
FINAL YEAR PROJECT REPORT
ON

DESIGN AND IMPLEMENTATION
OF ECHO SERVER

Submitted in Partial fulfillment
for the Requirement of

Degree of Bachelor of Engineering
in Computer Engineering

By:

 ANURAG GOEL 2K1/COE/013
 MANHAR P AGGARWAL 2K1/COE/030

 SAURABH OHRI 2K1/COE/050

Under the guidance of
Dr D.R. CHOUDHARY

Head of Department
Department of Computer Engineering

Delhi College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI
2001-05

FINAL YEAR PROJECT REPORT
ON

DESIGN AND IMPLEMENTATION
OF ECHO SERVER

Submitted in Partial fulfillment
 for the Requirement of

Degree of Bachelor of Engineering
 in Computer Engineering

By:

 ANURAG GOEL 2K1/COE/013
 MANHAR P AGGARWAL 2K1/COE/030

 SAURABH OHRI 2K1/COE/050

Under the guidance of
Dr D.R. CHOUDHARY

Head of Department
Department of Computer Engineering

Delhi College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI
2001-05

ACKNOWLEDGMENT

 We are most thankful to our mentor and guide Dr. D.R. Choudhary, Head of
Department,Computer Engineering, who introduced us to the new and interesting field of
Networking and specifically Client Server Programming. Without his able guidance and
many a valuable piece of advice which he gave us whenever we required it, this project
would have not been possible. We would also like to thank him for the endless hours he gave
us to recommend changes and suggest new ideas to improve our project.

 We would be failing in our duties if we don’t thank everybody in Delhi College of
Engineering who have helped us in some form or other.

 ANURAG GOEL

 MANHAR P AGGARWAL

 SAURABH OHRI

DEPARTMENT OF COMPUTER
ENGINEERING

DELHI COLLEGE OF ENGINEERING
DELHI

CERTIFICATE

 This is to certify that this project entitled “ DESIGN AND IMPLEMENTATION OF
ECHO SERVER “ has been submitted by

 Anurag Goel (2K1/COE/013)
 Manhar P Aggarwal (2K1/COE/030)
 Saurabh Ohri (2K1/COE/050)

of Delhi College of Engineering towards the partial fulfillment of the degree of the Bachelor
of Engineering in Computer Engineering.

 It may be noted that this project was carried out under my supervision and is totally
their piece of work and has not been submitted to any other Institute or University.

Dr. D.R. Choudhary
(Project Guide)

Head of Department
Department of Computer Engineering

Delhi College of Engineering
Delhi

TABLE OF CONTENTS

S.NO CONTENTS
1. ABOUT THE PROJECT

a)Objective
b)Implementation

2. INTRODUCTION
a)TCP/IP
b)UDP
c)Host Names
d)Service Ports
e)IP Addresses
f)TTL
g)Types of Network Prog.
h)Client Server
i)Intro. to Sockets
j)Communication Protocols

3. SOCKET PROG. IN UNIX
C IMPLEMENTATION
a)What is Unix
b)Socket Prog
c)Example
d)Functions and Procedures

4. SOCKET PROG IN WINDOWS
JAVA IMPLEMENTATION
a)Socket Prog
b)Socket Terminology
c)Datagrams
d)Errot Handling
e)Explanation of Functions
f)Conclusion

 5. V.B. IMPLEMENTATION
 a)Windows Sockets API

b)Prog. With Sockets
c)Echo Server
d)Echo Client

6. C CODE
 a)Server Code
 b)Client Code
 c)How to Execute
 d)Output

 7. JAVA CODE
 a)Server Code
 b)Client Code
 c)How to Execute

 d)Output
 8. VB CODE
 a)Server Code

 b)Client Code
 c)How to Execute

 d)Output
9. SYSTEM SPECIFICATIONS
10. RESEARCH APPLICATION
11. BIBLIOGRAPHY

ABOUT THE PROJECT

INTRODUCTION

Since birth of network programming, it has been error-prone, difficult, and complex. The
programmer had to know many details about the network and sometimes even the hardware.
You usually needed to understand the various layers of the networking protocol, and there
were a lot to different functions in each networking library concerned with connecting,
packing, unpacking blocks of information, handshaking, etc. It was a difficult task. However,
the concept of networking is not so difficult. You want to get some information from that
machine over there and move it to this machine here, or vice-versa. Its quite similar to
reading and writing files, except that the files exist on the remote machine.

OBJECTIVE

The project demonstrates a TCP/IP echo server. It will accept a connection from a client
application, receive one line of text, echo that line back to the client and close the
connection.

IMPLEMENTATION

The echo server has been implemented in following platforms:

 UNIX ENVIRONMENT

 C LANGUAGE

 WINDOWS ENVIRONMENT

 JAVA (JDK1.4)

 VISUAL BASIC (VB 6.0)

NETWORKING CONCEPTS

TCP/IP

When two computers wish to exchange information over a network, there are several
components that must be in place before the data can actually be sent and received. Of
course, the physical hardware must exist, which is typically either a network interface card
(NIC) or a serial communications port for dial-up networking connections. Beyond this
physical connection, however, computers also need to use a protocol which defines the
parameters of the communication between them. In short, a protocol defines the "rules of the
road" that each computer must follow so that all of the systems in the network can exchange
data. One of the most popular protocols in use today is TCP/IP, which stands for
Transmission Control Protocol/Internet Protocol.

 By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet
Protocol (IP). Unlike a single local network, where every system is directly connected to
each other, an internet is a collection of networks, combined into a single, virtual network.
The Internet Protocol provides the means by which any system on any network can
communicate with another as easily as if they were on the same physical network. Each
system, commonly referred to as a host, is assigned a unique 32-bit number which can be
used to identify it over the internetwork. Typically, this address is broken into four 8-bit
numbers separated by periods. This is called dot-notation, and looks something like
"192.43.19.64". Some parts of the address are used to identify the network that the system is
connected to, and the remainder identifies the system itself. Without going into the minutia of
the Internet addressing scheme, just be aware that there are three "classes" of addresses,
referred to as "A", "B" and "C". The rule of thumb is that class "A" addresses are assigned to
very large networks, class "B" addresses are assigned to medium sized networks, and class
"C" addresses are assigned to smaller networks (networks with less than approximately 250
hosts).

When a system sends data over the network using the Internet Protocol, it is sent in discrete
units called datagrams, also commonly referred to as packets. A datagram consists of a
header followed by application-defined data. The header contains the addressing information
which is used to deliver the datagram to its destination, much like an envelope is used to
address and contain postal mail. And like postal mail, there is no guarantee that a datagram
will actually arrive at its destination. In fact, datagrams may be lost, duplicated or
delivered out of order during their travels over the network.

Needless to say, this kind of unreliability can cause a lot of problems for software
developers. What’s really needed is a reliable, straightforward way to exchange data without
having to worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP,
TCP offers a reliable, full-duplex byte stream which may be read and written to in a fashion
similar to reading and writing a file. The advantages to this are obvious: the application
programmer doesn’t need to write code to handle dropped or out-of-order datagrams, and
instead can focus on the application itself. And because the data is presented as a stream of
bytes, existing code can be easily adopted and modified to use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can
begin to exchange data they must establish a "connection" with each other. This is done with
a three-way handshake in which both sides exchange packets and establish the initial packet
sequence numbers (the sequence number is important because, as mentioned above,
datagrams can arrive out of order; this number is used to ensure that data is received in the
order that it was sent). When establishing a connection, one program must assume the role of
the client, and the other the server. The client is responsible for initiating the connection,
while the server’s responsibility is to wait, listen and respond to incoming connections. Once
the connection has been established, both sides may send and receive data until the
connection is closed.

The primary function of the TCP/IP is to provide a point to point communication mechanism.
One process on one machine communicates with the another process on another machine or
within the same machine. This communication appears as two streams of data. One stream
carries data from one process to the other, while the other carries data in the other direction.
Each process can read the data that have been written by the other, and in normal conditions,
the data received are the same, and in the same order, as when they are sent.

In order to tell one machine from another machine and to make sure that you are connected
with the machine you want, there must be some way of uniquely identifying machines on a
network. Early networks were satisfied to provide unique names for machines within the
local network. However, Java works within the Internet, which requires a way to uniquely
identify a machine from all the others in the world. This is accomplished with the IP(Internet
Protocol) address, a 32 bit number.

IP Address in two forms :

The DNS (Domain Name Service) form. Suppose, if my domain name is cswl.com and if
I have a computer called Hari in my domain. Its domain name would be Hari.cswl.com.

Alternatively, we can use dotted quad form, which is four numbers separated by dots, such as
199.2.24.246

In addition to the machine addresses provided by the Internet Protocol part of the network
system, TCP/IP has a mechanism for identifying individual processes on a machine,
analogous to an office block. The building has phone number , but each room inside is also
identified by an extension number. When a call arrives at the building, it must be connected
to the correct room for handling . Payment requests go to accounts payable, orders to sales,
and so forth. In the TCP/IP system, the extension numbers are called ports, and they are
represented by a 16-bit binary number. To communicate with the correct part of a particular
computer, the sending machine must know both the machine address and the port number to
which the message should be sent. Many common services have a dedicated port. Because
some ports are reserved for common services, the programmer cannot use any port. Ports
numbered under 1024 are often referred to as reserved ports, many of which are reserved for
a specific program. It is important that you only attempt to use ports over number 1024.

USER DATAGRAM PROTOCOL

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes,
nor does it require that you establish a connection with another program in order to exchange
information. Data is exchanged in discrete units called datagrams, which are similar to IP
datagrams. In fact, the only features that UDP offers over raw IP datagrams are port numbers
and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program sends a
UDP datagram over the network, there is no way for it to know that it actually arrived at its
destination. This means that the sender and receiver must typically implement their own
application protocol on top of UDP. Much of the work that TCP does transparently (such as
generating checksums, acknowledging the receipt of packets, retransmitting lost packets and
so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it’s used at all. UDP has the advantage
over TCP in two critical areas: speed and packet overhead. Because TCP is a reliable
protocol, it goes through great lengths to insure that data arrives at its destination intact, and
as a result it exchanges a fairly high number of packets over the network. UDP doesn’t have
this overhead, and is considerably faster than TCP. In those situations where speed is
paramount, or the number of packets sent over the network must be kept to a minimum, UDP
is the solution.

HOSTNAMES

In order for an application to send and receive data with a remote process, it must have
several pieces of information. The first is the IP address of the system that the remote
program is running on.

Although this address is internally represented by a 32-bit number, it is typically expressed in
either dot-notation or by a logical name called a hostname. Like an address in dot-notation,
hostnames are divided into several pieces separated by periods, called domains. Domains are
hierarchical, with the top-level domains defining the type of organization that network
belongs to, with sub-domains further identifying the specific network.

In this figure, the top-level domains are "gov" (government agencies), "com" (commercial
organizations), "edu" (educational institutions) and "net" (Internet service providers). The
fully qualified domain name is specified by naming the host and each parent sub-domain
above it, separating them with periods. For example, the fully qualified domain name for the
"jupiter" host would be "jupiter.catalyst.com". In other words, the system "jupiter" is part of
the "catalyst" domain (a company’s local network) which in turn is part of the "com" domain
(a domain used by all commercial enterprises).

In order to use a hostname instead of a dot-address to identify a specific system or network,
there must be some correlation between the two. This is accomplished by one of two means:
a local host table or a name server. A host table is a text file that lists the IP address of a host,
followed by the names that it’s known by. Typically this file is named hosts and is found in
the same directory in which the TCP/IP software has been installed. A name server, on the
other hand, is a system (actually, a program running on a system) which can be presented
with a hostname and will return that host’s IP address. This approach is advantageous
because the host information for the entire network is maintained in one centralized location,
rather than being scattered about on every host on the network.

