
 1

FINAL YEAR PROJECT REPORT ON
STUDY OF RATIONAL ROSE

Submitted in Partial Fulfillment for the Requirement of
Degree of Bachelor of Engineering in Computer

Technology

By:
Amarendra Kumar (2k1/COE/06)
Anuj Dangri (2k1/COE/12)

Ashish Kumar Saini (2k1/COE/14)
Shikha Kochhar (2k1/COE/52)

Under the guidance of

Dr. Goldie Gabrani
Assistant Professor

Computer Engineering Department
Delhi College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI-110042
2001- 2005

 2

CONTENTS

Certificate
Acknowledgement
Abstract
List of Tables
List of Figures

1. Welcome to Rational Suite 1
 1.1 Benefits of Using Rational Suite 1
 1.2 Rational Software Best Practices 2

2. Rational Suite Tools 3
 2.1 Rational Requisite Pro 3
 2.2 Rational ClearQuest 3
 2.3 Rational ClearCase LT 3
 2.4 Rational SoDA 4
 2.5 Rational TestManager 4
 2.6 Rational ProjectConsole 4
 2.7 Rational ClearCase 5
 2.8 Rational XDE 5
 2.9 Rational Developer Network 5
 2.10 Rational Professional Services 5
 2.11 Rational Purify Plus 5
 2.11.1 Rational Purify
 2.11.2 Rational Quantify
 2.11.3 Rational PureCoverage
 2.12 Rational Project Console 6
 2.13 Rational Robot 6
 2.14 Rational Rose 7
 2.15 Unified Change Management (UCM) 7
 2.16 Rational Unified Process (RUP) 7
 2.16.1 Along Time
 2.16.2 Along Process

3. RATIONAL ROSE Introduction 10
 3.1 Other CASE TOOLS

4. History of Rational Rose 12

5. Rational Rose Features 13

6. Visual Modeling 14

 3

7. UML (Unified Modeling Language) 15
 7.1 History of UML
 7.2 UML Description
 7.3 Goals of UML
 7.4 UML STRUCTURE

8. Modeling with Rational Rose 18
 8.1 Application Window
 8.1.1 Title Bar
 8.1.2 Menu Bar
 8.1.3 Toolbar
 8.1.4 Toolbox
 8.2 Browser window
 8.3 Documentation window

 8.4 Log window
 8.5 Diagram window
 8.6 Overview window
 8.7 Specification window

9. Introduction to Diagrams 24
 9.1 Deleting Model Elements
 9.2 Correlations
 9.3 Laying Out a Diagram

10. Class / Object diagram 29
 10.1 Overview
 10.2 Association
 10.3 Aggregation
 10.4 Generalization
 10.5 Types of Classes
 10.5.1 Entity Class
 10.5.2 Boundary Class
 10.5.3 Control Class
 10.6 Package
 10.7 Class Diagram Toolbox
 10.8 Class Specification
 10.9 Cardinality
 10.10 Persistence
 10.11 Abstract
 10.12 Operations Tab
 10.13 Attributes Tab
 10.14 Nested Tab
 10.15 Containment

 4

11. Use Case Diagrams 37
 11.1 Actors
 11.2 Use Case
 11.3 Flow of Events
 11.4 Relationships
 11.5 Association
 11.6 Dependency
 11.6.1 Extend Stereotype
 11.6.2 Include Stereotype
 11.6.3 Refine Stereotype
 11.7 Generalization
 11.8 Use Case Diagram Toolbox
 11.9 Use Case Specification
 11.10 Specification Content
 11.11 Name
 11.12 Rank
 11.13 Abstract

12. State Machine Diagrams 43
 12.1 State Machine Specification
 12.2 State chart diagram
 12.2.1 Creating a Statechart Diagram
 12.3 Activity diagram
 12.3.1 Using Activity Diagrams
 12.3.2 Understanding Workflows
 12.3.3 Creating an Activity Diagram
 12.3.4 Activities
 12.3.5 Swim lanes
 12.3.6 Objects
 12.3.7 Object Flow
 12.3.8 States
 12.3.9 Transitions
 12.3.10 Decisions
 12.3.11 Synchronizations
 12.3.12 State and Activity Actions
 12.3.13 Guard Condition

13. Interaction Diagrams 49
 13.1 Creating and Displaying an
 Interaction Diagram
 13.2 Collaboration Diagrams
 13.2.1 Collaboration Diagram Toolbox
 13.3 Sequence Diagrams

 5

 13.3.1 Sequence Diagram Toolbox
 13.3.2 Object
 13.3.3 Multiple Objects
 13.3.4 Messages
 13.3.5 Links
 13.3.6 Sequence Numbering
 13.3.7 Scripts
 13.3.8 Focus of Control

14. Component Diagrams 54
 14.1 Overview
 14.2 Creating and Displaying a
 Component Diagram
 14.3 Component Diagram Toolbox
15. Deployment Diagrams 55
 15.1 Overview
 15.2 Creating and Displaying a Deployment
 Diagram
 15.3 Deployment Diagram Toolbox
 15.4 Processor Specification
 15.5 Processor
 15.6 Priority
 15.7 Characteristics
 15.8 Scheduling

16. Case Study: Student Registration System 57
 16.1 Problem Statement 58
 16.1.1 Case Study Background
 16.1.2 Problem Statement
 16.1.3 Project Summary
 16.2 The Inception Phase 59
 16.2.1 Business Goals and Needs
 16.2.2 Definition of Actors
 16.2.3 Use Cases
 16.2.4 Use Case Diagram in Rational Rose
 16.2.5 Flow of Events: Register for
 Courses Use Case
 16.2.5.1 Create a Schedule
 16.2.5.2 Review a Schedule
 16.2.5.3 Change Schedule –
 Delete a Course
 16.2.5.4 Change Schedule –
 Add a Course
 16.2.6 Flow of Events: Select Courses to Teach

 6

 16.2.6.1 Brief Description
 16.2.6.2 Basic Flow
 16.2.6.3 Alternate Flow
 16.2.7 Activity Diagram
 16.3 The Elaboration Phase 67
 16.3.1 Development of Scenarios
 16.3.2 Creating "Real World" or
 "Business" Classes
 16.3.3 Software Architecture
 16.3.4 Iteration Planning
 16.4 The Construction Phase 75
 16.4.1 Construction Activities
 16.4.2 Building Iteration
 16.4.3 Add a Course
 16.4.4 State Chart Diagram
 16.4.5 Main Component Diagram
 16.5 The Transition Phase 80
 16.5.1 Deployment View

17. Case Study: Online Auction System 81
 17.1 Problem Statement 82
 17.2 Real Time Auction System Glossary 83
 17.3 System Requirement Specifications 85
 17.4 Flow of Events 106
 17.5 USE CASE Diagram 107
 17.6 Class Diagram 108
 17.7 Sequence Diagram 109
 17.7.1 Placing a BID:
 17.7.2 Join:
 17.7.3 Listing an Item:
 17.7.4 Login by User:
 17.7.5 View Profile:
 17.8 Collaboration Diagram 112
 17.8.1 Placing Bid:
 17.8.2 Join:
 17.8.3 Listing Item
 17.8.4 View Profile:
 17.8.5 Login by USER:
 17.9 Activity Diagram 115
 17.10 State Transition Diagram 116
 17.11 Deployment Diagram 117
18. Conclusion 118
19. References 119

 7

CERTIFICATE

This is to certify that the dissertation entitled “Study Of Rational
Rose” being submitted by Amarendra Kumar (2k1/COE/06), Anuj
Dangri (2k1/COE/12), Ashish Kumar Saini (2k1/COE/14), Shikha
Kochhar (2k1/COE/52) towards the partial fulfillment of the
requirement for the award of the degree of BACHELOR OF
ENGINEERING in Computer Engineering at Delhi College Of
Engineering, Delhi, is a bona fide record of their work carried out
under my supervision.

Further it is also certified that the matter and results in this
dissertation are original and have not been submitted for any
degree or diploma in any other college to best of my knowledge.

Dated: 24/5/2005

 Dr. Goldie Gabrani
 Assistant Professor
 Department of Computer Engineering
 Delhi College of Engineering, Delhi.

 8

ACKNOWLEDGEMENT

 We wish to express our heartily and sincere gratitude and
indebtedness to Assistant Professor Dr. Goldie Gabrani, Computer
Engineering Department, Delhi College of Engineering, Delhi for
her invaluable guidance and wholehearted cooperation. She has
been a major source of inspiration throughout the project as she
not only guided us through the project but encouraged me to solve
the problems that arouse during this project. Her extreme
knowledge in this area helped us to complete this study project on
Rational Rose. It was a great experience working under her.

Our heartily thanks to all our professors for their expertise and all
rounded personality they have imparted to us.

 Amarendra Kumar
Anuj Dangri

Ashish Kumar Saini
Shikha Kochhar

 9

ABSTRACT

 Rational Rose is a CASE Tool, a category of software that
provides a development environment for programming teams. It
helps to automate, manage and simplify the Software
development process. These can include tools for: Summarizing
initial requirements, Developing flow diagrams, Scheduling
development tasks, preparing documentation, controlling
software versions and developing program code.

Rational Rose is the visual modeling software solution that lets
you create, analyze, design, view, modify, and manipulate
components. You can graphically depict an overview of the
behavior of your system with a use-case diagram. Rational Rose
provides the collaboration diagram as an alternative to a use-
case diagram. It shows object interactions organized around
objects and their links to one another. The statechart diagram
provides additional analysis techniques for classes with
significant dynamic behavior. Activity diagrams provide a way to
model a class operation or the workflow of a business process.
The logical architecture is captured in class diagrams that
contain the classes and relationships that represent the key
abstractions of the system under development. The component
architecture is captured in component diagrams that focus on the
actual software module organization within the development
environment. The deployment architecture is captured in
deployment diagrams that map software to processing nodes—
showing the configuration of run-time processing elements and
their software processes.

The thesis starts with an introduction to Rational Suite
Components and how the use of rational suite makes the
development process simplified. Then a brief description of
Visual modeling is given followed by UML description and how a

 10

system is depicted in UML notations. Then a brief about
Rational Rose is provided with its features. How to start working
in Rational Rose is summarized via the Interface area of
Rational Rose. Namely interface is divided into: Application
window, Browser window, Documentation window, Diagram
window, Overview window, Specification window and Log
window.
Then various diagrams which are supported by Rational Rose
are explained, namely: Class diagram, Object diagram, Use-case
diagram, Collaboration diagram, Sequence diagram, Component
diagram, Statechart diagram, Deployment diagram and Activity
diagram.
After this much of theoretical introduction two case studies are
done, namely: Student Registration System and Online Auction
System. For both case studies all diagram windows are created
and the overall complex structure for problems is simplified by
means of object orientation.

 11

List of Tables

Table 1: Rational Software Practices
Table 2: RUP Features
Table 3: Export Options
Table 4: Cardinality Options
Table 5: Physical Containment Options
Table 6: Scheduling Options

 12

List of Figures

 {Rational Rose Introduction}
 Figure 1: Time and Process Components of RUP

Figure 2: UML Unification
Figure 3: UML Views
Figure 4: Application Window
Figure 5: Application window toolbar
Figure 6: Diagram Window
Figure 7: Multiple Diagrams—Cascade Windows
Figure 8: Multiple Diagrams—Tiled Windows
Figure 9: Diagram Layout
Figure 10: Association example
Figure 11: Aggregation relationship
Figure 11: Generalization in classes
Figure 12: Control, Entity and Boundary Class
Figure 13: Packages
Figure 14: Class Toolbox
Figure 15: Notation for an Actor
Figure 16: Notation for Use Case
Figure 17: Dependency Display
Figure 18: Use Case Toolbox
Figure 19: UML Notation of a state
Figure 20: Automatic Transmission Example
Figure 21: UML Notation of activity
Figure 22: Activity diagram
Figure 23: Object Flow
Figure 24: Collaboration Example
Figure 25: Collaboration Toolbox
Figure 26: Sequence Diagram
Figure 27: Sequence Toolbox
Figure 28: Component Diagram
Figure 29: Component Toolbox
Figure 30: Deployment Example
Figure 31: Deployment Toolbox

{User Registration System}
Figure 32: Use Case Diagram
Figure 33: Use Case Dependency

 13

Figure 34: Activity Diagram: Create Catalogue
Figure 35: Sequence Diagram for the Add a Course Scenario
Figure 36: Main Class Diagram
Figure 37: Main Class Diagram for the People Package
Figure 38: Main Class Diagram for the University Artifacts
Package
Figure 39: Course Reporting Class Diagram in the
 University Artifacts Package
Figure 40: Main Class Diagram for the Interfaces Package
Figure 41: Updated Sequence Diagram
Figure 42: Class Diagram with Class types
Figure 43: Sequence Diagram for Registrar
Figure 44: Collaboration Diagram for Registrar
Figure 45: Main Class Diagram
Figure 46: Updated Sequence Diagram
Figure 47: Updated Sequence Diagram
Figure 48: Class Diagram "Add a Course"
Figure 49: Realization Diagram
Figure 50: Sequence Diagram for Add a course offering
Figure 51: State Chart Diagram for Course Offering States
Figure 52: Main Component Diagram
Figure 53: University Main Component Diagram
Figure 54: Main Deployment Diagram

{Online Auction System}
Figure 55: Use Case Diagram
Figure 56: Class Diagram
Figure 57: Sequence Diagram for placing a bid
Figure 58: Sequence Diagram for Join
Figure 59: Sequence Diagram for listing an item
Figure 60: Sequence Diagram for Login
Figure 61: Sequence Diagram for Viewing Profile
Figure 62: Collaboration Diagram for Placing bid
Figure 63: Collaboration Diagram for Join
Figure 64: Collaboration Diagram for listing an item
Figure 65: Collaboration Diagram for Viewing Profile
Figure 66: Collaboration Diagram for Login
Figure 67: Activity Diagram for Auction System
Figure 68: State Transition Diagram for Auction System
Figure 69: Deployment Diagram for Auction System

 14

1. Rational Suite Introduction

In 1990s, a number of large sized projects failed called Software Runaways
and resulted into so called ‘Software Crisis’. Statistics show that only 2% of
the projects were used as they were delivered, 3% of the projects used after
modifications, 47% of the projects were never delivered, 19% of the software
projects rejected or reworked and 29% was not even delivered. The problem
increased because of increased dependence of business on software and lack
of systematic approach to build the software.
Some of the examples are:

• In June 1996, Anane 5 launcher broke up and exploded after 40
seconds of take off at an attitude of less than 4 Kilometers. The total
loss was $500 million. Problem found was due to overflow in conversion
from a 64bit floating point number to 16 bit signed integer.

• Therac-25 a radiation therapy and X-ray machine killed several
patients due to malfunctioning of arrow keys which were not
programmed properly by designers. As a result high dose of radiations
was given to patients.

• Ministry of agriculture in UK alone had to undergo a loss of 12 million
pounds because of software errors.

• Even the launch of space shuttle Columbia was delayed by three years
thus costing millions of dollars.

The main Project Failure factors were:

• Projects finish late (or not at all).
• Overrun their Budget
• Unable to meet Requirements.
• Unsatisfied users and unreliable Performance.
• Unclear communication among team members.
• Serious design flaws are uncovered late in development.

1.1 Benefits of Using Rational Suite
Rational Software helps organizations overcome these challenges and develop
Software more successfully by offering:

 15

• Software engineering best practices.
• Integrated tools that automate these best practices.
• Professional services that accelerate adoption and implementation of

these best practices and tools.
•

Rational puts these best practices to work by offering tools that:
• Unify teams and enhance communication.
• Optimize individual productivity.
• Simplify adoption with common installation, licensing, and user

support plans.
Rational Suite editions are customized with sets of tools best suited for each
member of your team.

1.2 Rational Software Best Practices

 16

Table 1: Rational Software Practices

2. Rational Suite Tools

2.1 Rational Requisite Pro
 Helps you manage requirements more effectively by using a database to:

• Organize requirements.
• Prioritize requirements.
• Track requirements.

 17

• Develop requirement documents.
RequisitePro includes the RequisiteWeb interface so users can view, create,
and
manage requirements from a Web browser. RequisitePro is available for
Windows
only. RequisiteWeb is available for Windows and UNIX.

2.2 Rational ClearQuest
Manages change activity associated with software development, including:

• Enhancement requests.
• Defects.
• Documentation modifications.

The ClearQuest Web interface allows Windows and UNIX users to perform
basic ClearQuest operations from a Web browser, such as submitting and
finding records, Creating or editing queries and reports, and creating
shortcuts. ClearQuest MultiSite enables sharing of information across a
geographically distributed team. ClearQuest is available for Windows and
UNIX client workstations. For either platform, you must configure a
Windows workstation as the administrator for the ClearQuest repository.

2.3 Rational ClearCase LT
Provides software configuration management and a built-in process to track
changes to all software project assets, including:

• Requirements.
• Visual models.
• Code.
• Documentation.

It also provides a Web interface that lets users perform basic ClearCase LT
operations. Rational ClearCase LT supports Unified Change Management,
the rational process for managing change and controlling workflow.
ClearCase LT is available for Windows and UNIX. Rational ClearCase LT is
a configuration management tool for small project teams.
Analysts use it to manage changes to requirements. ClearCase LT lets you
associate requirements with:

• Specific releases.
• Code.
• Visual models.
• Test scripts.

Because ClearCase LT tracks changes to all your project files, team members
can work in parallel and integrate their changes to the project baseline.

 18

Rational ClearQuest is a change management tool used to track defects, new
features, product enhancements, and other change requests. It helps you:

• Evaluate change requests.
• Determine their impact on the system.
• Validate the changes (when applicable).

To establish how change requests fit into the structure of features and main
requirements, you can link requests to an existing or new project
requirement in
Rational RequisitePro.

