
FINAL YEAR PROJECT REPORT ON
IMPLEMENTATION OF FILE TRANSFER PROTOCOL

IN CLIENT SERVER MODEL

Submitted in Partial fulfillment for the Requirement of
Degree of Bachelor of Engineering in Computer Engineering

By:

NEELABH SAXENA 2K1/COE/035
 NISHANT GUPTA 2K1/COE/037
 PARAG MEHRA 2K1/COE/038

Under the guidance of
Dr GOLDIE GABRANI

Asst Prof

Department of Computer Engineering
Delhi College of Engineering

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI, DELHI
2001-05

 2

CONTENTS

o Certificate 3

o Acknowledgement 4

o Abstract 5

o Introduction 7

o System resources 33

o Design 34

o Code 39

o Implementation in C 40

o C output 64

o Implementation in JAVA 67

o JAVA Output 90

o Conclusion 96

o References 97

 3

CERTIFICATE

This is to certify that the dissertation entitled “Implementation of File
Transfer Protocol in Client- Server model” being submitted by Neelabh
Saxena, Nishant Gupta and Parag Mehra towards the partial fulfillment of
the requirement for the award of the degree of Bachelor of Engineering in
the Department of Computer Engineering at the Delhi College of
Engineering, Delhi is a bona fide record of their work carried out under our
supervision.

Further it is also certified that the matter and results in this dissertation are
original and have not been submitted for any degree or diploma in any other
college to the best of our knowledge.

Dated: May 25, 2005

Dr Goldie Gabrani Prof D Roy Choudhry
Supervisor Head
Deptt of Computer Engineering Deptt of Computer Engineering
Delhi College of Engineering Delhi College of Engineering
Delhi Delhi

 4

ACKNOWLEDGEMENT

We wish to express our hearty and sincere gratitude and indebtness to Dr
Goldie Gabrani, Department of Computer Engineering, Delhi College of
Engineering, Delhi for her invaluable guidance and wholehearted
cooperation .She has been a major source of inspiration throughout the
project as she has not only guided us through the project but encouraged us
to solve the problems that arose during this project.

We would also like to thank Prof D Roy Choudhury for his able guidance,
valuable suggestions, constant encouragement and untiring efforts at every
stage of our project, without which it would have been impossible to bring
this work to completion.

The conclusion of our project with combined achievements & failures was a
great moment of pleasure for us. This project is a result of the contribution
of many people. They have enriched our knowledge & made suggestions
based on their experience. We would like to thank the entire faculty of
Computer Science department for their co-operation and tremendous help
rendered in numerous ways for the successful completion of this work.

Most importantly, we would like to thank our parents, friends and colleagues
for invaluable suggestions and critical review of our project.

Neelabh Saxena
Nishant Gupta
Parag Mehra

ABSTRACT

 5

The FTP is basic and common service to exchange files between computers,
namely hosts, over TCP/IP networks e.g., private networks or Internet. The
FTP supports file transmission and character code conversion when
exchanging text or binary files. The use of FTP is effective in exchanging or
distributing of large volume of data over private networks and/or the
Internet. FTP uses TCP as a transport protocol to provide reliable end-to-end
connections. As it is necessary to log into the remote host, the user must
have a user name and a password to access files and directories. The user
who initiates the connection assumes the client function, while the server
function is provided by the remote host.

The thesis starts with an introduction to the basic networking and the OSI
model, giving background to to grasp the rest of the contents. Then next is
the explanantion of the Client Server Model.Follwing this is a report on File
Transfer Protocol. It explains the various functions that the File Transfer
Protocol performs. FTP can be used to download the files from a server node
to the client node or upload a file from a client node to the server node. FTP
can also be used to change the current working directory of the server/client
and also can delete files on the server station. After this there are details of
socket programming. Socket programming has been used extentensively
throughtout the project. The various functions that have been frequently used
like socket (), bind (), accept (), send () etc have been explained along
with all the possible forms that these functions can take.

Next is the implementation of such a File Transfer Protocol using the
programming language C. The functions being implemented in the the code
are open, quit, exit, username, password, download, upload, change
directory, show present working directory, list the contents of the current
working directory. The code can be run on a Linux platform.

In the next section, File Transfer Protocol is implemented using JAVA. The
functions being implemented are Connect, Disconnect, Download, Upload
and Delete. This code is platform independent and thus can be run on a
variety of platforms like Windows and Linux. This gives its users an added
advantage of platform independence.

 6

The C and Java implementations are followed by their respective possible
outputs and errors. Also a brief comparison between the the codes is also
done highlighting the major advantages and disadvantages of using C and
JAVA.

 7

INTRODUCTION

HISTORY-

Computer networks have revolutionized our use of computers. They pervade our
everyday life, from automated teller machines, to airline reservation system, to e-mail
services, to electronic mail services, to electronic boards. There are many reasons for the
explosive growth in computer networks.

The proliferation of personal computers and work stations during 1980`s helped fuel the
interest and need for networks. Computer networks used to be expensive and were
restricted to large universities, govt. research sites and large corporations. Technology
has greatly reduced the cost of establishing computer networks, and networks are now
found in organizations of every size.

Many computer manufacturers now package networking software as part of the basic
operating system. Networking software is no longer regarded as an add-on that only a
few customers will want. It is now considered essential as a text editor. We are in an
information age and computer networks are becoming an integral part in the
dissemination of the information.

Computer systems used to be stand-alone entities. Each computer was self contained and
had all the peripherals and software required to do a particular job. If a particular feature
was needed, such as line printer output, a line printer was attached to the system. If large
amount of disk storage were needed, disk was added to the system. What helped change
this is the realization that computers and their users need to share information and
resources.

Information sharing can be electronic mail or file transfer. Resource sharing can involve
accessing a peripheral on another system. Today computers can be connected together by
various electronic techniques called networks. A network can be as simple as 2 personal
computers connected together using a 1200 baud modem, or as complex as the tcp/ip
internet, which connects over 150000 systems together. Some typical network
applications are.

. Exchange e-mail with users on other computers.

 8

. Exchange files between systems. For many applications it is just as easy to distribute

the application electronically, instead of mailing disketts or magnetic tapes. File transfer
across network also provides faster delivery.

. Share peripheral devices. A large push towards the sharing of peripheral devices has

come from the personal computer and workstation market, since often the cost of
peripheral can exceed the cost of computer. In an organization with many pc`s or
workstations, sharing peripheral make sense.

. Execute a program on another computer. There are cases where some other computer

is better suited to run a particular program. This is often the case with programs that
require special features, such as parallel processing or vast amount of storage

. Remote login. If a network connects two computers, we should be able to login to one

from another. It is usually easier to connect computers together using a network and
provide a remote login application, than to connect every terminal in an organization to
every computer.

LAYERING-

Given a particular task that we want to solve, such as providing a way to exchange files
between two computers that are connected with a network, we divide the task into pieces
and solve each piece. In the end we connect the pieces back together to form a final
solution. We could write a single monolithic system to solve a problem, but experience
has shown that solving the problem in pieces leads to a better, and more extensible
solution.
It is possible that part of the solution developed for a file transfer program can also be
used for a remote printing program. Also, if we`re writing the file transfer program
assuming the computers are connected with an Ethernet, it could turn out that part of this
program is usable for computers connected with a leased telephone line.

 9

In the context of networking, this is called “layering”. We divide the communication
problem into pieces and let each layer concentrate on providing a particular function.
Well-defined interfaces are provided between the layers.

OSI MODEL-

The starting point for describing the layers in the network is the international standards
organization open system interconnection model for computer communications. This is a
7-layer model shown in fig.

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data link
1 Physical

The OSI model provides a detailed standard for describing a network. Most computer
networks today are described using OSI model. The transport layer is important because
it is the lowest of the seven layers that provide reliable data transfer between two
systems. The layer above transport layer can assume they have an error free
communication path. Details such as sequence control, error detection, retransmission
and flow control are handles by the transport layer and layers below it.