SERVICE PORTS

In addition to the IP address of the remote system, an application also needs to know how to
address the specific program that it wishes to communicate with. This is accomplished by
specifying a service port, a 16-bit number that uniquely identifies an application running on
the system. Instead of numbers, however, service names are usually used instead. Like
hostnames, service names are usually matched to port numbers through a local file,
commonly called services. This file lists the logical service name, followed by the port
number and protocol used by the server.

A number of standard service names are used by Internet-based applications and these are
referred to as well-known services. These services are defined by a standards document and
include common application protocols such as FTP, POP3, SMTP and HTTP.

DIFFERENT TYPES OF IP ADDRESSES

There are three types of IPv4 addresses: unicast, broadcast, and multicast

Unicast addresses are used for transmitting a message to a single destination node

Broadcast addresses are used when a message is supposed to be transmitted to all
subnetwork

For delivering a message to a group of destination nodes which are not necessarily
subnetwork, multicast addresses are used

Class A, B, and C IP addresses are used for unicast messages, whereas as class D
those in the range 224.0.0.1 to 239.255.255.255, inclusive, and by a standard UDP p
are used for multicast messages

IP Addresses of Class D - Multicasting

IP addresses of Class D have the following format

Bit no. 0 1 2 3 4 5 6 7 8 16 24 31

Class D 1 1 1 0 |--------------multicast address (28)----------|

Class D addresses are identified by a one in bit 0,1 and 2 and a zero in bit 3 of the ad
means that 6.25% of all available IP addresses are of this class

The range of Class D addresses are in dotted decimal notation from 224.h.h.h.h to
where h is a number from 0 to 255. Address 224.0.0.0 is reserved and can not be
address 224.0.0.1 is used to address all hosts that take part in IP multicasting

Class D addresses are used for multicasting and does not have a network part and ho
multicasting makes it possible to send IP datagrams to a group of hosts, which ma
across many networks

LIFE OF MULTICAST PACKETS (TTL)

Broadcast packets need to have a finite life inorder to avoid bouncing of the packets
around the network forever. Each packet has a time to live (TTL) value, a counter that
is decremented every time the packet passes through an hop i.e a router between the
network. Because of TTLs, each multicast packet is a ticking time bomb.

Take for example, a TV station where TTLs would be the station's signal area -- the
limitation of how far the information can travel. As the packet moved around the
company's internal network, its TTL would be notched down every time it passed
through an router. When the packet's TTL reached 0, the packet would die and not be
passed further. Generally multicast with long TTLs -- perhaps 200 - to guarantee that
the information will reach around the world

TYPES OF NETWORK PROGRAMMING

Two general types are :

Connection-oriented programming
Connectionless Programming

Connection-oriented Networking

The client and server have a communication link that is open and active from the time
the application is executed until it is closed. Using Internet jargon, the Transmission
control protocol os a connection oriented protocol. It is reliable connection - packets
are guaranteed to arrive in the order they are sent.

(e.g.) Telephone system.

Connection-less Networking

The this type each instance that packets are sent, they are transmitted individually. No
link to the receiver is maintained after the packets arrive. The Internet equivalent is
the User Datagram Protocol (UDP). Connectionless communication is faster but not
reliable. Datagrams are used to implement a connectionless protocol, such as UDP.

(e.g.) Postal Service

Common Services Port Number

Port Number Service
21 FTP
23 Telnet
25 SMTP(mail)
80 HTTP(Web)
119 NNTP(News)

CLIENT SERVER PROGRAMMING

The most common model of network programming is referred to as client-server
programming. The concept is simple: A client machine makes a request for information or
sends a command to a server; in return, the server passes back the data or results of the
command. Most often, the server only responds to clients; it does not initiate communication.

So the job of the server is to listen for a connection, and that's performed by the special
server object that we create. The job of the client is to try to make a connection to the server,
and this is performed by the special client object we create. Once the connection is made, you
will see that at the server and client ends, the connection is magically just turned into the IO
Stream object, and from then onwards you can treat the connection as if you were reading
and writing into the file.

INTRODUCTION TO SOCKETS

WHAT ARE SOCKETS

The socket is a software abstraction used to represent the "terminals" of a connection
between two machines or processes. For a given connection , there's a socket on each
machine, and you can imagine a hypothetical "cable" running between the two machines with
each end of the "cable" plugged into the socket. Of course, the physical hardware and cabling
between machines is completely unknown. A socket is one end-point of a two-way
communication link between two programs running on the network. These two programs
form a Client/Server application.

Definition: A socket is one endpoint of a two-way communication link between
two programs running on the network. A socket is bound to a port number so that
the TCP layer can identify the application that data is destined to be sent.

SOCKETS IN CLIENT SERVER APPLICATIONS

In Client/Server applications the server normally listens to a specific port waiting for
connection requests from a client. When a connection request arrives, the client and the
server establish a dedicated connection over which they can communicate. During the
connection process, the client is assigned a local port number, and binds a socket to it. The
client talks to the server by writing to the socket and gets information from the server by
reading from it. Similarly, the server gets a new local port number to communicate with the
client. The server also binds a socket to its local port and communicates with the client by
reading from and writing to it. The server can not use its specific port to comunicate with the
client since it is dedicated only to listen for connection requests from other clients.

The client and the server must agree on a protocol, that is, they must agree on the language of
the information transferred back and forth through the socket.

Normally, a server runs on a specific computer and has a socket that is bound to a specific
port number. The server just waits, listening to the socket for a client to make a connection
request.

On the client-side: The client knows the hostname of the machine on which the server is
running and the port number to which the server is connected. To make a connection request,
the client tries to rendezvous with the server on the server's machine and port.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new
socket bound to a different port. It needs a new socket (and consequently a different port number)
so that it can continue to listen to the original socket for connection requests while tending to the
needs of the connected client.

On the client side, if the connection is accepted, a socket is successfully created and the client can
use the socket to communicate with the server. Note that the socket on the client side is not bound
to the port number used to rendezvous with the server. Rather, the client is assigned a port number
local to the machine on which the client is running.

The client and server can now communicate by writing to or reading from their sockets

TYPES OF SOCKETS

There are three types of sockets:

 Stream socket (To listen)
 Stream socket
 Datagram socket

COMMUNICATION PROTOCOLS

 stream communication
 datagram communication.

The stream communication protocol is known as TCP (transfer control protocol). Unlike
UDP, TCP is a connection-oriented protocol. In order to do communication over the TCP
protocol, a connection must first be established between the pair of sockets. While one of the
sockets listens for a connection request (server), the other asks for a connection (client). Once
two sockets have been connected, they can be used to transmit data in both (or either one of
the) directions. TCP provides a reliable, point-to-point communication channel that client-
server applications on the Internet use to communicate with each other. To communicate
over TCP, a client program and a server program establish a connection to one another. Each
program binds a socket to its end of the connection. To communicate, the client and the
server each reads from and writes to the socket bound to the connection

The datagram communication protocol, known as UDP (user datagram protocol), is a
connectionless protocol, meaning that each time you send datagrams, you also need to send
the local socket descriptor and the receiving socket's address. As you can tell, additional data
must be sent each time a communication is made.

UDP is an unreliable protocol, there is no guarantee that datagrams you have sent will be
received in the same order by the receiving socket. On the other hand, TCP is a reliable
protocol; it is guaranteed that the packets you send will be received in the order in which they
were sent.

TCP is useful for implementing network services, such as remote login (rlogin, telnet) and
file transfer (FTP) -- which require data of indefinite length to be transferred. UDP is less
complex and is often used in implementing client/server applications in distributed systems
built over local area networks.

WHAT IS UNIX ?

Unix is an operating system which like all other operating systems acts as a master of
ceremonies since its job is to accept and dispatch user commands and directing the systems
response to the appropriate place. Unix is referred to as a multi-user, multitasking operating
system, since multiple users may each execute multiple commands seeimgly simultaneously.
Multitasking is achieved by running tasks in the background and when using X it can also
mean running multiple windows each with foreground and/or background activity. It
involves sharing the processor(s) among multiple different programs, and creating a place in
memory for each of those programs (processes).

Preference for any operating system is mainly a product of its ease-of-use, flexibility,
reliability, and powerfulness. Unix is flexible, reliable and powerful which can lead to ease-
of-use if required. The shell is the particular program which

1.prompts for input
2.translates the any special characters in the command line
3.either executes the inputted command line or passes the request.

Apart from application programs we spend most of our time interacting with the shell, and
hence is extensively covered in this document. There are two shells that are common across
almost all implementations of Unix: the Bourne (sh) and the C-shell (csh). The C-shell has
superior interactive features and the Bourne shell has extensive programmable features and
runs more quickly. Generally the C-shell is more popular, although both shells have much in
common. Take care if you are buying Unix books that they describe the right shell. In either
case the shell insulates the user from the Unix kernel which is the software which dispatches
the services. The kernel creates the illusion that all systems look like the same virtual
machine by providing a consistent set of services irrespective of hardware details. Strictly
speaking the kernel is Unix which is why standards like POSIX define exactly what services
are provided by the kernel. It should be noted that the shell is no more privileged a program
than any other and may be easily be replaced for users with particular needs, which can be
useful for providing restricted services when needed.

SOCKET PROGRAMMING

TYPICAL CLIENT SERVER COMMUNICATION

Basic steps:

The basic steps in a typical sockets session can be summarized as follows:

 Server: Create socket, establish network addressability, wait for connection request

 Client: Create socket, send connection request to server

 Server and Client: Establish connection

 Server and Client: Transmit and receive data

Server and Client: Close connection.

A SIMPLE EXAMPLE

The following table describes a simple connection-oriented client-server sockets application.
CLIENT
ACTION

CLIENT
SYSTEM
CALL

SERVER
ACTION

SERVER
SYSTEM
CALL

DESCRIPTION

Create socket
descriptor

socket()

Create
socket descriptor

socket()

The socket() call
creates a
socket descriptor,
which is similar
to a file
descriptor. The
protocol
family must be
chosen when
socket() is
issued.

n/a n/a Associate
network address
with socket

Bind() The server socket
must be
network-
addressable.

n/a n/a Wait for
incoming
message

listen() and
accept()

Listen() notifies
the operating
system that the
server process is
ready to receive
messages.
Accept()
suspends the
server
process until a
message arrives.

Contact server

connect()

n/a n/a Connect()
establishes a
network
connection with
the server
process.

Transmit and
receive data

write() read()

Transmit and
receive data

write()
read()

This is similar to
file I/O. The
socket connection
is duplex.

Terminate
connection

Close()

Terminate
connection

close()

This is analogous
to closing a file.

FUNCTIONS & PROCEDURES INVOLVED

SOCKET CREATION

socket() FUNCTION:

The server socket is created with the socket() call, which takes the following arguments:

AF_INET
The first argument, socket domain, selects the family of communication protocols that will be
used to control the data flowing through the socket. AF_INET is a symbolic constant
representing the Internet family of protocols. If the value of this argument is AF_UNIX, the socket
will operate in the "Unix domain." This means it will communicate with other processes on the
same Unix system only, and will not support communication across the network.

SOCK_STREAM
The symbolic constant SOCK_STREAM provides a value for socket type, which indicates
whether communication through the socket will be connection-oriented or connectionless.
SOCK_STREAM signifies that the communication will be connection-oriented, whereas
SOCK_DGRAM signifies that communication will consist of the connectionless transmission of
data packets called datagrams.

0
The protocol argument allows the programmer to specify a specific protocol within the protocol
family.
For example, the symbolic constant IPPROTO_TCP specifies the Transmission Control Protocol
(TCP). Typically this argument is set to zero, allowing the system to select a protocol.