2.4 Rational SoDA
It automatically generates project documents by extracting information from
development artifacts, including files produced by Rational tools and source
code. SoDA uses predefined or customized templates to format the
information.
SoDA is integrated with Microsoft Word for Windows and Adobe
FrameMaker for UNIX.

2.5 Rational TestManager
It helps you create realistic functional and multiuser tests to assess the
performance and reliability of Web, multitier, and database applications.
TestManager tracks:

• How many tests have been planned, developed, and run.
• Which requirements have been tested?
• How many tests have passed and failed.

Using this data, TestManager helps you objectively assess project status and
create reports to communicate these findings to project stakeholders.
TestManager is available for Windows client workstations and UNIX agents
as long as a Windows workstation is configured as the administrator for the
TestManager repository.

2.6 Rational ProjectConsole
It helps you track project metrics by automatically generating charts and
gauges from data produced during software development. ProjectConsole is
integrated with Microsoft Project so that you can create, display, and report
on a centralized project plan. ProjectConsole organizes project artifacts on a
central Web site so all team members can view them. ProjectConsole is
available for Windows only.

 19

2.7 Rational ClearCase
Rational ClearCase is the configuration management solution for large
projects and teams. In addition to ClearCase LT features, it offers:

• Advanced build management.
• Distributed server support.
• Automatic data replication.

2.8 Rational XDE
Rational XDE is an extended development environment that provides visual
design and development capabilities. Integrated with Microsoft Visual Studio
.NET and IBM WebSphere, XDE gives developers a single user experience. It
can also be used alone through the Rational supported Java platform
Integrated Development Environment (IDE), based on the Eclipse platform.

2.9 Rational Developer Network
The Rational Developer Network (RDN) is an online community for all
Rational customers. RDN provides:

• A forum for exchanging ideas and best practices with other software
professionals.

• Web-based training.
• Articles, white papers, Getting Started programs, and other content.

2.10 Rational Professional Services
Rational also offers:

• Consulting and mentoring.
• Packaged services, such as “Quick starts,” deployment services, and

workshops.
• Customized services and projects.

2.11 Rational PURIFYPLUS
Rational PurifyPlus brings together three essential tools that help you
develop high-quality applications more efficiently:
 2.11.1 Rational Purify: An automatic error detection tool for finding
 runtime errors and memory leaks in every component of your program.
 2.11.2 Rational Quantify: A performance analysis tool for resolving
 performance bottlenecks. Rational Quantify helps testers assess
quality by: Pinpointing places in the application where the code is running

 20

inefficiently and helping to identify the cause so developers can improve
system performance.
 2.11.3 Rational PureCoverage: A code coverage tool for making sure
your code is thoroughly tested before you release it.

Benifits of Using Rational PurifyPlus are:

• Find memory errors early: Use Purify as you code to pinpoint hard-to-
find bugs. Memory errors don’t always show up right away, but they’re
the ones that will make your program crash someday.

• Prevent performance bottlenecks: Whenever you write new code or
modify existing code, use Quantify to catch any incremental
performance losses before they turn into bottlenecks. Quantify gives
you the information you need to write more efficient code. It can turn
everyone on your team into a performance engineer.

• Improve code coverage: Use PureCoverage to make sure you're
exercising all your code during pre-checkin testing. For C/C++ code,
you can run PureCoverage from within Purify—just click Coverage,
error, and leak data in Purify’s Run Program dialog.

• Analyze code structure: A common reason for writing new code is to
improve the performance of a program. But how can you effectively
improve the performance of code that might have been developed over
several years by many different people? Use Quantify not only to find
performance bottlenecks, but also to learn more about how your code is
structured. It will help you to make effective performance
improvements.

2.12 Rational Project Console
It helps you track project metrics by automatically generating charts and
gauges from data produced during software development. ProjectConsole
organizes project artifacts on a central Web site so all team members can
view them. It is integrated with Microsoft Project in Windows.

2.13 Rational Robot
It determines whether the system meets requirements by testing how it
responds to a user-driven scenario.
With Robot, you can:

• Record a test.
• Insert verification points to monitor expected results.
• Replay tests as often as needed.
• Run tests.

 21

• View test results and details of test failures such as which test was running, what
type of failure occurred, where the failure occurred, and which verification point
failed.

2.14 Rational Rose
Rational Rose provides support for two essential elements of modern software
engineering: component-based development and controlled iterative development.
While these concepts are conceptually independent, their usage in combination is both
natural and beneficial. Rational Rose’s model-diagram architecture facilitates use of the
Unified Modeling Language (UML), Component Object Modeling (COM), Object
Modeling Technique (OMT), and Booch ‘93 method for visual modeling.
Using semantic information it ensures correctness by construction and maintaining
consistency.

2.15 Unified Change Management (UCM)
Unified Change Management (UCM) is the built-in Rational process that
helps you use ClearCase LT with ClearQuest to:

• Define how to manage changing requirements, design models,
documentation, components, and source code.

• Link the activities used to plan and track software development with
the artifacts that are changing throughout development.

UCM is available for use with ClearCase LT on Windows only.

UCM Example
1. A project leader uses ClearQuest to assign an activity — change

request — to a developer.
2. ClearCase LT with UCM maintains a change set — a list of changed

artifacts — for the activity.
3. The developer works on the activity, creating or modifying artifacts

associated with it.
4. The developer delivers the work to the integration stream — a project-

wide, shared workspace.
5. Within this stream, team members can build and test the latest

versions of the project’s shared elements.
6. After, the project leader may decide to create a new baseline — a

stable configuration of a project’s components that becomes the
basis for future development work.

2.16 Rational Unified Process (RUP)

 22

It helps you create and implement a development process so your team can work
more efficiently and communicate more effectively.
You can configure the RUP to:

• Use only the process components you need for each stage of a project.
• Develop your own process components.
• Exchange best practices with peers and industry leaders.

The RUP is available for Windows and UNIX.
Sustained delivery of high-quality software requires cohesive teamwork and a
common understanding of development tasks. That is why implementing a
predictable, repeatable process like the RUP is important to your success.

Table 2: RUP Features

RUP is structured along two dimensions
• Time: division of the life cycle into phases and iterations.
• Process components: production of a specific set of artifacts with well-

defined activities.

2.16.1 Along Time:
• Inception—Define scope of project(project vision).
• Elaboration—Plan project, specify features, baseline architecture,

required resources.
• Construction—Build and test product.
• Transition—Deliver product to user community (manufacturing,

delivering and training).

2.16.2 Along Process Components:
• Business Modeling – the identification of desired system capabilities

and user needs
• Requirements – a narration of the system vision along with the a set of

function and non-function requirements
• Analysis and Design- a description of how the system will be realized in

the implementation phase.

 23

• Implementation- the production of the code that will result in an
executable system.

• Test-the verification of the entire system.
• Deployment-the delivery of the system and user training to the

customer.

Each activity of the process component dimension typically is applied to the
each phase of the time based dimension.

 Figure 1: Time and Process Components of RUP

Rational Suite Team Unifying Platform provides integrated tools for managing
change, building quality, and communicating results from requirements to
release.

 24

3. RATIONAL ROSE Introduction

Rational Rose is a CASE Tool. CASE Stands for Computer Aided Software
Engineering. They form a category of software that provides a development
environment for programming teams. CASE systems offer tools to automate,
manage and simplify the development process.
These can include tools for:
• Summarizing initial requirements
• Developing flow diagrams
• Scheduling development tasks
• Preparing documentation
• Controlling software versions
• Developing program code

3.1 Few Other CASE TOOLS
• Berard Object & Class Specifier (BOCS)
• Bridgepoint by Project Technology, Inc.
• Cadre Teamwork by Cadre Technologies, Inc.
• Clyder by Sema Group.
• ICONIX PowerTools by ICONIX Software Engg Inc.
• Methods Workbench by ISDE Metasoft Ltd.
• Objectory Support Environment
• OOAtool by Object International, Inc.
• Paradigm Plus by Platinum Technology, Inc.
• System Architect by Popkin Software & Systems.
• With Class by MicroGold Software Inc.
• Visual Thought by Confluent, Inc.
• Teamwork by Cadre Technologies, Inc.

Rational Rose is the visual modeling software solution that lets you create,
analyze, design, view, modify, and manipulate components. You can graphically
depict an overview of the behavior of your system with a use-case diagram.
Rational Rose provides the collaboration diagram as an alternative to a use-case
diagram. It shows object interactions organized around objects and their links to

 25

one another. The statechart diagram provides additional analysis techniques for
classes with significant dynamic behavior. A statechart diagram shows the life
history of a given class, the events which cause a transition from one state to
another and the actions that result from a state change. Activity diagrams provide
a way to model a class operation or the workflow of a business process.
Rational Rose provides the notation needed to specify and document the system
architecture. The logical architecture is captured in class diagrams that contain
the classes and relationships that represent the key abstractions of the system
under development. The component architecture is captured in component
diagrams that focus on the actual software module organization within the
development environment. The deployment architecture is captured in
deployment diagrams that map software to processing nodes—showing the
configuration of run-time processing elements and their software processes.
Rational Rose provides support for two essential elements of modern software
engineering: component-based development and controlled iterative
development.
While these concepts are conceptually independent, their usage in combination is
both natural and beneficial.
Rational Rose’s model-diagram architecture facilitates use of the Unified
Modeling Language (UML), Component Object Modeling (COM), Object
Modeling Technique (OMT), and Booch ‘93 method for visual modeling. Using
semantic information ensures correctness by construction and maintaining
consistency.

Rational Rose is currently available in three editions:

• Rose Modeler – no language support·
• Rose Professional – support for 1 language·
• Rose Enterprise – supports multiple languages including (VC++, VB,

Java, and CORBA)

 26

4. History of Rational Rose

Rational Software started in the early 1980s as a developer of software
development tools. The product line included the R1000 computer, an Ada-only
development computer with a integrated IDE. The company later ported the
R1000 software to UNIX and sold the result as "Rational Apex".

In October 1994 James Rumbaugh joined the company and in the fall of 1995
Rational merged with Ivar Jacobson's firm Objectory AB. This created a company
which had the three leading software metholodgy inventors, the "three amigos"
(also called "the gang of three"): Grady Booch, James Rumbaugh and Ivar
Jacobson in the same house. They started by creating Unified Modeling Language
(UML); after that they merged their software development methodologies into
Rational Unified Process (RUP).

Rose, a software modeling program, arose from a few engineers formerly at GE in
Waukesha, Wisconsin. After Rational acquired the product, it moved much of the
development to California.

Rational developed and maintained Rose, afterwards called Rational Rose, as a
flagship product.

Rose originated to support Ada programming. It currently supports C++ and
Java. Unlike many programming artifacts, which developers retain and maintain,
Rose Models merely form a stage in the development of a program; hence
designers and programmers can discard them after a few uses, because they can
re-generate them from the developed program, using round-trip engineering.

Rose RealTime originated to support the development of complex reactive
systems, typically ones written in C, C++ and Java. It combines the Real-Time
Object Oriented Modeling (ROOM) method developed by Bran Selic at
ObjecTime Corp, and the UML capabilities from Rational Rose. Rose RealTime

http://www.localcolorart.com/search/encyclopedia/1980s/
http://en.wikipedia.org/w/index.php?title=R1000&action=edit
http://www.localcolorart.com/search/encyclopedia/Ada/
http://www.localcolorart.com/search/encyclopedia/IDE/
http://www.localcolorart.com/search/encyclopedia/Unix/
http://www.localcolorart.com/search/encyclopedia/1994/
http://www.localcolorart.com/search/encyclopedia/James_Rumbaugh/
http://www.localcolorart.com/search/encyclopedia/1995/
http://www.localcolorart.com/search/encyclopedia/Ivar_Jacobson/
http://en.wikipedia.org/w/index.php?title=Objectory_AB&action=edit
http://www.localcolorart.com/search/encyclopedia/Grady_Booch/
http://www.localcolorart.com/search/encyclopedia/Unified_Modeling_Language/
http://www.localcolorart.com/search/encyclopedia/Rational_Unified_Process/
http://www.localcolorart.com/search/encyclopedia/General_Electric/
http://www.localcolorart.com/search/encyclopedia/Waukesha%2C_Wisconsin/
http://www.localcolorart.com/search/encyclopedia/California/
http://en.wikipedia.org/w/index.php?title=Rational_Rose&action=edit
http://www.localcolorart.com/search/encyclopedia/Ada_programming_language/
http://www.localcolorart.com/search/encyclopedia/C_Plus_Plus/
http://www.localcolorart.com/search/encyclopedia/Java_programming_language/
http://www.localcolorart.com/search/encyclopedia/Round-trip_engineering/
http://www.localcolorart.com/search/encyclopedia/C_programming_language/
http://www.localcolorart.com/search/encyclopedia/C_plus_plus/
http://www.localcolorart.com/search/encyclopedia/Java_programming_language/
http://en.wikipedia.org/w/index.php?title=Bran_Selic&action=edit
http://en.wikipedia.org/w/index.php?title=ObjecTime_Corp&action=edit

 27

supports a model-driven development approach that uses forward engineering to
generate, directly from a UML model, up to 90% of the real-time application code
found in telecommunications switches and industrial controllers. Object Time
developed the original product in Kanata, Canada prior to its acquisition by
Rational Software on December 14, 1999.

IBM acquired Rational in February 2003 and incorporated it into the IBM
Software Group Division where it became the fifth brand, alongside Websphere,
Tivoli, DB2,and Lotus.

5. Rational Rose Features

Rational Rose provides the following features to facilitate the analysis, design,
and iterative construction of your applications:

• Use-Case Analysis
• Object-Oriented Modeling
• User-Configurable Support for UML, COM, OMT, and Booch ‘93
• Semantic Checking
• Support for Controlled Iterative Development
• Round-Trip Engineering
• Parallel Multiuser Development Through Repository and Private Support
• Integration with Data Modeling Tools
• Documentation Generation
• Rational Rose Scripting for Integration and Extensibility
• OLE Linking
• OLE Automation
• Multiple Platform Availability

http://www.localcolorart.com/search/encyclopedia/Telecommunications/
http://www.localcolorart.com/search/encyclopedia/Kanata%2C_Ontario/
http://www.localcolorart.com/search/encyclopedia/Canada/
http://www.localcolorart.com/search/encyclopedia/December_14/
http://www.localcolorart.com/search/encyclopedia/1999/
http://www.localcolorart.com/search/encyclopedia/IBM/
http://www.localcolorart.com/search/encyclopedia/2003/
http://www.localcolorart.com/search/encyclopedia/Websphere/
http://www.localcolorart.com/search/encyclopedia/Tivoli_Framework/
http://www.localcolorart.com/search/encyclopedia/DB2/
http://www.localcolorart.com/search/encyclopedia/Lotus_Software/

 28

6. Visual Modeling

Visual modeling is the mapping of real world processes of a system to a graphical
representation. Models are useful for understanding problems, communicating
with everyone involved with the project (customers, domain experts, analysts,
designers, etc.), modeling complex systems, preparing documentation, and
designing programs and databases. Modeling promotes better understanding of
requirements, cleaner designs, and more maintainable systems.

A model is an ideal way to portray the abstractions of a complex problem by
filtering out nonessential details. The developer must abstract different views or
blueprints of the system, build models using precise notations, verify that the
models satisfy the requirements of the system, and gradually add detail to
transform the models into an implementation. The models are designed to meet
the needs of a specific audience or task, thereby making them more
understandable and manageable.

Visual modeling has one communication standard: the Unified Modeling
Language (UML). The UML provides a smooth transition between the business
domain and the computer domain. Using the UML, all members of a design team
can work with a common vocabulary, minimizing miscommunication and
increasing efficiency.
Visual modeling captures business processes by defining the software system
requirements from the user’s perspective. This streamlines the design and
development process. Visual modeling also defines architecture by providing the
capability to capture the logical software architecture independent of the software
language. This method provides flexibility to your system design since the logical
architecture can always be mapped to a different software language. Finally, with
visual modeling, you can reuse parts of a system or an application by creating
components of your design. These components can then be shared and reused by
different members of a team allowing changes to be easily incorporated into
already existing development software.

 29

7. UML (Unified Modeling Language)

7.1 History of UML
During 1990s many different methodologies existed, along with their own set of
notations. Three most popular methods were OMT, Booch and Jacobson. Each
had its own pros and cons.
OMT: Strong in analysis and weaker in design area
Booch: Strong in design and weaker in analysis
Jacobson: Strong in Behavior analysis and weaker in the other areas.

Due to simultaneous existence of many methodologies a ‘Notation War’ started,
where a same symbol had different meaning in different methodologies. Thus
portability was hard to achieve and whole development world was divided into
sub areas each operating in different Notations.
Example: A filled circle was multiplicity indicator in OMT and an aggregation
symbol in Booch.

Grady Booch and James Rumbaugh at Rational Software Corporation started
work on UML in 1994. Their goal was to create a new method “Unified Method”
that would unite the Booch method and OMT-2 method. In 1995 Ivar Jacobson,
the man behind OOSE and Objectory method joined them in their work. The first
public draft (ver 0.8) introduced in Oct 1995.They released the version 1.0 in Jan
1997. Rational Software formed UML partner consortium and were joined by
companies like Digital Equipment Corporation, Oracle, Microsoft, Texas
Instruments, Hewlet Packard, Unisys, MCI System House, ICON Computing,
IBM and Intellicorp.UML represents the unification of the Booch, OMT and
Objectory notations. UML provided basis for de-facto standard in the domain of
object-oriented analysis and design.

 30

7.2 UML Description
UML stands for Unified Modeling Language. It is a general purpose visual
modeling language which is used to specify, visualize, construct and document
the artifacts of an object-oriented system under development. It is not just a
notation for drawing diagrams, but a complete language for capturing knowledge
about a subject and expressing knowledge regarding the subject for the purpose
of communication. It has static, dynamic, environment and organizational parts,
and is based on object-oriented paradigm. It is intended to be supported by
interactive visual modeling tools, which have code generators and report writers.

