measurement.  

           Controller output = E(t)*100/(Proportional Band)  
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              With a proportional controller offset (deviation from set-point) is 

present. Increasing the controller gain will make the loop go unstable. Integral 

action was included in controllers to eliminate this offset. 

2.1.2 Integral 

              With integral action, the controller output is proportional to the amount 

of time the error is present. Integral action eliminates offset. 

Controller output = (1/Integral Time)*(Integral of E(t))  

Integral action eliminates the offset. The response is somewhat oscillatory and 

can be stabilized some by adding derivative action. Integral action gives the 

controller a large gain at low frequencies that   results in eliminating offset and 

"beating disturbances”.   

2.1.3 Derivative 

              With derivative action, the controller output is proportional to the rate 

of change of the measurement or error. The controller output is calculated by 

the rate of change of the error with time.  

       Controller output = Derivative Time*(Derivative of E(t)) 

              Derivative action can compensate for a changing measurement. Thus 

derivative takes action to inhibit more rapid changes of the measurement than 

proportional action. When a load or set-point change occurs, the derivative 

action causes the controller gain to move the "wrong" way when the 

measurement gets near the set-point. Derivative is often used to avoid 

overshoot. Derivative action can stabilize loops. 

The PID controller output U in s-domain is given by the following           

equation: 

                             U(s) = K (1+ 1/Tis + Tds/ (1+Tds/N)) E(s) 
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                                          Fig2.1: General structure of PID controller 

 

2.1.4 Tuning 

 

              The process of setting the optimal gains for P, I and D to get an ideal 

response from a control system is called tuning. In general there are two approaches 

in PID tuning: 

       

       - Model based approach, if the process model is available. 

       - Non-model based approach, if the process model is difficult to be driven. 

 

              In the second approach, Ziegler and Nichols method can be applied based on 

the step response. This approach is more practical in the industry. Others are used the 

relay feedback to estimate the limit cycle and then tune the PID parameters. 

 

              The gains of a PID controller can be obtained by trial and error method. In 

this method, I and D terms are set to zero first and the proportional gain is increased 

until the output of the loop oscillates. As one increases the proportional gain, the 

system becomes faster, but care must be taken not make the system unstable. Once P 
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has been set to obtain a desired fast response, the integral term is increased to stop the 

oscillations. The integral term reduces the steady state error, but increases overshoot. 

Some amount of overshoot is always necessary for a fast system so that it could 

respond to changes immediately. The integral term is tweaked to achieve a minimal 

steady state error. Once the P and I have been set to get the desired fast control system 

with minimal steady state error, the derivative term is increased until the loop is 

acceptably quick to its set point. Increasing derivative term decreases overshoot and 

yields higher gain with stability but would cause the system to be highly sensitive to 

noise.  

 

2.2 ACTUATOR 
 

              An actuator is that position of a valve that responds to applied signal and 

causes the motion resulting in modification of a fluid flow .Thus an actuator is any 

devices that causes the valve stem to move .It may be manually positioned device, 

such as hand wheel or lever .The manual actuator may be open-closed, or it may be 

manually positioned at any position between fully open and fully closed. 

     

              System actuators use hydraulic, electronic, and pneumatic signals to help 

activate process control equipment, including mechanical arms, robots, and other 

automating agents. Common actuators include electrical motors, pistons, electro-

active polymers, thermal bimorphs, and more, with every actuator especially equipped 

to start specific processes. Important factors for actuators include the ability for 

precision control, operating life, and power consumption versus work ability.  

       

              From an engineering perspective, an actuator is a type of transducer, or a 

device that turns some input signal into physical motion.  Linear actuators describe 

systems that result in a linear motion, while rotary actuators produce a circular result.  

An actuator can be said to have two basic functions: 

 

(1) To respond to external signal directed to it and caused and caused valve to 

move accordingly. 
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(2) To provide a convenient support for certain valve accessory item including 

positioner, limit switches, solenoid valve and local controllers  

 

2.3 RESET WIND-UP 
 

              A properly tuned controller will behave well as long as its output remains in 

a range where it can change the manipulated flow. However it will behave poorly if, 

for any reason, the effect of the controller output on the manipulated flow is lost. A 

gap between the limit on the controller output and the operational limit of the control 

valve is the most common cause of integral (reset) wind-up. The block diagram 

shown in Fig2.2 is used to explain this problem. 

 
Fig2.2: A block diagram 

 

              Assume that a PI controller is used to control the temperature T by 

adjusting the steam control valve. The instrumentation is electro pneumatic. 

The controlled variable T is measured with a sensor that generates a signal (mA) 

that is proportional to the temperature. The measurement is sent to the controller 

where it is compared with the set-point (the term Kr on the set-point signal is 

included to indicate the conversion of the set-point scale). The controller then 

generates a control signal (mA) on the basis of the error between the measurement 

and the set-point. The controller output signal is then connected to the actuator 

of the steam control valve through a current-to-pressure transducer.  

              The nominal pressure range of the valve is 3 to 15 psig and the supply 

pressure is 20 psig.  
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Assume that a command signal for a step change Tr, in the set-point is given. Initially 

the temperature T is much below its set-point value; because of the large error the 

controller output is driven to a large value by integral action. A typical time recording 

of the experiment is shown in Fig2.3. At t= t1 the controller output pressure is 15 

psig. The control valve (sized to be wide open at 15 psig) saturates at this pressure. At 

t = t1, (when the control valve is fully open), the controlled variable T has not reached 

its set-point. Since there is still an error, the controller will try to correct for it by 

further increasing (integrating the error) its output pressure, even though the valve 

will not open more after 15 psig. The output of the controller can, in fact,integrate up 

to the supply pressure 20 psig. 

 
Fig2.3: Reset wind-up 

 

The point t = t2, corresponds to this situation. The controller cannot increase its 

output pressure for t > t2, its output having saturated at t = t2 although the 

controller is saturated, it keeps the steam valve fully open. This is the correct 

strategy to force the temperature T to set-point value in minimum time. The 

point t = t3 corresponds to this situation. 
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              The wind-up problem begins to show up when the controlled variable 

T reaches its set-point. At that instant ( t =  t 3)  the controller output is 20 psig. 

The error reverses at t = t 3;  the valve cannot respond to this change, until the 

integral signal (which has 'wound-up' to 20 psig) is `unwound' back to the 15 

psig level at t  =  t 4.  This delayed response effect is called reset wind-up or 

integral wind-up.  This delay is in addition to the normal lagging behavior of 

integral control and can thus cause excessive overshooting and stability prob-

lems. 

 

              One way to prevent the large overshoot caused by reset wind-up is to 

keep the controller on manual until the temperature reaches the set-point, and 

then switch it to automatic. In this case the steam valve is kept fully open by 

manually setting the controller output to 15 psig. This ensures that the control 

valve will start to close as soon as the controller is switched to automatic. 