BIND() FUNCTION

SYNTAX:

#include<sys/socket.h>
int bind(int sockfd , const struct sockaddr*myaddr , socklen_t_addrlen);

FUNCTION:
The bind() system call binds a socket to an address. It takes three arguments, the socket file
descriptor, the address to which is bound, and the size of the address to which it is bound.
The second argument is a pointer to a structure of type sockaddr, but what is passed in is a
structure of type sockaddr_in, and so this must be cast to the correct type. This can fail for a
number of reasons, the most obvious being that this socket is already in use on this machine

 LISTEN() FUNCTION

SYNTAX:

#include<sys/socket.h>

int listen(int sockfd , int backlog);

FUNCTION:

The listen system call allows the process to listen on the socket for connections. The first
argument is the socket file descriptor, and the second is the size of the backlog queue, i.e., the
number of connections that can be waiting while the process is handling a particular
connection. This should be set to 5, the maximum size permitted by most systems. If the first
argument is a valid socket, this call cannot fail, and so the code doesn't check for errors.

ACCEPT() FUNCTION

SYNTAX:

#include<sys/socket.h>

int accept(int sockfd , struct sockaddr *cliaddr , socklen_t *addrlen);

FUNCTION:

The accept() system call causes the process to block until a client connects to the server.
Thus, it wakes up the process when a connection from a client has been successfully
established. It returns a new file descriptor, and all communication on this connection should
be done using the new file descriptor. The second argument is a reference pointer to the
address of the client on the other end of the connection, and the third argument is the size of
this structure.

CONNECT() FUNCTION

SYNTAX:

#include<sys/socket.h>

int connect(int sockfd , const struct sockaddr *servaddr , socklen_t addrlen);

FUNCTION:
The connect function is called by the client to establish a connection to the server. It takes
three arguments, the socket file descriptor, the address of the host to which it wants to
connect (including the port number), and the size of this address. This function returns 0 on
success and -1 if it fails. Notice that the client needs to know the port number of the server,
but it does not need to know its own port number. This is typically assigned by the system
when connect is called.

CLOSE() FUNCTION

SYNTAX:

#include<unistd.h>

int close(int sockfd);

FUNCTION:

The default action of close with a TCP socket is to mark the socket as closed and return to
the process immediately.

SOCKET PROGRAMMING

The java.net package in the Java development environment provides a class Socket which
implements the client side and the class ServerSocket class which implements the server
side of the two-way link.The Socket class sits on top of a platform-dependent
implementation, hiding the details of any particular system from your Java program. By
using the java.net.Socket class instead of relying on native code, your Java programs can
communicate over the network in a platform-independent fashion.

Additionally, java.net includes the ServerSocket class, which implements a socket that
servers can use to listen for and accept connections to clients. This lesson shows you how to
use the Socket and ServerSocket classes.

If you are trying to connect to the Web, the URL class and related classes (URLConnection,
URLEncoder) are probably more appropriate than the socket classes. In fact, URLs are a
relatively high-level connection to the Web and use sockets as part of the underlying
implementation

There are three types of sockets:

• Stream socket (To listen): class ServerSocket.
• Stream socket: class Socket.
• Datagram socket: class DatagramSocket.

SOCKET TERMINOLOGY

In Java, we need to create a socket to make the connection to the other machine. Then you
can get an InputStream and OutputStream from the socket in order to be able to treat the
connection as an IOStream object. There are two stream based socket classes in the java.net
package. They are java.net.ServerSocket that a server uses to listen for incoming
connections and a java.net.Socket that a client uses in order to initiate a connection. Once a
client makes a Socket connection, the ServerSocket returns a corresponding server side
socket through which direct communications will take place.

When we create a ServerSocket, you give it only a port number. You don't have to give it an
IP address because it's already on the machine it represents. When you create a Socket,
however, you must give both the IP address and the port number where you're trying to
connect.

Socket Classes

Socket
ServerSocket
DatagramSocket
MulticastSocket

Before discussing the constructors and methods of Socket and ServerSocket, the class
InetAddress must be mentioned. An InetAddress represents the actual number, not the name
or IP address of a computer. The name Hari.cswl.com is never used by your program; instead
it uses the corresponding address, 199.2.24.246. The InetAddress class has no constructors,
instead it has some methods that returns the InetAddress address.

Socket

Socket object is the Java representation of a TCP connection. when a socket is created, a
connection is opened to the specified destination.

Constructors:

The Socket provides the programmer with four constructors. The address of the server may
be specified as a string or an InetAddress, and the port number on the host to connect to. In
each case, an optional Boolean parameter implements a connectionless socket if set to false.

Methods:

The two most important methods are getInputStream() and getOutputStream(), which return
stream objects that can be used to communicate through the socket. A close() method is
provided to tell the underlying operating system to terminate the connection. Methods are
also provided to retrieve information about the connection to the local host and remote port
numbers and an integers representing the remote host.Another method is accept(). It returns a
Socket that is connected to the client. The close() method tells the operating system to stop
listening for requests on the socket. Methods to retrieve the host name, the socket is listening
on and the port number being listened to are also provided.

ServerSocket

The ServerSocket represents a listening TCP connection. Once an incoming connection is
requested, the ServerSocket object will return a Socket object representing the connection.

DATAGRAMS

Datagrams are used to implement a connectionless protocol, such as UDP. Two
classes are used to implement datagrams in Java:

1. java.net.DatagramPacket
2. java.net.DatagramSocket

DatagramPacket is the actual packet of information, an array of bytes, that is
transmitted over the network. DatagramSocket is a socket that sends and receives
DatagramPackets across the network. You can think of the DatagramPacket as a
letter and a DatagramSocket as the mailbox that the mailcarrier uses to pick up and
drop off your letters.

DatagramPacket

The DatagramPacket class provides the programmer with two constructors. The first
is used for DatgramPackets that receive information. This constructor needs to be
provided with an array to store the data and the amount of data to receive. The
second is used to create DatagramPackets that send data. The constructor requires
the same information, plus the destination address and the port number.

Methods:
There are four methods in this class - allowing the data, datagram length, and
addressing (InetAddress) and port number information for the packet to be
extracted.

DatagramSocket

The DatgramSocket represents a connectionless datagram socket. This class works
with the DatagramPacket class to provide for communication using the UDP
protocol. It provides two constructors, the programmer can specify a port to use or
allow the system to randomly use one.

Methods:
The two most important methods are - send() and receive(). Each takes as an
argument an appropriately constructed DatagramPacket. In the case of the send()
method, the data contained in the packet is sent to the specified host and the port.
The receive() method will block the execution until a packet is received by the
underlying socket, at which time the data will be copied into the packet provided.

ERROR HANDLING

Error handling is done by the class called SocketException which extends
IOException class. This exception is thrown when there is a problem using socket.
(i.e.) error in the underlying protocol, such as a TCP error.

One possible cause is that the local port you are using for is already in use. Another
cause is that the user cannot bind to that particular port. Because, on most operating
systems, port numbers less than 1,024 cannot be used by the programmer except the
super user. This is the security measure, because most well known services reside on
the ports in this range.

Some New SocketExceptions

All the new exceptions extends the SocketException class: They are as follows:

BindException:
The local port is in use, or the requested bind address couldn't be assigned locally.

ConnectException:
This exception is raised when a connection is refused at the remote host (i.e., no
process is listening on that port).

NoRouteToHostException:
The connect attempt timed out, or the remote host is otherwise unreachable.

EXPLANATION OF DIFFERENT FUNCTIONS

OPENING A SOCKET

If you are programming a client, then you would open a socket like this:

 Socket MyClient;
 MyClient = new Socket("Machine name", PortNumber);
or using the exception handling,
 Socket MyClient;
 try {
 MyClient = new Socket("Machine name", PortNumber);
 }
 catch (IOException e) {
 System.out.println(e);
 }

Where Machine name is the machine you are trying to open a connection to, and PortNumber
is the port (a number) on which the server you are trying to connect to is running. When
selecting a port number, you should note that port numbers between 0 and 1023 are reserved
are reserved for standard services, such as email, FTP, and HTTP.

If you are programming a server, then this is how you open a socket:

 ServerSocket MyService;
 try {
 MyServerice = new ServerSocket(PortNumber);
 }
 catch (IOException e) {
 System.out.println(e);
 }

When implementing a server you also need to create a socket object from the ServerSocket in
order to listen for and accept connections from clients.

 Socket clientSocket = null;
 try {
 serviceSocket = MyService.accept();
 }
 catch (IOException e) {
 System.out.println(e);
 }

CREATING AN INPUT STREAM

On the client side, you can use the DataInputStream class to create an input stream to receive
response from the server:

 DataInputStream input;
 try {
 input = new DataInputStream(MyClient.getInputStream());
 }
 catch (IOException e) {
 System.out.println(e);
 }

The class DataInputStream allows you to read lines of text and Java primitive data types in a
portable way. It has methods such as read, readChar, readInt, readDouble, and readLine,. Use
whichever function you think suits your needs depending on the type of data that you receive
from the server.

On the server side, you can use DataInputStream to receive input from the client:

 DataInputStream input;
 try {
 input = new DataInputStream(serviceSocket.getInputStream());
 }
 catch (IOException e) {
 System.out.println(e);
 }

CREATE AN OUTPUT STREAM

On the client side, you can create an output stream to send information to the server socket
using the class PrintStream or DataOutputStream of java.io:

 PrintStream output;
 try {
 output = new PrintStream(MyClient.getOutputStream());
 }
 catch (IOException e) {
 System.out.println(e);
 }

The class PrintStream has methods for displaying textual representation of Java primitive
data types. Its Write and println methods are important here. Also, you may want to use the
DataOutputStream:

 DataOutputStream output;
 try {
 output = new DataOutputStream(MyClient.getOutputStream());
 }
 catch (IOException e) {
 System.out.println(e);
 }

The class DataOutputStream allows you to write Java primitive data types; many of its
methods write a single Java primitive type to the output stream. The method writeBytes is a
useful one.

On the server side, you can use the class PrintStream to send information to the client.

 PrintStream output;
 try {
 output = new PrintStream(serviceSocket.getOutputStream());
 }
 catch (IOException e) {
 System.out.println(e);
 }

CLOSING SOCKETS

You should always close the output and input stream before you close the socket. On the
client side:
 try {
 output.close();
 input.close();
 MyClient.close();
 }
 catch (IOException e) {
 System.out.println(e);
 }

On the server side:

 try {
 output.close();
 input.close();
 serviceSocket.close();
 MyService.close();
 }
 catch (IOException e) {
 System.out.println(e);
 }

CONCLUSION

Sockets allows to implement Client/Socket applications and provide a powerful and flexibile
infrastructure for network programming. There are some other classes fot network
programming. If you are trying to connect to the World Wide Web, the URL class and
related classes (URLConnection, URLEncoder) are probably more suitable than the socket
classes to what you are doing. In fact, URLs are a relatively high level connection to the Web
and use sockets as part of the underlying implementation.

.

WINDOWS SOCKETS API

The Windows Sockets specification was created by a group of companies, including
Microsoft, in an effort to standardize the TCP/IP suite of protocols under Windows. Prior to
Windows Sockets, each vendor developed their own proprietary libraries, and although they
all had similar functionality, the differences were significant enough to cause problems for
the software developers that used them. The biggest limitation was that, upon choosing to
develop against a specific vendor's library, the developer was "locked" into that particular
implementation. A program written against one vendor's product would not work with
another's. Windows Sockets was offered as a solution, leaving developers and their end-users
free to choose any vendor's implementation with the assurance that the product will continue
to work.

There are two general approaches that you can take when creating a program that uses
Windows Sockets. One is to code directly against the API. The other is to use a component
which provides a higher-level interface to the library by setting properties and responding to
events. This can provide a more "natural" programming interface, and it allows you to avoid
much of the error-prone drudgery commonly associated with sockets programming. By
including the control in a project, setting some properties and responding to events, you can
quickly and easily write an Internet-enabled application. And because of the nature of custom
controls in general, the learning curve is low and experimentation is easy.