UML captures information about, both the static structure as well as the behavior
of the system. The structure defines the kinds of objects important to a system as
well as the relationships among the objects. The dynamic behavior defines the
history of objects over time and the communicators among the objects to
accomplish the goals.

7.3 Goals of UML
The goals of UML are to

1. Be a ready to use simple and an extensible visual modeling language.
2. Formalize a set of concepts which constitute the object oriented paradigm.

This set of concepts can be extended depending on varying interpretations
without having to repeatedly redefine the fundamental concepts.

3. Allow adding new concepts and notations beyond the core.
4. Allow variant interpretations of existing concepts when there is no clear

consensus.
5. Allow specialization of concepts, notation and constraints for particular

domains.
6. Be implementation as well as process independent.

Figure 2: UML Unification

 31

7. Support higher-level concepts like collaborations, frameworks, patterns
and components.

8. Be widely applicable and integrate the best processes.
9. Expressive enough to handle all the concepts of that arise in modern

system such as concurrency and distribution as well as software
engineering mechanisms, such as encapsulation and components.

10. Be as simple as possible while still being capable of modeling the full
range of practical systems that need to be built.

11. Address recurring complexity problems using component technology,
visual programming, pattern and frameworks.

7.4 UML STRUCTURE
A system is described with a number of different aspects,

• Functional (its static structure and dynamic interaction)
• Non Functional (timing requirements, reliability, deployment etc)
• Organizational aspects (work organizational, mapping to code modules)

Thus a system is described in a number of views, where each view represents a
projection of the complete system description, showing a particular aspect of the
system. Each view is described in a number of diagrams that contain information
emphasizing a particular aspect of the system at a time. A diagram contains
graphical symbols that, represents the model elements of system. The various
views of UML are shown below:

Figure 3: UML Views

Component
View

Use Case
View

Logical
View

Concurrency
View

Deployment
View

 32

• Use-Case View: Models functionality of the system, as perceived by

external users known as actors. Purpose is to list the actors and use-cases,
and show which actor participates in each use case. It is for customers,
designers, developers and testers.

• Logical View: Describes how the system functionality is provided.
Mainly for designers and developers. It looks inside the system and
describes both the static structure and the dynamic collaborations that
occur when the objects send messages to each other.

• Component View: Description of the implementation modules and their
dependencies. Mainly for developers. Also known as implementation
model view or the development view.

• Concurrency View: Deals with division of system into process and
processors. Efficient resource usage, parallel execution and the handling of
asynchronous events.

• Deployment View: Shows Physical Deployment of the system such as
the computers, devices and connection b/w them. Mainly for developers,
integrators and testers.

8. Modeling with Rational Rose

Independent of Frameworks, you can use Rational Rose’s graphical user interface
to display, create, modify, manipulate, and document the elements in a model
using these windows:

• Application window
• Browser window
• Documentation window
• Diagram window
• Overview window
• Specification window
• Log window

Rational Rose displays the diagram, specification, and documentation windows
within the application window. The log window is a dock able window you can
move, dock or undock, or close.

8.1 Application Window
An application window contains a title bar, menu bar, toolbar, and a work area
where the toolbox, browser, documentation window, diagram window, and
specification window appear.

 33

Figure 4: Application Window

8.1.1 Title Bar
The title bar always displays the diagram type. Additional information (like the
view or diagram name) is often displayed depending on the diagram/model being
viewed. The title bar includes a Control-Menu box, Minimize button, Restore
button, and Close button.

Control-Menu Box
Clicking the Control-Menu box (on the application or diagram window)
displays a menu with the following commands:
• Restore Restores focus to that diagram window.
• Move Highlights the border of the window. Move your pointer to the

Title Bar, click and drag the window to the desired location.
• Size Highlights the border of the window. Move your pointer to the

border and resize the window as desired.
• Minimize Reduces the window to an icon placing it in the bottom of

the application window.
• Maximize Enlarges the window to fit the entire screen.
• Close Closes the window.

Minimize, Restore, and Close Buttons
These buttons allow you to minimize, restore, or close the diagram or
application window.

8.1.2 Menu Bar
The menu bar changes depending on which diagram you are working.

 34

8.1.3 Toolbar
The standard toolbar is displayed directly under the menu bar, along the top of
the application window. This toolbar is independent of the open diagram
window.
The following icons are available for use on the standard toolbar.

Figure 5: Application window toolbar

 New Model
 Clicking the New Model icon creates a new model.

 Open Model
Clicking the Open Model icon opens the Load Model dialog box.
You can open a model from anywhere within the design.
If you have a model open when you click either the New or Open icon,
you are prompted to save your current model. Clicking No discards all
changes since your last save. Clicking Yes saves your changes and either
opens a new model or displays the Load Model dialog box.

 Save Model or Log
Clicking the Save Model icon opens the Save Model to dialog box.
Enter a new file name. After the model is named and saved, clicking this
icon automatically saves your changes to the current model without
displaying the dialog box. This will also save the log if the log window is
open.

 Cut
Clicking the Cut icon removes icons from your model. Element(s) must be
selected to activate the icon. Cutting an element will also cut associated
relationships. You can cut multiple selected items.

 Copy
Clicking the Copy icon copies an element to a new location on the same
model, or to a new model, without affecting the original model.

 Paste
Clicking the Paste icon pastes a previously cut or copied element on the
Clipboard onto another location.

 Print Diagrams
Clicking the Print icon prints diagrams to the default printer.

 Context Sensitive Help

 35

Clicking the Context Sensitive Help icon makes all topics covered in
the online Help available. Click this icon and then click the item with
which you want help.

 View Documentation
Clicking the View Documentation icon displays the documentation
window on the diagram.

 Browse Class Diagram
Clicking the Browse Class Diagram icon opens the Select Class
Diagram dialog box.

 Browse Interaction Diagram
Clicking the Browse Interaction Diagram icon opens the Select
Interaction Diagram dialog box.

 Browse Component Diagram
Clicking the Browse Component Diagram icon opens the Select
Component Diagram dialog box.

 Browse State Machine Diagram
Clicking the Browse State Machine Diagram icon opens the Select
State chart Diagram or Activity Diagram dialog box.

 Browse Deployment Diagram
Clicking the Browse Deployment Diagram icon opens the
Deployment Diagram dialog box.

 Browse Use-Case Diagram
Clicking the Browse Use-Case Diagram icon opens the Selected Use
Case Diagram dialog box.

 Browse Parent
Clicking the Browse Parent icon displays the “parent” of the selected
diagram or specification. If you have a specification selected, the
specification for the parent of the “named” item is displayed.

 Browse Previous Diagram
Clicking the Browse Previous Diagram icon displays the last displayed
diagram.

 Zoom In
Clicking the Zoom In icon magnifies the current diagram to view an area
in detail.

 Zoom Out

 36

Clicking the Zoom Out icon minimizes the current diagram allowing you
to view more information.

 Fit in Window
Clicking the Fit in Window icon centers and displays a diagram within
the limits of the window. This command changes the zoom factor so that
the entire diagram appears.

8.1.4 Toolbox
The diagram toolbox consists of tools that are appropriate for the current
diagram.
Changing diagrams automatically displays the appropriate toolbox. When a
modifiable diagram window is active, a toolbox with tools appropriate for the
current diagram is displayed. If the current diagram is contained by a controlled
unit or the model is write-protected, the toolbox is not displayed. While each
diagram has a set of tools applicable for the current diagram, all toolboxes have
the Selector, Separator, and Lock icons.

Selector Icon
The selector icon is used to select icons on the diagram. This icon cannot
be removed from the toolbox.
Separator Icon
The separator icon is used to put a small space between icons on the
toolbox. You can have as many separators as you want, but you must have
at least one.
Lock Icon
The lock icon can be set to locked or unlocked. In the locked mode, any
tool icon stays in the selected state until the diagram loses focus or another
tool button is selected. This option facilitates the rapid placement of
several identical icons without repeatedly returning to the diagram
toolbox.
You can obtain the lock functionality without the icon through the shortcut
menu or by pressing the SHIFT key while placing an element. Releasing
the SHIFT deactivates the lock feature.

8.2 Browser Window
The browser is a hierarchical navigational tool that allows you to view the names
and icons of interaction, class, use case, statechart, activity, and deployment
diagrams as well as many other model elements. When a class or interface is
assigned to a component, the browser displays the assigned component name in
an extended name. The extended name is a comma-separated list within
parenthesis to the right of the class and interface name. The extended list
includes all the assigned components.

8.3 Documentation Window

 37

The documentation window is used to describe model elements or relationships.
The description can include such information as the roles, keys, constraints,
purpose, and essential behavior of the element. You can type information either
here or through the documentation field of a specification.
To view the documentation window, click View > Documentation. A check
mark next to documentation indicates the window is open.
Only one documentation window can be open at a time, but as you select
different items, the window will be updated accordingly. When the window is
first displayed, it will be docked to the lower left corner of the Rose application
window. To move the window, click and drag on its border. The window outline
indicates the window state: a thin, crisp line indicates the window will be docked,
while a thicker, hash mark-type border indicates it will be floating.
Characteristics of the docked and floating states of the window are as follows:

Docked
The window can be moved within the dock able region of the model, but it
remains positioned along the border. The size remains fixed. The title can
be displayed through a tool tip (place your pointer anywhere in the
window).
The window may be docked at any time.
Floating
The window can be moved to any location and is always displayed on top
of the diagram. Size can be changed by clicking and dragging along the
border in a vertical or horizontal direction. The window title displays the
type (class or object) and name of the class or object.

8.4 Log Window
Rose uses the log window to report progress, results, and errors that occur as a
result of a command or action in your model. The messages posted to the log are
prefixed with a time stamp, enabling you to track when an event or action
occurred. Like the documentation window, the log window can be docked or
floating. You can dock or undock the window by right-clicking anywhere in the
window and toggling Allow Docking option. When docked, the log window is
positioned along the border of the application window. If docking is not enabled
or if you drag the window outside of the application frame, the window is
floating. A floating window is always on top. In addition, you can hide the log
window by right-clicking anywhere in the window and clicking Hide.
To redisplay the window, click View > Log.
You can save the contents of the log window to a file as well as clear the log
contents. To save the log, click File > Save LogAs.
To clear the log, right-click anywhere in the log window and click Clear.

8.5 Diagram Window

 38

Diagram windows allow you to create and modify graphical views of the current
model. Each icon in a diagram represents an element in the model. Since
diagrams are used to illustrate multiple views of a model, each model element
can appear in none, one, or several of a model’s diagrams. This means you can
control which elements and properties appear on each diagram.
Diagrams are contained by the model elements, they represent:

• A logical package (also User Services, Business Services, and Data
Services) contains an automatically created class diagram called “Package
Overview,” and user created class diagrams, collaboration diagrams,
interaction diagrams, and three-tiered diagrams.

• A component package contains component diagrams.
• A class contains its state diagrams.
• A model contains the diagram for its top level components, its three-tiered

service model diagram, its deployment diagram, and the diagram
contained by its logical package and component packages. These top-level
components can be classes, components, devices, connections, and
processors.

8.6 Overview Window
The overview window is a navigational tool that helps you move to any location
on all Rational Rose diagrams. When a diagram is larger than the viewable area
within the diagram window, it is not possible to see the whole diagram without
scrolling.
The overview window provides a scaled-down view of the current diagram so you
can see the entire diagram.
To move to an exact area of your diagram, use the following steps:

1 Move the pointer over the hand located in the lower, right side of the
diagram window. Notice how the pointer appears as a + when the pointer is
located over the active hand.
2 Click on the hand icon so the overview window appears.
3 Hold down the mouse button and move the box inside the overview window to
a desired diagram location.

Specification Window
A specification enables you to display and modify the properties and
relationships of a model element, such as a class, a relationship, an operation, or
an activity. The information in a specification is presented textually; some of this
information can also be displayed inside icons representing the model element in
diagrams.
You can change properties or relationships by editing the specification or
modifying the icon on the diagram. The associated diagram or specification is
automatically updated.
To display a specification:

 39

1. Right-click the icon in either the diagram or browser, and then click Open
Specification from the shortcut menu.

2. Click the icon in either the diagram or browser, and then click Browse >
Specification.

3. Double-click on the icon in either the diagram or browser. (If you have
selected the Double-Click to Diagram option in the Options dialog
box, a diagram may appear instead of a specification.)

Printing Diagrams and Specifications
The Print dialog box allows you to print diagrams and specifications. Table
below describes the tabs in the Print dialog box.

Print Preview
The print preview option allows you to see how a diagram will appear
when printed. Also, print preview displays the total number of pages the
diagram will take to print on the status bar.

Zoom In/ Zoom Out
Click either Zoom In or Zoom Out to view a diagram at different
magnified sizes. Also, you can click on any part of the diagram to get a
magnified view.
Print
Click Print to display the Print dialog box.
One Page / Two Pages
Click Two Page to display the diagram in two pages or click One Page to
view the diagram in one page. When diagrams are viewed in two pages, the
Next Page button becomes active and enables you to view other pages. The
Previous Page button becomes active when there is a previous page to
view.
Close
Click Close to return to an active window.

Apply Filter Dialog Box
The Apply Filter dialog box allows you to search for diagrams and specifications
within your model. The filter is especially useful when you print diagrams from

 40

large models. To print a specific diagram in a model, type in the name, type, or
path of the diagram you are trying to print.

Name
Provides a list of all diagram names depending on search criteria.
Type
Provides a list of all diagram types depending on search criteria.
Path
Provides a list of each path for diagrams displayed. Next, press the OK
button to locate the diagram. Then, with the diagram selected, press OK
from the Print dialog box to print the diagram.

To search for a diagram or a specification in the Apply Filter dialog box, you
can use the * (asterisk) wildcard character. For example:

• A* matches any name beginning with the letter A
• *A matches any name ending with the letter A
• *A* matches any name containing the letter A

Saving in Various Formats
If you want to save a Rational Rose model as a different format, you may select
any of the following options from the Save As Type list in the Save Model To
dialog box:

• Models *.mdl (the current version of Rose)
• Petal *.ptl
• Rose 6.1/6.5 Model
• Rose 4.5/6.5 Model
• Rose 4.0 Model
• Rose 3.0 Model

9. Introduction to Diagrams

Diagrams are views of the information contained in a model. Rational Rose
automatically maintains consistency between the diagram and its specifications.
You can change properties or relationships by editing the specification or
modifying the icon on the diagram. The associated diagrams or specifications are
automatically updated. In a diagram window, you can create and modify
graphical views of the model.
Rational Rose supports the following kinds of diagrams:

• Class diagram
• Object diagram
• Use-case diagram
• Collaboration diagram

 41

• Sequence diagram
• Component diagram
• Statechart diagram
• Deployment diagram
• Activity diagram

Each icon on a diagram represents an element in the model. Since diagrams
illustrate multiple views of a model, each model element can appear in none, one,
or several of a model’s diagrams. You can control which elements and properties
appear on each diagram.

Figure 6: Diagram Window

You can display multiple diagrams simultaneously in the application window. To
display diagrams in cascaded windows click Window > Cascade or Tile.

Figure 7: Multiple Diagrams—Cascade Windows

 42

Figure 8: Multiple Diagrams—Tiled Windows

Overloading also allows you to do multi-lingual, component-based development.
For example, an application can be modeled even if the GUI for screen input is in
VB or Java; the processing is in C++, and the database in Oracle. In this example,
each application can have its definition of a class “Customer” do different things.

9.1 Deleting Model Elements
There are two ways to delete model elements in Rational Rose: you can perform a
shallow delete or a deep delete. A shallow delete removes the element icon from a
diagram. A deep delete removes model elements from a model completely.

Shallow Delete
A shallow delete is useful when you want to remove a model element icon from a
diagram but keep the model element in the model. A shallow delete keeps the
model element in the browser and removes the icon of the element from the
diagram. If you perform a shallow delete on an element without a name, Rational
Rose will delete the model element completely from the model.
To perform a shallow delete on a selected model element that appears on a
diagram:

• Click Edit > Delete
• Press DELETE.

Deep Delete
A deep delete is useful when you want to remove a model element completely
from a model.
To perform a deep delete on a selected diagram model element(s):

• Click Edit > Delete from Model.
• Press CTRL + D.
• Right-click an element in the browser and then click Delete from the

shortcut menu.

9.2 Correlations

 43

Depending on the diagram selected, a correlation can be a relationship, a link, a
dependency, a transition, or a connection. The word correlation can stand for any
of the items previously listed.

9.3 Laying Out a Diagram
When a diagram contains many elements (also called shapes) and
many relationships (also called correlations), it can become difficult
to read. The layout diagram feature is designed to make a diagram
easier to read by rearranging elements on a diagram to clarify their
relationships. This is done by minimizing the number of crossed links
and positioning shapes in an order that reflects their relationships.

Figure 9: Diagram Layout

10. Class/Object Diagrams

10.1 Overview
A class diagram is a picture for describing generic descriptions of possible
systems.
Class diagram models static view of the system. It is the main diagram which
identifies the main classes (defines rules about objects) and the relationship
among these classes. This diagram is very important because as it is used as a
source for code generation or design stage. A class integrates the static (data) and
dynamics (behavior) into one cohesive unit. Class diagrams contain classes and

 44

object diagrams contain objects, but it is possible to mix classes and objects when
dealing with various kinds of metadata, so the separation is not rigid.
Object diagram is a special type of class diagram showing instance of classes i.e.
objects and can be used to test or understand a class diagram.
UML notation to represent a class is a rectangle consisting of three parts:

• Class Name
• Attributes
• Operations

Class Name
Attributes

Operations()

Customer
Name
Age
Address

Issue Book()
Return Book()

 Fig: Class Notation

Additionally you can also specify the visibility of the attributes and operations i.e. which
other objects can see the attributes and operations.
This typically includes public (+), private (-), protected (#) and package (~) as visibility
values. While writing operation specification, it must specify all arguments and their data
types (separated by colon), return data type, its visibility and the constraints within { }.
Three types of relations via- association, aggregation and generalization can exit between
classes in the class diagram.