 

              A second alternative is to install a limiter on the controller output to 

keep it from going beyond the operating range of the control valve, i.e., above 

15 psig or below 3 psig. Note that this implementation, where the limiter is 

placed on the controller output, does not prevent the wind-up problem: the 

output of the integral action will still be driven beyond the controller output 

limits and cause wind-up. In order to prevent wind-up, the output of the 

integral action must some how be limited. In pneumatic and electronic 

controllers, this limiting is accomplished in a very ingenious way. 
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CHAPTER 3 

CLASSICAL ANTI WINDUP 

STRATEGIES 

 
3.1 Conditional Integration Method 
 

              In the method of conditional integration, integration is switched on or off 

depending on certain conditions, such as the size of the control signal or the control 

error. One of these conditions that give a good result is to use the following rule: 

If 

(Actuator output saturates) and 

(Both control error and integral output have the 

Same sign)  

Then 

Switch integral action OFF,  

Else 

Switch integral action ON 

 

              A zero steady state error always has to be guaranteed, that is, steady state 

must not be reached with the integrator switched off.  

 

3.2 Limited Integration Method 

 

              This is a very simple approach to reduce the effects of integral windup. A 

feedback signal is created from the integrator output by feeding the integrator output 

through a dead zone with a high gain. The dead zone output is used to reduce the 

integrator input as shown in Fig3.1. To allow the full linear range of the actuator, the 

dead zone range has to be the same as the linear range of the actuator. Once the 

integrator value is out of the dead zone range, a feedback signal of magnitude 
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f =b(i(t)-H) 

where H is the dead zone range, b is the dead zone gain, and i(t) the integrator value, 

is generated and acts upon the integrator input. If the dead zone gain b is sufficiently 

high (b>10), the integrator output will effectively be limited to H. 

 

 
 

Fig3.1: PID Controller with a Limited Integrator 
 

3.3 Tracking Anti-Windup Method  
 

              Tracking Anti- Windup is the “classical” method to prevent integral windup. 

The standard tracking anti-windup structure commonly described is shown below in 

Fig3.2. where Tt is denoted as the Tracking Time Constant. Once the controller output 

exceeds the actuator limits, a feedback signal is generated from the difference of the 

saturated and the unsaturated control signals and used to reduce the integrator input. 

The saturation in Fig3.2 may either be the actual saturation in the actuator, if the 

actuator output can be measured, or a model used in the controller. If the actuator is 

described by linear dynamics followed by saturation, it may be disadvantageous to 

limit the controller output, as this also limits the speed of the actuator response. The 

structure shown in Fig3.2 may therefore be replaced by the structure shown in Fig3.3, 

where the unrestricted control signal is applied to the process, and the feedback signal 
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is generated using a dead zone. The dead zone range H must again represent the linear 

range of the actuator. And the relation between Tt and the dead zone gain b is given 

by 

b=Ti/Tt.   

Tt=Ti, corresponds to b=l.  

 

 
Fig3.2: Standard structure of a tracking anti-windup PID controller. 

 

 
Fig3.3: Alternative structure of a tracking anti-windup PID controller. 
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3.4 Modified Tracking Anti-Windup Method 
 

              The method of tracking anti-windup has been found very sensitive to changes 

in the parameter Tt or the gain b. Too high a value for b may effectively reduce the 

amount of overshoot, but may also lead to a slow response of the system. 

           

              In this method an alternative structure with an additional limit on the 

feedback signal has been imposed. This technique is shown in Fig3.4. The slow 

response results from the fact that a very high initial controller output (due to a high 

proportional gain and the derivative action) will, in the case of a high gain b, give a 

large feedback signal. This feedback signal will drive the integrator to a large negative 

value, bringing the controller output back to the linear range. As time increases, the 

proportional and the derivative part of the control signal will decrease, but the 

integrator output will not increase fast enough to compensate this decrease. This 

means that the controller output will become very small, or even negative. 

 
Fig3.4: Modified tracking anti-windup PID controller. 

 

              To avoid this, an additional limit on the proportional-derivative part of the 

control signal used to generate the anti-windup feedback signal, has been introduced. 

If this is done, a high gain b (b= 10) can be selected. 
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              The effect of the additional saturation can be explained as follows: A 

feedback signal of magnitude 

 

f = b (i(t)+min{Hpd,Upd(t)}-H) 

comes into effect if the integrator value i(t) exceeds H - Upd(t ) or H-Hpd,, whichever 

is larger. This feedback signal will reduce the integrator input and thus hold the 

integral action. Normal integral action is performed only if 

 

-H-max {-Hpd,Upd(t)}<i(t)<H-min{Hpd,Upd(t)} 

Where Upd is the proportional and derivative part of the control signal. This means 

that the integrator value is limited dynamically to (H - Upd(t)) or ( H  - Hpd), 

whichever is larger. 

 

              Introducing the additional limits gives one more design parameter a ratio 

r=Hpd/H.  A good choice for the parameter r is the range r =0.5…1.5. A value of r= l 

, that is Hpd=H, can be interpreted as holding the integral action until the control 

signal from the proportional and derivative action Upd returns to the linear range and 

then setting the integrator to run. The integrator will therefore not be driven negative 

and the disadvantage of the tracking method, a very slow step response for a high 

dead zone gain, will be avoided. 
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CHAPTER 4 

FUZZY LOGIC  

 
4.1Introduction 
 

              Fuzzy logic has emerged as one of the active areas of research activity 

particularly in control application. Fuzzy logic is a very powerful method of reasoning 

when mathematical models are not available and input data are imprecise. Its 

applications, mainly to control, are being studied throughout the world by control 

engineers. The results of these studies have shown that fuzzy logic is indeed a 

powerful control tool, when it comes to control systems or processes which are 

complex .Some studied have also shown that the fuzzy logic performs better when 

compared to conventional control mechanisms like PID .Whenever logic in the spirit 

of human thinking can be introduced we get a more robust summary of the 

information .What does this really mean? Though we are conditioned to think in 

precise quantities, at a subconscious level, we think and take actions that are fuzzy in 

nature .And that is the way we perceive the nature and react to it. 