PROGRAMMING WITH SOCKETWRENCH IN VISUAL BASIC

A SAMPLE CLIENT PROGRAM

The program will be used to connect with an echo server, a program which echoes back any
data that's sent to it.

The first step, after starting Visual Basic, is to include the SocketWrench control . In Visual
Basic 4.0, you should select Tools|Custom Controls, while in Visual Basic 5.0 and Visual
Basic 6.0, you should select Project|Components. A dialog will display all of the available
ActiveX controls, then select the Catalyst SocketWrench Control.

To begin, create a form that has three labels, three text controls, a button and the
SocketWrench control. The form look something like this:

When executed, the user will enter the name or IP address of the system in the Text1 control,
the text that is to be echoed in the Text2 control, and the server's reply will be displayed in
the Text3 control. The Command1 button will be used to establish a connection with the
remote server. When you save your project, call it "Client".

First we should initialize the controls in the Form's Load subroutine. Note that we want to
disable the Text2 and Text3 controls, since they only should be usable once a connection to a
server has been established. The code should look like this:

Private Sub Form_Load()
 Command1.Caption = "Connect"
 Command1.Enabled = True
 Text1.Enabled = True

 Text2.Enabled = False
 Text3.Enabled = False
End Sub

The next step is to write the code that actually establishes a connection with the remote
server in the Click event for the Command1 button. The code should look like this:

Private Sub Command1_Click()

 If Not SocketWrench1.Connected Then
 Dim strRemoteHost As String
 Dim nError As Long

 strRemoteHost = Trim(Text1.Text)

 SocketWrench1.AutoResolve = False
 SocketWrench1.Blocking = False
 SocketWrench1.Protocol = swProtocolTcp

 nError = SocketWrench1.Connect(strRemoteHost, swPortEcho)

 If nError <> 0 Then
 MsgBox "Unable to connect to remote host", vbExclamation
 Exit Sub
 End If

 Command1.Enabled = False
 Else
 SocketWrench1.Disconnect
 Command1.Caption = "Connect"
 Text2.Enabled = False
 Text3.Enabled = False
 End If

End Sub

The first SocketWrench property that we encounter is the Connected property. This is a
boolean flag which tells us if the control has established a connection to a remote host. We're
using this to allow the Command1 button to function in one of two ways: if no connection
has been established, then pressing the button will cause the client to make a connection to
the server entered in the Text1 control. However, if there is an active connection, then
pressing the button will disconnect the client from the server.

These next three SocketWrench properties are used to define some basic functions of the
control, such as how host names are resolved and what network protocol is used. These
properties are:

AutoReso
lve

This property specifies that the control should not immediately attempt
to resolve host names into IP addresses if the HostName and/or
HostAddress property are set. In general it is recommended that you
initialize this property value to False unless your application has a
specific to automatically resolve host names.

Blocking This property specifies if the application should wait for a socket
operation to complete before continuing. By setting this property to
False, that indicates that the application will not wait for the operation
to complete, and instead will respond to events generated by the control.
This is the recommended approach to take when designing your
application.

Protocol This property determines which protocol is going to be used to
communicate with the remote application. Most commonly, the value
swProtocolTcp is specified, which means that the stream-based
Transmission Control Protocol will be used. To send UDP datagrams,
this property can be set to the value swProtocolUdp.

To establish the connection to the server, the Connect method is called, passing the name of
the server to connect to and the port number of the echo server. It should be noted that there
are a number of optional arguments to this method, but for the purposes of this example, only
the host name and port number are needed. If the connection attempt is successful, the
method will return a value of zero. However, if an error occurs the method will return a non-
zero value which specifies an error code.

If the connection attempt is successful, then the Command1 button is disabled. Because the
socket is non-blocking (that is, the Blocking property is False), when the Connect method
returns it does not mean that the connection has actually completed. Instead, it means that the
connection process has begun, and completion is signaled by the control's OnConnect event
firing. So between the time that the Connect method is called to establish a connection and
the time that the OnConnect event is fired to indicate that the connection has been
completed, the user should not be able to press the Command1 button because it would result
in the Connect method being called again.

To update our form when a connection has been established, we need to add some code to the
control's OnConnect event. Remember, this event is only called after a connection attempt
has completed on a non-blocking socket:
Private Sub SocketWrench1_Connect()
 Command1.Caption = "Disconnect"
 Command1.Enabled = True
 Text2.Enabled = True
 Text3.Enabled = True

 MsgBox "Connect to remote host", vbInformation
End Sub

This will change the caption of our Command1 button to "Disconnect" (informing the user
that when they press it, now it will disconnect the current session), and enable our Text2 and
Text3 controls. We also display a message box indicating that the connection has completed.

There is a possibility that the remote host may terminate our connection, and our client
application needs to be able to handle this. If this happens, for example if the server is
stopped, then the control's OnDisconnect event will fire. In our code, we'll reset our
command button's caption, disable the Text2 and Text3 controls and display a message box
indicating that the connection has been lost. The code would look like this:

Private Sub SocketWrench1_Disconnect()
 SocketWrench1.Disconnect
 Command1.Caption = "Connect"
 Command1.Enabled = True
 Text2.Enabled = False
 Text3.Enabled = False
 MsgBox "Disconnected from remote host", vbInformation
End Sub

When the OnDisconnect event fires, what the control is telling you is that the other socket,
in this case the server's socket, has been closed. However, until you call the Disconnect
method it will remain open on the client side. For the connection to be completely
terminated, the sockets on both ends of the connection need to be closed.

What happens if there is an error while the client attempts to connect to the server? It is
possible for the Connect method to return zero (indicating success), and then once the
connection attempt begins, an error occurs. For example, this can happen if there is no server
listening on the specified port number. To be able to handle this, the control has an event
called OnError which is fired whenever an error such as this occurs. Let's add some code to
the event to report any errors:

Private Sub SocketWrench1_Error(ByVal Error As Variant, _
 ByVal Description As Variant)

 If Error <> swErrorOperationWouldBlock Then
 SocketWrench1.Disconnect
 Command1.Caption = "Connect"
 Command1.Enabled = True
 Text2.Enabled = True
 Text3.Enabled = True
 MsgBox Description, vbExclamation, "Error " & CStr(Error)
 End If

End Sub

The OnError event has two arguments passed to it, an error code and a textual description of
the error. The first thing that we do is compare this error against one of our predefined error
constants swErrorOperationWouldBlock which occurs if a socket operation would cause a
non-blocking socket to block. For example, attempting to read data from a non-blocking

socket and there is no data available at that time would result in this error. The reason that
we're specifically checking for it is because this particular error code is really more of a
warning to the application, not a fatal error. In all other cases, we disconnect the client
session and report the error.

Now that the code to establish the connection has been written, the next step is to actually
send and receive data to and from the server. To do this, the Text2 control should have the
following code added to its KeyPress event:

Private Sub Text2_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then
 Dim strBuffer As String
 Dim cchBuffer As Long, nResult As Long

 strBuffer = Text2.Text & vbCrLf
 cchBuffer = Len(strBuffer)
 Text2.Text = ""
 KeyAscii = 0

 nResult = SocketWrench1.Write(strBuffer, cchBuffer)
 If nResult = -1 Then
 MsgBox "Unable to send data to server"
 Exit Sub
 End If
 End If
End Sub

The Write method is used to send data to the remote server. The first argument is the buffer
that contains the data (in this case, a string variable) and the second argument is the number
of bytes to write. Note that the second argument is optional and if it is omitted the entire
buffer is written. For clarity, it is recommended that the buffer length be specified. Note that
in addition to strings, the Write method will also accept bytes and byte arrays as parameters.

Because our example is connecting to an echo service, once the data has been sent to the
remote host, it immediately sends the data back to the client. This generates an OnRead
event in SocketWrench, which should have the following code:

Private Sub SocketWrench1_Read()
 Dim strBuffer As String
 Dim nResult As Long

 nResult = SocketWrench1.Read(strBuffer, 1024)
 If nResult > 0 Then
 Text3.Text = Text3.Text + strBuffer
 End If
End Sub

The OnRead event indicates that data has arrived and is available to be read by the control.
The Read method then reads the data sent by the server and stores it in the buffer specified in
the first parameter. The second parameter specifies the maximum number of bytes to read.
Note that in this case, it is an arbitrary value of 1,024 bytes. One important thing to note is
that requesting to read a specified number of bytes does not guarantee that you will actually
receive that amount. Because TCP is a stream-oriented protocol, there is no concept of a

"message boundary" or a one-to-one relationship between the amount of data written to the
socket and the amount of data read from it. In other words, the server sends four pieces of
data in 512 byte blocks, there is no guarantee that your program will get four OnRead events
for that number of bytes per read. Instead, you may get more than four events (in which the
data sent is received in smaller blocks) or you may get fewer events, with the data being
combined. This is the nature of how TCP/IP works, and must be accounted for in the design
of you application. Typically this means buffering the data in the program and either looking
for special "end of message" characters in the data stream, accumulating data in fixed sizes
and processing it as the buffer is filled.

The last piece of code to add to the sample is to handle closing the socket when the program
is terminated by selecting Close on the system menu. The best place to put socket cleanup
code is in the form's Unload event, such as:

Sub Form_Unload (Cancel As Integer)
 If SocketWrench1.Connected Then SocketWrench1.Disconnect
 End
End Sub

If the Connected property returns True, then a connection has been established and we
should disconnect from the server before the program terminates. With all of the properties
and event code needed for the sample client application completed, all that's left to do is run
the program! Of course, in a real application you'd need to provide extensive error checking.
SocketWrench errors start at 10,000 and correspond to the error codes used by the Windows
Sockets API. Most errors will occur when setting the host name, address, service port or
using one of the methods.

BUILDING AN ECHO SERVER

The next step is to implement your own echo server. The server will listen on the echo port,
accept connections from one or more clients and echo back any data that is sent to it. First,
start a new Visual Basic project with a single form, a button in the center of the form and the
SocketWrench control. It might look something like this:

The first that we need to do is create a global variable called LastSocket which we will use
to keep track of the number of clients that have connected to our server. This should be done
in the general declaration section, as follows:

Dim LastSocket As Integer

Next, we will initialize the form in the Load subroutine with the following code:

Private Sub Form_Load()
 Command1.Caption = "Listen"
 LastSocket = 0
End Sub

When the user presses the command button, we want the server to begin listening for
connections. Remember that the first thing that a server application must do is listen on a
local port for incoming connections from a client. You'll know that a client is attempting to
connect with you when the OnAccept event is generated for the SocketWrench control.

To accept the connection, your program calls the Accept method, passing the listening socket
handle as a parameter. As you'll recall from the TCP/IP tutorial, the act of accepting a
connection causes a second socket to be created. The original listening socket continues to
listen for more connections, while the second socket can be used to communicate with the
client that connected to you. If you use the Accept method to accept the connection on the

same instance of the control, you're effectively telling the control to close the original
listening socket and from that point on the control can be used to communicate with the
client. While this is convenient, it is also limiting -- since the listening socket has been
closed, no more clients can connect with your program, effectively limiting it to a single
client connection.

A better approach is to create an additional instance of the control and have it accept the
connection, leaving the original listening socket available so that more clients can establish a
connection with your server. The problem is, how many clients are going to attempt to
connect to you? Of course, you could drop a fixed number of SocketWrench controls on your
form, thereby limiting the number of connections, but that's not a very good design. The
better approach is to create a control array which can be dynamically loaded when a
connection is attempted by a client, and unloaded when the connection is closed. This is the
approach that we'll take in our echo server.

In order to implement a dynamically-loaded control array, set the Index property of
SocketWrench1 to 0. This will also cause VB to include the parameter Index in events that
you implement.