10.2 Association
It represents a semantics relationship between two classes. It relates a class A to
class B and is shown as a link between classes. While reading textual description
of requirements they correspond to verbs and classes correspond to nouns.
Multiplicity (number of participating objects), role and constraints are also
shown in the association. Constraints are shown between { } below the class
icons.

Department Faculty

1..*0..1

Employs

1..*0..1

Association

Figure 10: Association example

 45

10.3 Aggregation
It is a special type of association which supports building complex objects. For
example different components can be assembled to make a car as shown

Wheels Engine

CAR

0..1
0..1

Chasis

0..10..1
0..1

0..1

Figure 11: Aggregation relationship

10.4 Generalization
Is-a relationship is shown by generalization. The classes between which is-a
relationship is identified are called superclass and subclass. Subclass inherits
the features of superclass in addition to which are specific to subclass.

Department

Computer
Engg

Mechanical
Engg

 Figure 11: Generalization in classes

Class diagrams contain icons representing classes, interfaces, and their
relationships. You can create one or more class diagrams to depict the classes at
the top level of the current model. Such class diagrams are themselves contained
by the top level of the current model. You can also create one or more class
diagrams to depict classes contained by each package in your model. Such class
diagrams are themselves contained by the package enclosing the classes they
depict. The icons represent logical packages and classes in class diagrams.
You can change properties or relationships by editing the specification or
modifying the icon in the diagram. The associated diagrams or specifications are
automatically updated.

10.5 Types of Classes

10.5.1 Entity Class
An entity class models information and associated behavior that in generally long
lived. This type of class may reflect a real-world entity or it may be needed to

 46

perform tasks internal to system. Many times they are application independent,
meaning that they may be used in more than one application. Entity classes are
typically found early in the elaboration phase. They are often called “Domain”
classes since they usually deal with abstractions of real world.

10.5.2 Boundary Class
Boundary classes handle the communication between the system surroundings
and the inside of the system. They can provide the interface to the user or another
system (i.e. the interface to an actor). They constitute the surrounding dependent
part of the system. Boundary classes are used to model the system interfaces.
They are also added to facilitate communication with the other system.

10.5.3 Control Class
Control class model sequencing behavior specific to one or more use cases.
Control classes coordinate the events needed to realize the behavior specified in
the use case. They are thought to be the running or executing the use case- they
represent the dynamics of the use case. Control classes are typically application
dependent classes. In early phases of development a control class is added for
each actor/use case pair. The control class is responsible for the flow of events in
the use case.

Figure 12: Control, Entity and Boundary Class

10.6 Package
A package in the logical view of the model is a collection of related packages
and/or classes. By grouping classes into packages, we can look at the higher
level view of the model (i.e. the package) or you can dig deeper into the model
by looking at what is contained by the package. Each package contains an
interface that is realized by its set of public classes – those classes to which
classes in the other packages talk. If the system is complex, package may be
created early in the Elaboration Phase to facilitate communication.

 47

Interfaces University
Artifacts

Figure 13: Packages

10.7 Class Diagram Toolbox
The application window displays the following toolbox when the current window
contains a class diagram, you have selected View > As Unified, and you have
customized the toolbox to display all the tool options.

Figure 14: Class Toolbox

Creating and Displaying a Class Diagram
You can create or display a class diagram in one of three ways:

• Click Browse > Class Diagram.
• On the toolbar, click the class diagram icon.
• On the browser, double-click the class diagram icon.

Adding and Hiding Classes and Filtering Class Relationships
The commands on the Query menu allow you to control which model elements
are represented by icons in the current diagram.
On the Query menu, clicking:

• Add Classes adds classes to the diagram by name.
• Add Use Cases adds use cases to the diagram by name.

 48

• Expand Selected Elements adds classes to the diagram based on their
relationships to selected classes.

• Hide Selected Elements removes selected classes from the diagram
and optionally removes their clients or suppliers from the diagram.

• Filter Relationships controls which kinds of relationships appear in the
diagram.

10.8 Class Specification
A Class Specification displays and modifies class properties and relationships.
Some of the information in the specification can also be displayed inside class
icons. If a field does not apply to a particular class type, the field is unavailable
and you cannot add or change information in the field.
To display a Class Specification, click an icon representing the class in a class
diagram and click Browse > Specification.
The Class Specification consists of the following tabs:
General, Detail, Operations, Attributes, Relations, Component, Nested,
and Files.

Type
Your Type choices include: Class, Parameterized Class, Instantiated Class, Class
Utility, Parameterized Class Utility, Instantiated Class Utility, and Metaclass.

Parent
The parent to which the class belongs (its package) is displayed in this static field.

Stereotype
A stereotype represents the subclassification of an element. It represents a class
within the UML metamodel itself; that is, a type of modeling element. Some
stereotypes are already predefined. You can also define your own stereotypes.
Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found
in either the Diagram or Browser tabs of the Options dialog box. Click Tools
> Options to display the Options dialog box.
To show stereotypes on the diagrams, right-click a class, and then click Options
> Stereotype Display > None, Label, Decoration, or Icon from the
shortcut menu.

Export Control
The Export Control field specifies how a class and its elements are viewed
outside of the defined package.

 49

Table 3: Export Options

The Export Control field can be set only in the specification. No special
annotation is related to access control properties.
To change the export control type for the class, click the appropriate option in the
Export Control field. You can display the implementation export control in the
component compartment

10.9 Cardinality
The Cardinality field specifies the number of expected instances of the class. In
the case of relationships, this field indicates the number of links between each
instance of the client class and the instance of the supplier. You can set a specific
cardinality value for the client class, supplier class, or both.
Use the following syntax to express cardinality.

Table 4: Cardinality Options

To display class cardinality on an icon, right-click the icon and select a cardinality
through the shortcut menu. A literal value can only be specified on the
specification.

10.10 Persistence
Persistence defines the lifetime of the instances of a class. A persistent element is
expected to have a life span beyond that of the program or one that is shared with
other threads of control or other processes. Use this field to identify the
persistence for elements of this class.
The persistence of an element must be compatible with the persistence that you
specified for its class. If class persistence is set to Persistent, then the object is

 50

persistent, static, or transient. If class persistence is set to Transient, then the
object persistence is either static or transient.
To set the persistence, click the applicable option in the Persistence field. You
can display the persistence in the diagram by clicking Show Persistence from
the shortcut menu.

10.11 Abstract
The Abstract check box identifies a class that serves as a base class. An abstract
class defines operations and states that will be inherited by subclasses. This field
corresponds to the abstract class adornment displayed inside the class icon.
The Abstract field is inactive for metaclasses, class utilities, parameterized class
utilities, and instantiated class utilities.

10.12 Operations Tab
Operations denote services provided by the class. Operations are methods for
accessing and modifying Class fields or methods that implement characteristic
behaviors of a class. The Operations tab lists the operations that are members
of this class. Rational Rose stores operation information in an Operation
Specification. You can access Operation Specifications from the Class
Specification or from the Browser.
The descriptions for each field on the Operations tab are discussed below:

 Public—members of a class are accessible to all clients.

 Protected—members of a class are accessible only to subclasses, friends, or to
the class itself.

Private—members of a class are accessible only to the class itself or to its
friends.

Implemented—the class is accessible only by the implementation of the
package containing the class.

10.13 Attributes Tab
The Rational Unified Process asserts that attributes are data values (string or
integer) held by objects in a class. Thus, the Attributes tab lists attributes
defined for the class through the Class Attribute Specification. You can add
an attribute relationship through Insert on the shortcut menu or by pressing the
INSERT key. An untitled entry is added. Attributes and relationships created
using this technique are added to the model, but do not automatically appear in
any diagrams
The descriptions for each field are discussed below:

 Public—members of a class are accessible to all clients.

 Protected—members of a class are accessible only to subclasses, friends, or to
the class itself.

 Private—members of a class are accessible only to the class itself or to its
friends.

 51

 Implemented—the class is accessible only by the implementation of the
package containing the class.
This Attribute tab is active for all class types.

10.14 Nested Tab
A nested class is a class that is enclosed within another class. Classes may contain
instances of, inherit from, or use a nested class. Enclosing classes are referred to
as parent classes, and a class that lies underneath the parent class is called a
nested class.
A nested class is typically used to implement functionality for the parent class. In
many designs, a nested class is closely coupled to the parent class and is often not
visible outside of the parent class. For example, think of your computer as a
parent class and its power supply as a nested class. While the power supply is not
visible outside the computer, the task it completes is crucial to the overall
functionality of the computer.

10.15 Containment
Physical containment plays a role in the construction and destruction of an
aggregate’s parts through semantics. The specification of physical containment is
necessary for meaningful code generation from the model.
You can set one of the following types of physical containment.

Table 5: Physical Containment Options

To set or change the containment type in the Relationship Specification, click
the applicable option in the Containment field. The application places an
adornment at the supplier end of the relationship. You can also select a value
from the shortcut menu.

11. Use Case Diagrams

 52

Use-case diagrams present a high-level view of how a system is used as seen
from an outsider’s (or actor’s) perspective. These diagrams graphically depict
system behavior (also known as use cases). A use-case diagram may depict all
or some of the use cases of a system.
A use-case diagram can contain:

• Actors (“things” outside the system).
• Use cases (system boundaries identifying what the system should do).
• Interactions or relationships between actors and use cases in the

system including the associations, dependencies, and generalizations.
Use-case diagrams can be used during analysis to capture the system
requirements and understand how the system should work. During the
design phase, use-case diagrams can be used to specify the behavior of the
system as implemented.
You can create or display a use-case diagram in one of three ways:

• Click Browse > Use Case Diagram.
• On the toolbar, double-click the use-case diagram icon.
• In the browser, double-click the use-case diagram icon.

11.1 Actors
Actors represent system users. They help define the system and give a clear
picture of what the system should do. It is important to note that an actor
interacts with, but has no control over, the use cases.
An actor is someone or something that:

• Interacts with or uses (but is not part of) the system.
• Provides input to and receives information from the system.
• Is external to the system and has no control over the use cases.

Actors are discovered by examining:
• Who directly uses the system?
• Who is responsible for maintaining the system?
• External hardware used by the system.
• Other systems that need to interact with the system.

An actor is a stereotype of a class and is depicted as a “stickman” on a use-
case diagram. The name of the actor is displayed below the icon.

Registrar

Figure 15: Notation for an Actor

11.2 Use Case

 53

A use case is a sequence of events (transactions) performed by a system in
response to a trigger initiated by an actor. A use case contains all the events
that can occur between an actor-use case pair, not necessarily the ones that
will occur in any particular scenario.
In its simplest form, a use case can be described as a specific way of using the
system from a user’s (actor’s) perspective. A use case also illustrates:

• A pattern of behavior the system exhibits.
• A sequence of related transactions performed by an actor and the

system.
Use cases provide a means to:

• Capture system requirements.
• Communicate with the end users and domain experts.
• Test the system.

Use cases are best discovered by examining what the actor needs and
defining what the actor will be able to do with the system; this helps ensure
that the system will be what the user expects.
The following questions may be used to help identify the use cases for a
system:

• What are the tasks of each actor?
• Will any actor create, store, change, remove, or read this information

in the system?
• What use case will create, store, change, remove, or read this

information?
• Will any actor need to inform the system about sudden, external

changes?
• Does any actor need to be informed about certain occurrences in the

system?
• What use cases will support and maintain the system?
• Can all functional requirements be performed by the use cases?

Since all the needs of a system typically cannot be covered in one use case, it
is usual to have a collection of use cases. Together this use case collection
specifies all the ways of using the system.
A use case may have a name, although it is typically not a simple name. It is
often written as an informal text description of the actors and the sequences
of events between objects. Use case names often start with a verb.
The name of the use case is displayed below the icon.

Select courses to teach

Figure 16: Notation for Use Case

 54

11.3 Flow of Events
A flow of events is a sequence of transactions (or events) performed by the
system. They typically contain very detailed information, written in terms of
what the system should do, not how the system accomplishes the task. Flows
of events are created as separate files or documents in your favorite text
editor and then attached or linked to a use case using the Files tab of a model
element.
A flow of events should include:

• When and how the use case starts and ends
• Use case/actor interactions
• Data needed by the use case
• Normal sequence of events for the use case
• Alternate or exceptional flows

11.4 Relationships
Relationships show interactions between actors and use cases. Association,
dependency, and generalization relationships can be drawn from an actor to a
use case. The generalize relationship can be drawn between actors. Any
association relationships are also presented in a text format on the Relations
tab for a selected use case or actor.

11.5 Association
An association provides a pathway for communication between use cases and
actors. Associations are the most general of all relationships and
consequentially, the most semantically weak. If two objects are usually
considered independently, the relationship is an association. The association
name and its stereotype are typically verbs or verb phrases and are used to
identify the type or purpose of the relationship.
There are two different types of associations connected with use-case
diagrams:
uni-directional and bi-directional.

• Uni-directional association: By default, associations in use cases are
uni-directional and drawn with a single arrow at one end of the
association. The end with the arrow indicates who or what is receiving
the communication.

• Bi-directional association: To change the communication to be bi-
directional, double-click the association to view the Association
Specification. Click the appropriate Role A (or B) Detail tab, select the

 55

Navigable check box, and click Apply. The graphic changes from a line
with an arrow at one end to a line with no arrow.

11.6 Dependency
A dependency is a relationship between two model elements in which a
change to one model element will affect the other model element. Use a
dependency relationship to connect model elements with the same level of
meaning. Typically, on class diagrams, a dependency relationship indicates
that the operations of the client invoke operations of the supplier.
You can connect model elements with dependencies on any diagram except
state machine diagrams and object diagrams. For example, you can connect a
use case to another use case, a package to another package, and a class to a
package.
Dependencies are also used on component diagrams to connect model
elements.

11.6.1 Extend Stereotype

An extend relationship is a stereotyped relationship that specifies how
the functionality of one use case can be inserted into the functionality
of another use case. You can place extend stereotypes on all
relationships. However, most extend stereotypes are placed on
dependencies or associations. Extend relationships are important
because they show optional functionality or system behavior.

11.6.2 Include Stereotype

An include relationship is a stereotyped relationship that connects a
base use case to an inclusion use case. An include relationship specifies
how behavior in the inclusion use case is used by the base use case.
Include relationships are important because they represent that the
inclusion use case functionality is used by the base use case.

11.6.3 Refine Stereotype

A refine relationship is a stereotyped relationship that connects two or
more model elements at different semantic levels or development
stages. It represents a fuller specification of something that has
already been specified at a certain level of detail. For example, a
design class is a refinement of an analysis class. In a refine
relationship, the source model element is general and more broadly
defined whereas the target model element is more specific and refined.

 56

Select courses to teach Request Course roster

Validate User

<<include>>

<<include>>

Figure 17: Dependency Display

11.7 Generalization
A generalization relationship is a relationship between a more general class
or use case and a more specific class or use case. A generalization is shown as
a solid-line path from the more specific element to a more general element.
The tip of a generalization is a large hollow triangle pointing to the more
general element.
You can place a stereotype on any generalization through the Generalization
Specification.

11.8 Use-Case Diagram Toolbox
The graphic below shows all the tools that can be placed on the use-case
diagram toolbox. Refer to “Customizing the Toolbox” on page 14 for
information on adding or deleting diagram toolbox tools. The application
window displays the following toolbox when the current window contains a
use-case diagram and As Unified is selected from the View menu.

 57

Figure 18: Use Case Toolbox

11.9 Use Case Specification
A Use-Case Specification allows you to display and modify the properties and
relationships of a use case in the current model.

11.10 Specification Content
The Use-Case Specification contains the following tabs: General, Diagram,
Relations, and Files.

11.11 Name
A use case name is often written as an informal text description of the
external actors and the sequences of events between elements that make up
the transaction. Use-case/ names often start with a verb. The name can be
entered or changed on the specification or directly on the diagram.

11.12 Rank
The Rank field prioritizes use cases. For example, you can use the rank field
to plan the iteration in the development cycle at which a use case should be
implemented.

11.13 Abstract

 58

An abstract notation indicates a use case that exists to capture common
functionality between use cases (uses) and to describe extensions to a use
case (extends).

12. State Machine Diagrams

A state machine can be defined as a behavior that specifies the valid
sequences of activities that an object or interaction goes through during its
life in response to the events, together with its responses and actions.
There are two types of state machine diagrams-

• State chart diagram
• Activity diagram

Creating and Displaying a State Machine Diagram

 59

To create a state/activity model:
1 Click Browse > State Machine Diagram.
2 Double-click New.
3 Name the diagram.
4 Specify the type of diagram you want to create: Activity or Statechart.
5 Click OK.

12.1 State Machine Specification
A State Machine Specification allows you to display and modify the
properties and relationships of a state/activity model. A state/activity model
contains statechart and activity diagrams. To view the State Machine
Specification, double-click the state/activity model in the browser. Changes
made either through the specification or directly on the icon are
automatically updated throughout the model.

The state/activity model icon that appears in the browser can be thought of as
a “container” for statechart and activity diagrams and all of their model
elements. A state/activity model owns statechart and activity diagrams and is
represented semantically with a state machine. A state machine can be
defined as a behavior that specifies the valid sequences of activities that an
object or interaction goes through during its life in response to events,
together with its responses and actions.
Rational Rose automatically creates one state/activity model when you create
a statechart or activity diagram. A state/activity model can be relocated to a
new owner, such as a class operation or a use case, by dragging it to a new
location in the browser. Rational Rose limits you to only one state/activity
model per owner.