 

4.2 Origin of fuzzy Logic 
 

              The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor 

at the University of California at Berkley, and presented not as a control 

methodology, but as a way of processing data by allowing partial set membership 

rather than crisp set membership or non-membership. This approach to set theory was 

not applied to control systems until the 70's due to insufficient small-computer 

capability prior to that time. Professor Zadeh reasoned that people do not require 

precise, numerical information input, and yet they are capable of highly adaptive 

control. If feedback controllers could be programmed to accept noisy, imprecise input, 

they would be much more effective and perhaps easier to implement. Unfortunately, 

U.S. manufacturers have not been so quick to embrace this technology while the 

Europeans and Japanese have been aggressively building real products around it. 
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4.3 Fuzzy logic 
 

              In this context, FL is a problem-solving control system methodology that 

lends itself to implementation in systems ranging from simple, small, embedded 

micro-controllers to large, networked, multi-channel PC or workstation-based data 

acquisition and control systems. It can be implemented in hardware, software, or a 

combination of both. FL provides a simple way to arrive at a definite conclusion 

based upon vague, ambiguous, imprecise, noisy, or missing input information. FL's 

approach to control problems mimics how a person would make decisions, only much 

faster. 

 

4.4 Difference between fuzzy logic and conventional control methods 
  

              FL incorporates a simple, rule-based IF X AND Y THEN Z approach to a 

solving control problem rather than attempting to model a system mathematically. 

The FL model is empirically-based, relying on an operator's experience rather than 

their technical understanding of the system. For example, rather than dealing with 

temperature control in terms such as "SP =500F", "T <1000F", or "210C <TEMP 

<220C", terms like "IF (process is too cool) AND (process is getting colder) THEN 

(add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly) 

THEN (cool the process quickly)" are used. These terms are imprecise and yet very 

descriptive of what must actually happen. Consider what you do in the shower if the 

temperature is too cold: you will make the water comfortable very quickly with little 

trouble. FL is capable of mimicking this type of behavior but at very high rate. 

 

4.5 Advantages of fuzzy logic 
 

              FL offers several unique features that make it a particularly good choice for 

many control problems.  

1) It is inherently robust since it does not require precise, noise-free inputs and can be 

programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations.   
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2) Since the FL controller processes user-defined rules governing the target control 

system, it can be modified and tweaked easily to improve or drastically alter system 

performance. New sensors can easily be incorporated into the system simply by 

generating appropriate governing rules. 

3) FL is not limited to a few feedback inputs and one or two control outputs, nor is it 

necessary to measure or compute rate-of-change parameters in order for it to be 

implemented. Any sensor data that provides some indication of a system's actions and 

reactions is sufficient. This allows the sensors to be inexpensive and imprecise thus 

keeping the overall system cost and complexity low. 

4) Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 

defining the rule base quickly becomes complex if too many inputs and outputs are 

chosen for a single implementation since rules defining their interrelations must also 

be defined. It would be better to break the control system into smaller chunks and use 

several smaller FL controllers distributed on the system, each with more limited 

responsibilities. 

5) FL can control nonlinear systems that would be difficult or impossible to model 

mathematically. This opens doors for control systems that would normally be deemed 

unfeasible for automation. 

 

 

4.6 Linguistic variables 
 

              Linguistic variables are objects or words, rather than numbers. The sensor 

input is a noun, e.g. "temperature", "displacement", "velocity", "flow", "pressure", etc. 

Since error is just the difference, it can be thought of the same way.  

 

The fuzzy variables themselves are adjectives that modify the variable (e.g. "large 

positive" error, "small positive" error, "zero" error, "small negative" error, and "large 

negative" error). As a minimum, one could simply have "positive", "zero", and 

"negative" variables for each of the parameters. Additional ranges such as "very 

large" and "very small" could also be added to extend the responsiveness to 

exceptional or very nonlinear conditions, but aren't necessary in a basic system. 
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4.7 The rule matrix 
 

              The fuzzy parameters of error (command-feedback) and error-dot (rate-of-

change-of-error) were modified by the adjectives "negative", "zero", and "positive". 

To picture this, imagine the simplest practical implementation, a 3-by-3 matrix. The 

columns represent "negative error", "zero error", and "positive error" inputs from left 

to right. The rows represent "negative", "zero", and "positive" "error-dot" input from 

top to bottom. This planar construct is called a rule matrix. It has two input 

conditions, "error" and "error-dot", and one output response conclusion (at the 

intersection of each row and column). In this case there are nine possible logical 

products (AND) output response conclusions. 

 

              Although not absolutely necessary, rule matrices usually have an odd number 

of rows and columns to accommodate a "zero" center row and column region. This 

may not be needed as long as the functions on either side of the center overlap 

somewhat and continuous dithering of the output is acceptable since the "zero" 

regions correspond to "no change" output responses the lack of this region will cause 

the system to continually hunt for "zero". It is also possible to have a different number 

of rows than columns. This occurs when numerous degrees of inputs are needed. The 

maximum number of possible rules is simply the product of the number of rows and 

columns, but definition of all of these rules may not be necessary since some input 

conditions may never occur in practical operation. The primary objective of this 

construct is to map out the universe of possible inputs while keeping the system 

sufficiently under control. 

 

4.8 Membership functions 
 

              The membership function is a graphical representation of the magnitude of 

participation of each input. It associates a weighting with each of the inputs that are 

processed, define functional overlap between inputs, and ultimately determines an 

output response. The rules use the input membership values as weighting factors to 

determine their influence on the fuzzy output sets of the final output conclusion. Once 

the functions are inferred, scaled, and combined, they are defuzzified into a crisp 
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output which drives the system. There are different memberships functions associated 

with each input and output response. Some features to note are: 

 

SHAPE - triangular is common, but bell, trapezoidal, haversine and, exponential have 

been used. More complex functions are possible but require greater computing 

overhead to implement. HEIGHT or magnitude (usually normalized to 1) WIDTH (of 

the base of function), SHOULDERING (locks height at maximum if an outer 

function. Shouldered functions evaluate as 1.0 past their center) CENTER points 

(center of the member function shape) OVERLAP (N&Z, Z&P, typically about 50% 

of width but can be). 

The degree of membership (DOM) is determined by plugging the selected input 

parameter (error or error-dot) into the horizontal axis and projecting vertically to the 

upper boundary of the membership function(s).  

 

4.9 Inferencing 
 

              The logical products for each rule must be combined or inferred (max-min'd, 

max-dot'd, averaged, root-sum-squared, etc.) before being passed on to the 

defuzzification process for crisp output generation. Several inference methods exist. 

The MAX-MIN method tests the magnitudes of each rule and selects the highest one. 

The horizontal coordinate of the "fuzzy centroid" of the area under that function is 

taken as the output. This method does not combine the effects of all applicable rules 

but does produce a continuous output function and is easy to implement. 

 

              The MAX-DOT or MAX-PRODUCT method scales each member function 

to fit under its respective peak value and takes the horizontal coordinate of the "fuzzy" 

centroid of the composite area under the function(s) as the output. Essentially, the 

member function(s) are shrunk so that their peak equals the magnitude of their 

respective function ("negative", "zero", and "positive"). This method combines the 

influence of all active rules and produces a smooth, continuous output. 