To have the server begin listening when the button is pressed, we need to add code to the
button's Click event. Initially there will only be one instance of the control in our control
array, identified as SocketWrench1(0) and it will be used to listen for connections:
Private Sub Command1_Click()
 If Not SocketWrench1(0).Listening Then
 Dim nError As Long

 SocketWrench1(0).AutoResolve = False
 SocketWrench1(0).Blocking = False
 SocketWrench1(0).Protocol = swProtocolTcp
 SocketWrench1(0).LocalPort = swPortEcho

 nError = SocketWrench1(0).Listen()
 If nError <> 0 Then
 MsgBox "Unable to listen for connections", vbExclamation
 Exit Sub
 End If

 Command1.Caption = "Disconnect"
 Else
 SocketWrench1(0).Disconnect
 Command1.Caption = "Listen"
 End If
End Sub

There are two new properties here, the Listening property and the LocalPort property. The
Listening property is a boolean flag, similar to the Connected property in our client
example. It will return True if the control is currently listening for client connections. The
LocalPort property is used by server applications to specify the local port that it's listening
on for connections. By specifying the standard port used by echo servers (port 7), any other
system can connect to yours and expect the program to echo back whatever is sent to it.

If the control is listening for connections and you press the button, it will disconnect the
socket. This stops the control from listening for new client connections, however it will not
interrupt any clients that have already connected to the server. The reason for this is because
the client connections are actually managed on separate sockets which are not affected by
closing the listening socket.

When our server program is executed and you press the button, the control will begin
listening for client connections. When this occurs, the control's OnAccept event will fire.
The code for this event should look like this:

Private Sub SocketWrench1_Accept(Index As Integer, ByVal Handle As Variant)
 Dim I As Integer

 For I = 1 To LastSocket
 If Not SocketWrench1(I).Connected Then Exit For
 Next I

 If I > LastSocket Then
 LastSocket = LastSocket + 1: I = LastSocket
 Load SocketWrench1(I)
 End If

 SocketWrench1(I).AutoResolve = False
 SocketWrench1(I).Blocking = False
 SocketWrench1(I).Protocol = swProtocolTcp
 SocketWrench1(I).Accept Handle
End Sub

Next, we initialize the control's properties, and then the Accept method is called with the
Handle parameter that is passed to the control. After executing this statement, the control is
now ready to start communicating with the client program. Since it's the job of an echo server
to echo back whatever is sent to it, we have to add code to the control's OnRead event,
which tells it that the client has sent some data to us:

Private Sub SocketWrench1_Read(Index As Integer)
 Dim strBuffer As String
 Dim cbBuffer As Long

 cbBuffer = SocketWrench1(Index).Read(strBuffer, 1024)
 If cbBuffer > 0 Then
 SocketWrench1(Index).Write strBuffer, cbBuffer
 End If
End Sub

Finally, when the client closes the connection, the socket control must also close its end of
the connection. This is accomplished by adding a line of code in the control's OnDisconnect
event:
Private Sub SocketWrench1_Disconnect(Index As Integer)
 SocketWrench1(Index).Disconnect
End Sub

To make sure that all of the socket connections are closed when the application is terminated,
the following code should be included in the form's Unload event:
Private Sub Form_Unload (Cancel As Integer)
 Dim I As Integer
 If SocketWrench1(0).Listening Then SocketWrench1((0).Disconnect

 For I = 1 To LastSocket
 If SocketWrench1((I).Connected Then SocketWrench1((I).Disconnect
 Next I
 End
End Sub

This will disconnect the listening socket so that no more clients can establish connections,
and will then disconnect from each of the clients.

 SERVER CODE

#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 6500 /* default protocol port number */
#define QLEN 6 /* size of request queue */

int visits = 0; /* counts client connections */
/*--
 * Program: server
 *
 * Purpose: allocate a socket and then repeatedly execute the following:
 * (1) wait for the next connection from a client
 * (2) send a short message to the client
 * (3) close the connection
 * (4) go back to step (1)
 *
 * Syntax: server [port]
 *
 * port - protocol port number to use
 *
 * Note: The port argument is optional. If no port is specified,
 * the server uses the default given by PROTOPORT.
 *
 *--
 */
main(argc, argv)
int argc;
char *argv[];
{
 struct hostent *ptrh; /* pointer to a host table entry */

 struct protoent *ptrp; /* pointer to a protocol table entry */
 struct sockaddr_in sad; /* structure to hold server's address */
 struct sockaddr_in cad; /* structure to hold client's address */
 int sd, sd2; /* socket descriptors */
 int port; /* protocol port number */
 int alen; /* length of address */
 char buf[1000]; /* buffer for string the server sends */
 int n; /* number of characters received */

#ifdef WIN32
 WSADATA wsaData;
 WSAStartup(0x0101, &wsaData);
#endif
 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
 sad.sin_family = AF_INET; /* set family to Internet */
 sad.sin_addr.s_addr = INADDR_ANY; /* set the local IP address */

 /* Check command-line argument for protocol port and extract */
 /* port number if one is specified. Otherwise, use the default */
 /* port value given by constant PROTOPORT */

 if (argc > 1) { /* if argument specified */
 port = atoi(argv[1]); /* convert argument to binary */
 } else {
 port = PROTOPORT; /* use default port number */
 }
 if (port > 0) /* test for illegal value */
 sad.sin_port = htons((u_short)port);
 else { /* print error message and exit */
 fprintf(stderr,"bad port number %s\n",argv[1]);
 exit(1);
 }

 /* Map TCP transport protocol name to protocol number */

 if (((int)(ptrp = getprotobyname("tcp"))) == 0) {
 fprintf(stderr, "cannot map \"tcp\" to protocol number");
 exit(1);
 }

 /* Create a socket */

 sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
 if (sd < 0) {
 fprintf(stderr, "socket creation failed\n");
 exit(1);

 }

 /* Bind a local address to the socket */

 if (bind(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
 fprintf(stderr,"bind failed\n");
 exit(1);
 }

 /* Specify size of request queue */

 if (listen(sd, QLEN) < 0) {
 fprintf(stderr,"listen failed\n");
 exit(1);
 }

 /* Main server loop - accept and handle requests */

 while (1) {
 alen = sizeof(cad);
 if ((sd2=accept(sd, (struct sockaddr *)&cad, &alen)) < 0) {
 fprintf(stderr, "accept failed\n");
 exit(1);
 }
 n = recv(sd2, buf, sizeof(buf), 0);
 while (n > 0)
 {
 send(sd2,buf,n,0);
 n = recv(sd2, buf, sizeof(buf), 0);
 }
 closesocket(sd2);
 }
}

CLIENT CODE

#ifndef unix
#define WIN32
#include <windows.h>
#include <winsock.h>
#else
#define closesocket close
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif

#include <stdio.h>
#include <string.h>

#define PROTOPORT 6500 /* default protocol port number */

extern int errno;
char localhost[] = "localhost"; /* default host name */
/*--
 * Program: client
 *
 * Purpose: allocate a socket, connect to a server, and print all output
 *
 * Syntax: client [host [port]]
 *
 * host - name of a computer on which server is executing
 * port - protocol port number server is using
 *
 * Note: Both arguments are optional. If no host name is specified,
 * the client uses "localhost"; if no protocol port is
 * specified, the client uses the default given by PROTOPORT.
 *
 *--
 */
main(argc, argv)
int argc;
char *argv[];
{
 struct hostent *ptrh; /* pointer to a host table entry */

 struct protoent *ptrp; /* pointer to a protocol table entry */
 struct sockaddr_in sad; /* structure to hold an IP address */
 int sd; /* socket descriptor */
 int port; /* protocol port number */
 char *host; /* pointer to host name */
 int n; /* number of characters read */
 char buf[1000]; /* buffer for data from the server */
 char *text; /* pointer to user's line of text */
#ifdef WIN32
 WSADATA wsaData;
 WSAStartup(0x0101, &wsaData);
#endif
 memset((char *)&sad,0,sizeof(sad)); /* clear sockaddr structure */
 sad.sin_family = AF_INET; /* set family to Internet */

 /* Check command-line argument for protocol port and extract */
 /* port number if one is specified. Otherwise, use the default */
 /* port value given by constant PROTOPORT */

 if (argc > 2) { /* if protocol port specified */
 port = atoi(argv[2]); /* convert to binary */
 } else {
 port = PROTOPORT; /* use default port number */
 }
 if (port > 0) /* test for legal value */
 sad.sin_port = htons((u_short)port);
 else { /* print error message and exit */
 fprintf(stderr,"bad port number %s\n",argv[2]);
 exit(1);
 }

 /* Check host argument and assign host name. */

 if (argc > 1) {
 host = argv[1]; /* if host argument specified */
 } else {
 host = localhost;
 }

 /* Convert host name to equivalent IP address and copy to sad. */

 ptrh = gethostbyname(host);
 if (((char *)ptrh) == NULL) {
 fprintf(stderr,"invalid host: %s\n", host);
 exit(1);
 }

 memcpy(&sad.sin_addr, ptrh->h_addr, ptrh->h_length);

 /* Map TCP transport protocol name to protocol number. */

 if (((int)(ptrp = getprotobyname("tcp"))) == 0) {
 fprintf(stderr, "cannot map \"tcp\" to protocol number");
 exit(1);
 }

 /* Create a socket. */

 sd = socket(PF_INET, SOCK_STREAM, ptrp->p_proto);
 if (sd < 0) {
 fprintf(stderr, "socket creation failed\n");
 exit(1);
 }

 /* Connect the socket to the specified server. */

 if (connect(sd, (struct sockaddr *)&sad, sizeof(sad)) < 0) {
 fprintf(stderr,"connect failed\n");
 exit(1);
 }

 /* Repeatedly read data from user and send it to server. */

 text = fgets(buf, sizeof(buf), stdin);
 while (text != NULL) {
 send(sd, buf, strlen(buf), 0);
 n = recv(sd, buf, sizeof(buf), 0);
 write(1,buf,n);
 text = fgets(buf, sizeof(buf), stdin);
 }

 /* Close the socket. */

 closesocket(sd);

 /* Terminate the client program gracefully. */

 exit(0);
}

 HELPER FILE

makefile for echo client and server

CC = gcc
LIBS = -lsocket -lnsl -lpthread

all: EchoServer EchoClient

EchoServer: EchoServer.c
 $(CC) -o EchoServer EchoServer.c $(LIBS)

EchoClient: EchoClient.c
 $(CC) -o EchoClient EchoClient.c $(LIBS)

clean:
 /bin/rm -f EchoServer EchoClient core *.o *~

EXECUTING THE CODE

SERVER

1) In the terminal window of Linux execute the command

gcc echoserver.c
./a.out

2) Make sure all the files are in root directory. This will start the server.