PROCESSES-

A fundamental entity in a computer network is a process. A process is a program that is
being executed by the computers operating system. When we say that two computers are
communicating with each other, we mean two processes, one running on each computer,
are in communication with each other.

A Simplified Model-

The actual connection between two systems is between the two data-link layers.
Although it appears to the two processes that they are communicating with each other,
the actual data flows from the process layer, down to the transport layer, down to the
network layer, down to the data link layer, up through the network layer, then the
transport layer to other processes.

 10

Layering leads to the definitions of protocols at each layer. Even though physical
communication takes place at the lowest layer, protocol exist at every layer .The
protocols which are used at a given layer are also called peer-to-peer protocols to reiterate
that they are used between two entities at the same layer.
Since data always flows between a given layer and the layer immediately above it or
immediately below it, the interface between the layers are also important for network
programming

 Process layer
 Protocols

 Transport
 Layer protocols

 Network layer
 Protocols

 Data-link layer
 Protocols

 Simplified 4-layer model

 Process

 Transport

 Network

 Data Link

 Process

 Transport

 Network

 Data Link

 11

Client-Server Model

The standard model for network application is the client –server model. A server is a
process that is waiting to be contacted by a client process so that the server can do
something for the client.

. The server process is started on some computer systems. It initializes itself then goes to
sleep waiting for a client process to contact it requesting some service.

. The client process is started, either on the same system or on another system that is
connected to the server system with a network. An interactive user entering a command
to a time-sharing system often initiates client process. The client process sends a request
across the network to the server requesting service of some form. Some examples of type
of service that server can provide:

• Return the time-of-day to the client,
• Print a file on a printer for the client,
• Read or write a file on the server’s system for the client,
• Allow the client to login to the server’s system,
• Execute a command for the client on the server’s system.

. When the server process has finished providing its services to the client, the server goes
back to sleep, waiting for the next client request to arrive.

We can further divide the server’s processes into two types:

1. When a client’s request can be handled by the server in a known, short amount of time,
the server process handles the request itself. We call these iterative servers.

2. When the amount of time to service a request depends on the request itself, the server
typically handles it in concurrent fashion. These are called concurrent servers.

 12

File Transfer Protocol (FTP)
In this section, abstractional mechanism of FTP is illustrated.

What is the FTP

 The FTP is basic and common service to exchange files between computers, namely
hosts, over TCP/IP networks e.g., private networks or Internet. FTP is a standard
protocol with STD Number 9. Its status is recommended. It is described in RFC 959 -
File Transfer Protocol (FTP).

Copying files from one machine to another is one of the most frequently used operations.
The data transfer between client and server can be in either direction. The client may send
a file to the server machine. It may also request a file from this server. To access remote
files, the user must identify himself to the server. At this point the server is responsible
for authenticating the client before it allows the file transfer.

From an FTP user's point of view, the link is connection-oriented. In other words, it is
necessary to have both hosts up and running TCP/IP to establish a file transfer.

 The use of FTP is effective in exchanging or distributing of large volume of data over
private networks and/or the Internet. A structural outline of FTP service is illustrated in
Figure

Structural outline of FTP service

 Basically, FTP is defined in the RFC959 as a communication protocol between Server
and User for exchanging files. The FTP Server stores files to be exchanged. Users, who
want to exchange files, will login to the server and PUT/GET files to/from the server
(Figure). A User may be a person or a process on behalf of a person wishing to obtain file
transfer service.

 13

The File Transfer Protocol

To exchange files by FTP, establishing an FTP server is essential (or you could
outsourcing FTP service if your budget allows). Although there is a slight difference
between FTP over the Internet and FTP over the GTS in need for a proxy or staging
function between an FTP server and data source, essentials of establishing the FTP server
are common to both.

How FTP works

 The File Transfer Protocol (FTP) is defined by the RFC959 based on the FTP Model
illustrated in the Figure 2-3. The FTP uses two TCP/IP connections between User and
Server, i.e., control connection and data connection. The control connection manages and
controls the Server to transfer files between the Server and User through the data
connection.

The FTP Model

 14

Control Connection

 The control connection is a full duplex communication path between server and user for
exchanging commands and replies (see Figure). The FTP uses the Telnet protocol,
defined by the RFC854, for the control connection. An FTP Server passively waits for the
establishment of control connection, initiated by User, to the tcp port 21 of the Server.
Once the control connection is established, the Server replies a ready message and wait
for login by accepting username and password for authentication according to the replies
from the Server. After recognizing the legal login of the user, the Server replies login
message and wait for commands for further operation.

Control Connection

(1) FTP Command

An FTP command string is a command word may followed by a parameter string and
terminated by line delimiter (crlf). Each command word is a word of three or four capital
letters. Format of some FTP command strings are shown below.

USER <SP> <username> <CRLF>
PASS <SP> <password> <CRLF>
QUIT <CRLF>
PORT <SP> <host-port> <CRLF>
PASV <CRLF>
TYPE <SP> <type-code> <CRLF>
RETR <SP> <pathname> <CRLF>
STOR <SP> <pathname> <CRLF>
ABOR <CRLF>
LIST [<SP> <pathname>] <CRLF>
HELP [<SP> <string>] <CRLF>
NOOP <CRLF>

 15

(2) FTP Reply

 Each reply message send from FTP server always consists of a three digit number (reply
code; transmitted as three numeric characters, xyz) followed by text string. There are five
values for the first digit of the reply code:

1yz Positive Preliminary reply
2yz Positive Completion reply
3yz Positive Intermediate reply
4yz Transient Negative Completion reply
5yz Permanent Negative Completion reply

 The second digit encodes function groupings as:

x0z Syntax
x1z Information
x2z Connections
x3z Authentication and accounting
x5z File system

 The third digit gives a finer gradation of meaning in each of the function categories,
specified by the second digit.

(3) An Example

 The example below shows an FTP operation on a Linux platform using traditional FTP
client with character based user interface, where the red texts denote inputs typed by user,
the green for reply or prompt messages from the client software, and the blue for replies
from the Server.
No FTP command, sent to the Server from the client software, are appeared on the CRT,
but "USER username","PASS xxxxxx", and "QUIT" commands are presumed to be issued
in this case.

An example of character based user interface:

$ ftp servername ; user: start FTP client and connect servername
Connected to servername. ; client: connection established
220 servername FTP server ready. ; server: connection acknowledged and wait for login
Name (servername:defaultusername):username ; user: send "USER username" command
331 Password required for username. ; server: waits password for username
Password:xxxxxx(not displayed) ; user: send "PASS xxxxxx" command
230 User username logged in. ; server: accepted login of the user username

 16

Remote system type is UNIX. ; client: reports current status
Using binary mode to transfer files.
ftp> bye ; user: send "QUIT" command
221 Goodbye. ; server: QUIT acknowledged
$

Data Connection

 Data connection is a full duplex connection over which data (file) are transferred
between Server and User by a specified type and mode. The data connection is
established temporally for data or file transfer on demand (see Figure). Through the data
connection, not only content of files to be transferred but also other data or messages, as

 17

the result of FTP command execution, e.g., directory listing, help messages, are
transferred.

Data Connection

 Active mode and Passive mode

 Normally, data connection is actively initiated by Server side toward User, with no
regard to the direction of the transfer, and User passively wait for establishment of
connection (active or normal mode). But in some cases, mainly at User side, initiation of
connection from outer network is disallowed due to security reasons and blocked by
filtering software or firewall. In this case, the FTP transfer will result in fail. To cope well
with such environment, passive mode, a mode that initiates connection from the User
side, is introduced. In the passive mode, data connections are initiated from the User side
as similar to the control connection (see Figure 2-6) and do not blocked for security.