The AVERAGING method is another approach that works but fails to give increased 

weighting to more rule votes per output member function. For example, if three 

"negative “rules fire, but only one” zero rules does, averaging will not reflect this 
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difference since both averages will equal 0.5. Each function is clipped at the average 

and the "fuzzy" centroid of the composite area is computed. 

 

              The ROOT-SUM-SQUARE (RSS) method combines the effects of all 

applicable rules, scales the functions at their respective magnitudes, and computes the 

"fuzzy" centroid of the composite area. This method is more complicated 

mathematically than other methods, but was selected for this example since it seemed 

to give the best weighted influence to all firing rules.  

 

4.10 Defuzzication-Getting back to crisp numbers 

 
              The defuzzification of the data into a crisp output is accomplished by 

combining the results of the inference process and then computing the "fuzzy 

centroid" of the area. The weighted strengths of each output member function are 

multiplied by their respective output membership function center points and summed.  
Finally, this area is divided by the sum of the weighted member function strengths 

and the result is taken as the crisp output. One feature to note is that since the zero 

center is at zero, any zero strength will automatically compute to zero. If the center of 

the zero function happened to be offset from zero (which is likely in a real system 

where heating and cooling effects are not perfectly equal), then this factor would have 

an influence. 

 

4.11 Tuning 
 

              Tuning the system can be done by changing the rule antecedents or 

conclusions, changing the centers of the input and/or output membership functions, or 

adding additional degrees to the input and/or output functions such as "low", 

"medium", and "high" levels. These new levels would generate additional rules and 

membership functions which would overlap with adjacent functions forming longer 

"mountain ranges" of functions and responses. The techniques for doing this 

systematically are a subject unto itself. 
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4.12 Designing a fuzzy logic controller 

 
              Figure 4.1 shows the basic configuration of a fuzzy logic controller 

(FLC),which comprises four principal components :a rule base, a fuzzy inference 

system input fuzzification interface and an output defuzzification interface .The rule 

base holds a set of IF-THEN rules that quantify the knowledge that human experts 

have amassed about solving particular problems. It acts as a resource to the fuzzy 

inference system, which makes successive decisions about which rules are most 

relevant to the current situations and applies the actions indicated by these rules. The 

input fuzzifier takes the crisp numeric inputs and, as its name implies convert them 

into the fuzzy form needed by the fuzzy inference system. At the output the 

defuzzification interface combines the conclusions reach by the fuzzy inference 

system and converts them into crisp numeric value as control actions. 

 

Fig4.1: Fuzzy logic control system block diagram. 

The fuzzy logic controller methodology, step by step: 

Step One: Define inputs and outputs for the FLC. 
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Step Two: Define frames for fuzzy variables. 

 

Step Three: Assign membership values to fuzzy variables. 

 

Step Four: Create a rule base. 

 

Step Five: Choose scaling gains for the variables. 

 

Step Six: Fuzzify inputs to the FLC. 

 

Step Seven: determine which rules fire. 

 

Step Eight: Infer the output Recommended by each rule. 

 

Step Nine: Aggregate the fuzzy outputs recommended by each rule. 

 

Step Ten: Defuzzify the aggregated fuzzy set to form crisp output from the FLC. 
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CHAPTER 5 

PID CONTROLLER WITH 

FUZZY ANTICIPATION 

              In the case of time varying processes, fuzzy logic can be employed to 

adapt the parameters of PID controller. But, here interest is to act on signals 

rather than on parameters to improve the PID behavior using fuzzy intervention 

in different situations. Figure 5.1 illustrates its employing 

          
Fig5.1: PID controller with fuzzy anticipation. 

 

              The fuzzy anticipation receives all different signals in PID block and 

generates anti-windup action Ua to improve the system behavior. This action also will 

compensate rapidly the disturbance effect and improve the system response. Finally, 

the fuzzy correction term will be added to the Upid signal to generate the applied 

control signal U to the actuator. Fuzzy anticipation can be considered as a signal 

processor. It accelerates the system response (feed forward action) and adds self-
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autonomy behavior to the PID controller. The added fuzzy anticipation is employed to 

treat two important problems in PID controller. 

             -Windup in integrator due to saturation in actuator. 

             -Slow response to reject strong disturbances. 

 

Here feed-forward compensation to treat the integrator windup problem is applied. 

This can lead to fast response without large overshoots. The anti-windup block 

receives the input signals: 

                 

                   - control output signal Upid, 

                   - integral action Ui, and 

                   - control error signal E. 

 

If the Upid is not saturated, the block output is set to be zero; otherwise a generated 

action should be taken as function of Ui and the control error signal E. The following 

fuzzy rules are applied where P, Z, and N are Positive, Zero, and Negative fuzzy sets 

respectively. 

 

Table 5.1.Fuzzy sets 

 Ui   

E 

N Z P 

 N Z Z N 

  Z P Z N 

  P P Z Z 
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CHAPTER 6 

MATLAB MANUAL 

 
6.1 SIMULINK 
 

6.1.1 Introduction 

               

              Simulink is a software package that enables you to model, simulate, and 

analyze systems whose outputs change over time. Such systems are often referred to 

as dynamic systems. Simulink can be used to explore the behavior of a wide range of 

real-world dynamic systems, including electrical circuits, shock absorbers, braking 

systems, and many other electrical, mechanical, and thermodynamic systems.  

 

              Simulating a dynamic system is a two-step process with Simulink. First, a 

user creates a block diagram, using the Simulink model editor that graphically depicts 

time-dependent mathematical relationships among the system's inputs, states, and 

outputs. The user then commands Simulink to simulate the system represented by the 

model from a specified start time to a specified stop time.    

 

6.1.2 Modeling Dynamic Systems 

 

              A Simulink block diagram model is a graphical representation of a 

mathematical model of a dynamic system. A mathematical model of a dynamic 

system is described by a set of equations. The mathematical equations described by a 

block diagram model are known as algebraic, differential, and/or difference equations. 

 

6.1.3 Block Diagram Semantics 

 

              A classic block diagram model of a dynamic system graphically consists of 

blocks and lines (signals). The history of these block diagram model is derived from 

engineering areas such as Feedback Control Theory and Signal Processing. A block 
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within a block diagram defines a dynamic system in itself. The relationships between 

each elementary dynamic system in a block diagram are illustrated by the use of 

signals connecting the blocks. Collectively the blocks and lines in a block diagram 

describe an overall dynamic system.  

 

              Simulink extends these classic block diagram models by introducing the 

notion of two classes of blocks, nonvirtual block and virtual blocks. Nonvirtual blocks 

represent elementary systems. A virtual block is provided for graphical organizational 

convenience and plays no role in the definition of the system of equations described 

by the block diagram model. Examples of virtual blocks are the Bus Creator and Bus 

Selector which are used to reduce block diagram clutter by managing groups of 

signals as a "bundle.".  