CLIENT

1) In a separate terminal window of Linux execute the command

gcc echoclient.c
 ./a.out
2) Make sure all the files are in root directory.This will start the client

SERVER STARTED

[root@localhost root]# gcc echoserver.c
[root@localhost root]# ./a.out

CLIENT STARTED

[root@localhost root]# gcc echoclient.c
[root@localhost root]# ./a.out

COMMUNICATING

[root@localhost root]# gcc
echoclient.c
[root@localhost root]# ./a.out
hi
hi
confirm connection
confirm connection
connection confirmed
connection confirmed
executing
executing
success
success

TELNET

[root@localhost root]# telnet 127.0.0.1 6500
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'
hi
hi
confirm connection
confirm connection
connection confirmed
connection confirmed
executing
executing
success
success

SERVER CODE

/**
 * An echo server listening on the port specified in the command line.
 * This server reads from the client and echoes back the result. When the
 * client enters the character '.' the server closes the connection.
 */

import java.net.*;
import java.io.*;

public class EchoServer
{
 public static void main(String[] args) throws IOException {
 if (args.length < 1) {
 System.err.println("Usage: java EchoServer <Port Number> ");
 System.exit(0);
 }

 ServerSocket sock = null;

 try {
 // establish the socket
 sock = new ServerSocket(Integer.parseInt(args[0]));

 /**
 * listen for new connection requests.
 * when a request arrives, service it
 * and resume listening for more requests.
 */
 while (true) {
 // now listen for connections
 Socket client = sock.accept();

 // service the connection
 ServiceConnection(client);
 }
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 finally {
 if (sock != null)
 sock.close();
 }
 }

 public static void ServiceConnection(Socket client)
 {
 BufferedReader networkBin = null;
 OutputStreamWriter networkPout = null;

 try {
 /**
 * get the input and output streams associated with the socket.
 */
 networkBin = new BufferedReader(new
InputStreamReader(client.getInputStream()));
 networkPout = new OutputStreamWriter(client.getOutputStream());

 /**
 * the following successively reads from the input stream and returns
 * what was read. The loop terminates when we read a period "."
 * from the input stream.
 */
 boolean done = false;
 while (!done) {
 String line = networkBin.readLine();
 if ((line == "") || line.equals(".")) {
 done = true;
 networkPout.write("BYE\r\n");
 }
 else
 networkPout.write("["+line+"]\r\n");

 networkPout.flush();
 }
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 finally {
 try {
 if (networkBin != null)
 networkBin.close();
 if (networkPout != null)
 networkPout.close();
 if (client != null)
 client.close();
 }
 catch (IOException ioee) {
 System.err.println(ioee);

 }
 } // end try
 } // end ServiceConnection
}

CLIENT CODE

/**
 * An echo client. The client enters data to the server, and the
 * server echoes the data back to the client.
 */

import java.net.*;
import java.io.*;

public class EchoClient
{
 public static void main(String[] args) throws IOException {
 if (args.length < 2) {
 System.err.println("Usage: java EchoClient <IP address> <Port
number>");
 System.exit(0);
 }

 BufferedReader networkBin = null;
 PrintWriter networkPout = null;
 BufferedReader localBin = null;
 Socket sock = null;

 try {
 sock = new Socket(args[0], Integer.parseInt(args[1]));

 // set up the necessary communication channels
 networkBin = new BufferedReader(new
InputStreamReader(sock.getInputStream()));
 localBin = new BufferedReader(new
InputStreamReader(System.in));
 networkPout = new PrintWriter(sock.getOutputStream(),true);

 boolean done = false;
 while (!done) {
 String line = localBin.readLine();
 if (line.equals("."))
 done = true;
 networkPout.println(line);
 System.out.println("Server: " + networkBin.readLine());
 }
 }
 catch (IOException ioe) {

 System.err.println(ioe);
 }
 finally {
 if (networkBin != null)
 networkBin.close();
 if (localBin != null)
 localBin.close();
 if (networkPout != null)
 networkPout.close();
 if (sock != null)
 sock.close();
 }
 }
}

EXECUTING THE CODE

SERVER

1) In the command prompt execute the command

javac EchoServer.java
java EchoServer any port number

2) Server will be successfully started

CLIENT

1) In the command prompt (separate window) execute the command

javac EchoClient.java
java EchoClient hostaddress portnumber

 2) Client will be successfully started communicating with above server.

EXECUTION OF SERVER LISTENING TO PORT 9000

EXECUTION OF CLIENT RUNNING IN LOCAL HOST(127.0.0.1)
CONNECTED TO PORT 9000

ECHO SERVER ECHOING BACK EVERY DATA IT RECEIVES BACK

TO THE CLIENT

CONNECTION TERMINATED WITH SERVER REPLYING “BYE”

SERVER CODE

 frmServer Code (server.frm file)

Option Explicit

Private intLastSocket As Integer
Private strBufferArray() As String
Private lTotalConnections As Long

Private Sub Dropdown_Click()
lear the text box
 Text.Text = ""
End Sub

Private Sub Form_Load()
 'Set the status
 Me.Status.Panels(1).Text = "Ready."

 'Prepare our listening socket
 sockConn(0).AddressFamily = AF_INET
 sockConn(0).Protocol = IPPROTO_IP
 sockConn(0).SocketType = SOCK_STREAM
 sockConn(0).Blocking = False
 sockConn(0).AutoResolve = False
 sockConn(0).LocalPort = 7777
 sockConn(0).Listen

 'Set the last socket index to zero
 intLastSocket = 0
End Sub

Private Sub Form_Resize()

 'If the window can be resized...
 If Me.WindowState <> vbMinimized And _
 Me.Visible = True Then

 'Base control spacing on the dropdown's left position
 'The tops of controls is assumed not to change
 Dropdown.Width = Me.ScaleWidth - (Dropdown.Left * 3) - Kick.Width
 Kick.Left = Dropdown.Width + (Dropdown.Left * 2)
 Text.Width = Me.ScaleWidth - (Dropdown.Left * 2)

 Text.Height = Me.ScaleHeight - (Text.Top + Dropdown.Left + Status.Height)

 End If
End Sub

Private Sub Form_Unload(Cancel As Integer)
 'Disconnect all sockets
 DisconnectAll
End Sub

Private Sub Kick_Click()
 Dim intIndex As Integer
 Dim objSocket As Integer

 'Loop through the sockets
 For objSocket = 1 To intLastSocket

 'If this socket is connected...
 If sockConn(objSocket).Connected Then

 'Loop through the dropdown
 For intIndex = 0 To Dropdown.ListCount - 1

 'If the handle matches
 If sockConn(objSocket).Handle = Dropdown.ItemData(intIndex) Then

 'And if the index matches
 If Dropdown.ListIndex = intIndex Then

 'Disconnect this user
 Log "KICK: " & sockConn(objSocket).PeerAddress
 sockConn_Disconnect objSocket
 Exit For

 End If
 End If
 Next 'intIndex
 End If
 Next 'objSocket

End Sub

Private Function NewSocket() As Integer
 Dim intIndex As Integer

 'Look for the first available socket control

 For intIndex = 1 To intLastSocket
 If Not sockConn(intIndex).Connected Then
 strBufferArray(intIndex) = ""
 Exit For
 End If
 Next 'intIndex

 'If we need to add another socket control...
 If intIndex > intLastSocket Then

 'Create the control and increase the buffer array
 intLastSocket = intLastSocket + 1
 intIndex = intLastSocket
 Load sockConn(intIndex)
 ReDim strBufferArray(intIndex + 1) As String

 End If

 'Setup the new connection
 sockConn(intIndex).AddressFamily = AF_INET
 sockConn(intIndex).Protocol = IPPROTO_IP
 sockConn(intIndex).SocketType = SOCK_STREAM
 sockConn(intIndex).LocalPort = IPPORT_ANY
 sockConn(intIndex).Binary = True
 sockConn(intIndex).BufferSize = 1024
 sockConn(intIndex).Blocking = False
 sockConn(intIndex).AutoResolve = False

 'Increase the number of connections and set the status
 lTotalConnections = lTotalConnections + 1
 SetStatus

 'Return the new index
 NewSocket = intIndex
End Function

Private Sub sockConn_Accept(Index As Integer, SocketId As Integer)
 Dim objSocket As Integer

 'Create a new socket connection
 'and free the listening socket
 objSocket = NewSocket()
 sockConn(objSocket).Accept = SocketId
End Sub

Private Sub sockConn_Connect(Index As Integer)

 'If this address is not banned...
 If Not IsBanned(sockConn(Index).PeerAddress) Then

 'Add the connection to the drop down
 Dropdown.AddItem sockConn(Index).PeerAddress
 Dropdown.ItemData(Dropdown.NewIndex) = sockConn(Index).Handle
 Dropdown.Enabled = True

 'If nothing is selected, select this connection
 If Dropdown.ListIndex = -1 Then
 Dropdown.ListIndex = Dropdown.NewIndex
 End If

 End If

 'Display the connection
 DisplayCommand "Connection from: " & sockConn(Index).PeerAddress, Index

End Sub

Private Sub sockConn_Disconnect(Index As Integer)
 Dim intListIndex As Integer

 'Loop through the dropdown items
 For intListIndex = 0 To Dropdown.ListCount - 1

 'If we found the matching connection...
 If Dropdown.ItemData(intListIndex) = sockConn(Index).Handle Then

 'Remove the item from the drop down
 Dropdown.RemoveItem intListIndex

 'If there are no more drop down items...
 If Dropdown.ListCount < 1 Then

 'Disable the drop down
 Dropdown.ListIndex = -1
 Dropdown.Enabled = False

 End If

 'Exit the loop
 Exit For

 End If

 Next 'intListIndex

 'Decrease the total number of connections
 lTotalConnections = lTotalConnections - 1

 'Show the disconnect
 DisplayCommand "Disconnected: " & sockConn(Index).PeerAddress, Index
 SetStatus

 'Disconnect
 sockConn(Index).Disconnect

 'Clear the text box
 Text.Text = ""

End Sub

Private Sub sockConn_LastError(Index As Integer, ErrorCode As Integer, ErrorString As
String, Response As Integer)
 'Show the error and disconnect
 'MsgBox ErrorString, vbExclamation
 Log "Error: [" & sockConn(Index).PeerAddress & "] " & ErrorString
 sockConn_Disconnect Index
End Sub

Private Sub sockConn_Read(Index As Integer, DataLength As Integer, IsUrgent As Integer)
 Dim strBuffer As String
 Dim strTemp As String
 Dim strChar As String
 Dim lngPos As Long
 Dim lngChar As Long

 'Read the data
 Call sockConn(Index).Read(strBuffer, 1024)

 'Save the text but skip any Chr$(10)
 strBufferArray(Index) = strBufferArray(Index) & _
 Replace(strBuffer, "", Chr$(10))

 'Did we encounter an end of line? - Chr$(13)
 lngPos = InStr(strBufferArray(Index), Chr$(13))
 Do Until lngPos = 0

 'Get the command
 strTemp = Left$(strBufferArray(Index), lngPos - 1)

 'Clip the command off the buffer
 strBufferArray(Index) = Mid$(strBufferArray(Index), lngPos + 2)

 'Display the command
 DisplayCommand " IN: " & strTemp, Index

 'If this socket is connected...
 If sockConn(Index).Connected Then

 'Execute the command
 strTemp = ExecuteCommand(strTemp, sockConn(Index).PeerAddress)

 'Display the results
 DisplayCommand "OUT: " & strTemp, Index

 'Send the results back to the client
 strTemp = strTemp & vbCrLf
 For lngChar = 1 To Len(strTemp)
 strChar = Mid$(strTemp, lngChar, 1)
 Call sockConn(Index).Write(strChar, 1)
 Next 'lngChar

 End If

 'Try to find another command
 lngPos = InStr(strBufferArray(Index), Chr$(13))
 Loop

End Sub

Private Sub SetStatus()
 'Set the status based on the number of connections
 If lTotalConnections > 1 Then
 Me.Status.Panels(1).Text = CStr(lTotalConnections) & " connections"
 ElseIf lTotalConnections = 1 Then
 Me.Status.Panels(1).Text = "1 connection"
 Else
 Me.Status.Panels(1).Text = "No connections"
 End If
End Sub

Private Sub Status_PanelDblClick(ByVal Panel As MSComctlLib.Panel)
 'Close all connections
 If MsgBox("Close all connections?", vbQuestion + vbYesNo) = vbYes Then
 DisconnectAll

 End If
End Sub

Private Sub DisconnectAll()
 Dim objSocket As Integer

 'Disconnect the listener
 sockConn(0).Disconnect

 'Loop through and disconnect all socket connections
 For objSocket = 1 To intLastSocket
 If sockConn(objSocket).Connected Then
 sockConn(objSocket).Disconnect
 End If
 Next 'objSocket