 Direction of FTP Connections

Code Conversion

FTP provides very limited data type representation and conversion. The two major data
types that most FTP could provides are ASCII and IMAGE .

 18

The ASCII type is the default type and must be implemented by all FTP implementations.
The sender converts the data from an internal character to the standard 8-bit ASCII
representation. The receiver will convert the data from the standard form to its internal
form.
Be careful that most FTP implementation doesn't implement other character types,
especially multibyte-characters.

The IMAGE type is highly recommended to implement all FTP softwares. On the
IMAGE type, file is treated as a sequence of 8-bit data bytes (or octets) and must be
stored as contiguous bytes without modification. In short, file is transferred as it is by
IMAGE transfer mode.

Although the uniqueness of the transferred file to the original one, there are possibility of
incompatibility of data caused from the difference of data arrangement of multi-byte data
on memory that comes from CPU design, e.g., big endian and little endian, difference of
floating point expressions. Don't worry on this, because all WMO binary codes, i.e.,
GRIB and BUFR, are byte oriented and have no flaws on this point.

FTP Operations

When using FTP, the user will perform some or all of the following operations:

• Connect to a remote host

 19

• Select a directory
• List files available for transfer
• Define the transfer mode
• Copy files to or from the remote host
• Disconnect from the remote host

Connect to the Remote Host

To execute a file transfer, the user begins by logging into the remote host. This is the
primary method of handling the security. The user must have a user ID and password for
the remote host, unless using Anonymous FTP which is described in Anonymous FTP.

There are three commands which are used:

Open
Selects the remote host and initiates the login session

User
Identifies the remote user ID

Pass
Authenticates the user

Select a Directory

When the control link is established, the user may use the cd (change directory)
subcommand to select a remote directory to work with. Obviously, user can only access
directories for which the remote user ID has the appropriate authorization. The user may
select a local directory with the lcd (local change directory) command. The syntax of
theses commands depends upon the operating system in use.

List Files Available for Transfer

This is done using the dir or ls subcommands.

Specifying the Transfer Mode

Transferring data between dissimilar systems often requires transformations of the data as
part of the transfer process. The user has to decide on two aspects of the data handling:

• The way the bits will be moved from one place to another.
• The different representations of data upon the system's architecture.

This is controlled using two subcommands:

Mode
Specifies whether the file is to be treated as having a record structure in a byte
stream format.

 20

Block
Logical record boundaries of the file are preserved.
Stream
The file is treated as a byte stream. This is the default, and provides more efficient
transfer but may not produce the desired results when working with a record-
based file system.

Type
Specifies the character sets used for the data.
ASCII
Indicates that both hosts are ASCII-based, or that if one is ASCII-based and the
other is EBCDIC-based, that ASCII-EBCDIC translation should be performed.
EBCDIC
Indicates that both hosts use an EBCDIC data representation.
Image
Indicates that data is to be treated as contiguous bits packed in 8-bit bytes.

Because these subcommands do not cover all possible differences between systems, the
SITE subcommand is available to issue implementation-dependent commands.

Copy Files
Get

Copies a file from the remote host to the local host.
Put

Copies a file from the local host to the remote host.

End the Transfer Session
Quit

Disconnects from the remote host and terminates FTP. Some implementations use
the BYE subcommand.

Close
Disconnects from the remote host but leaves the FTP client running. An open
command may be issued to work with a new host.

Sockets
A socket is a communication mechanism. A socket is normally idenitifed by a small
integer which may be called the socket descriptor. The socket mechanism was first
introduced in the 4.2 BSD Unix system in 1983 in conjunction with the TCP/IP protocols
that first appeared in the 4.1 BSD Unix system in late 1981.

 21

Formally a socket is defined by a group of four numbers, these are

• The remote host identification number or address
• The remote host port number
• The local host identification number or address
• The local host port number

Users of Internet applications are normally aware of all except the local port number, this
is allocated when connection is established and is almost entirely arbitrary unlike the well
known port numbers associated with popular applications.

To the application programmer the sockets mechanism is accessed via a number of
functions. These are.

socket() create a socket
bind() associate a socket with a network address
connect() connect a socket to a remote network address
listen() wait for incoming connection attempts
accept() accept incoming connection attempts

In addition the functions setsockopt(), getsockopt(), fcntl() and ioctl() may be used to
manipulate the properties of a socket, the function select() may be used to identify sockets
with particular communication statuses. The function close() may be used to close a socket
liaison.

Data can be written to a socket using any of the functions write(), writev(), send(), sendto() and
sendmsg(). Data can be read from a socket using any of the functions read(), readv(), recv(),
recvfrom() and recvmsg()

These notes have been written in the context of SUN's Solaris 2 operating system, in
particular version 2.5. Other operating systems and environments will provide similar
facilities and functions but reference to the documentation is advised. In particular many
of the functions described here may well be system calls, i.e. direct entries to the
operating system.

Daemon Processes

The sockets mechanism is usually used to implement client-server applications. The
client process is directly or indirectly user driven whereas the server process sits on a host
waiting for incoming connections. A server process will run unattended and
continuously. In the Unix environment such processes are called daemon processes.

A daemon process can be initiated as part of the system boot up sequence. Alternatively a
daemon process can be initiated by a user in such a way that it carries on running after the

 22

user logs out. The latter can be achieved using the nohup(1) command in conjunction with
an ampersand (&) at the end of the command line but special coding techniques can also
be used.

To create a daemon observe the following steps.

• Ensure that the return value from functions is always checked.
• Remember that the daemon inherits various things from the shell from which it

was invoked.
• Close all open files. This includes stdin, stdout and stderr. Open suitable special files

for stdin, stdout and stderr if necessary.
• Change the working directory. Remember that if the daemon crashes it will drop

core in the current working directory. Also the working directory, and under some
systems the executable file, are open when the daemon is running. This may cause
difficulties if the system manager wants to unmount the relevant partition whilst
the daemon is running.

• Reset the file creation mask using umask().
• To run a daemon in background after interaction to start it up, which may be

useful during development, use the fork() function.
• Run the daemon in a separate process group using the setpgrp() function. This

avoids unexpected signals.
• Catch all likely signals. The SIGTERM signal is sent to all processes when the

system closes down, arrange to catch this for a graceful shut down of the daemon.
• Ensure that there is no control terminal.
• For development you may wish to log events. To avoid information being lost in

buffers use unbuffered output either using sprintf() and write() or use fopen() and
fclose() before and after every logged event. ANSI C compilers offer further
options for un-buffered output. Log every signal.

• Use lock files to avoid multiple instances of daemons. I.e. when a daemon starts
up it checks for the existence of a lock file which it creates if it doesn't exist and if
it does exist the daemon refuses to run.

Creating a socket

A socket is created using the function socket(). The prototype is

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol)

domain is either AF_UNIX or AF_INET. This parameter specifies whether the socket is to
be used for communicating between Unix file system like objects or Internet objects.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?1+nohup
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+umask
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+fork
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+setpgrp
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3S+sprintf
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+write
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3S+fopen
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3S+fclose
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+socket

 23

Actually this parameter is intended to allow sockets to be used with a wide variety of
networking protocols and products. Examination of the socket.h will show that there are
lrage number of possible values for networking domains such as CCITT/X.25, Novell
and many others. The information in these notes is only intended to cover the Internet
domain.

type specifies the communications semantics. There are a number of possible values.

SOCK_STREAM stream based full-duplex communication
SOCK_DGRAM datagram based communication
SOCK_RAW use raw IP sockets (must be super-user)
SOCK_SEQPACKET sequenced reliable datagrams
SOCK_RDM reliably delivered messages

protocol is normally set to zero.

The return value from socket() is a small integer that may be used to refer to a socket in
subsequent calls. It may be called the socket descriptor or handle and is analogous to a
file descriptor.