 

              In general, block and lines can be used to describe many "models of 

computations." One example would be a flow chart. A flow chart consists of blocks 

and lines, but one cannot describe general dynamic systems using flow chart 

semantics.  

 

              The term ‘time-based block diagram' is used to distinguish block diagrams 

that describe dynamic systems from that of other forms of block diagrams. In 

Simulink, we use the term block diagram (or model) to refer to a time-based block 

diagram unless the context requires explicit distinction.  

To summarize the meaning of time-based block diagrams:  

 

• Simulink block diagrams define time-based relationships between signals and 

state variables. The solution of a block diagram is obtained by evaluating these 

relationships over time, where time starts at a user specified "start time" and 

ends at a user specified "stop time." Each evaluation of these relationships is 

referred to as a time step.  

• Signals represent quantities that change over time and are defined for all 

points in time between the block diagram's start and stop time. 

• The relationships between signals and state variables are defined by a set of 

equations represented by blocks. Each block consists of a set of equations 

 28



(block methods). These equations define a relationship between the input 

signals, output signals and the state variables. Inherent in the definition of a 

equation is the notion of parameters, which are the coefficients found within 

the equation. 

 

6.1.4 Creating Models 

 

              Simulink provides a graphical editor that allows you to create and connect 

instances of block types selected from libraries of block types via a library browser. 

Simulink provides libraries of blocks representing elementary systems that can be 

used building blocks. The blocks supplied with Simulink are called built-in blocks. 

Simulink users can also create their own block types and use the Simulink editor to 

create instances of them in a diagram. Customer-defined blocks are called custom 

blocks. 

 

6.1.5 Time 

 

              Time is an inherit component of block diagrams in that the results of a block 

diagram simulation change with time. Put another way, a block diagram represents the 

instantaneous behavior of a dynamic system. Determining a system's behavior over 

time thus entails repeatedly executing the model at intervals, called time steps, from 

the start of the time span to the end of the time span. Simulink refers to the repeated 

execution of a model at successive time steps as simulating the system that the model 

represents. It is possible to simulate a system manually, i.e., to execute its model 

manually. However, this is unnecessary as the Simulink engine performs this task 

automatically on command from the user.   

 

6.1.6 States 

 

              Typically the current values of some system, and hence model, outputs are 

functions of the previous values of temporal variables. Such variables are called 

states. Computing a model's outputs from a block diagram hence entails saving the 

value of states at the current time step for use in computing the outputs at a 
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subsequent time step. Simulink performs this task during simulation for models that 

define states.  

              Two types of states can occur in a Simulink model: discrete and continuous 

states. A continuous state changes continuously. Examples of continuous states are 

the position and speed of a car. A discrete state is an approximation of a continuous 

state where the state is updated (recomputed) using finite (periodic or a periodic) 

intervals. An example of a discrete state would be the position of a car shown on a 

digital odometer where it is updated every second as opposed to continuously. In the 

limit, as the discrete state time interval approaches zero, a discrete state becomes 

equivalent to a continuous state.  

 

              Blocks implicitly define a model's states. In particular, a block that needs 

some or all of its previous outputs to compute its current outputs implicitly defines a 

set of states that need to be saved between time steps. Such a block is said to have 

states.  

 

              Blocks that define continuous states include the following standard Simulink 

blocks:  

• Integrator  

• State-Space  

• Transfer Function  

• Zero-Pole  

              The total number of a model's states is the sum of all the states defined by all 

its blocks. Determining the number of states in a diagram requires parsing the diagram 

to determine the types of blocks that it contains and then aggregating the number of 

states defined by each instance of a block type that defines states. Simulink performs 

this task during the Compilation phase of a simulation.  

 

6.1.7 Continuous States 

 

              Computing a continuous state entails knowing its rate of change, or 

derivative. Since the rate of change of a continuous state typically itself changes 

continuously (i.e., is itself a state), computing the value of a continuous state at the 
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current time step entails integration of its derivative from the start of a simulation. 

Thus modeling a continuous state entails representing the operation of integration and 

the process of computing the state's derivative at each point in time. Simulink block 

diagrams use Integrator blocks to indicate integration and a chain of operator blocks 

connected to the integrator block to represent the method for computing the state's 

derivative. The chain of blocks connected to the Integrator's is the graphical 

counterpart to an ordinary differential equation (ODE). 

 

              In general, excluding simple dynamic systems, analytical methods do not 

exist for integrating the states of real-world dynamic systems represented by ordinary 

differential equations. Integrating the states requires the use of numerical methods 

called ODE solvers. These various methods trade computational accuracy for 

computational workload. Simulink comes with computerized implementations of the 

most common ODE integration methods and allows a user to determine which it uses 

to integrate states represented by Integrator blocks when simulating a system. 

 

              Computing the value of a continuous state at the current time step entails 

integrating its values from the start of the simulation. The accuracy of numerical 

integration in turn depends on the size of the intervals between time steps. In general, 

the smaller the time step, the more accurate the simulation. Some ODE solvers, called 

variable time step solvers, can automatically vary the size of the time step, based on 

the rate of change of the state, to achieve a specified level of accuracy over the course 

of a simulation. Simulink allows the user to specify the size of the time step in the 

case of fixed-step solvers or allow the solver to determine the step size in the case of 

variable-step solvers. To minimize the computation workload, the variable-step solver 

chooses the largest step size consistent with achieving an overall level of precision 

specified by the user for the most rapidly changing model state. This ensures that all 

model states are computed to the accuracy specified by the user. 

 

6.1.8 Discrete States 

 

              Computing a discrete state requires knowing the relationship between the 

current time and its value at the time at which it previously changed value. Simulink 

refers to this relationship as the state's update function. A discrete state depends not 
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only on its value at the previous time step but also on the values of a model's inputs. 

Modeling a discrete state thus entails modeling the state's dependency on the systems' 

inputs at the previous time step. Simulink block diagrams use specific types of blocks, 

called discrete blocks, to specify update functions and chains of blocks connected to 

the inputs of the block's to model the state's dependency on system inputs. 

 

              As with continuous states, discrete states set a constraint on the simulation 

time step size. Specifically a step size must be chosen that ensure that all the sample 

times of the model's states are hit. Simulink assigns this task to a component of the 

Simulink system called a discrete solver. Simulink provides two discrete solvers: a 

fixed-step discrete solver and a variable-step discrete solver. The fixed-step discrete 

solver determines a fixed step size that hits all the sample times of all the model's 

discrete states, regardless of whether the states actually change value at the sample 

time hits. By contrast, the variable-step discrete solver varies the step size to ensure 

that sample time hits occur only at times when the states change value.  