 'Set the status
 lTotalConnections = 0
 SetStatus
End Sub

Private Sub DisplayCommand(Command As String, Index As Integer)
 'If we are looking at this connection...
 If Dropdown.List(Dropdown.ListIndex) = CStr(sockConn(Index).PeerAddress) Then

 'If the text is too large for the text box
 If Len(Text.Text) > 65000 Then

 'Trim 1000 characters off the front
 Text.Text = Mid$(Text.Text, 1000)

 End If

 'Append the text to the text box
 Text.SelStart = 65535
 Text.SelLength = 0
 Text.SelText = Command & vbCrLf

 End If

 'Log the text
 Log Command

End Sub

'---

' To Do: Fill in the code below
'---

Private Function IsBanned(Address As String) As Boolean
 'This is where you would check for banned addresses
 'Right now, let all connections come through
 IsBanned = False
End Function

Private Function ExecuteCommand(Command As String, Address As String) As String
 'This is where you would execute a command and return a string
 'Right now, return the command as an echo
 ExecuteCommand = "[" & Address & "] " & Command
End Function

Private Sub Log(Value As String)
 'Code to log all text goes here
End Sub

 Constants (constants.bas file)

Option Explicit

' General constants used with most of the controls
Global Const INVALID_HANDLE = -1
Global Const CONTROL_ERRIGNORE = 0
Global Const CONTROL_ERRDISPLAY = 1

' SocketWrench Control Actions
Global Const SOCKET_OPEN = 1
Global Const SOCKET_CONNECT = 2
Global Const SOCKET_LISTEN = 3
Global Const SOCKET_ACCEPT = 4
Global Const SOCKET_CANCEL = 5
Global Const SOCKET_FLUSH = 6
Global Const SOCKET_CLOSE = 7
Global Const SOCKET_DISCONNECT = 7
Global Const SOCKET_ABORT = 8
Global Const SOCKET_STARTUP = 9
Global Const SOCKET_CLEANUP = 10

' SocketWrench Control States
Global Const SOCKET_NONE = 0
Global Const SOCKET_IDLE = 1
Global Const SOCKET_LISTENING = 2
Global Const SOCKET_CONNECTING = 3
Global Const SOCKET_ACCEPTING = 4
Global Const SOCKET_RECEIVING = 5
Global Const SOCKET_SENDING = 6
Global Const SOCKET_CLOSING = 7

' Socket Address Families
Global Const AF_UNSPEC = 0
Global Const AF_UNIX = 1
Global Const AF_INET = 2

' Socket Types
Global Const SOCK_STREAM = 1
Global Const SOCK_DGRAM = 2
Global Const SOCK_RAW = 3
Global Const SOCK_RDM = 4
Global Const SOCK_SEQPACKET = 5

' Protocol Types

Global Const IPPROTO_IP = 0
Global Const IPPROTO_ICMP = 1
Global Const IPPROTO_GGP = 2
Global Const IPPROTO_TCP = 6
Global Const IPPROTO_PUP = 12
Global Const IPPROTO_UDP = 17
Global Const IPPROTO_IDP = 22
Global Const IPPROTO_ND = 77
Global Const IPPROTO_RAW = 255
Global Const IPPROTO_MAX = 256

' Well-Known Port Numbers
Global Const IPPORT_ANY = 0
Global Const IPPORT_ECHO = 7
Global Const IPPORT_DISCARD = 9
Global Const IPPORT_SYSTAT = 11
Global Const IPPORT_DAYTIME = 13
Global Const IPPORT_NETSTAT = 15
Global Const IPPORT_CHARGEN = 19
Global Const IPPORT_FTP = 21
Global Const IPPORT_TELNET = 23
Global Const IPPORT_SMTP = 25
Global Const IPPORT_TIMESERVER = 37
Global Const IPPORT_NAMESERVER = 42
Global Const IPPORT_WHOIS = 43
Global Const IPPORT_MTP = 57
Global Const IPPORT_TFTP = 69
Global Const IPPORT_FINGER = 79
Global Const IPPORT_HTTP = 80
Global Const IPPORT_POP3 = 110
Global Const IPPORT_NNTP = 119
Global Const IPPORT_SNMP = 161
Global Const IPPORT_EXEC = 512
Global Const IPPORT_LOGIN = 513
Global Const IPPORT_SHELL = 514
Global Const IPPORT_RESERVED = 1024
Global Const IPPORT_USERRESERVED = 5000

' Network Addresses
Global Const INADDR_ANY = "0.0.0.0"
Global Const INADDR_LOOPBACK = "127.0.0.1"
Global Const INADDR_NONE = "255.255.255.255"

' Shutdown Values
Global Const SOCKET_READ = 0
Global Const SOCKET_WRITE = 1

Global Const SOCKET_READWRITE = 2

' Byte Order
Global Const LOCAL_BYTE_ORDER = 0
Global Const NETWORK_BYTE_ORDER = 1

' SocketWrench Error Response
Global Const SOCKET_ERRIGNORE = 0
Global Const SOCKET_ERRDISPLAY = 1

' SocketWrench Error Codes
Global Const WSABASEERR = 24000
Global Const WSAEINTR = 24004
Global Const WSAEBADF = 24009
Global Const WSAEACCES = 24013
Global Const WSAEFAULT = 24014
Global Const WSAEINVAL = 24022
Global Const WSAEMFILE = 24024
Global Const WSAEWOULDBLOCK = 24035
Global Const WSAEINPROGRESS = 24036
Global Const WSAEALREADY = 24037
Global Const WSAENOTSOCK = 24038
Global Const WSAEDESTADDRREQ = 24039
Global Const WSAEMSGSIZE = 24040
Global Const WSAEPROTOTYPE = 24041
Global Const WSAENOPROTOOPT = 24042
Global Const WSAEPROTONOSUPPORT = 24043
Global Const WSAESOCKTNOSUPPORT = 24044
Global Const WSAEOPNOTSUPP = 24045
Global Const WSAEPFNOSUPPORT = 24046
Global Const WSAEAFNOSUPPORT = 24047
Global Const WSAEADDRINUSE = 24048
Global Const WSAEADDRNOTAVAIL = 24049
Global Const WSAENETDOWN = 24050
Global Const WSAENETUNREACH = 24051
Global Const WSAENETRESET = 24052
Global Const WSAECONNABORTED = 24053
Global Const WSAECONNRESET = 24054
Global Const WSAENOBUFS = 24055
Global Const WSAEISCONN = 24056
Global Const WSAENOTCONN = 24057
Global Const WSAESHUTDOWN = 24058
Global Const WSAETOOMANYREFS = 24059
Global Const WSAETIMEDOUT = 24060
Global Const WSAECONNREFUSED = 24061
Global Const WSAELOOP = 24062

Global Const WSAENAMETOOLONG = 24063
Global Const WSAEHOSTDOWN = 24064
Global Const WSAEHOSTUNREACH = 24065
Global Const WSAENOTEMPTY = 24066
Global Const WSAEPROCLIM = 24067
Global Const WSAEUSERS = 24068
Global Const WSAEDQUOT = 24069
Global Const WSAESTALE = 24070
Global Const WSAEREMOTE = 24071
Global Const WSASYSNOTREADY = 24091
Global Const WSAVERNOTSUPPORTED = 24092
Global Const WSANOTINITIALISED = 24093
Global Const WSAHOST_NOT_FOUND = 25001
Global Const WSATRY_AGAIN = 25002
Global Const WSANO_RECOVERY = 25003
Global Const WSANO_DATA = 25004
Global Const WSANO_ADDRESS = 25004

CLIENT CODE

frmClient Code (client.frm file)

Option Explicit

Private Sub cmdSend_Click()
 Dim strTemp As String

 strTemp = txtInput.Text & vbCrLf
 Call sockConn.Write(strTemp, Len(strTemp) + 2)

 txtInput.Text = ""
 txtInput.SetFocus
End Sub

Private Sub Form_Load()

 'Setup the new connection
 sockConn.AddressFamily = AF_INET
 sockConn.Protocol = IPPROTO_IP
 sockConn.SocketType = SOCK_STREAM
 sockConn.LocalPort = IPPORT_ANY
 sockConn.Binary = True
 sockConn.BufferSize = 1024
 sockConn.Blocking = False
 sockConn.AutoResolve = False

 frmConnect.Show vbModal

 If frmConnect.Cancel Then
 End
 End If

 sockConn.HostName = frmConnect.Address
 sockConn.RemoteService = frmConnect.Port
 sockConn.Connect

 Unload frmConnect
End Sub

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)

 sockConn.Disconnect
End Sub

Private Sub sockConn_Disconnect()
 MsgBox "Disconnected!"
 Unload Me
End Sub

Private Sub sockConn_Read(DataLength As Integer, IsUrgent As Integer)
 Dim strBuffer As String

 Call sockConn.Read(strBuffer, DataLength)
 txtOutput.SelStart = 65535
 txtOutput.SelLength = 0
 txtOutput.SelText = strBuffer
End Sub

frmConnect Code (connect.frm file)

Option Explicit

Private blnCancel As Boolean
Private strAddress As String
Private lngPort As Long

Public Property Get Cancel() As Boolean
 Cancel = blnCancel
End Property

Public Property Let Cancel(Value As Boolean)
 blnCancel = Value
End Property

Public Property Get Address() As String
 Address = txtAddress.Text & ""
End Property

Public Property Let Address(Value As String)
 txtAddress.Text = Value & ""
End Property

Public Property Get Port() As Long
 If IsNumeric(txtPort.Text & "") Then
 Port = CLng(txtPort.Text)
 Else
 Port = 7777
 End If
End Property

Public Property Let Port(Value As Long)
 txtPort.Text = CStr(Value)
End Property

Private Sub cmdCancel_Click()
 Cancel = True
 Me.Visible = False
End Sub

Private Sub cmdConnect_Click()
 If Me.Address() = "" Then
 MsgBox "Please enter a valid address."
 Else
 Cancel = False
 Me.Visible = False
 End If
End Sub

 Constants (constants.bas file)

Option Explicit

' General constants used with most of the controls
Global Const INVALID_HANDLE = -1
Global Const CONTROL_ERRIGNORE = 0
Global Const CONTROL_ERRDISPLAY = 1

' SocketWrench Control Actions
Global Const SOCKET_OPEN = 1
Global Const SOCKET_CONNECT = 2
Global Const SOCKET_LISTEN = 3
Global Const SOCKET_ACCEPT = 4
Global Const SOCKET_CANCEL = 5
Global Const SOCKET_FLUSH = 6
Global Const SOCKET_CLOSE = 7
Global Const SOCKET_DISCONNECT = 7
Global Const SOCKET_ABORT = 8
Global Const SOCKET_STARTUP = 9
Global Const SOCKET_CLEANUP = 10

' SocketWrench Control States
Global Const SOCKET_NONE = 0
Global Const SOCKET_IDLE = 1
Global Const SOCKET_LISTENING = 2
Global Const SOCKET_CONNECTING = 3
Global Const SOCKET_ACCEPTING = 4
Global Const SOCKET_RECEIVING = 5
Global Const SOCKET_SENDING = 6
Global Const SOCKET_CLOSING = 7

' Socket Address Families
Global Const AF_UNSPEC = 0
Global Const AF_UNIX = 1
Global Const AF_INET = 2

' Socket Types
Global Const SOCK_STREAM = 1
Global Const SOCK_DGRAM = 2
Global Const SOCK_RAW = 3
Global Const SOCK_RDM = 4
Global Const SOCK_SEQPACKET = 5