Socket Options

The behaviour of a socket can be modified using the functions setsockopt(), fcntl() and ioctl().
The function getsockopt() can be used to detemine the current values of certain aspects of
the behaviour of a socket. The default options are satisfactory for most applications.

With fcntl() the FNDELAY option can be associated with the command F_SETFL to make
reads non-blocking.

The prototype of setsockopt() is

#include <sys/types.h>
#include <sys/socket.h>

int setsockopt(int s, int level, int optname, char *optval, int *optlen)

s is the socket number

level is set to SOL_SOCKET

optname indicates which option to modify. There are several options, see the manual for
details.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+setsockopt
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+fcntl
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+ioctl

 24

optval/optname are used to provide new values for the various options

The select() function

If an application is using several sockets then the select() function may be used to find out
which ones are active, i.e. which ones have outstanding incoming data or which can now
accept further data for transmission or which have outstanding exceptional conditions.
This function would probably only be used with server daemon programs using
multiplexing to handle multiple clients.

select() is normally used in conjunction with the macros FD_SET, FD_CLR, FD_ISSET and
FD_ZERO. The prototype is

#include <sys/types.h>
#include <sys/time.h>

int select(int width, fd_set *readfds, fd_set *writefds, fd_set exceptfds, struct timeval *timeout)

Before calling select() FD_SET, FD_CLEAR and FD_ZERO should be used to put the relevant
descriptors into objects of type fd_set. After the call the return value gives the number of
"active" sockets and the FD_ISSET macro may be used to determine whether a particular
socket is active, width specifies the number of the largest descriptor to be checked. The
information in timeout specifies how long to wait to complete the selection.

The connect() function

The connect() function is used by a client program to establish communication with a
remote entity. The prototype is

#include <sys/types.h>
#include <sys/socket.h>

int connect(int s, struct sockaddr *name, int namelen)

s specifies the socket

name points to an area of memory containing the address information and namelen give
the length of the address information block. This is done because addresses in some
addressing domains are far longer than in others. connect() is normally only used for
SOCK_STREAM sockets.

The form of a struct sockaddr is

struct sockaddr
{
 u_short sa_family; /* address family */
 char sa_data[14]; /* actual address */

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+select
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+connect
http://www.scit.wlv.ac.uk/~jphb/comms/address.domain

 25

}

IP Addresses for connect()

If the AF_INET domain is being used this will be the address of an object of type struct
sockaddr_in whose internal structure is

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero;
}

A struct in_addr in turn consists of

struct in_addr
{
 union
 {
 struct { u_char s_b1, s_b2, s_b3, s_b4; };
 struct { u_short s_w1, s_w2; };
 u_long S_addr;
 } S_un;
}

As a convenience the following definition can be used

#define s_addr S_un.S_addr
The use of the othe "views" of the internal structure of struct in_addr is obsolete.

Howere, the function connect() requires the address of an area of memory containing a data
object of type struct sockaddr. The conflict between an IP address stored in an object of
type struct sockaddr_in and the object of type struct sockaddr required by connect() and related
routines can be resolved by the use of a union thus.

union sock
{
 struct sockaddr s;
 struct sockaddr_in i;
} sock;

The usual way of opening a connection is by the user supplying a fully qualified DNS
name (e.g. scitsc.wlv.ac.uk) and using the library call gethostbyname() to determine the
associated Internet address. The prototype is

#include <sys/socket.h>
#include <netdb.h>

http://www.scit.wlv.ac.uk/~jphb/comms/dns.html
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+gethostbyname

 26

struct hostent *gethostbyname(char *)

This returns the address of an object of type struct hostent. The relevant fields need to be
copied into an object of type struct sockaddr_in as shown below

union sock
{
 struct sockaddr s;
 struct sockaddr_in i;
} sock;
struct in_addr internet_address;
struct hostnet *hp;

hp = gethostbyname(remote address);
memcpy(&internet_address, *(hp->h_addr_list),sizeof(struct in_addr);

The relevant components of the struct sockaddr_in can now be filled in. Some older
references on sockets programming may use the function bcopy() rather than memcpy().

sock.i.sin_family = AF_INET;
sock.i.sin_port = required port number;
sock.i.sin_addr = internet_address;

In practice the final line of code above may be written thus

 memcpy(&(sock.i.sin_addr),*(hp->h_addr_list),sizeof(struct in_addr));

connect() can now be called

connect(socket number, &sock.s, sizeof(struct sockaddr));

Domain Name Service

Domain name service (DNS) is a mechanism that provides easily remembered names for
Interent hosts rather than using the dotted decimal addresses.

It can be accessed via the program /usr/etc/nslookup thus

/usr/etc/nslookup
Default Server: ccub.wlv.ac.uk
Address: 134.220.1.20

>unix.hensa.ac.uk
Server: ccub.wlv.ac.uk
Address: 134.220.1.20

Non-authoritative answer:
Name: unix.hensa.ac.uk
Address: 129.12.21.7
> Ctrl-D

http://www.scit.wlv.ac.uk/~jphb/comms/dns.html
http://www.scit.wlv.ac.uk/cgi-bin/mansec?1M+nslookup

 27

Incoming connections bind()

To accept incoming connection requests a server process must first create a socket using
socket() and then use bind() to associate a port number with the socket. The prototype of
bind() is

#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, struct sockaddr *name, int namelen)

This is similar to the connect() function except that, when binding in the AF_INET domain,
the components of the struct sockaddr_in are filled in differently

union sock
{
 struct sockaddr s;
 struct sockaddr_in i;
} sock;

sock.i.sin_family = AF_INET;
sock.i.sin_port = port number;
sock.i.sin_addr.s_addr = INADDR_ANY;

The final value simply means that connections will be accepted from any remote host.

Incoming Connections listen()

Once an address has been bound to a socket it is then necessary to indicate the socket is
to be listened to for incoming connection requests. This is done using the listen() function.
Its prototype is

int listen(int s, int backlog)

s specifies the socket.

backlog specifies the maximum number of outstanding connection requests in listen()'s
input queue. listen() can only be associated with SOCK_STREAM or SOCK_SEQPACKET type
sockets.

Incoming connections accept()

Once the listen() call has returned the accept() call should be issued, this will block until a
connection request is received from a remote host. The prototype is

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+bind
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+listen
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+accept

 28

#include<sys/types.h>
#include<sys/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen)

s is the socket number

addr points to a struct sockaddr that will be filled in with the address of the remote (calling)
system.

addrlen points to a location that will be filled in with the amount of significant
information in the remote address, initially it should specify the size of the space set aside
for the incoming address.

The return value of the call is the number of a new socket descriptor that should be used
for all subsequent communication with the remote host. You can, and should, carry on
listening on the original socket number. There is no way of rejecting a connection
request, you must accept it then close() it.

Receiving Data

There are a variety of functions that may be used to receive incoming messages.

read() may be used in the exactly the same way as for reading from files. There are some
complications with non-blocking reads. This call may only be used with SOCK_STREAM
type sockets.

readv() may be used in the same way as read() to read into several separate buffers. This is
called a scatter read. This call may only be used with SOCK_STREAM type sockets.

recv() may be used in the same way as read(). The prototype is

#include <sys/types.h>
#include <sys/socket.h>

int recv(int s, char *buff, int len, int flags)

buff is the address of a buffer area.

len is the size of the buffer.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+close
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+read
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+readv
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+recv

 29

flags is formed by ORing MSG_OOB and MSG_PEEK allowing receipt of out of band data
and allowing peeking at the incoming data. This call may only be used with
SOCK_STREAM type sockets.

recvfrom() and recvmsg() may be used with all types of socket. recvfrom() is similar to recv()
with extra parameters specifying the remote system address and recvmsg() receives into a
message structure.

In all cases the return value is the number of bytes received or -1. The value -1 indicates
an error.