 

6.1.9 Modeling Hybrid Systems 

 

              A hybrid system is a a system that has both discrete and continuous states 

Strictly speaking a hybrid model is identified as having continuous and discrete 

sample times from which it follows that the model will have continuous and discrete 

states. Solving a model of such a system entails choosing a step size that satisfies both 

the precision constraint on the continuous state integration and the sample time hit 

constraint on the discrete states. Simulink meets this requirement by passing the next 

sample time hit as determined by the discrete solver as an additional constraint on the 

continuous solver. The continuous solver must choose a step size that advances the 

simulation up to but not beyond the time of the next sample time hit. The continuous 

solver can take a time step short of the next sample time hit to meet its accuracy 

constraint but it cannot take a step beyond the next sample time hit even if its 

accuracy constraint allows it to.    

 

6.1.10 Block Parameters 

              Key properties of many standard blocks are parameterized. For example, the 

Constant value of the Simulink Constant block is a parameter. Each parameterized 
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block has a block dialog that lets you set the values of the parameters. You can use 

MATLAB expressions to specify parameter values. Simulink evaluates the 

expressions before running a simulation. You can change the values of parameters 

during a simulation. This allows you to determine interactively the most suitable 

value for a parameter. 

 

              A parameterized block effectively represents a family of similar blocks. For 

example, when creating a model, you can set the Constant value parameter of each 

instance of the Constant block separately so that each instance behaves differently. 

Because it allows each standard block to represent a family of blocks, block 

parameterization greatly increases the modeling power of the standard Simulink 

libraries. 

 

              Each time you change parameters, you change the meaning of the model. 

Simulink lets you modify the parameter values during execution of your model. For 

example, you can pause simulation, change parameter values, and continue 

simulation. It should be pointed out that parameter changes do not immediately occur, 

but are queued up and then applied at the start of the next time step during model 

execution. Returning to our example of the constant block, the function it defines as   

 

Signal (t) =Constant Value 

 

for all time. If we were to allow the constant value to be changed immediately, then 

the solution at the point in time at which the change occurred would be invalid, thus 

we must queue the change for processing on the next time step. 

 

 

6.1.11 Systems and Subsystems 

  

               A Simulink block diagram can consist of layers. Each layer is defined by a 

subsystem. A subsystem is part of the overall block diagram and ideally has no impact 

on the meaning of the block diagram. Subsystems are provided primarily to help in 

the organization aspects a block diagram. Subsystem do not define a separate block 

diagram. Simulink differentiates between two different types of subsystems virtual 
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and nonvirtual subsystems. The main difference is that nonvirtual subsystems provide 

the ability to control when the contents of the subsystem are evaluated. 

 

6.1.12 Conditionally Executed Subsystems 

 

              You can create conditionally executed subsystems that are executed only 

when a transition occurs on a triggering, function-call, action, or enabling input. 

Conditionally executed subsystems are atomic. Unconditionally executed subsystems 

are virtual by default. You can, however, designate an unconditionally executed 

subsystem as atomic. This is useful if you need to ensure that the equations defined by 

a subsystem are evaluated "together" as a unit. 

 

6.1.13 Signals 

 

              Simulink uses the term signal to refer to a time varying quantity that has 

values at all points in time. Simulink allows you to specify a wide range of signal 

attributes, including signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), 

numeric type (real or complex), and dimensionality (one-dimensional or two-

dimensional array). Many blocks can accept or output signals of any data or numeric 

type and dimensionality. Others impose restrictions on the attributes of the signals 

they can handle.  

 

              On the block diagram, you will find that the signals are represented with lines 

that have an arrow head. The source of the signal corresponds to the block that writes 

to the signal during evaluation of its block methods (equations). The destinations of 

the signal are blocks that read the signal during the evaluation of its block methods 

(equations). A good analogy of the meaning of a signal is to consider a classroom. 

The teacher is the one responsible for writing on the white board and the students read 

what is written on the white board when they choose to. This is also true of Simulink 

signals, a reader of the signal (a block method) can choose to read the signal as 

frequently or infrequently as so desired.  
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6.1.14 Simulating Dynamic Systems 

 

              Simulating a dynamic system refers to the process of computing a system's 

states and outputs over a span of time, using information provided by the system's 

model. Simulink simulates a system when you choose Start from the model editor's 

Simulation menu, with the system's model open.  

 

6.1.15 Model Compilation 

 

              First, the Simulink engine invokes the model compiler. The model compiler 

converts the model to an executable form, a process called compilation. In particular, 

the compiler 

• Evaluates the model's block parameter expressions to determine their values.  

• Determines signal attributes, e.g., name, data type, numeric type, and 

dimensionality, not explicitly specified by the model and checks that each 

block can accept the signals connected to its inputs.  

• Simulink uses a process called attribute propagation to determine unspecified 

attributes. This process entails propagating the attributes of a source signal to 

the inputs of the blocks that it drives.  

• Performs block reduction optimizations. Flattens the model hierarchy by 

replacing virtual subsystems with the blocks that they contain (see Solvers). 

Sorts the blocks into the order in which they need to be executed during the 

execution phase (see Solvers). Determines the sample times of all blocks in 

the model whose sample times you did not explicitly specify 

 

6.2 FUZZY LOGIC TOOLBOX 
 

6.2.1 Fuzzy Logic Toolbox 

 

              The Fuzzy Logic Toolbox is a collection of functions built on the MATLAB 

numeric computing environment. It provides tools for you to create and edit fuzzy 

inference systems within the framework of MATLAB, or if you prefer, you can 

integrate your fuzzy systems into simulations with Simulink. You can even build 
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stand-alone C programs that call on fuzzy systems you build with MATLAB. This 

toolbox relies heavily on graphical user interface (GUI) tools to help you accomplish 

your work, although you can work entirely from the command line if you prefer. 

 

The toolbox provides three categories of tools:  

 

• Command line functions 

• Graphical interactive tools 

• Simulink blocks and examples 

 

              The first category of tools is made up of functions that you can call from the 

command line or from your own applications. Many of these functions are MATLAB 

M-files, series of MATLAB statements that implement specialized fuzzy logic 

algorithms. You can change the way any toolbox function works by copying and 

renaming the M-file, then modifying your copy. You can also extend the toolbox by 

adding your own M-files. 

 

              Secondly, the toolbox provides a number of interactive tools that let you 

access many of the functions through a GUI. Together, the GUI- based tools provide 

an environment for fuzzy inference system design, analysis, and implementation. 

 

              The third category of tools is a set of blocks for use with the Simulink 

simulation software. These are specifically designed for high speed fuzzy logic 

inference in the Simulink environment.  