12.2 State chart diagram
Statechart diagrams model the dynamic behavior of individual classes or any
other kind of object. They show the sequences of states that an object goes
through, the events that cause a transition from one state or activity to
another and the actions that result from a state or activity change.
Statechart diagrams are closely related to activity diagrams. The main
difference between the two diagrams is statechart diagrams are state centric,
while activity diagrams are activity centric. A statechart diagram is typically

 60

used to model the discrete stages of an object’s lifetime, whereas an activity
diagram is better suited to model the sequence of activities in a process.
Each state represents a named condition during the life of an object during
which it satisfies some condition or waits for some event. A statechart
diagram typically contains one start state and multiple end states.
Transitions connect the various states on the diagram. As with activity
diagrams, decisions and synchronizations may also appear on statechart
diagrams.

Figure 19: UML Notation of a state

12.2.1 Creating a Statechart Diagram
To create a statechart diagram:
1 Click the Browse State Machine Diagram button from the toolbar.
2 Click New.
3 Select the Statechart Diagram check box in the New State Machine dialog
box.
4 Enter the statechart diagram title.
5 Click OK.

Figure 20: Automatic Transmission Example

12.3 Activity diagram
Activity diagrams provide a way to model the workflow of a business process.
You can also use activity diagrams to model code-specific information, such

state

 61

as a class operation. Activity diagrams are very similar to a flowchart
because you can model a workflow from activity to activity. An activity
diagram is basically a special case of a state machine in which most of the
states are activities and most of the transitions are implicitly triggered by
completion of the actions in the source activities. The main difference
between activity diagrams and statecharts is activity diagrams are activity
centric, while statecharts are state centric. An activity diagram is typically
used for modeling the sequence of activities in a process; whereas, a
statechart is better suited to model the discrete stages of an object’s lifetime.

Figure 21: UML Notation of activity

12.3.1 Using Activity Diagrams
Activity diagrams can model many different types of workflows. For example,
a company could use activity diagrams to model the flow of approvals for
orders or to model the paper trail of invoices. An accounting firm could use
activity diagrams to model any number of financial transactions. A software
company could use activity diagrams to model a software development
process.

12.3.2 Understanding Workflows
Each activity represents the performance of a group of actions in a workflow.
Once the activity is complete, the flow of control moves to the next activity or
state through a transition. If an outgoing transition is not clearly triggered by
an event, then it is triggered by the completion of the contained actions inside
the activity. A unique activity diagram feature is a swim lane that defines
who or what is responsible for carrying out the activity or state. It is also
possible to place objects on activity diagrams. The workflow stops when a
transition reaches an end state.
You can attach activity diagrams to most model elements in the use case or
logical views. Activity diagrams cannot reside within the component view.

12.3.3 Creating an Activity Diagram
You can create activity diagrams on most model elements except for
attributes, associations, or model elements that appear in the component
view.
To create an activity diagram:
1 In the browser, right-click any model element except for attributes,
associations, or model elements that appear in the component view.

activity

 62

2 Click New > Activity Diagram.
3 Rename or double-click to display the NewDiagram icon in the browser.
Another way to create an activity diagram:
1 Click the Browse State Machine Diagram button from the toolbar.
2 Click New.
3 Select the Activity Diagram check box in the New State Machine dialog
box.
4 Enter the activity diagram title.
5 Click OK.

12.3.4 Activities
An activity represents the performance of “task” or “duty” in a workflow. It
may also represent the execution of a statement in a procedure. An activity is
similar to a state, but expresses the intent that there is no significant waiting
(for events) in an activity.

12.3.5 Swim lanes
Swim lanes are helpful when modeling a business workflow because they can
represent organizational units or roles within a business model. Swim lanes
are very similar to objects because they provide a way to tell who is
performing a certain role. Swim lanes only appear on activity diagrams. You
should place activities within Swim lanes to determine which unit is
responsible for carrying out the specific activity. When a swim lane is
dragged onto an activity diagram, it becomes a swim lane view. Swim lanes
appear as small icons in the browser while swim lane views appear between
thin, vertical lines with a header that can be renamed and relocated.

12.3.6 Objects
Rational Rose allows objects on activity, collaboration, and sequence
diagrams.
Specific to activity diagrams, objects are model elements that represent
something you can feel and touch. It might be helpful to think of objects as
the nouns of the activity diagram and activities as the verbs of the activity
diagram. Further, objects on activity diagrams allow you to diagram the
input and output relationships between activities.

 63

Figure 22: Activity diagram

12.3.7 Object Flow
An object flow on an activity diagram represents the relationship between an
activity and the object that creates it (as an output) or uses it (as an input).
Rational Rose draws object flows as dashed arrows rather than solid arrows
to distinguish them from ordinary transitions. Object flows look identical to
dependencies that appear on other diagram types.
You do not need a transition if your diagram has two activities connected
through an object and two corresponding object flows.

Figure 23: Object Flow

Changing the State of an Object
To change the state of an object on an activity diagram:
1 Double-click the object to display the Object Specification.
2 Select New from the State list. A new State Specification appears.
3 Enter descriptive information about the object state in the State
Specification.
4 Click OK to close the State Specification.
5 Click OK to close the Object Specification.

12.3.8 States

 64

A state represents a condition or situation in the life of an object during
which it satisfies some condition or waits for some event. Each state
represents the cumulative history of its behavior.
Start and End States
A start state explicitly shows the beginning of a workflow on an activity
diagram or the beginning of the events that cause a transition on a
statechart. You can have only one start state on a statechart or activity
diagram. An end state represents a final or terminal state on an activity
diagram or statechart diagram. Place an end state when you want to
explicitly show the end of a workflow on an activity diagram or the end of a
statechart diagram.

12.3.9 Transitions
A state transition indicates that an object in the source state will perform
certain specified actions and enter the destination state when a specified
event occurs or when certain conditions are satisfied. A state transition is a
relationship between two states or two activities, or between an activity and
a state. Transitions originating from a state cannot have the same event,
unless there are conditions on the event. Transitions appear on statechart
and activity diagrams.
Transitions are labeled with the following syntax:
event (arguments) [condition] / action ^ target.sendEvent (arguments)

12.3.10 Decisions
A decision represents a specific location on an activity diagram or statechart
diagram where the workflow may branch based upon guard conditions. There
may be more than two outgoing transitions with different guard conditions
but, for the most part, a decision will have only two outgoing transitions
determined by a Boolean expression.

12.3.11 Synchronizations
Synchronizations allow you to see a simultaneous workflow in an activity
diagram or statechart diagram. They also visually define forks and joins
representing parallel workflow.

12.3.12 State and Activity Actions
Each state and activity on a statechart or activity diagram may contain any
number of internal actions. An action is best described as a “task” that takes
place while inside a state or activity. There are four possible actions within a
state or activity:

• On Entry
• On Exit
• Do
• On Event

 65

12.3.13 Guard Condition
Conditional state transitions are triggered only when the conditional
expression evaluates to true. Conditions are denoted by surrounding
brackets:
Event (args) [condition] / Action ^target.someEvent (args)
To add a condition, click Guard Condition on the State Transition
Specification and type the conditional expression. You may also include a
condition by selecting the event label and changing the text.

13. Interaction Diagrams

An interaction is an important sequence of interactions between objects.
Rational Rose provides two alternate views or representations of each
interaction—a collaboration and sequence diagram. These are collectively
referred to as interaction diagrams. The main difference between sequence
and collaboration diagrams is that sequence diagrams show time-based object
interaction while collaboration diagrams show how objects associate with
each other.

13.1 Creating and Displaying an Interaction Diagram
To create or display a collaboration or sequence diagram:
1 Click Browse > Interaction Diagram. The Select Interaction Diagram dialog
box is displayed.
2 Select a package to “own” the diagram.
3 On the right side of the dialog box, click the diagram name, and then click
OK.

 66

4 From the New Interaction Diagram dialog box, enter the diagram title and
click the diagram type. Your choices are Sequence or Collaboration. Each
diagram type is described in detail later in this chapter.

13.2 Collaboration Diagrams
A collaboration diagram is an interaction diagram which shows the sequence
of messages that implement an operation or a transaction. These diagrams
show objects, their links, and their messages. They can also contain simple
class instances and class utility instances. Each collaboration diagram
provides a view of the interactions or structural relationships that occur
between objects and object-like entities in the current model.
You can create one or more collaboration diagrams to depict interactions for
each logical package in your model. Such collaboration diagrams are
themselves contained by the logical package enclosing the objects they depict.
During analysis, collaboration diagrams can indicate the semantics of the
primary and secondary interactions.
During design, collaboration diagrams can show the semantics of
mechanisms in the logical design of the system.
Use collaboration diagrams as the primary vehicle to describe interactions
that express your decisions about the behavior of the system. They can also
be used to trace the execution of a scenario by capturing the sequential and
parallel interaction of a cooperating set of objects. Collaboration diagrams
may also depict interactions that illustrate system behavior.
Collaboration diagrams provide a view of the interactions or structural
relationships between objects in the current model. This type of diagram
emphasizes the relationship between objects whereas sequence diagrams
emphasize the sequence of events. Collaboration diagrams contain objects,
links, and messages. Use collaboration diagrams as the primary vehicle to
describe interactions that express decisions about system behavior.

Figure 24: Collaboration Example

13.2.1 Collaboration Diagram Toolbox

 67

The graphic below shows all the tools that can be placed on the collaboration
diagram toolbox. The application window displays the following toolbox when
the current window contains a collaboration diagram and you have selected
View > As Unified.

Figure 25: Collaboration Toolbox

13.3 Sequence Diagrams
A sequence diagram is a graphical view of a scenario that shows object
interaction in a time-based sequence—what happens first, what happens
next. Sequence diagrams establish the roles of objects and help provide
essential information to determine class responsibilities and interfaces.
Sequence diagrams are normally associated with use cases.
This type of diagram is best used during early analysis phases in design
because they are simple and easy to comprehend. A sequence diagram has
two dimensions: typically, vertical placement represents time and horizontal
placement represents different objects.
Sequence diagrams are closely related to collaboration diagrams and each are
alternate representations of an interaction. A sequence diagram traces the
execution of a scenario in time.
A sequence diagram illustrates object interactions arranged in a time
sequence. These diagrams are typically associated with use cases. Sequence
diagrams show you step-by-step what has to happen to accomplish something
in the use case. This type of diagram emphasizes the sequence of events,
whereas collaboration diagrams (an alternative view of the same information)
emphasize the relationship. This type of diagram is best used early in the
design or analysis phase because it is simple and easy to comprehend.

 68

Figure 26: Sequence Diagram

13.3.1 Sequence Diagram Toolbox
The graphic below shows all the tools that can be placed on the sequence
diagram toolbox. Refer to Customizing the Toolbox on page 14 for information
on adding or deleting tools on a diagram toolbox.
The application window displays the following toolbox when the current
window contains a sequence diagram and you have selected View > As
Unified.

Figure 27: Sequence Toolbox

13.3.2 Object
One of the primary elements of a collaboration or sequence diagram is an
object. An object has state, behavior, and identity. The structure and
behavior of similar objects are defined in their common class. Each object in a
diagram indicates some instance of a class. An object that is not named is
referred to as a class instance.
The object icon is similar to a class icon except that the name is underlined.
If you use the same name for several object icons appearing in the same
collaboration diagram, they are assumed to represent the same object;
otherwise, each object icon represents a distinct object. Object icons
appearing in different diagrams denote different objects, even if their names
are identical. Objects can be named three different ways: object name, object
name and class, or just by the class name itself.

 69

13.3.3 Multiple Objects
If you have multiple objects that are instances of the same class, you can
modify the object icon by selecting the Multiple Instances check box in the
Object Specification. When you select this check box, the icon is changed from
one object to three staggered objects.

13.3.4 Messages
A message icon represents the communication between objects, indicating
that an action will follow. Each message icon represents a message passed
between two objects, and indicates the direction a message is going. A
message icon in a collaboration diagram can represent multiple messages. A
message icon in a sequence diagram represents exactly one message. A
message is the communication carried between two objects that triggers an
event. A message carries information from the source focus of control to the
destination focus of control. A message is represented on collaboration
diagrams and sequence diagrams by a message icon which visually indicates
its synchronization. The synchronization of a message can be modified
through the message specification.
If all messages represented by a message icon do not have the same
synchronization, the simple message icon is displayed. You can change the
synchronization of the message by editing the message specification.

13.3.5 Links
Objects interact through their links to other objects. A link is an instance of
an association, analogous to an object being an instance of a class. A link
should exist between two objects, including class utilities, only if there is a
relationship between their corresponding classes. The existence of a
relationship between two classes symbolizes a path of communication
between instances of the classes: one object may send messages to another.
Links can support multiple messages in either direction. If a message is
deleted, the link remains intact.

13.3.6 Sequence Numbering
Sequence numbering allows you to clearly see how messages interact and
relate to one another. Numbering messages can be done two ways on
sequence diagrams: top level numbering (a 1, 2, 3 pattern) or hierarchical
numbering (a 1.1, 1.1.2, 1.1.3 pattern). Only top level numbering is available
on collaboration diagrams. However, if you create a collaboration diagram
from a sequence diagram with hierarchal numbering, the hierarchal
numbering is retained.
• Top-Level Numbering

Top-level numbering gives each message or message to self a single
number. There are no number subsets. Top-level numbering is useful in
small sequence diagrams with few objects and messages.

 70

• Hierarchical Numbering
Hierarchical numbering bases all messages on a dependent message. For
example, you could have messages numbered 1, 1.1, 1.2, 1.2.1, where
message number 1is an independent message. All other message
numbers numbered 1.x and beyond are dependent on message 1. If you
remove independent message 1 from the diagram, all dependent
messages will be removed.

To display hierarchical numbering:
1 Click Tools > Options.
2 Click the Diagram tab.
3 Select the Sequence Numbering check box.
4 Select the Hierarchical Messages check box.

13.3.7 Scripts
Scripts are used to enhance messages on sequence diagrams; they are text
fields that attach to messages.
To create and attach a script:
1 Click the message icon and drag it between two objects.
2 Create text by either:
• Using the ABC icon.
• Clicking Tools > Create >Text.

3 Select one or more labels. Press the CTRL or SHIFT key to enable multiple
selections.
4 Select one message.
5 Click Edit > Attach Script to attach the script to the message.

13.3.8 Focus of Control
Focus of Control (FOC) is an advanced notational technique that enhances
sequence diagrams. This technique shows the period of time during which an
object is performing an action, either directly or through an underlying
procedure.
FOC is portrayed through narrow rectangles that adorn lifelines (the vertical
lines descending from each object). The length of an FOC indicates the
amount of time it takes for a message to be performed. When you move a
message vertically, each dependent message will move vertically as well.
Also, you can move an FOC vertically off the source FOC to make it detached
and independent.

 71

14. Component Diagrams

14.1 Overview
A component diagram shows the physical dependency relationships (mapping
to a file system) between components—main programs, subprograms,
packages, and tasks—and the arrangement of components into component
packages.

Figure 28: Component Diagram

Component diagrams are contained (owned) either at the top level of the
model or by a package. This means the diagram will depict the components
and packages in which the diagram is contained.

14.2 Creating and Displaying a Component Diagram
You can create or display the component diagram in one of three ways:

• Click Browse > Component Diagram.
• On the toolbar, click the component diagram icon.
• On the browser, double-click the component diagram icon.

14.3 Component Diagram Toolbox
The application window displays the following toolbox when the current
window contains a component diagram and View > As Unified is selected.

 72

 Figure 29: Component Toolbox

15. Deployment Diagrams

15.1 Overview
A deployment diagram shows processors, devices, and connections. Each
model contains a single deployment diagram that shows the connections
between processors and devices, and the allocation of its processes to
processors.

Figure 30: Deployment Example

15.2 Creating and Displaying a Deployment Diagram
You can create or display the deployment diagram in one of three ways:

• Click Browse > Deployment Diagram.
• On the toolbar, click the deployment diagram icon.
• In the browser, double-click the deployment diagram icon.

15.3 Deployment Diagram Toolbox
The application window displays the following toolbox when the current
window contains a deployment diagram and you have selected View > As
Unified:

 73

Figure 31: Deployment Toolbox

15.4 Processor Specification
A Processor Specification displays and modifies the properties and
relationships of a processor in the current model. Some of the information on
the specification can also be displayed inside icons representing the processor
in a model's deployment diagram.

15.5 Processor
The owner of the process is shown here.

15.6 Priority
This field contains the relative priority of this process, if there is one. You can
use this information with the scheduling type identified in the Processor
Specification to schedule process execution.

15.7 Characteristics
Use the Characteristics field to specify a physical description of an element.
For example, you can describe the kind and bandwidth of a connection; the
manufacturer, model, memory, and disks of a machine; or the kind and size of
a device. You can set this field only through the specification. This
information is not displayed in the deployment diagram.
To update this field, click the Characteristics field and enter the information.
Processes Use this field to identify the processes assigned to this processor.
Processes denote either the root of a main program from a component
diagram or the name of an active object from a collaboration diagram.
To create a process, right-click in the processes area and click Insert from the
shortcut menu. A new process entry is created. To change the name or
priority, click the item and type the changes. You can display a list of the
processes by selecting the processor icon and clicking Show Processes from
the shortcut menu.

15.8 Scheduling
The Scheduling field specifies the type of process scheduling used by the
processor. Use these options to specify the appropriate scheduling.

 74

Table 6: Scheduling Options

16. Case Study:

Student Registration System

 75

16.1 Problem Statement

16.1.1 Case Study Background
Course registration at the local university is currently done by hand. Students fill out
forms that contain their course selections and return the forms to the registrar. Clerks then
enter the selections into a database and a process is executed to create student schedules.
The registration process takes from one to two weeks to complete.

The university decided to investigate the use of an online registration system. This system
would be used by professors to indicate the courses they would teach, by students to
select courses, and by the registrar to complete the registration process.