' Protocol Types
Global Const IPPROTO_IP = 0
Global Const IPPROTO_ICMP = 1
Global Const IPPROTO_GGP = 2
Global Const IPPROTO_TCP = 6
Global Const IPPROTO_PUP = 12
Global Const IPPROTO_UDP = 17
Global Const IPPROTO_IDP = 22
Global Const IPPROTO_ND = 77
Global Const IPPROTO_RAW = 255
Global Const IPPROTO_MAX = 256

' Well-Known Port Numbers
Global Const IPPORT_ANY = 0
Global Const IPPORT_ECHO = 7
Global Const IPPORT_DISCARD = 9
Global Const IPPORT_SYSTAT = 11
Global Const IPPORT_DAYTIME = 13
Global Const IPPORT_NETSTAT = 15
Global Const IPPORT_CHARGEN = 19
Global Const IPPORT_FTP = 21
Global Const IPPORT_TELNET = 23
Global Const IPPORT_SMTP = 25
Global Const IPPORT_TIMESERVER = 37
Global Const IPPORT_NAMESERVER = 42
Global Const IPPORT_WHOIS = 43
Global Const IPPORT_MTP = 57
Global Const IPPORT_TFTP = 69
Global Const IPPORT_FINGER = 79
Global Const IPPORT_HTTP = 80
Global Const IPPORT_POP3 = 110
Global Const IPPORT_NNTP = 119
Global Const IPPORT_SNMP = 161
Global Const IPPORT_EXEC = 512
Global Const IPPORT_LOGIN = 513
Global Const IPPORT_SHELL = 514
Global Const IPPORT_RESERVED = 1024
Global Const IPPORT_USERRESERVED = 5000

' Network Addresses
Global Const INADDR_ANY = "0.0.0.0"
Global Const INADDR_LOOPBACK = "127.0.0.1"
Global Const INADDR_NONE = "255.255.255.255"

' Shutdown Values

Global Const SOCKET_READ = 0
Global Const SOCKET_WRITE = 1
Global Const SOCKET_READWRITE = 2

' Byte Order
Global Const LOCAL_BYTE_ORDER = 0
Global Const NETWORK_BYTE_ORDER = 1

' SocketWrench Error Response
Global Const SOCKET_ERRIGNORE = 0
Global Const SOCKET_ERRDISPLAY = 1

' SocketWrench Error Codes
Global Const WSABASEERR = 24000
Global Const WSAEINTR = 24004
Global Const WSAEBADF = 24009
Global Const WSAEACCES = 24013
Global Const WSAEFAULT = 24014
Global Const WSAEINVAL = 24022
Global Const WSAEMFILE = 24024
Global Const WSAEWOULDBLOCK = 24035
Global Const WSAEINPROGRESS = 24036
Global Const WSAEALREADY = 24037
Global Const WSAENOTSOCK = 24038
Global Const WSAEDESTADDRREQ = 24039
Global Const WSAEMSGSIZE = 24040
Global Const WSAEPROTOTYPE = 24041
Global Const WSAENOPROTOOPT = 24042
Global Const WSAEPROTONOSUPPORT = 24043
Global Const WSAESOCKTNOSUPPORT = 24044
Global Const WSAEOPNOTSUPP = 24045
Global Const WSAEPFNOSUPPORT = 24046
Global Const WSAEAFNOSUPPORT = 24047
Global Const WSAEADDRINUSE = 24048
Global Const WSAEADDRNOTAVAIL = 24049
Global Const WSAENETDOWN = 24050
Global Const WSAENETUNREACH = 24051
Global Const WSAENETRESET = 24052
Global Const WSAECONNABORTED = 24053
Global Const WSAECONNRESET = 24054
Global Const WSAENOBUFS = 24055
Global Const WSAEISCONN = 24056
Global Const WSAENOTCONN = 24057
Global Const WSAESHUTDOWN = 24058
Global Const WSAETOOMANYREFS = 24059
Global Const WSAETIMEDOUT = 24060

Global Const WSAECONNREFUSED = 24061
Global Const WSAELOOP = 24062
Global Const WSAENAMETOOLONG = 24063
Global Const WSAEHOSTDOWN = 24064
Global Const WSAEHOSTUNREACH = 24065
Global Const WSAENOTEMPTY = 24066
Global Const WSAEPROCLIM = 24067
Global Const WSAEUSERS = 24068
Global Const WSAEDQUOT = 24069
Global Const WSAESTALE = 24070
Global Const WSAEREMOTE = 24071
Global Const WSASYSNOTREADY = 24091
Global Const WSAVERNOTSUPPORTED = 24092
Global Const WSANOTINITIALISED = 24093
Global Const WSAHOST_NOT_FOUND = 25001
Global Const WSATRY_AGAIN = 25002
Global Const WSANO_RECOVERY = 25003
Global Const WSANO_DATA = 25004
Global Const WSANO_ADDRESS = 25004

EXECUTING THE CODE

 Make sure that socket wrench library is installed in VB otherwise the code wont run.

SERVER

1) Run the server project file.
2) It will show a server waiting for clients.

CLIENT

1) Run the client project file.
2) It will show a client with a connect button.
3) Specify the host address and port number and press connect.

SERVER STARTED

CLIENT STARTED

CLIENT CONNECTED

SERVER ACCEPTED THE CONNECTION

CLIENT COMMUNICATING WITH SERVER

SERVER ECHOING BACK THE CLIENT DATA

CONNECTION TERMINATION

SERVER HANDLING TWO CLIENTS

SYSTEM CONFIGURATION

The following System Configuration is used

1) Pentium III 933MHZ
2) 256MBRAM
3) WINDOWS XP
4) RED HAT LINUX 9.0
5) VISUAL BASIC 6.0
6) JAVA (J2SDK 1.4)
7) WINSOCK LIBRARY FOR V.B.

APPLICATION

We suggest the following research based application of the Echo Server.

Studying of the Impact of the Internet Audio Transmission using different parameters

Basic Theory :

 The human ear is much more receptive to the audio signals as compared to video
signals. With the arrival of different methods to transmit audio signals over networks it has
become important to study their quality of service.
 The quality of the audio in IP telephony depends upon and is influenced by various
parameters like distance, delay , loss , errors. Hence the quality of audio transmitted
significantly depends upon the above factors. We can conduct an experiment to measure
these different parameters and hence their impact on the audio quality.

Experiment :

 After studying the various parameters an experimental set up can be suggested. A setup
can be designed to study the correlation of loss , and various RTT (round trip time)
measurements , jitters and out of order packets.

Steps Involved :

1) The audio signal is encoded and sent over a channel to echo server.
2) The signal is time stamped and given a sequence number.
3) Various parameters like packets lost , time delay ,distance etc are noted and graphs are

made between different parameters
4) The experiment is usually conducted over a long period of time so as to average the data.

This increases the accuracy of the results.
5) Graphs are interpreted.

 Results and Observations :

1) RTT increase is an indicator of increase in packet loss but this graph is not linear.
2) In addition to end to end hop time , the per hop time is also important to measure in order
to have an accurate prediction of packet loss.
3) Application level and network level RTT detect significantly different conditions : for
example at application level it reveals problem in receiver and at network level it revels
congestion.

 Disadvantages

1) Using this experiment for TCP applications sometimes increases the delay because of the
inherent connection oriented background of communication.

2) Hardware delays sometimes bring inaccuracy in the observations.

Future Works

1) Experimental set up can be suggested so as to average the inherent delay in TCP

communication so as to increase the accuracy of the setup.
2) Set up can be suggested to measure the factors such as the asymmetry in the network.

BIBLIOGRAPHY

UNIX

1. UNIX NETWORK PROGRAMMING (VOL 1 2nd EDITION) BY W. RICHARD
STEVENS

2. .LINUX SOCKET PROGRAMMING BY SEAN WALTON.
3. ONLINE TUTORIALS AT http://www.csc.villanova.edu/

JAVA

1. CORE JAVA 2 VOLUME-2 BY CAY S. HORSTMANN AND GARY CORNELL.
2. COMPLETE REFERENCE JAVA 2 BY HERBERT SCHILDT
3. ONLINE RESOURCES AT http://java.sun.com/docs/books/tutorial/networking/sockets/
4. ONLINE TUTORIALS AT http://www.csc.vill.edu/~mdamian/Sockets/

VISUAL BASIC

1. LEARN VISUAL BASIC 6.0 IN 24 HOURS : SAMS SERIES
2. MICROSOFT’S ONLINE MSDN HELP AT http://msdn.microsoft.com/library/
3. WINSOCK PROGRAMMING TUTORIALS AT http://tangentsoft.net/wskfaq/

PAPERS REFERRED

1. “ ON STUDYING THE IMPACT OF INTERNET AUDIO TRANSMISSION “ BY
LOPAMUDRA ROYCHOUDHURI , EHAB AL- SHAER , HAZEM HAMED AND
GREGORY B. BREWSTER

http://www.csc.villanova.edu/
http://java.sun.com/docs/books/tutorial/networking/sockets/
http://www.csc.vill.edu/~mdamian/Sockets/
http://msdn.microsoft.com/library/
http://tangentsoft.net/wskfaq/

	
	
	
	ACKNOWLEDGMENT
	DEPARTMENT OF COMPUTER
	CERTIFICATE
	Dr. D.R. Choudhary

	TABLE OF CONTENTS
	INTRODUCTION

	
	
	
	NETWORKING CONCEPTS
	TCP/IP
	
	
	USER DATAGRAM PROTOCOL
	
	
	
	HOSTNAMES
	
	
	
	
	
	SERVICE PORTS
	DIFFERENT TYPES OF IP ADDRESSES
	
	
	

	INTRODUCTION TO SOCKETS
	
	
	WHAT ARE SOCKETS

	
	
	
	
	WHAT IS UNIX ?
	Unix is an operating system which like all other operating systems acts as a master of ceremonies since its job is to accept and dispatch user commands and directing the systems response to the appropriate place. Unix is referred to as a multi-user, multitasking operating system, since multiple users may each execute multiple commands seeimgly simultaneously. Multitasking is achieved by running tasks in the background and when using X it can also mean running multiple windows each with foreground and/or background activity. It involves sharing the processor(s) among multiple different programs, and creating a place in memory for each of those programs (processes).
	A SIMPLE EXAMPLE
	FUNCTIONS & PROCEDURES INVOLVED
	SOCKET CREATION
	
	
	EXPLANATION OF DIFFERENT FUNCTIONS
	OPENING A SOCKET
	
	
	
	
	
	CREATING AN INPUT STREAM
	
	
	
	
	
	
	CREATE AN OUTPUT STREAM
	
	
	
	
	
	
	
	
	
	
	CLOSING SOCKETS

	CONCLUSION
	WINDOWS SOCKETS API
	
	
	PROGRAMMING WITH SOCKETWRENCH IN VISUAL BASIC
	
	A SAMPLE CLIENT PROGRAM
	BUILDING AN ECHO SERVER
	CLIENT CODE

	EXECUTING THE CODE

	SERVER STARTED
	
	
	
	
	
	CLIENT STARTED
	
	COMMUNICATING
	TELNET
	SERVER CODE
	CLIENT CODE
	
	
	
	
	
	
	
	
	
	
	
	
	
	EXECUTION OF SERVER LISTENING TO PORT 9000

	
	
	
	
	
	
	
	CONNECTION TERMINATED WITH SERVER REPLYING “BYE”
	
	
	
	
	
	
	
	
	SERVER CODE
	
	
	 Constants (constants.bas file)

	
	
	
	
	
	
	CLIENT CODE
	EXECUTING THE CODE

	SERVER STARTED
	CLIENT STARTED
	CLIENT CONNECTED
	SERVER ACCEPTED THE CONNECTION

	CLIENT COMMUNICATING WITH SERVER
	
	
	CONNECTION TERMINATION
	SERVER HANDLING TWO CLIENTS
	SYSTEM CONFIGURATION
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	APPLICATION
	
	
	 Disadvantages
	Future Works

	BIBLIOGRAPHY