 

6.2.2 Function of Fuzzy Logic Toolbox  

 

              The Fuzzy Logic Toolbox allows you to do several things, but the most 

important thing it lets you do is create and edit fuzzy inference systems. You can 

create these systems using graphical tools or command-line functions, or you can 

generate them automatically using either clustering or adaptive neuro-fuzzy 

techniques.  
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              If you have access to Simulink, you can easily test your fuzzy system in a 

block diagram simulation environment. The toolbox also lets you run your own stand-

alone C programs directly, without the need for Simulink. This is made possible by a 

stand-alone Fuzzy Inference Engine that reads the fuzzy systems saved from a 

MATLAB session. You can customize the stand-alone engine to build fuzzy inference 

into your own code. All provided code is ANSI compliant. 

 
              Because of the integrated nature of the MATLAB environment, you can 

create your own tools to customize the Fuzzy Logic Toolbox or harness it with 

another toolbox, such as the Control System Toolbox, Neural Network Toolbox, or 

Optimization Toolbox, to mention only a few of the possibilities. 

 

6.2.3 Building Systems with the Fuzzy Logic Toolbox 

 

              Now we're going to work through a similar tipping example, only we'll be 

building it using the graphical user interface (GUI) tools provided by the Fuzzy Logic 

Toolbox. Although it is possible to use the Fuzzy Logic Toolbox by working strictly 

from the command line, in general it is much easier to build a system graphically.                       

There are five primary GUI tools for building, editing, and observing fuzzy inference 

systems in the Fuzzy Logic Toolbox: the Fuzzy Inference System or FIS Editor, the 

Membership Function Editor, the Rule Editor, the Rule Viewer, and the Surface 

Viewer. These GUIs are dynamically linked, in that changes you make to the FIS 

using one of them, can affect what you see on any of the other open GUIs. You can 

have any or all of them open for any given system. 
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              In addition to these five primary GUIs, the toolbox includes the graphical 

ANFIS Editor GUI, which is used for building and analyzing Sugeno-type adaptive 

neural fuzzy inference systems. 

 

              The FIS Editor handles the high-level issues for the system: How many 

inputs and output variables? What are their names? The Fuzzy Logic Toolbox doesn't 

limit the number of inputs. However, the number of inputs may be limited by the 

available memory of your machine. If the number of inputs is too large, or the number 

of membership functions is too big, then it may also be difficult to analyze the FIS 

using the other GUI tools.  

 

              The Membership Function Editor is used to define the shapes of all the 

membership functions associated with each variable. The Rule Editor is for editing 

the list of rules that defines the behavior of the system. 

 

              The Rule Viewer and the Surface Viewer are used for looking at, as opposed 

to editing, the FIS. They are strictly read-only tools. The Rule Viewer is a MATLAB 

based display of the fuzzy inference diagram shown at the end of the last section. 

Used as a diagnostic, it can show (for example) which rules are active, or how 

individual membership function shapes are influencing the results. The Surface 

Viewer is used to display the dependency of one of the outputs on any one or two of 

the inputs — that is, it generates and plots an output surface map for the system.  

 

              This section began with an illustration similar to the one below describing the 

main parts of a fuzzy inference system, only the one below shows how the three 

editors fit together. The two viewers examine the behavior of the entire system. 
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              The five primary GUIs can all interact and exchange information. Any one of 

them can read and write both to the workspace and to the disk (the read-only viewers 

can still exchange plots with the workspace and/or the disk). For any fuzzy inference 

system, any or all of these five GUIs may be open. If more than one of these editors is 

open for a single system, the various GUI windows are aware of the existence of the 

others, and will, if necessary, update related windows. Thus if the names of the 

membership functions are changed using the Membership Function Editor, those 

changes are reflected in the rules shown in the Rule Editor. The editors for any 

number of different FIS systems may be open simultaneously. The FIS Editor, the 

Membership Function Editor, and the Rule Editor can all read and modify the FIS 

data, but the Rule Viewer and the Surface Viewer do not modify the FIS data in any 

way.   
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CHAPTER 7 

SIMULATION WORK AND RESULTS 

 
              The simulation work is carried out using Simulink in Matlab environment 

software. The numeric example in [2] is used to investigate the potential of the 

controller. The process and actuator transfer functions are given as:     
                                                                                                                                                                   

 
     

 The controller parameters are chosen: K=2.01, Ti=0.92, Td = 0.23, and N=10 (filter 

factor)..The actuator output was limited to 1.Model of numeric example considered is 

shown in the figure 7.1.Model of internal structure of actuator with saturation and 

plant is respectively shown in figure 7.2 and figure 7.3.  

 

 
Figure7.1: General structure of a control system subject to actuator saturation. 

 

 

 
Figure7.2: Model of actuator with saturation. 

 

 

    
Figure7.3: Model of plant considered. 
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Simulation results with different PID controllers have shown below one by one. 

Graph with color blue, green and red indicate step input of 0.9, 0.7 and 0.5 

respectively. 

 

7.1 Conventional PID controller 

 

              Simulink model of conventional PID controller is shown in figure7.4 and 

step response without compensation the integrator windup is shown in figure7.5. The 

obtained results represent the effects of integrator windup for different step inputs 

(unit step, 0.9, 0.7, and 0.5).The effect of windup is clear when the step input is closed 

to the actuator limit value (0.9 in this case). 

 

 
Figure7.4: Model of conventional PID controller. 

 

 
Figure7.5: Step response (Integrator windup) 
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7.2 Conditional integration 

 

              Simulink model of PID controller with conditional integration is shown in 

figure7.6 and step response using it is shown in figure7.7. 

 

 

 
Figure7.6: Model of PID controller with conditional integration. 

 

 

 
Figure7.7: Step response using conditional integration 
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7.3 Limited integration 

 

              Simulink model of PID controller with limited integration is shown in 

figure7.8 and step response using it is shown in figure7.9. The limited integrator 

method gives higher overshoots and that’s why it is the least desirable method. 

 

 

 
Figure7.8: Model of PID controller with a limited integration. 

 

 

 
Fig7.9: Step response using limited integrator. 
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7.4 Tracking anti-windup PID controller 

 

              Simulink model of tracking anti-windup PID controller is shown in 

figure7.10 and step response using it is shown in figure7.11.In the tracking tuning is 

possible by adjusting the dead zone gain b. From figure7.12 it is observed that 

tracking anti-windup PID controller is very sensitive to changes in the gain b. Too 

high a value for b effectively reduce the amount of overshoot, but may also lead to a 

slow response of the system.  

 

 

 
Figure7.10: Model of tracking anti-windup PID controller  

 

 
Fig7.11: Step response using tracking with b=1 
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Fig7.12: Step response using tracking with b=2 

7.5 Modified tracking anti-windup PID controller 

 

              Simulink model of modified tracking anti-windup PID controller is shown in 

figure7.13 and step response using it is shown in figure7.14. In modified tracking 

methods, tuning is possible by adjusting the dead zone gain b, and saturation Hpd. 