It is tempting and a common beginner's error to think that data sent using a single write()
to a socket can be read at the other end using a single read(). There is no guarantee that
this will happen, data may well arrive in "dribs and drabs". If the application is a network
server, it is not possible to impose any constraint on clients to write the data using a
single call to write().

The following code shows how to receive a message whose termination is indicated by
the character pair CR+LF (a common internet convention).

char buff[BUFSIZ+1]; /* +1 for string terminator */
char *bptr;
int i;

bptr = buff;
do
{
 i = read(sd,bptr,BUFSIZ-(bptr-buff));
 if(i<=0) break;
 bptr += i;
 bptr = '\0'; / make what we've got into a string */
 if((cp = strstr(buff,"\r\n"))
 {
 *cp = '\0';
 break;
 }
 if(bptr >= buff+BUFSIZ)
 {
 /* message too long */
 }
} while(1);

The code also converts the received message into a string. If part of the next message is
received in the same "chunk" of data as the end of the current message, this code is likely
to loose the initial part of the next message.

Another common requirement of network programming is to implement a time out if a
read() call does not return in a defined time. [An alternative technique is make the socket
non-blocking.] This is normally done using the alarm() system call in conjunction with a
signal catching routine. Unfortunately on many operating systems (such as Solaris), after

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+recvfrom
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+recvmsg
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+alarm

 30

catching the signal, the system call is re-issued. If this happens with time-outs the
program will loop indefinitely. The problem can be overcome either using the setjmp() and
longjmp() routines or by using sigaction() and sigsetops to modify the behaviour associated
with the signal.

Here's some sample Solaris code

void (*func)() = timeout;

struct sigaction action;

action.sa_handler = func;
action.sa_flags = 0;
sigemptyset(&(action.sa_mask)); /* ignore all known signals */
sigaction(SIGALRM,&action,NULL)); /* ensures that SA_RESTART is NOT set */
alarm(TIMEOUT);

The sigaction() uses the information in action to define the handling of the SIGALRM
signal.

Sending Data

There are a variety of functions that may be used to send outgoing messages.

write() may be used in exactly the same way as it is used to write to files. This call may
only be used with SOCK_STREAM tpye sockets.

writev() is similar to write() except that it writes from a set of buffers. This is called a gather
write. This call may only be used with SOCK_STREAM type sockets.

send() may be used in the same way as write(). The prototype is

#include<sys/types.h>
#include<sys/socket.h>

int send(int s, char *msg, int len, int flags)

s is the socket number.

msg and len specify the buffer holding the text of the messagee.

flags may be formed by ORing MSG_OOB and MSG_DONTROUTE. The latter is only useful
for debugging. This call may only be used with SOCK_STREAM type sockets.

sendto() can be used to send messages to sockets of any type and sendmsg() sends a message
held in a message structure.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+setjmp
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+sigaction
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+sigsetops
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+write
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+writev
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+send
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+sendto
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+sendmsg

 31

In all cases the return value is the number of bytes sent or -1.

Multiple Server Sessions

If sockets programming is being used to proved a server facility it is important to ensure
that multiple simultaneous sessions are handled correctly. Once a connection request has
been accepted the program will be engaged in handling the associated dialogue, further
connection requests will be held until the listener program gets round to issuing the
accept() call again, so only one client can be handled at a time.

There are several ways of handling this issue. Under Unix the simplest solution is to fork
a separate process to handle the client/server dialogue once a connection request has been
received.

Here's an outline of the basic code.

 listen(sd,2); /* at most 2 pending connections */
 do
 {
 nsd = accept(sd,&(work.s),&addrlen);
 pid = fork();
 if(pid == 0)
 {
 /* Child process handles the dialogue
 using descriptor 'nsd'
 */
 close(nsd);
 exit(0); /* end of child process */
 }
 else close(nsd); /* parent won't be using 'nsd' */
 } while(1);
The overheads associated with forking a separate process everytime a client connects can
be significant. Alternative approaches use either multiplexing or multithreading.

Multiplexing requires that all the code be capable of talking on serveral different sockets
simultanesously, typically there will be an array of descriptors and it is the responsibility
of the program to keep track of the state of the dialogue associated with each active
socket. The poll() can be used to check for new connection requests. Multiplexing is the
most complex and most efficient way of handling multiple dialogues.

Multithreading is in many ways similar to forking a separate process for each dialogue
with the exception that thread creation overheads are much lower than process creation
overheads. Synchronisation between threads is usually easier than synchronisation
between processes.

Miscellaneous Routines

There are various useful miscellaneous routines.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+poll

 32

bcmp(), bcopy() and bzero() (see bstring(3)) manipulate blocks of memory. They are
equivalent to the ANSI functions memcmp(), memcpy() and memset().

htonl(), htons(), ntohl() and ntohs() convert strings of bytes to/from host order to network
order. They should always be used in a heterogeneous environment. On SUN systems
they are NULL macros but on systems such as VAXes and PCs they convert local byte
order to/from network order. See byteorder(3N).

The routines inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof() and inet_ntoa() converts an
Internet address to a string. See inet(3N).

The library routines gethostbyaddr() and gethostbyname() can be used for conversions between
dotted decimal and DNS addresses. See gethostent(3N).

The function getpeername() determines the address of the remote system on a socket. This
should be used in conjunction with gethostbyname() to determine the DNS address of the
remote system.

http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+bcmp
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+bcopy
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+bzero
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+bstring
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+memcmp
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+memcpy
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3C+memset
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+htonl
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+htons
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+ntohl
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+ntohs
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+byteorder
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+inet_addr
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+inet_network
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+inet_makeaddr
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+inet_lnaof
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+inet_ntoa
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+gethostbyaddr
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+gethostbyname
http://www.scit.wlv.ac.uk/cgi-bin/mansec?3N+getpeername

 33

SYSTEM
RESOURCES

HARDWARE DESCRIPTION

Configuration: -

CPU Intel Pentium
RAM 128 MB
Hard Disk 10 GB
Drives 1.44 FDD & 48 X CD - Rom Drive
SMPS 250 Watts
Key Board 108 keys
Mouse Logitech
Cache Memory 256 K

SOFTWARE DESCRIPTION

Language Used C and JAVA
Documentation MS WORD 2000

 34

DESIGN

Server
(connection-oriented protocol)

 Client

 Blocks until connection
 from client
 connection established

 data (request)

 process request

 data (reply)

 Socket system calls for connection-oriented protocol.

 Socket ()

 bind ()

 listen ()

 accept ()

 read ()

 write ()

 socket ()

 connect ()

 write ()

 read ()

 35

Server
(Connectionless protocol)

 Client

 Blocks until data received
 from client

 data (request)

 process request

 data (reply)

 Socket system calls for connectionless protocol.

 Socket ()

 bind ()

 recvfrom ()

 sendto ()

 socket ()

 connect ()

 sendto ()

 recvfrom ()

 36

select on the well-known port recvfrom on socket Create new socket
 When a datagram arrives, Spawn child process bind any local address
 invoke FTP server. then exit. Process client request

 fork fork
 exec

initial send to well
known port 1st response from

server

 FTP server, when invoked.

 Inetd
daemon

 FTP
 server

 FTP
 server(ch)

 FTP
 client

 37

 recvfrom on well-known socket Create new socket
 Blocks until client request arrives bind any local address
 Spawn child process. Initiate another Process client’s request.
 recvfrom on well-known socket

 fork

initial send to well
known port 1st response from

server

 FTP server, when run as daemon.

 FTP
 Server(parent)

 FTP
 Server(child)

 FTP
 client

 38

Why TCP Implementation????

FTP can be implemented using UDP but we chose TCP because:

In many ways, the UDP implementation is the worst-case example. The
transfer protocol UDP, is unreliable, so we have to handle timeout and
retransmission ourselves. We also have to maintain a pseudo connection
between the client and server, since multiple datagrams hace to be
exchanged for the transfer of a single file, using the connectionless UDP.