16.1.2 Problem Statement
At the beginning of each semester students may request a course catalogue containing a
list of course offerings for the semester. Information about each course, such as professor,
department, and prerequisites will be included to help students make informed decisions.

The new on-line registration system will allow students to select four course
offerings for the coming semester. In addition, each student will indicate two
alternative choices in case a course offering becomes filled or canceled. No
course offering will have more than ten students. No course offering will have

 76

fewer than three students. A course offering with fewer than three students
will be canceled. Once the registration process is completed for a student, the
registration system sends information to the billing system, so the student
can be billed for the semester.

Professors must be able to access the on-line system to indicate which courses
they will be teaching. They will also need to see which students signed up for
their course offering.

For each semester, there is a period of time that students can change their
schedules. Students must be able to access the on-line system during this
time to add or drop courses. The billing system will credit all students for
courses dropped during this period of time.

16.1.3 Project Summary
This system will have a short inception phase during which prototyping is used to select
the database. The use case diagram is started in the inception phase and matured in the
elaboration phase. By the end of the elaboration phase, an architectural iteration is
complete. The system is evolved in the construction phase in two iterations. The process
components of requirements analysis, design, implementation and test are used in all
phases of the project lifecycle.

16.2 The Inception Phase

16.2.1 Business Goals and Needs

The first question to address is the need for a new registration system. Does
the University have the resources needed to design and implement the new
system? In addition to the assessment of need for the system, the risks posed
by the new system are elaborated. In the case of an on-line registration
system, one of the major risks is the ability to store the information in a
manner that is easily and quickly accessible by all.

For the purposes of this case study it was decided that the new system should
be built. Prototypes were completed to address the database risks.

16.2.2 Definition of Actors

The following actors were defined for the problem:

 77

 Student--someone who is registered to take courses at the University.
 Professor--someone who is licensed to teach at the University.
 Registrar--someone who is responsible for the maintenance of the

Registration System.
 Billing System--external system that bills students each semester.

16.2.3 Use Cases

The following use cases were elaborated for each actor:

 Student
 Register for courses.

 Professor
 Select courses to teach.
 Request course offering roster.

 Registrar
 Generate course catalogue.
 Maintain professor information.
 Maintain student information.
 Maintain curriculum.

16.2.4 Use Case Diagram in Rational Rose

The use case diagram is contained within a class diagram in the use case
view of the tool. Actors are shown as stickmen and use cases are shown as
ovals. The use case diagram is shown in Figure.

 78

Student

Billing System

Register for courses

Registration

<<communicate>>

Select courses to teach

Request Course roster

Professor

Maintain Student Information

Maintain Course information Maintain professor information

Create course catalogueRegistrar

Figure 32: Use Case Diagram

A brief description is created for each use case. The brief description is
entered in the Documentation field of the use case specification in the tool.
The brief description of each use case follows:

 Register for courses
 The use case is started by the student. It provides the capability

to create, review, modify, and delete a course schedule for a
specified semester. All pertinent billing information is sent to
the Billing System.

 Request class roster
 This use case is started by the professor. It provides the

capability to request a printed list of all students assigned to a
specified course offering.

 Select courses to teach
 This use case is started by the professor. It provides the

capability to select, review, modify, and delete a list of courses to
teach for a specified semester.

 79

 Maintain professor information
 This use case is started by the registrar. It provides the

capability to create, review, modify, and delete professor
information.

 Maintain student information
 This use case is started by the registrar. It provides the

capability to create, review, modify, and delete student
information.

 Maintain curriculum
 This use case is started by the registrar. It provides the

capability to create, review, modify, and delete a list of course
offerings for a given semester.

 Generate catalogue
 This use case is started by the registrar. It provides the

capability to generate a catalogue containing a list of course
offerings for a specified semester.

Select courses to teach Request Course roster

Professor

Validate User

<<include>>

<<include>>

Figure 33: Use Case Dependency

During Inception, the flow of events (including any identified alternate flows)
for the most important use cases is documented.

In Rose, the flow of events is entered via a link to an external document. The
flow of events for the Register for Courses use case is shown below.

 80

16.2.5 Flow of Events: Register for Courses Use Case

This use case begins when the student enters the student id number. The
system verifies that the student id number is valid and prompts the student
to select the current semester or a future semester. The student enters the
desired semester. The system prompts the student to select the desired
activity:

 Create a schedule.
 Review a schedule.
 Change a schedule:

 Delete a course.
 Add a course.

The student indicates that the activity is complete. The system will print the
student schedule and notify the student that registration is complete. The
system sends billing information for the student to the billing system for
processing.

Alternate flow: Register for Courses Use Case

If an invalid id number is entered, the system will not allow access to the
registration system.

If an attempt is made to create a schedule for a semester where a schedule
already exists, the system will prompt for another choice to be made.

16.2.5.1 Create a Schedule

The student enters 4 primary course offering numbers and 2 alternate course
offering numbers. The student then submits the request for courses. The
system then:

1. Checks that prerequisites are satisfied for the requested course.
2. Adds the student to the course offering if the course offering is open.

Alternate flow

If a primary course offering is not available, the system will substitute an
alternate course offering.

 81

16.2.5.2 Review a Schedule

The student requests information on all course offerings in which the student
is registered for a given semester. The system displays all courses for which
the student is registered including course name, course number, course
offering number, days of the week, time, location, and number of credit hours.

16.2.5.3 Change Schedule - Delete a Course

The student indicates which course offerings to delete. The system checks
that the final date for changes has not been exceeded. The system deletes the
student from the course offering. The system notifies the student that the
request has been processed.

16.2.5.4 Change Schedule - Add a Course

The student indicates which course offerings to add. The system checks that
the final date for changes has not been exceeded. The system then:

1. Verifies that the maximum course load for the student has not been
exceeded.

2. Checks that prerequisites are satisfied for the requested course.
3. Adds the student to the course offering if the course offering is open.

16.2.6 Flow of Events: Select Courses to Teach

16.2.6.1 Brief Description

This USE Case begins when the professor logs onto the registration system
and enters his/her password. The system verifies that the password is valid
(if password is invalid, Alternate flow is executed) and prompts the professor
to select the current semester or a future semester(if an invalid semester is
entered, Alternate flow executed). The professor enters the desired activity:
ADD, DELETE, REVIEW, PRINT or QUIT.

16.2.6.2 Basic Flow

If the activity is ADD, the system displays the course screen containing a
field for a course name and number. The professor enters the name and
number. The professor enters the name and number of a course (if an invalid
name/number is entered, alternate flow executed). The system displays the
course offerings for the entered course (if the course name cannot be

 82

displayed, alternate flow executed). The professor selects a course offering (if
link cannot be created, alternate flow executed). The system links the
professor to the selected course offering. The use case then begins again.

If the activity selected is DELETE, the system displays the course offering
screen containing a field for a course offering name and number. The
professor enters the name and number of a course offering (if invalid
number/name combination is entered, alternate flow executed). The system
removes the link to the professor (if the link cannot be removed, alternate
flow is executed). The Use Case then begins again.

If the activity selected is REVIEW, the system retrieves (if the course
information cannot be retrieved, alternate flow executed) and displays the
following information for all course offering for which the professor is
assigned: course name, course number, course offering number, days of the
week, time and location. When the professor indicates that he or she is
through reviewing, the Use Case begins again.

If the activity selected is PRINT, the system prints the professor’s schedule (if
the schedule cannot be printed, alternate flow executed). The Use Case
begins again.

If the activity is QUTI, the Use Case ends.

16.2.6.3 Alternate Flow

Invalid Password

An invalid password is entered. The user can re-enter a password or
terminate the Use Case.

Invalid Semester

The system informs the user that the semester is invalid. The user can re-
enter the semester or terminate the Use Case.

Invalid Course Name/Number

The system informs the user that the course name/number is invalid. The
user can re enter a valid name/number combination or terminate the Use
Case.

Course Offering Cannot be Displayed

 83

The user is informed that this option is not available at this current time.
The Use Case begins again.

Cannot Create Link Between Professor and Course Offering

The information is saved and the system will create the link at a later time.
The Use Case begins again.

Link Between Professor and Curse Offering Cannot be Removed

The information is saved and the system will remove the link at a later time.
The Use Case begins again.

Schedule Information Cannot be Retrieved

The user is informed that this is not available at the current time. The Use
Case begins again.

Schedule cannot be printed

The user is informed that this option is not available at the current time. The
use case begins again.

16.2.7 Activity Diagram

 84

Figure 34: Activity Diagram For Create Catalogue

 85

16.3 The Elaboration Phase

During Elaboration, some of the most important and critical use cases are
implemented. During this phase, the focus is good class structure and
architecture.

16.3.1 Development of Scenarios

Each use case is a web of scenarios. Scenarios are documented using
Sequence Diagrams. Objects are represented as vertical lines and messages
between objects are shown as directed horizontal lines. Sequence diagrams
are drawn in the Use Case View of the tool. The Sequence Diagram for the
Add a Course scenario is shown in Figure.

Figure 35: Sequence Diagram for the Add a Course Scenario

16.3.2 Creating "Real World" or "Business" Classes

Objects are discovered by examining the use cases and scenarios and grouped
into classes. Each class should have a definition which states the purpose of
the class. Packages are created to hold logical groups of classes. Classes and
packages are drawn in the Logical View of the tool. The following packages
and classes have been created for the registration system:

 People
 StudentInfo--Information about the student actor needed by the

registration system (for example, name, address, phone,
idNumber, major, gradDate).

 86

 ProfessorInfo--Information about the professor actor needed by
the registration system (for example, name, address, phone,
idNumber, tenureStatus).

 UniversityArtifacts
 Course--General information about selections for a semester (for

example, name, description, creditHours).
 CourseOffering--Specific information about selections for a

semester (for example, daysOffered, timeOfDay, location).
 StudentSchedule--Output report containing the list of registered

course offerings generated when a student registers for a course.
 CourseRoster--Output report containing the list of registered

students for a specific course offering generated for a professor.
 Interfaces

 RegistrationForm--Form which provides the capability for a
student to select registration options.

 Add/DropForm--Form which provides the capability for a
student to modify a course schedule.

 CourseSelectionForm--Form which provides the capability for a
professor to add/drop courses to teach.

 StudentMaintenanceForm--Form which provides the capability
for the registrar to add/delete/modify student information.

 ProfessorMaintenanceForm--Form which provides the capability
for the registrar to add/delete/modify professor information.

 CourseMaintenanceForm--Form which provides the capability
for the registrar to add/delete/modify course and course offering
information.

Class diagrams are created to graphically depict the packages and classes in
the model. The Main class diagram typically contains only packages. Each
package contains its own class diagrams. The Main class diagram for a
package contains the public classes of the package (classes that communicate
with classes in other packages). Other class diagrams are created as needed.
Class diagrams are contained in the Logical View of the tool.

Use cases and scenarios are examined to determine the relationships needed
by the system. Relationships between classes are created and displayed on
selected class diagrams.

Attributes (structure) and operations (behavior) are added to the classes to
carry out the functionality specified in the use cases.

Sequence diagrams are updated to show the allocation of objects to classes
and the replacement of messages with operations.

 87

Some class diagrams for the Registration System are shown in Figures
through. An updated sequence diagram is shown in Figure.

Interfaces University
Artifacts

People Info

Figure 36: Main Class Diagram

Figure 37: Main Class Diagram for the People Package

http://www.augustana.ca/~mohrj/courses/2003.fall/csc220/papers/rational_approach_to_software_development/ratapr_fig9.gif
http://www.augustana.ca/~mohrj/courses/2003.fall/csc220/papers/rational_approach_to_software_development/ratapr_fig9.gif

 88

Figure 38: Main Class Diagram for the University Artifacts Package

Figure 39: Course Reporting Class Diagram in the University Artifacts Package

Figure 40: Main Class Diagram for the Interfaces Package

 89

Figure 41: Updated Sequence Diagram

Professor

(from People Info)

Courseoffering

add professor()
get offering()

(from University Arti facts)

Teaches

Course

name
despription
credithours

get offering()
add professor()

(from University Arti facts)

1..n

1

1..n

1

Professor Course
manager

Set professor()
get offering()

(from University Arti facts)

1..n

0..*

1..n

0..*

Manages

Professor course offering

(from Interfaces)

Add acourseoffering

(from Interfaces)

1

1

1

1

11 11

Figure 42: Class Diagram with Class types

 90

 : Registrar A course Form the manager a course : Course

Set Course Info

Process

add course

New course

Figure 43: Sequence Diagram for Registrar

 : Registrar

A course
Form

the
manager

a course : Course

1: Process
2: Set Course Info

3: add course

4: New course

Figure 44: Collaboration Diagram for Registrar

 91

16.3.3 Software Architecture

As the elaboration phase of development continues, decisions concerning the
architectural framework for the project are made. Scenarios are updated to
show the interaction of the real world objects with the objects representing
the architectural decisions. Packages and classes that carry out the
architectural functionality are added to the logical view.

In the Course Registration system, the following architectural decisions were
made:

 Containers and GUI classes to be used are in the MFC class library.
 A commercial relational database was chosen and classes to

communicate with the database were created.
 A set of error classes were created to facilitate common error handling

strategies.

The updated Main Class Diagram and an updated Sequence Diagram are
shown in Figures.

Figure 45: Main Class Diagram

 92

Figure 46: Updated Sequence Diagram

The next step is to implement a set of scenarios that address the major
architectural issues. This is done to ensure early feedback and identification
of problems. For this problem, the Maintain Curriculum Use Case was
implemented since it addressed the major risk of this system--the database
risk.

16.3.4 Iteration Planning

Another activity in the elaboration phase is the creation of the iteration plan.
The goal of an iteration is to reduce risk in the system while incrementally
building the final product. Use cases and scenarios are examined and
prioritized to create the initial project plan. As each iteration is completed,
risks are re-evaluated and the project plan is updated as needed.

For the Course Registration system the iteration plan is:

 Iteration 1
 Maintain curriculum.

 Iteration 2
 Maintain student info.
 Maintain professor info.
 Select courses to teach.
 Generate catalogue.

 Iteration 3
 Register for courses.
 Request class roster.

 93

16.4 The Construction Phase

16.4.1 Construction Activities

During Construction, all remaining scenarios will be specified and
implemented. At this time, many of the secondary scenarios are addressed.

16.4.2 Building an Iteration

This case study concentrates on the "Add a Course" scenario which is shown
in Figure. During this phase of development, the classes that participate in
the iteration are designed and implemented. Class diagrams are created to
show the focus of the iteration.

For the Course Registration problem, the following design decisions are
made:

 Controller class—CurriculumManager added. This class knows the
business rules associated with the management of a curriculum.

 Scenario diagrams are updated to show new interactions with the
CurriculumManager.

 Some interactions between objects are deleted due to the
addition of the controller.

 Data types and signatures are provided for all attributes and
operations.

 Association navigation is designed.
 Associations are changed into dependency relationships where

appropriate.

An updated Sequence diagram showing the interaction with the added
controller class is shown in Figure.

 94

Figure 47: Updated Sequence Diagram

16.4.3 Add a Course
A package called Iteration 1 is added to the logical view of the model. Class diagrams
showing the classes in the iteration are added to the package. A class diagram showing
the design decisions made for the "Add a Course" scenario is shown in Figure.

Figure 48: Class Diagram "Add a Course"

The code for the iteration is completed and the iteration is tested and
documented. The completed iteration is integrated with any previous
iteration.

http://www.augustana.ca/~mohrj/courses/2003.fall/csc220/papers/rational_approach_to_software_development/ratapr_fig15.gif
http://www.augustana.ca/~mohrj/courses/2003.fall/csc220/papers/rational_approach_to_software_development/ratapr_fig15.gif

 95

Maintain Course information

(from Use Case View)

Maintain course information

Maintain Course information Maintain professor information

Maintain Student Information Register for courses

Request Course roster Select courses to teach

Validate User

(from Use Case View)

Validate User

 Figure 49: Realization Diagram

 96

 : Professor : Professor course offering : Add acourseoffering : Professor Course
manager

 : Course : Courseoffering

Enter Password

Enter Semester

add a offering

display

Select Math 101

select offering

display offering

get offering()

get offering()

get offering()

add professor()

add professor()

verify password

Set professor()

Figure 50: Sequence Diagram for Add a course offering

 97

16.4.4 State Chart Diagram

Initialization

do/ Initialize course offering data

Open

entry/ Register Student
exit/ CourseRoster Add Student(Student)

Closed

do/ Finalize Course

Canceled

add student / set count = 0 ^Course Roster.create

Cancel

 ^CourseRoster.delete

[count =10]

cancel

add student[count < 10]

 Figure 51: Course Offering States

 98

16.4.5 Main Component Diagram

Interface

University

Database FoundationError Handling

Figure 52: Main Component Diagram

Course Course
Offering

Registration
User

Professor Student

Figure 53: University Main Component Diagram

 99

16.5 The Transition Phase

The system was successfully transitioned to the University community in two
releases--beta and the final system. During the beta period, bugs were
discovered, reported and fixed by the development staff. After using the beta
version of the system, professors added the requirement to view a class roster
on-line. This requirement was successfully implemented and available in the
final release of the system. Students and professors were pleased with the
time savings provided by the paperless system.

Due to the success of the Registration System it was decided that another
version of the system should be developed to provide an on-line catalogue of
course offerings. Budgets and staff were approved and the process began
again.

16.5.1 Deployment View

Database
Server

Registration

Dormatory Main Building Library

Figure 54: Main Deployment Diagram

 100

17. Case Study:
Online Auction System

 101

17.1 Problem Statement

As the head of Information Technology at Crimson Systems Ltd. you are tasked with
developing a Real Time Auction System.