The modified tracking method is found less sensitive to changes in the system 

parameters, so tuning is easier and there is a smaller risk of obtaining a slow response 

due to mistuning. It also allows more flexible tuning as this method has two free 

design parameters. Reduced values for r, (r=0.5…1) give a faster response, but also a 

higher overshoot. By selecting a higher value for r (r=1…1.5), reduces the overshoot, 

but we get a slower response. A value of r = 0 corresponds to a pure limited 

integrator. 

 
Figure7.13: Model of modified tracking anti-windup PID controller. 
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Fig7.14: Step response using modified tracking with b=10, r=1 

 

 
Fig7.15: Step response using modified tracking with b=10, r=0.5 

7.6 PID plus fuzzy anticipation  

 

              In fuzzy it is so easy to define the inputs, outputs, membership functions and 

rules using the fuzzy editor. The membership functions are chosen triangular in form. 

Inputs and outputs are normalized in the range (-1 to 1).Fuzzy anticipation system,  

Inputs, outputs, membership functions, rules viewer and surface viewer is shown in 

figure from fig7.16 to fig7.20. 
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Fig7.16: Fuzzy anticipation system 

 

 

 
Fig7.17: If action subsystem 
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Fig7.18: Membership Functions 

 

 
Fig7.19: Rule Viewer 

 

 

 

                                                Fig7.20: Surface Viewer 
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The next figure shows the step response using fuzzy anticipation for the same above 

conditions. The obtained results show that the overshoot and settling time is reduced 

and affirm the potential of the proposed methodology.  

 

 
Fig7.21: Step response (PID + Fuzzy Anticipation) 

 

The simulation work is extended to test the system behavior to reject rapidly the 

disturbance signal. The next figure shows the reaction of the PID controller only. The 

disturbance signal is applied at the instant 6 sec. Its value is constant and equal to (-

0.1). The controller takes approx 2 seconds to reject the disturbance. 

 
Fig7.22: Disturbance rejection (PID) 
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Figure7.23 shows the system response using PID with fuzzy anticipation to reject the 

same disturbance signal. The controller takes less time to retain the desired output. 

This result affirms the potential of the proposed methodology to reject rapidly the 

strong and fast disturbances. 

 

 
Fig7.23: Disturbance rejection (PID + Anticipation) 
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CHAPTER 8 

CONCLUSION AND FURTHER 

SCOPE 

 
              All the classical approaches urge to decrease the integral action when the 

actuator saturates. But, the correction is taken through a feedback. It delays its effect. 

If strong and rapid disturbances act on the process, the anti-windup will slow down 

the compensation reaction that is not practical. Therefore, a fuzzy anticipation to 

improve the PID behavior is presented.  
           

              The controller consists of two blocks: the former is a conventional PID 

controller, while the second one is a feed-forward fuzzy anticipation block. The fuzzy 

anticipation is used to treat the windup problem when the actuator saturates and also 

to reject rapidly the disturbance signals. Therefore, the overall system behavior is 

improved by acting on signal processing of PID outputs rather than to adapt its 

parameters. The proposed controller is verified through simulation on a numeric 

example. The simulation is carried out using SIMULINK in MATLAB 7.01.The 

obtained results affirmed the potential of the controller. 

 

              Here in Fuzzy Anticipation system there are two inputs and one output. For 

normalizing the inputs and output in the range of 1 to -1, one has to multiply it by 

scaling gain. For error input it is not required, because error is simply divided by the 

reference input for bringing it in the desired range .But for other input and output it 

requires scaling gain, to get best response. Here one scaling gain factor is kept 

constant and other is varied manually till desired response achieved. Here one can 

also apply genetic algorithm to find out the optimal value of scaling gain  
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APPENDIX 
 

 

This is a command line code for PID +Fuzzy anticipation. 

 

clear all; 

close all; 

%Create a new FIS with filename "flcdemo.fis" 

sys=newfis('flcdemo'); 

%Define membership functions for the  

%input variable "ERROR" 

sys=addvar(sys,'input','ERROR',[-1 1]); 

sys=addmf(sys,'input',1,'N','trimf',[-2 -1 0]); 

sys=addmf(sys,'input',1,'Z','trimf',[-1 0 1]); 

sys=addmf(sys,'input',1,'P','trimf',[0 1 2]); 

%Define membership functions for the 

%input variable "Ui" 

sys=addvar(sys,'input','Ui',[-1 1]); 

sys=addmf(sys,'input',2,'N','trimf',[-2 -1 0]); 

sys=addmf(sys,'input',2,'Z','trimf',[-1 0 1]); 

sys=addmf(sys,'input',2,'P','trimf',[0 1 2]); 

%Define membership functions for the 

%output variable "Ua" 

sys=addvar(sys,'output','Ua',[-1 1]); 

sys=addmf(sys,'output',1,'N','trimf',[-2 -1 0]); 

sys=addmf(sys,'output',1,'Z','trimf',[-1 0 1]); 

sys=addmf(sys,'output',1,'P','trimf',[0 1 2]); 

%Define fuzzy rules 

rule=[1 1 2 1 1 

          1 2 2 1 1 

          1 3 1 1 1 

          2 1 3 1 1 

          2 2 2 1 1 
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          2 3 1 1 1 

          3 1 3 1 1 

          3 2 2 1 1 

          3 3 2 1 1]; 

  sys=addrule(sys ,rule); 

  %Define gain constants 

  GUi=.350; 

  GE=1; 

  GO=4.2; 

  %Define reference signal 

   for k=2:700 

if(k>2) 

x(k)=.9; 

else 

x(k)=0; 

end 

%COMMAND LINE SIMULATION 

y(2)=0; 

e(k)=x(k)-y(k); 

Ui(1)=0;e(1)=0; 

Ui(k)=Ui(k-1)+.2185*e(k-1); 

Upd(1)=0; 

Upd(k)=3.759*e(k)-3.759*e(k-1)+.187*Upd(k-1); 

Upid(1)=0; 

Upid(k)=Upd(k)+Ui(k)+2.01*e(k); 

if(Upid<-1&Upid>1) 

UF(k)=0; 

else 

E(k)=e(k)*GE; 

UI(k)=Ui(k)*GUi; 

Uf(k)=evalfis([E(k) UI(k)],sys); 

UF(k)=Uf(k)*GO; 

end 

Ux(k)=Upid(k)+UF(k); 
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Ua(1)=0; 

Ua(k)=0.66667*Ua(k-1)+.33*Ux(k); 

  if(Ua(k)<-1) 

      Ub(k)=-1; 

  end 

  if(Ua(k)>1) 

      Ub(k)=1; 

  else Ub(k)=Ua(k); 

  end 

  Ub(1)=0; 

      y(k+1)=.909*y(k)+.0909*Ub(k); 

   

end 

plot(y); 

% The fuzzy system created entirely from command line may be embedded 

% directly into simulink to test it out in a simulation environment. 
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