 39

CODE

 40

Implementation in C

The code written in programming language has been written for implementation on Linux
platform only. But it can be made to run in Windows platform also by making some
minor changes. We have employed file handling and socket programming extensively.
The files used in program are:

• hostname.c
This file is used to accept hostnames and their respective ip addresses from the
user and save them to a file hostname.txt. It gives error if there is a problem in
opening the file hostname.txt and finally prints the names of all the hosts and their
ip addresses.

• password.c
This file is used to accept all the usernames and their respective passwords from
the user and saves them to the file password.txt. It gives error if there is a problem
in opening the file password.txt. This is used for the authentication purpose so
that unauthorized user can not avail the services provided by the software.

• server.c
This file implements our server. It accepts all the rquests from the client program
and responds accordingly. The main functions being implemented her are:
• get ()

This function is used to implement the download function of the program.
It receives a signal from the client program and if the connection is
established, it accepts the path of the file requsted from the clientand then
sends it.

• put ()
This function is ised to implement the upload functionality of the program.
It receives a signal from the client program and if the connection is
established, it accepts the name of the file being sent by the client and then
stores it in its current working directory.

• ls ()
This function is used to list all the contents of the current working
directory of the server.

• pwd ()
This function is used to tell the client the complete path of the current
working directory.

• change directory
This function is implemented by using the chdir () function directly.

• client.c
This file implements our client. It sends all the requests to the server and receives
replies from it. It also makes calls to the functions in the hostname.c and

 41

password.c files for the logging and authentication purposes. All these
functiuonalities are implemented wit the help of follwing functions:
• gethostname ()

This function is used to establish the connection with the server. It accepts
the name of the server and returns the status of the connection.

• establish ()
This function is used to establish the connection with the server by
creating a socket to interact with the server.

• interact ()
This function is used to interact with the server at the socket created. It
takes the descriptor of the socket created and returns the status according
to the username and password. It gives error if the username or password
is incorrect.

• cd ()
It is used to give the implementation for “cd” command by accepting the
descriptor of the socket created. It changes the current working directory
of the server.

• ls ()
It is used to list the contents of the current working directory. It takes in as
input the descriptor of the socket created and lists the files in the current
working directory of the server.

• put ()
The objective of this function is to implement the upload functionality.
The local files are copied into the remote directory.

• get ()
This function is used to give the implementation of the download
functionality. It copies the remote files into the local directories.

 42

Hostname.c

#include <stdio.h>
struct host_ip
{
 char hostname[100];
 char address[20];
};

int main()
{
 struct host_ip temp_host;
 struct host_ip temp_host1;

 FILE *fp;
 fp=fopen("hostname.txt","ab");
 if(!fp)
 {
 printf("\nerror in opening the file...\n");
 exit(0);
 }
 char choice[2];
 do
 {
 printf("\n Enter the host name : ");
 scanf("%s",temp_host.hostname);
 printf("\n Enter the ip address : ");
 scanf("%s",temp_host.address);
 fwrite(&temp_host,sizeof(temp_host),1,fp);
 printf("\nDo you want to enter any other host name(y/n):");
 scanf("%s",choice);
 }while((choice[0]!='n')&&(choice[0]!='N'));

 fclose(fp);

 fp=fopen("hostname.txt","rb");
 if(!fp)
 {
 printf("\nerror in opening the file...\n");
 exit(0);
 }

 while(fread(&temp_host1,sizeof(temp_host1),1,fp))
 printf("\nhostname : %s ip address :
%s\n",temp_host1.hostname,temp_host1.address);

 43

 fclose(fp);
 return 0;
}

 44

password.c

#include <stdio.h>
struct identity
{
 char username[100];
 char password[100];
};

int main()
{
 struct identity temp_id;
 struct identity temp_id1;

 FILE *fp;
 fp=fopen("passwd.txt","ab");
 if(!fp)
 {
 printf("\nerror in opening the file...\n");
 exit(0);
 }
 char choice[2];
 do
 {
 printf("\n Enter the user name : ");
 scanf("%s",temp_id.username);
 printf("\n Enter the password : ");
 scanf("%s",temp_id.password);
 fwrite(&temp_id,sizeof(temp_id),1,fp);
 printf("\nDo you want to enter any other identity(y/n)

: ");
 scanf("%s",choice);
 }while((choice[0]!='n')&&(choice[0]!='N'));

 fclose(fp);

 fp=fopen("passwd.txt","rb");
 if(!fp)
 {
 printf("\nerror in opening the file...\n");
 exit(0);
 }

 while(fread(&temp_id1,sizeof(temp_id1),1,fp))
 printf("\nusername : %s password : %s\n",temp_id1.username,temp_id1.password);

 45

 fclose(fp);
 return 0;
}

 46

server.c

/******** server program ***********************/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

#include <stdio.h>
#include <string.h>

#define PROTOPORT 5194
#define QLEN 6

#define END -1

struct data
{
 char buffer;
};

struct identity
{
 char username[100];
 char password[100];
};

void get(int);
void put(int);
void ls(int);

int main(int argc,char *argv[])
{

 struct hostent *ptrh;

 struct sockaddr_in sad;
 struct sockaddr_in cad;
 int sd_old,sd_new;
 char buf[1000],buf1[1000];
 char host[100];
 int alen;

 47

 int childpid;

 //opening a tcp socket
 sd_old = socket(AF_INET ,SOCK_STREAM , 0);
 if(sd_old<0)
 {
 printf("\n socket creation failed ");
 exit(1);
 }

 //filling in the vlues for server address
 memset((char *)&sad,0,sizeof(sad));
 sad.sin_family=AF_INET;
 sad.sin_port=htons(PROTOPORT);
 sad.sin_addr.s_addr=INADDR_ANY;

 //binding the server
 if(bind(sd_old,(struct sockaddr *)&sad,sizeof(sad)) < 0)
 {
 printf("\n bind failed ");
 exit(1);
 }

 //specifying the queue length
 if(listen(sd_old,QLEN) < 0)
 {
 printf("\n listen failed ");
 exit(1);
 }

 //infinite loop to listen to client's request
 while(1)
 {
 alen=sizeof(cad);

 memset((char *)&cad,0,sizeof(cad));

 //accepting client's request and creating new socket for it
 sd_new=accept(sd_old, (struct sockaddr *)&cad,&alen);
 if(sd_new<0)
 {
 printf("\n accept failed ");
 exit(1);
 }

 48

 //creating a child process to interact with the client
 if((childpid=fork())<0)
 printf("server : fork error ");

 //code for child process
 if(childpid==0)
 {
 int n;

 //child destroying the old socket because it doesn't need it
 close(sd_old);

 //code for session with the client

 //asking for the username
 send(sd_new,"username : ",strlen("username : "),0);
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';

 //asking for the password
 send(sd_new,"password : ",strlen("password : "),0);
 n = recv(sd_new,buf1,sizeof(buf1),0);
 *(buf1+n)='\0';

 FILE *fp;
 fp=fopen("passwd.txt","rb");
 if(!fp)
 {
 printf("\nerror in opening the password file...\n");
 send(sd_new,"not_ok",strlen("not_ok"),0);
 close(sd_new);
 exit(1);
 }

 struct identity temp_id;
 int flag=0;
 while(fread(&temp_id,sizeof(temp_id),1,fp))
 {

if((strcmp(buf,temp_id.username)==0)&&(strcmp(buf1,temp_id.password)==0))
 {
 send(sd_new,"ok",strlen("ok"),0);
 flag=1;
 break;
 }

 49

 }
 fclose(fp);
 if(flag==0)
 {
 send(sd_new,"not_ok",strlen("not_ok"),0);
 close(sd_new);
 exit(1);
 }