The new system will be a web-based application available to everyone around the world.
The bidding process will start with a registration process to collect user details and
transmission information from the participants .The user will have the choice to enter for
bidding and/or for selling items. There will be a cart which will display all available
items along with their current price, condition of item and the end date of bidding for that
particular item. The favorites / Bestsellers items will also be displayed.

If the user wants to sell an item then he/she has to give the details of the item for bidding
and if the user wants to start bidding then he/she must check out the item details along
with the details of the item’s seller before making a bid. Bidding process will be
conducted in rounds .In each round there will be a timing constraint in which a client
should make a bid .At the end of the bid ,the server will determine the highest bid
received and broadcasts this to all the clients. This process will continue till no client
sends a new bid or the highest bid remains constant for three consecutive rounds .The
final result will then, be broadcasted by the server to all clients and the bidding process
will be terminated

 If the user makes the highest bid then he/she will be informed via email and he/she will
be required to give the order details. If the user is out bided then also he/she is informed
via email about the winning bid and runner ups.

The system aims to provide reliable real time open-bid auction i.e. all customers should
come to know of a bid made by someone else in a minimum amount of time. Moreover,
the auctioning protocol used will be reliable which means that it will have a bounded and
predictable communication delay.

In addition to real-time concerns associated with auctions ,there are also privacy concerns
.This makes sealed bid auctions necessary .So, no auction bid should be revealed except
for the winning bid and the runner ups, no winner should be able to repudiate his bid and
the auction should be carried out in real-time

One of the most important issues related to real time auction is the payment method. This
will be secure, reliable, scalable, anonymous, flexible, convertible, integrated and easy to
use. The methods used will be Cash on Delivery, Cheque, and ATM Drop Box.

The system will be completely distributed; Scalable and synchronization of all the
components will be maintained

 102

17.2 Real Time Auction System Glossary

1. Introduction

This document is used to define terminology specific to the problem domain ,explaining
terms, which may be unfamiliar to the reader of the use-case descriptions or other project
documents .Often ,this document can be used as an informal data dictionary ,capturing
data definitions so that use-case descriptions and other project documents can focus on
what the system must do with the information.

2. Definitions
The glossary contains the working definitions for the key concepts in the Real Time
Auction System.

2.1 Real Time System
It is a system having well-defined, fixed time constraints.

2.2 Bidding
 Propose a payment; as at sales or auctions

2.3 Registration Process

The process by which each user enters his/her details before he/she starts selling/bidding.

2.4 Cart
It is like a wagon containing all items to be auctioned

2.5 Order Details

It will contain the details of the item for which the highest bid was made by the user
along with the delivery charges and payment methods .

2.6 Protocol
It is a set of rules that govern the format and transmission of data across any two
corresponding layers

2.7 Condition of item
It tells whether the item is first hand or second hand.

2.8 Distributed System
It is distributed computing system that uses distributed operating system.

2.9 Scalable System
This is the one in which addition and deletion of users has no effect on the functionality.

 103

2.10 Secure Payment
 To preserve integrity of payment data.

2.11 Reliable Payment
 So that the infrastructure can withstand denial of service attacks and network failures.

2.12 Scalable Payment
The payment method will be able to handle increase /decrease in number of users
without deterioration of performance.

2.13 Anonymous Payment

 The identity of the users to the transaction will be protected and it will not be possible
to monitor an individual’s spending patterns or to find out his source of income.

2.14 Flexible Payment

 It will be possible to incorporate other payment methods.

2.15 Convertibility in Payment
 It will be possible to convert one electronic currency to another.

2.16 Integrated Payment

 The initial set-up cost should not be high

 104

17.3 System Requirement Specifications

1 Introduction

1.1 Purpose

This document deals with the detailed specification based on complete
analysis, study, environment, background, manual interactions of the system
and complete analysis of the problem statement. It provides an overview of
the project REAL TIME AUCTION SYSTEM. The system developed would be
web based.

1.2 Scope

This document is prepared after understanding the exact requirements of
the Project. It documents all the functions, performance and interfacing
requirements for the software. Thus it describes the ‘what’ of the system

1.3 Definitions, Acronyms, Abbreviations

 Definitions Not applicable
 Acronyms
 Name Acronym
 Buyer Customer, Consumer
 Zip Code Postal Code, Pin Code
 Seller Retailer
 Logout Signout

 Abbreviations
 Name Abbreviation
 Date of Birth DOB, Dob
 Payment Preferences PayPref
 Hot Selling HotS
 Ending Soon EndS
 Second Hand Goods SHGoods
 Paisa Auction PA
 1 Paisa Auction OnePA
 View Cart BView
 Seller View SView
 Telephone Number Tel

 105

 STD Code STD
 Contact Time CTime
 Extra Charges Extra
 Current Bid History CBHist
 Warranty Options Warr
 Current Price CP
 Indicative MP MP
 Starting Bid SBid
 Your Maximum Bid YMBid
 Confirm Password CPass
 Confirm ID CID
 Update Profile Pupdate
 Update Password Passup
 Update email id IDup
 Boli Password PBoli
 Boli ID IDBoli
 Balance Bal
 Memory Mem
 List of Items Litem
 Select Item Sitem
 Bid Now BID
 Location Loc
 Member Memb

1.4 References

Crimson Systems Ltd. is one of the leading companies in web-based
applications. The real time auction system is one of the emerging services
that would be provided by Crimson Systems Ltd. The project is being
developed by the Research Department. The Project has been named “BOL
BOLI BOL”.

1.5Overview
The Real Time Auction System provides its users the facility for bidding for
items along with the option to enter their items for auction. The whole
process is aimed at being optimizing, to ensure proper co-ordination. The
results of each bid are mailed to the participants of the particular bid.

2 Overall Descriptions

2.1 Product Perspective

 106

2.2 Product Functions

1 Join Now 2 UserID 3 Password
4 Login 5 Forgot Password 6 OK
7 Home 8 Name 9 Email ID
10 Confirm ID 11 Boli ID 12 Boli Password
13 Date of Birth 14 Accept terms and Submit 15 Cancel
16 Help 17 Start Selling 18 View Cart
19 Buyer View 20 Seller View 21 Update Profile
22 Update Password 23 Update email id 24 Logout
25 Favorites 26 Hot Selling 27 Ending Soon
28 Second Hand Goods 29 Paisa Auction 30 1 Paisa
Auction
31 List of Items 32 Payment preferences 33 Extra Charges
34 Current Bid History 35 Bid Win 36 Bid Lost
37 Balance 38 Address 39 Country
40 City 41 Zip Code 42 Contact Time
42 STD Code 43 Telephone Number 44 Select Item
46 Condition 47 Warranty Options 48 Items
49 Picture 50 Type 51 Current Price
52 Ends 53 Bid Now 54 Starting Bid
55 Indicative MP 56 Time Left 57 Your
Maximum
 Bid
57 Quantity 58 Item Description 59 ID
(Seller)
61 Location (Seller) 62 Member Since (Seller) 63Place a Bid
64 Model 65 Features 66 Memory
67 List Item 68 Go back to Cart

2.3 User Characteristics

 107

The online version of THE Real Time Auction System will be launched in the
market on 1st October 2005. Along with the software the package will contain
user and system manuals.

User Manual : To guide the user regarding the use of the software ,what to do
in case of troubleshooting

 User Manual for Time Auction System in Crimson Systems Ltd.

System Manual : Which will tell how the package functions, what should be
the inputs, what would be the outputs, as well as the complete
documentation.

 System Manual for Time Auction System in Crimson Systems
Ltd.

2.4 Constraints

 Minimum Hardware Specification
 For Server

 40 GB Hard disk
 128 MB RAM
 52X CD-ROM
 Pentinum-IV Processor
 (Minimum 32 Bit Processor)
 MotherBoard

 Implementation Language
 ASP

 OS Used
 Windows 2000 Advanced Server(for server)
 Windows 98 and onwards(for client)

 Security Considerations
 All the modules must be properly integrated together. Loopholes

 108

 in the software must be avoided to prevent any possible security
 breach. Necessary security parameters must be considered and
 integrated .

2.5 Assumptions and Dependencies

 Assumptions

• No time Delay
• Rollback and error recovery are possible in every case
• No loopholes are present in the software developed
• Fully secure
• User checks both item & seller details before bidding
• The system uses sealed bid auctions
• Auctions are carried out in real time
• The server itself determines the highest bid during

successive rounds and broadcasts the results accordingly.

• No user can access other users account or details

 Dependencies

• Bid results depend on date and time of bidding
• The major factor on which the whole application depends is

Communication and Transmission time
• Buyer as well as Seller profile contains details which are

dependant on the bids made and transaction
completed

3 Specific Requirements

3.1 External Interfaces

Total 21 Screens and 68 Items

No.1
(i)Name of item Join Now
(ii)Description of purpose For making new users this link
is
 pressed
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs User profile created by
this
 function

 109

(viii)Screen format 2 input fields,1 push button,3
 links
(ix)Data format NA
(x)Window format Default Window having
resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.2
(i)Name of item UserID
(ii)Description of purpose Name of user to identify him as
an
 authenticated user
(iii)Source of input RTAS
(iv)Valid range & accuracy 20 Characters(max) and
the first
 must be an alphabet
(v)Units of measurement Alphabets ,numbers &
underscore
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user to log into &
access
 the auction system
(viii)Screen format 2 input fields,1 push button,3
 links
(ix)Data format Data displayed as the values
input
 from keyboard
(x)Window format Default Window having
resolution 640 x 480
(xi)Command format NA
(xii)End Message NA

No.3
(i)Name of item Password
(ii)Description of purpose Password of user to identify him
 as an authenticated user
(iii)Source of input RTAS
(iv)Valid range & accuracy 20 Characters(max)
(v)Units of measurement Alphabets ,numbers
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user to log into & access
the auction system

 110

(viii)Screen format 2 input fields,1 push button,3 links
(ix)Data format Data displayed as “********..”
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.4
(i)Name of item Login
(ii)Description of purpose allows user to login if userid &
password
 are correct
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user to log into & access
the
 auction system
(viii)Screen format 2 input fields,1 push button,3 links
(ix)Data format NA
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message The “Wrong” message is displayed if
the
 userid or password is not correct

No.5
(i)Name of item Forgot Password
(ii)Description of purpose Allows user to get a new password if
he
 Forgets his boli password
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user to log into & access
the
 auction system
(viii)Screen format 2 input fields,1 push button,3 links
(ix)Data format NA
(x)Window format Default Window having resolution
 640 x 480

 111

(xi)Command format NA
(xii)End Message The “NEW PASSWORD” message is
 displayed

No.6
(i)Name of item OK
(ii)Description of purpose Acts as enter ie if the user agrees with
 the given data and wants to proceed
he
 presses this button
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs NA
(viii)Screen format 1 push button in 5 screens
(ix)Data format NA
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.7
(i)Name of item Home
(ii)Description of purpose Allows user to go to the HOMEPAGE
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs NA
(viii)Screen format 1 link in 10 screens
(ix)Data format NA
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.8
(i)Name of item Name
(ii)Description of purpose Name of the user
(iii)Source of input NA
(iv)Valid range & accuracy characters(max 40)
(v)Units of measurement Alphabets and ‘.’ only
(vi)Timing Infinite

 112

(vii)Relationship to other inputs/outputs Allows user to enter his profile
details
(viii)Screen format 6 text fields,3 popup menus,2 push
 button,2 links
(ix)Data format Data displayed as the values input
from
 keyboard
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.9
(i)Name of item Email ID
(ii)Description of purpose It the id to where all the emails to the
 user will be sent
(iii)Source of input NA
(iv)Valid range & accuracy characters/numbers/
 underscore@mailprovider.com
(v)Units of measurement characters , numbers and underscore
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user enter his profile
details
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links
(ix)Data format Data displayed as the values input
 from keyboard
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.10
(i)Name of item Confirm ID
(ii)Description of purpose to confirm the entered ID
(iii)Source of input NA
(iv)Valid range & accuracy characters/numbers/
 underscore@mailprovider.com
(v)Units of measurement characters , numbers and underscore
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user enter his profile
details
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links

 113

(ix)Data format Data displayed as the values input
 from keyboard
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.11
(i)Name of item Boli ID
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links
Rest Details same as UserID

No.12
(i)Name of item Boli Password
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links
Rest Details same as Password

No.13
(i)Name of item Date of Birth
(ii)Description of purpose Date of Birth of user
 (Security information)
(iii)Source of input NA
(iv)Valid range & accuracy Numbers only .1-31 for days
 depending on the month
 1-12 for months and 1950-1990
 for years
(v)Units of measurement dd-mm-yyyy
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows user to enter his profile
details
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links
 (ix)Data format Data displayed as the values input
 from keyboard
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.14
(i)Name of item Accept terms and submit

 114

(ii)Description of purpose User presses this button after entering
 his details & agreeing to the
conditions
 of bol boli bol
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs Allows new user to be created
(viii)Screen format 6 text fields,3 popup menus,
 2 push button,2 links
 (ix)Data format Data displayed as the values input
 from keyboard
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message The “User Created” message is
 displayed

No.15
(i)Name of item Cancel
(ii)Description of purpose User presses this button if the wants
 to go back one page
(iii)Source of input NA
(iv)Valid range & accuracy NA
(v)Units of measurement NA
(vi)Timing Infinite
(vii)Relationship to other inputs/outputs NA
(viii)Screen format 1 push button in 8 screens
(ix)Data format NA
(x)Window format Default Window having resolution
 640 x 480
(xi)Command format NA
(xii)End Message NA

No.16
(i)Name of item Help
(ii)Description of purpose To provide help to the user on any
 topic the user wants
(viii)Screen format 1 link in 8 screens
Rest details same as that of the previous item

No.17
(i)Name of item Start Selling

 115

(ii)Description of purpose Allows a user to put up his items
 for auction
(viii)Screen format 10 links in homepage
Rest details same as that of the previous item

No.18
(i)Name of item View Cart
(ii)Description of purpose Contains the items available for
bidding
Rest details same as that of the previous item

No.19
(i)Name of item Buyer View
(ii)Description of purpose Allows user to see his details as a
buyer
(iii)Source of input RTAS
(vii)Relationship to other inputs/outputs Depends on the bids won ,lost
 and balance of the user
(viii)Screen format 10 links in homepage
Rest details same as that of the previous item

No.20
(i)Name of item Seller View
(ii)Description of purpose Allows user to see his details as a
seller
(iii)Source of input RTAS
(vii)Relationship to other inputs/outputs Depends on the items sold 7
 displayed by the user
(viii)Screen format 10 links
Rest details same as that of the previous item

No.21
(i)Name of item Update Profile
(ii)Description of purpose Allows user to make changes to
 his profile entries
(iii)Source of input RTAS
(xii)End Message The “Updated” message is displayed
Rest details same as that of the item ‘View Cart’

No.22
(i)Name of item Update Password
(ii)Description of purpose Allows user to make changes to
 his password entry
(iii)Source of input RTAS

 116

(xii)End Message The “Updated” message is displayed
Rest details same as that of the item ‘View Cart’

No.23
(i)Name of item Update email id
(ii)Description of purpose Allows user to make changes to his
 email id entry
(iii)Source of input RTAS
(xii)End Message The “Updated” message is displayed
Rest details same as that of the item ‘View Cart’

No.24
(i)Name of item Logout
(ii)Description of purpose Allows the user to logout of bol boli bol
(viii)Screen format link in 7 screens
 (xii)End Message The “logout” message is displayed
Rest details same as that of the item ‘View Cart’

No.25
(i)Name of item Favorites
(ii)Description of purpose Contains the categories of items
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

No.26
(i)Name of item Hot Selling
(ii)Description of purpose Contains items which are most bided
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

No.27
(i)Name of item Ending Soon
(ii)Description of purpose Contains items whose bidding is
 going to end soon
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

No.28
(i)Name of item Second Hand Goods
(ii)Description of purpose Contains second hand items for
bidding
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

 117

No.29
(i)Name of item Paisa Auction
(ii)Description of purpose Contains items for which bidding
 can start from any price
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

No.30
(i)Name of item 1 Paisa Auction
(ii)Description of purpose Contains items for which bidding
 starts from 1 paisa
(viii)Screen format 1 push button,8 links
Rest details same as that of the item ‘View Cart’

No.31
(i)Name of item List of Items
(ii)Description of purpose Contains list of items which a
 particular seller is auctioning
(iii)Source of input RTAS
(viii)Screen format 2 links, 3 pop up menus
Rest details same as that of the item ‘View Cart’

No.32
(i)Name of item Payment Preferences
(ii)Description of purpose Tells how the user wants the payment
 to be done
(viii)Screen format 2 links, 3 pop up menus
Rest details same as that of the item ‘View Cart’

No.33
(i)Name of item Extra Charges
(ii)Description of purpose Tells the user if he has to pay any
extra
 charges for delivery etc. along
with the
 actual payment
(iii)Source of input RTAS
(viii)Screen format 2 links, 3 pop up menus
Rest details same as that of the item ‘View Cart’

 118

No.34
(i)Name of item Current Bid History
(ii)Description of purpose Tells the user the details/history of
 the last bid made
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any number
(v)Units of measurement real numbers(for price)
(viii)Screen format NA
Rest details same as that of the item ‘View Cart’

No.35
(i)Name of item Bid Win
(ii)Description of purpose Tells the user the bids won by him
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any number
(v)Units of measurement number
(vi)Timing Infinite
(viii)Screen format NA
Rest details same as that of the item ‘View Cart’

No.36
(i)Name of item Bid Lost
(ii)Description of purpose Tells the user the bids LOST by him
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any number
(v)Units of measurement number
(vi)Timing Infinite
(viii)Screen format NA
Rest details same as that of the item ‘View Cart’

No.37
(i)Name of item Balance
(ii)Description of purpose Tells the user his balance
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any number
(v)Units of measurement real number(to tell the amount
 owned by the user)
(vi)Timing Infinite
(viii)Screen format NA
Rest details same as that of the item ‘View Cart’

