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ABSTRACT

A finite- time thermodynamic model which (which includes first and second law analysis) simulates the working of an actual vapor-compression system and cascade system has been developed. Inputs required for the model are Evaporator coolant inlet temperature, Condenser coolant inlet temperature, rate of heat absorbed by evaporator, product of condenser effectiveness and capacitance rate of external fluid, product of evaporator effectiveness and capacitance rate of external fluid and efficiency of compressor. The ouputs of the program are the COP, exergy destruction in different components, refrigerant mass flow rate, EDR, exergitic efficiency, compressor work and all other system parameters enthalpy, entropy, temperature and pressures at different state points.
Thermodynamic model of simple VCRS is developed for R22, R134A, R407C, M20 and R410A. Performance curves for R134A, R407C, M20 and R410A are compared with R22 to find its nearer substitute. It is found that best substitute of R22 is R410A because of its higher pressure, higher capacity, high heat transfer, high COP, less refrigerant charge, quieter and more efficient compressor operation.
 Thermodynamic mod
el of cascade system is developed by taking CO2 as LTC refrigerant and Ammonia, Propane, Propylene, R404A and R12 as HTC refrigerant. The performance curves of Ammonia, Propane, Propylene, and R12 are compared with R404A system to find its nearer substitute. It is found that best substitute of R404A system is Ammonia system because of its higher pressure, higher capacity, high heat transfer, high COP, less refrigerant charge, quieter and more efficient compressor operation.

Keywords; simple VCRS, Cascade system, First and Second law analysis, Refrigerants, Performance study
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Nomenclature
COP


Coefficient of performance

C


Capacitance rate for the external fluids (kW/K)

hj 


Specific enthalpy of refrigerant at state point j (KJ/Kg)

m


Mass flow rate (kg/S)

Qcond 


Rate of heat rejection in condenser (kW)

Q loss, cond

Rate of heat leak from the hot refrigerant (kW)

Qevap


Rate of heat absorbed by the evaporator (kW)

Q loss, evap
 
Rate of heat leak from the ambient to the cold refrigerant (kW)

W


Rate of  electrical power input to compressor (kW)
Tcond


Refrigerant temperature in the condenser (K)

T in, cond 

Condenser coolant inlet temperature (K)

T in, evap


Evaporater coolant inlet temperature (K)

Tevap 


Refrigerant temperature in the evaporater (K)

To


Coupling temperature (K)

dTsuction, superheat

Degree of superheat in Suction line (K)

dTevap, superheat

tDegree of superheat in evaporator (K)

dTcondenser, subcool
Degree of subcooling in condenser (K)

dTline, subcool

Degree of subcooling in liquid line (K)

Ta


Ambient Temperature (K)

X


Exergy destruction (kW)

e


Exergy (KJ/kg)
Greek symbols

Є

Effectiveness of Heat exchanger

η 

Efficiency 
Subscripts

1,2,3,……
state points

comp

compressor

cond

condenser

evap

evaporator

ref

refrigerant

refg

refrigerating

HTC

Hight temperature circuit

LTC

Low temperature circuit

ef

External Fluid
isen

Isentropic
ref

Refrigerating
ex

Exergitic
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