 //authentication over : ftp session starts

 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';

 while((strcmp(buf,"close")!=0) && (strcmp(buf,"quit")!=0))
 {
 //code for implementation of get
 if(strcmp(buf,"get")==0)
 get(sd_new);

 else
 if(strcmp(buf,"put")==0)
 put(sd_new);

 else
 if(strcmp(buf,"ls")==0)
 ls(sd_new);

 else
 if(strcmp(buf,"cd")==0)
 {
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';
 int s=chdir(buf);
 if(s!=0)
 send(sd_new,"error",strlen("error"),0);
 else
 send(sd_new,"no_error",strlen("no_error"),0);
 }

 else
 if(strcmp(buf,"pwd")==0)
 {
 char *temp;
 temp=(char *)malloc(100*sizeof(char));
 getcwd(temp,100);

 50

 send(sd_new,temp,strlen(temp),0);
 }

 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';
 }

 //after the session with the client child destroys the new socket as well as itself
 printf("\nclosing a client....");
 close(sd_new);
 exit(1);
 }
 //parent destroying the new socket because it doesn't need it
 close(sd_new);
 }
}

/***

objective : to give the implementation for "put" command
input : the descriptor for the socket created
output : the remote file will be copied into local file
**
***/
void put(int sd_new)
{
 int n;
 char buf[512];
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';

 FILE *fp;
 fp=fopen(buf,"w");
 if(!fp)
 send(sd_new,"not_ok",strlen("not_ok"),0);

 else
 {
 send(sd_new,"ok",strlen("ok"),0);
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';
 if(strcmp(buf,"ok")==0) //if local file is also opened successfully
 {
 struct data temp_data;

 51

 n = recv(sd_new,&temp_data,sizeof(temp_data),0);
 while(temp_data.buffer!=END)
 {
 fwrite(&temp_data,sizeof(temp_data),1,fp);
 n = recv(sd_new,&temp_data,sizeof(temp_data),0);
 }
 fclose(fp);
 }
 }
}

/***

objective : to give the implementation for "get" command
input : the descriptor for the socket created
output : the local file will be copied into remote file
**
***/
void get(int sd_new)
{
 int n;
 char buf[512];
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';
 FILE *fp;
 fp=fopen(buf,"r");
 if(!fp)
 send(sd_new,"not_ok",strlen("not_ok"),0);

 else
 {
 send(sd_new,"ok",strlen("ok"),0);
 n = recv(sd_new,buf,sizeof(buf),0);
 *(buf+n)='\0';
 if(strcmp(buf,"ok")==0) //if local file is also opened successfully
 {
 struct data temp_data;
 while(fread(&temp_data,sizeof(temp_data),1,fp))
 send(sd_new,&temp_data,sizeof(temp_data),0);
 fclose(fp);
 temp_data.buffer=END;
 send(sd_new,&temp_data,sizeof(temp_data),0);
 }

 52

 }
}

/***

objective : to give the implementation for "ls" command
input : the descriptor for the socket created
output : the output of "ls" command will be sent to the client
**
***/
void ls(int sd)
{
 if(fork()==0)
 {
 char*args[2];
 close(1);
 dup(sd);
 args[0] = (char *) malloc (10 * sizeof(char));
 args[1]=NULL;
 strcpy(args[0],"ls");
 execvp(args[0],args);
 exit(1);
 }
 send(sd,"end",strlen("end"),0);

 53

client.c

/************* client program ***********************/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <curses.h>

//specifying the server's port number
#define PROTOPORT 5193

int establish_con(char *server_name);
int interact(int sd);
void get(int);
void put(int);
void ls(int);
void cd(int,char[100]);

#define END -1

struct data
{
 char buffer;
};

struct host_ip
{
 char hostname[100];
 char address[20];
};

//main function to control the flow of the program
int main(int argc,char *argv[])
{
 char input[100];
 char *tok;
 int pos,pos1;
 int sd=0;

 54

 int status;

 pos:printf("\nFTP_client@Project ");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';

 while(strcmp(input,"ftp")!=0)
 {
 if(strcmp(input,"exit")==0)
 {
 printf("\nquitting...\n");
 exit(1);
 }
 printf("\nthis program works only for ftp.....\n");
 printf("\nftp_client@Project>");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 }

 //starting the ftp session
 pos1:printf("\nftp>");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';

 tok=strtok(input," ");
 while((strcmp(tok,"open")!=0) && (strcmp(input,"quit")!=0))
 {
 printf("\nFirst of all you need to do \'open\'.....\n");
 printf("\nftp>");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 tok=strtok(input," ");
 }

 if(strcmp(input,"quit")==0)
 goto pos; //going back to the prompt

 tok=strtok(NULL," ");

 if(tok != NULL)
 {
 sd=establish_con(tok);
 if(sd==0)

 55

 {
 printf("\nConnection not established....\n");
 goto pos1;
 }
 }
 else
 {
 printf("\n(to)");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 while(strcmp(input,"")==0)
 {
 printf("\nYou need to enter the name of the server.....\n");
 printf("\n(to)");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 }
 sd=establish_con(input);
 if(sd==0)
 {
 printf("\nConnection not established....\n");
 goto pos1;
 }
 }

 status=interact(sd);
 if(status==0)
 goto pos1;

 else
 if(status==2)
 {
 printf("\nGood Bye");
 close(sd);
 goto pos1;
 }
 goto pos;
 return 0;
}//end of main

 56

/***

objective : to establish the connection with the server
input : the name of the server
output : the status for the connection
 0 - connection failure
 socket descriptor - connection successful
**
***/
void Gethostbyname(char *server_name,char server_addr[100])
{
 FILE *fp;
 fp=fopen("hostname.txt","r");
 if(!fp)
 {
 printf("\nError in opening the file...\n");
 return ;
 }

 struct host_ip temp_host;
 while(fread(&temp_host,sizeof(temp_host),1,fp))
 {

 if(strcmp(temp_host.hostname,server_name)==0)
 {
 fclose(fp);
 strcpy(server_addr,temp_host.address);
 return ;
 }
 if(strcmp(temp_host.address,server_name)==0)
 {
 fclose(fp);
 strcpy(server_addr,temp_host.address);
 return ;
 }

 }

 fclose(fp);
 return ;

}

 57

/***

objective : to establish the connection with the server
input : the name of the server
output : the status for the connection
 0 - connection failure
 socket descriptor - connection successful
**
***/
int establish_con(char *server_name)
{
 struct hostent *ptrh;
 struct sockaddr_in sad;
 int sd;
 char buf[512];
 char input[100];
 char server_addr[100];

 //creating the structure for server's address
 memset((char *)&sad,0,sizeof(sad));
 sad.sin_family=AF_INET;
 sad.sin_port=htons(PROTOPORT);
 Gethostbyname(server_name,server_addr);
 sad.sin_addr.s_addr=inet_addr(server_addr);

 //creating the socket to interact with the server
 sd = socket(AF_INET ,SOCK_STREAM ,0);
 if(sd<0)
 {
 printf("\n Socket creation failed\n ");
 return 0;
 }

 //sending the connection request to the server
 if(connect(sd,(struct sockaddr *)&sad,sizeof(sad)) < 0)
 {
 printf("\n Connect failed\n ");
 return 0;
 }
 printf("\nConnected to : %s\n",server_name);
 return sd;

}//end of establish_con

 58

/***

objective : to interact with the server at the socket created
input : the descriptor for the socket created
output : the status according to the username and password
 0 - if invalid username and password
 1 - if valid username and password
**
***/
int interact(int sd)
{
 char buf[512];
 int msg_len;
 char input[100],password[100];

 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';
 while((strcmp(buf,"ok")!=0) && (strcmp(buf,"not_ok")!=0))
 {
 printf("\n%s",buf);
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 send(sd,input,strlen(input),0);
 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';
 }

 if(strcmp(buf,"not_ok")==0)
 {
 printf("\n%s","Authentication failed.....\n");
 return 0;
 }

 printf("\n%s","\nLogin ok,access restrictions apply.\n");