No.38
(i)Name of item Address
(ii)Description of purpose Tells the address of the seller

 119

(iii)Source of input RTAS
(iv)Valid range & accuracy Can be anything
(v)Units of measurement characters, numbers & special
symbols
(vi)Timing Infinite
(viii)Screen format 1 push button,1 textarea,,3
 pop up menus,3 text fields, 3 links
Rest details same as that of the item ‘View Cart’

No.39
(i)Name of item Country
(ii)Description of purpose Tells the Country of the seller
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid , existing
country
(v)Units of measurement characters only
Rest details same as that of the item ‘Address’

No.40
(i)Name of item City
(ii)Description of purpose Tells the city of the seller
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid , existing
country
(v)Units of measurement characters only
Rest details same as that of the item ‘Address’

No.41
(i)Name of item Zip Code
(ii)Description of purpose Tells the zip code of the seller
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid , existing code
(v)Units of measurement numbers only
Rest details same as that of the item ‘Address’

No.42
(i)Name of item Contact Time
(ii)Description of purpose Tells the time at which the seller
 can be contacted
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid time
(v)Units of measurement numbers in time format
Rest details same as that of the item ‘Address’

 120

No.43
(i)Name of item STD Code
(ii)Description of purpose Tells the std code of the seller
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid , existing std
code
(v)Units of measurement numbers only
Rest details same as that of the item ‘Address’

No.44
(i)Name of item Telephone Number
(ii)Description of purpose Tells the telephone number of the
seller
(iii)Source of input RTAS
(iv)Valid range & accuracy Has to be a valid, existing
 telephone number
(v)Units of measurement numbers only
Rest details same as that of the item ‘Address’

No.45
(i)Name of item Select Item
(ii)Description of purpose Selects an item for selling
(viii)Screen format 1 push button, 1 textarea,
 3 pop up menus, 3 text fields, 3 links
Rest details same as that of the item ‘View Cart’

No.46
(i)Name of item Condition
(ii)Description of purpose Tells the condition of the item
(iii)Source of input RTAS
(viii)Screen format 1 push button, 3 pop up menus, 9 links
Rest details same as that of the item ‘View Cart’

No.47
(i)Name of item Warranty Options
(ii)Description of purpose Tells the warranty offered with the
item
Rest details same as that of the previous item

No.48
(i)Name of item Item
(ii)Description of purpose It is the commodity to be bided for or
 displayed for auctioning
(viii)Screen format 1 picture,1 link

 121

Rest details same as that of the previous item

No.49
(i)Name of item Picture
(ii)Description of purpose It shows the picture of the item
Rest details same as that of the previous item

No.50
(i)Name of item Type
(ii)Description of purpose It describes the type of item
Rest details same as that of the previous item

No.51
(i)Name of item Current Price
(ii)Description of purpose It is the current price of the item

(iv)Valid range & accuracy Can be any number
(v)Units of measurement real numbers only
Rest details same as that of the previous item

No.52
(i)Name of item Ends
(ii)Description of purpose It tells when bidding closes for an item
(iv)Valid range & accuracy any Date and time format
(v)Units of measurement numbers only
Rest details same as that of the previous item

No.53
(i)Name of item Bid Now
(ii)Description of purpose To make a bid the user presses
 this button/link
Rest details same as that of the item ‘View Cart’

No.54
(i)Name of item Starting Bid
(ii)Description of purpose Tells the starting bid amount for an
item
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
(viii)Screen format 1 push button, 2 pop up menus,
 5 links,2 text field
Rest details same as that of the item ‘View Cart’

 122

No.55
(i)Name of item Indicative MP
(ii)Description of purpose Tells the market price of an item
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid

No.56
(i)Name of item Time left
(ii)Description of purpose Tells the time left for the bidding
 to close for an item
(iv)Valid range & accuracy any valid time (in the time
format)
(v)Units of measurement numbers only
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid

No.57
(i)Name of item Your Maximum Bid
(ii)Description of purpose Tells the maximum bid made by the
user
(iv)Valid range & accuracy Can be any number
(v)Units of measurement real numbers only
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid

No.58
(i)Name of item Quantity
(ii)Description of purpose The quantity of an item the user
wants
 (iv)Valid range & accuracy Can be any number
(v)Units of measurement numbers only
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid

No.59
(i)Name of item Item Description
(ii)Description of purpose Tells the details of the item
(iii)Source of input RTAS

 123

(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid

No.60
(i)Name of item Seller ID
(ii)Description of purpose Id of the seller of the item
(iii)Source of input RTAS
(iv)Valid range & accuracy any number
(v)Units of measurement real numbers only
Rest details same as that of the item ‘Starting Bid’

No.61
(i)Name of item Seller Location
(ii)Description of purpose Address of the seller
(viii)Screen format 1 push button,2 pop up menus,
 5 links,2 text field
Rest details same as that of the item ‘Address’

No.62
(i)Name of item Member Since(Seller)
(ii)Description of purpose Tells since when the seller has been
 a member of bol boli bol
(iii)Source of input RTAS
(iv)Valid range & accuracy Can be any valid date and/or
time format
(v)Units of measurement numbers only
Rest details same as that of the item ‘Starting Bid

No.63
(i)Name of item Place a Bid
(viii)Screen format 1 push button,2 pop up menus,
 5 links,2 text field
Rest details same as that of the item ‘Bid Now’

No.64
(i)Name of item Model
(ii)Description of purpose tells the model of the item
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any combination of
alphabets
 & numbers
(v)Units of measurement alphabets & numbers
(viii)Screen format 3 links,7 text field

 124

Rest details same as that of the item ‘View Cart’

No.65
(i)Name of item Features
(ii)Description of purpose Tells the features of the item
(iii)Source of input RTAS
Rest details same as that of the item ‘Model

No.66
(i)Name of item Memory
(ii)Description of purpose It is an optional feature that tells
 mory requirement of the item
(iii)Source of input RTAS
(iv)Valid range & accuracy can be any value in range from
KB to MB
(v)Units of measurement numbers only
Rest details same as that of the item ‘Model

No.67
(i)Name of item List Item
(ii)Description of purpose the item is displayed for auctioning
(iii)Source of input RTAS
Rest details same as that of the item ‘Model

No.68
(i)Name of item Go back to Cart
(ii)Description of purpose to go back to cart
(viii)Screen format 2 push buttons ,1 link
Rest details same as that of the item ‘View Cart’

4 Functional Requirements

4.1 Validity checks & inputs
Validation checks are made at every input to ensure that for an input to be
numeric only, numeric data can only be entered and same is ensured for all
the inputs

4.2 Exact sequence of operation
When the user types the URL www.BolBoliBol.com in his address bar of
internet explorer the Login page opens. Now if the user does not exist then he

http://www.bolbolibol.com/

 125

selects the Join Now link and enters his details, accept the terms and on
submitting gets the User Created page. Now a mail is sent to his email id and
if the clicks the link in that mail, his account is activated and he becomes a
registered user.
If the user forgets his password then he can select the Forgot Password link
from login page and can get a new password
If the user is not registered or invalid userid or password is entered in the
login page then the Wrong page is displayed else the Home page is displayed
Now if the user selects Seller View he can see his details as a seller and
similarly he can see his buyer details in Buyer View. If the user wants to sell
he selects the Start Selling link enters his details, selects an item, gives the
item details
 and on selecting List Item gets the Item Listed page. And if he selects View
Cart then he can select an item from the given categories and place a bid
following which he gets the Bid Placed page.

4.3 Error handling & recovery
The system has been aimed to provide to be able to rollback and recover
effectively under any crisis or failure. And if required there should be
minimum number of restarts The system is designed to respond to certain
situations in such a manner that these have minimal effect on the system’s
performance and efficiency. For instance, the system would either not
respond to invalid inputs or it would display messages to guide the user to
use valid values.

5 Dynamic Requirements

5.1 Static requirements
No of terminals to be supported: Terminals attached to the server must not
exceed 20.
No of simultaneous users to be supported: No Bounds
Type of information to be handled: The information that will be fed or
collected by the server via communication or user interaction like date and
time of bidding, user details etc. Only part of the information can be retrieved
 by the user like his profile, buyer view and seller view.

5.2 Dynamic requirements
No of transactions No bounds
Amount of data to be processed No Bounds
Type of data to be processed The data entered through user profile
 And the one obtained from the bidding

 126

 made and items displayed,
bided &
 bought

5.3 Human interaction with the system

Query Handling
The only type of query the user can do is he can check his buyer view and
seller view Information fed into the system by the user. The user enters his
profile into the system and his details as seller along with the details of the
item he wants to sell.

6 Logical Database Requirement

 Database Name RTAS
 Table Name User
 Buyer
 Seller
 Item
 Bidresult

 Schemas of Tables
 User(Name,EmailID,BoliID,Password,DOB)
 Buyer(BoliID,Bid win,Bid Lost, Balance,CBHist)
 Seller(BoliID,Address,Country,ZipCode,CTime,STDCode,Tel,ItemMod
el)
 Item(Model,Type,CPrice,PayPref,Extra,Ends,SBid,YBiD,Condition,Qu
antity, SellerBoliID,Features)
 Bidresult(Model,BoliIDSeller,BoliIDBuyer,HBid)

7 Design Constraints and Standard Compliance

Report Format: The various reports like BID RESULTS report, ITEMS
AUCTIONED report would be generated in the specified formats as per
requirements.

 Data Naming: NA
 Audit tracing:NA

8 Software System Attributes

 127

8.1 Reliability at delivery time
The system is designed taking care of all requirements and situations so as to
work correctly always .The system must fulfill all the specified
constraints to obtain maximum results

8.2 Availability
The various mechanisms of checkpoints, recovery and restarts have been
incorporated into the system to guarantee a defined level of availability for
the entire system.

8.3 Security
Cryptography Technique used DSA

No user can access the information other than his own profile, buyer view,
seller view .Although, the results of all bids made by him will be mailed to
him but they will contain only the data which will let him know if he had won
or lost .In case , of losing he will come to know about the winning and runner
ups bids whereas in case of winning he will have to pay for his bid which will
be delievered to him accordingly.

8.4 Maintainability
Modularity will be achieved by using functions for doing specificjobs like
creating users, buyer view ,seller view, user profile, cart etc.and various
other independent jobs.

8.5 Portability:
The entire code is host independent and can be run on any host machine
which is authorized to access the system and has the required
implementation tools and the operating system installed on it.

17.4 Flow of Events

1 The system is accessible to registered users only. So, any user who wants to
 access the system enters his/her user ID & password.

2 If the user is not registered then he can get registered if he joins now.

3 If the user is registered then he has the choice of

• Selling
• Buying

 128

• Editing details
• Viewing his profile

4 If the user wants to start selling then he must do so in the given fashion

A) He must enter his seller details
B) He must select an item & enter the details of the item he wants to

sell
C) He must list the item on the site.

5 If the user wants to buy then he must follow the following procedure

A) He must select the item he wants to buy by bidding
B) He must place a bid

6 If the user wants to view his profile he can do so by clicking on the “Seller
 Profile “and “Buyer Profile” links.

7 If the user wants to edit details then he can do so by clicking on the links
 “Update Profile”, “Update Password” & “Update email id”

8 All the activities of the user must be maintained in the user log for security,
 privacy non repudiation, and authentication & integrity purposes.

9 Also, the transactions details must be maintained in the database .So, after
each
 and every activity / transaction the database is updated.

10 The user can exit from the system by logging out

17.5 USE CASE Diagram

 129

Seller

Buyer

Login

Start Selling

Select Item

List Item

Bid Now

View Profile

Update

Viewcart

User RTAS

Join Now

Figure 55: Use Case Diagram

17.6 Class Diagram

 130

View profile

seller
buyer

Select an item

Login

UserID
Password

Login()
Join Now

Name
Address
emailid

bol boli bol id
pasword
phone
name2

OK()
cancel()
opname()

Place a bid

bid

ok()

List item

name
condition

price
type

name3

ok()
cancel()

Edit Details

Profile
emailid

password
name2

ok()
cancel()

Check

Database

Figure 56: Class Diagram

17.7 Sequence Diagram

 131

 17.7.1 Placing a BID:

 : Buyer : Select an item : Database
 : Place a bid

An item is
selected

Save
details

Make a
bid

1:

2:

3:

Figure 57: Sequence Diagram for Placing a bid

 17.7.2 Join:

 : User
 : Join Now : Database : Check

Register
now

Save
details

1:

2:
3:

validate
...

Figure 58: Sequence Diagram for Join

 17.7.3 Listing an Item:

 132

 : Seller : List item : Database
A : Select an item

an item is
listed ...

Save the
details

1:

2:

3:
i tem is
selected

Figure 59: Sequence Diagram for Listing an item

17.7.4 Login by User:

 : User : Login : Database : Check

Fill the
form

check
details

Save the
details

1:

2:

3:

Figure 60: Sequence Diagram for Login

17.7.5 View Profile:

 133

 : User : View profile

1:

view user
detai ls

Figure 61: Sequence Diagram for Viewing Profile

 134

17.8 Collaboration Diagram

17.8.1 Placing Bid:

 : B uye r : S e le c t a n i te m

 : D a ta ba s e : P la c e a b id

1 :

2 :

3 :

Figure 62: Collaboration Diagram for Placing bid

17.8.2 Join:

 : U s e r : J o in N o w

 : D a ta b a s e : C he c k

1 :

2:

3 :

Figure 63: Collaboration Diagram for Join

 135

17.8.3 Listing Item:

 : Se lle r : L is t i tem

 : D a tabase

3 :

A : S e lect an item

1: 2 :

Figure 64: Collaboration Diagram for Listing an item

17.8.4 View Profile:

 : User : View profile

1:

Figure 65: Collaboration Diagram for Viewing Profile

 136

17.8.5 Login by USER:

 : User : Edit Details

 : Check : Database

1:

2:

3:

4:

Figure 66: Collaboration Diagram for Login

 137

17.9 Activity Diagram

Seller

Enter ur details
as seller

Select item & enter
item details

List item

Buyer

Select an
item

Place a bid

Login

View Profile Edit details

Enter
updations

Update
database

want to exit

Join Now
The user has the following choices

Not a registered user

BuyerSeller

Figure 67: Activity Diagram for Auction System

 138

17.10 State Transition Diagram

Waiting User ID
and Password

Authenticating
User

UserID and Password entered / Verify

Login
Succesful

Invalid User

Verification Successful / Login

Login Failed / Re-Enter

Waiting
Selection

No registration / Wait

Registering
New User

Register Now / Take Details

Registeration Successful / Re-Enter Password

Display Items / List Displayed

Placing Bid

Item Choosen / Take Bid

Item Sold

Showing
Profile

View Profile / Refer Database

Highest Bid / Notify User

Bid Less / Notify

Loging Out

Log Out / Save Details

Log Out / Save Details

Taking Item
DetailsSell Item / Take Details

Log Out / Save and list item

Figure 68: State Transition Diagram for Auction System

 139

17.11 Deployment Diagram

Auction Web Server

Printer

Client
MachineClient

Machine

LTP Port

Transaction
Backup

Port Conn

Client
Machine

Backup
Server

TCP/IP
TCP/IP

TCP/IP

Secure Connection

Figure 69: Deployment Diagram for Auction System

 140

CONCLUSION

 The Study of Rational Rose Software helped us to gain
knowledge of Software Engineering Process and software
development steps. It is a tool which makes the probability of
failure in a project very less. Visual Modeling and UML
Technology lies at the base of Rational Rose. The use of these
technologies and converting their strengths in form of nine
diagram windows makes the development procedure relatively
such simpler. By using Rational Rose, it is easy to understand
problems, communicate with everyone involved with the project
(customers, domain experts, analysts, designers, etc.), model
complex systems; prepare documentation, and design programs
and databases. Keeping track of each subunit and giving a
continuous workflow in the development and logic makes the
development easier. The use of RUP (Rational Unified Process),
which is a control for an iterative and incremental life cycle,
assures that risk of failure is gradually removed form SDLC
(Software Development Life cycle). It assures Sustained delivery
of high-quality software and cohesive teamwork with a common
understanding of development tasks. Thus software coding after
modeling via Rational Rose is much easier and Software thus
produced are more reliable, better manageable, having less cost,
having distributed cost, having better quality and likely to be
successful on real time machines.

 141

REFERENCES

 1. Visual Modeling using Rational Rose 2002 and UML
 (TMH)
 2. Object Oriented Analysis and Design
 (Manipal Academy of Higher Education)
 3. Software Engineering
 (Sangeeta Sabharwal)
 4. An Integrated Approach to Software Engineering
 (Pankaj Jalote)
 5. Using Rose
 (Online Rational Manuals)
 6. Rose Tutorial 2002
 (Online Rational Manuals)
 7. Rational Suite Introduction
 (Online Rational Manuals)
 8. Rational Rose Manuals
 8. www.rational.com
 9. www.newinstruction.com
 10. www.rational.net
 11. www.awproffessional.com etc

http://www.rational.com/
http://www.newinstruction.com/
http://www.rational.net/
http://www.awproffessional.com/

	
	
	
	
	
	
	16. Case Study:
	Student Registration System
	
	
	
	
	
	
	
	
	16.1 Problem Statement
	
	16.2 The Inception Phase
	
	16.2.1 Business Goals and Needs
	16.2.2 Definition of Actors
	16.2.3 Use Cases
	16.2.4 Use Case Diagram in Rational Rose
	16.3 The Elaboration Phase
	16.3.1 Development of Scenarios
	16.3.2 Creating "Real World" or "Business" Classes
	16.3.3 Software Architecture
	16.3.4 Iteration Planning

	16.4 The Construction Phase
	
	16.4.1 Construction Activities
	16.4.2 Building an Iteration
	16.5 The Transition Phase

	17.4 Flow of Events