 //authentication over : ftp session starts
 printf("\n%s","ftp>");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';

 while(strcmp(input,"quit")!=0)
 {
 if(strcmp(input,"get")==0)
 get(sd);

 59

 else
 if(strcmp(input,"put")==0)
 put(sd);

 else
 if(strcmp(input,"ls")==0)
 ls(sd);

 else
 if(strcmp(input,"pwd")==0)
 {
 send(sd,input,strlen(input),0);
 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';
 printf("\n%s\n",buf);
 }

 else
 if(strstr(input,"cd")==input)
 cd(sd,input);

 else
 if(strcmp(input,"close")==0)
 {
 send(sd,input,strlen(input),0);
 return 2;
 }

 else
 printf("\nInvalid command\n");

 printf("\n%s","ftp>");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 }
 send(sd,input,strlen(input),0);
 return 1;

}//end of interact

/***

objective : to give the implementation for "cd" command
input : the descriptor for the socket created

 60

output : the server's current working directory will be changed
**
***/
void cd(int sd,char input[100])
{
 char *tok,buf[512];
 int msg_len;
 tok=strtok(input," ");
 if(strcmp(tok,"cd")!=0)
 {
 printf("\n\nInvalid command");
 return;
 }
 send(sd,"cd",strlen("cd"),0);
 send(sd,input+3,strlen(input+3),0);

 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';
 if(strcmp(buf,"Error")==0)
 printf("\n\nUnable to change the directory....");
 else
 printf("\n\nPresent working directory of the server changed....");

}//end of cd

/***

objective : to give the implementation for "ls" command
input : the descriptor for the socket created
output : the files present in server's current working directory will be
 listed on the screen
**
***/
void ls(int sd)
{
 char buf[512];
 int msg_len;
 send(sd,"ls",strlen("ls"),0);
 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';
 while(strcmp(buf,"end")!=0)
 {
 printf("\n%s\n",buf);
 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';

 61

 }
}//end of ls

/***

objective : to give the implementation for "put" command
input : the descriptor for the socket created
output : the local file will be copied into remote file
**
***/
void put(int sd)
{

 char buf[512];
 char input[100],lcl_file[100];
 strcpy(input,"put");
 send(sd,input,strlen(input),0);
 int msg_len;

 //asking for the local file whose contents have to be stored
 printf("\n(Local-file) ");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 strcpy(lcl_file,input);

 //asking for the name of remote file to be accessed
 printf("\n(Remote-file) ");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 if(strcmp(input,"")==0)
 strcpy(input,lcl_file);
 send(sd,input,strlen(input),0);

 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';

 if(strcmp(buf,"ok")==0)
 {
 FILE *fp;
 fp=fopen(lcl_file,"r");
 if(!fp)
 {
 printf("\nError in opening the local file...\n");
 send(sd,"not_ok",strlen("not_ok"),0);

 62

 }
 else
 {
 send(sd,"ok",strlen("ok"),0);
 struct data temp_data;
 while(fread(&temp_data,sizeof(temp_data),1,fp))
 send(sd,&temp_data,sizeof(temp_data),0);
 fclose(fp);
 temp_data.buffer=END;
 send(sd,&temp_data,sizeof(temp_data),0);
 printf("\n\nFile written to the server......");
 }
 }
 else
 printf("\nCannot open the file on server side...\n");

}

/***

objective : to give the implementation for "get" command
input : the descriptor for the socket created
output : the remote file will be copied into local file
**
***/
void get(int sd)
{
 char buf[512];
 char input[100],rmt_file[100];;
 strcpy(input,"get");
 send(sd,input,strlen(input),0);
 int msg_len;

 //asking for the name of remote file to be accessed
 printf("\n(Remote-file) ");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 strcpy(rmt_file,input);
 send(sd,input,strlen(input),0);

 //asking for the local file in which the content will be stored
 printf("\n(Local-file) ");
 fgets(input,100,stdin);
 input[strlen(input)-1]='\0';
 if(strcmp(input,"")==0)

 63

 strcpy(input,rmt_file);

 msg_len=recv(sd,buf,sizeof(buf),0);
 *(buf+msg_len)='\0';

 if(strcmp(buf,"ok")==0)
 {
 FILE *fp;
 fp=fopen(input,"w");
 if(!fp)
 {
 printf("\nError in opening the local file...\n");
 send(sd,"not_ok",strlen("not_ok"),0);
 }
 else
 {
 send(sd,"ok",strlen("ok"),0);
 struct data temp_data;
 msg_len = recv(sd,&temp_data,sizeof(temp_data),0);
 while(temp_data.buffer!=END)
 {
 fwrite(&temp_data,sizeof(temp_data),1,fp);
 msg_len = recv(sd,&temp_data,sizeof(temp_data),0);
 }
 fclose(fp);
 printf("\n\nFile accepted from the server......");
 }
 }
 else
 printf("\nCannot open the file on server side...\n");
}

 64

Output

[root@localhost root]# cd /mnt/D:/project
[root@localhost project]# gcc hostname.c
[root@localhost project]# ./a.out

 Enter the host name : host

 Enter the ip address : 127.0.0.1

Do you want to enter any other host name(y/n) : n

hostname : host ip address : 127.0.0.1

[root@localhost project]# gcc password.c
[root@localhost project]# ./a.out

 Enter the user name : user

 Enter the password : pass

Do you want to enter any other identity(y/n) : n

username : user password : pass

[root@localhost project]# gcc server.c
[root@localhost project]# ./a.out &
[1] 4721
[root@localhost project]# gcc client.c
[root@localhost project]# ./a.out

FTP_client@Project ftp

ftp>open

(to)host

Connected to : host

username : user

password : pass

Login ok,access restrictions apply.

 65

ftp>get

(Remote-file) /mnt/D:/project/hostname.txt

(Local-file) hostnam.txt

File accepted from the server......

ftp>put

(Local-file) /mnt/D:/project/passwd.txt

(Remote-file) pass.txt

File written to the server......

ftp>ls

a.out
client.c
client.c~
hostna.txt
hostnam.txt
hostname.c
hostname.txt
pass.txt
passwd.txt
password.c
server.c
server.c~

ftp>pwd

/mnt/D:/project

ftp>cd /mnt/D:

Present working directory of the server changed....

ftp>pwd

 66

/mnt/D:

ftp>ls

3668bd3
Documents and Settings
Folder Settings
My Documents
Nishant
Program Files
Recycled
System Volume Information
Thumbs.db
UTILITIES
UniScan
WUTemp
Web pages of homoeopathy
doctor
floppy
hiberfil.sys
hompath
i386
msdownld.tmp
pagefile.sys
project
songs
windows

 ftp>quit

FTP_client@Project
closing a client....

ftp_client@Project>exit

quitting...

[root@localhost project]#

 67

 Implementation in JAVA

Interface.java: This class job is to create the introduction window where the buttons “START” and
“CANCEL” appear. On pressing the “ START” button the server session starts where the server sets to
listen for any client seeking to make the connection .As and when the connection is complete, the server
and the client are connected and the FTP session starts. Now when any of the functions are requested from
the client side, accordingly server calls the particular function. These requests are fetched by the server
through the input and output streams being maintained between the client and server.

Lserver.java: This class is being called in Interface.java where after the “START” is pressed and the
server sets to listen , a black window appears onscreen which is made by this class

Lclient.java: This displays the interactive window for the client to give the various commands to the server
like CONNECT, DISCONNECT,DOWNLOAD,UPLOAD,DELETE

CONNECT: for initiating the request for the connection to the server

DISCONNECT: to quit the session and ends the connection between the client and the
 Server. Here only client dies but the server is still listening to any
 client seeking the session.

DOWNLOAD: it pops a window asking for the file to be downloaded from the server
 And also the path and name of the new file where that is to be
 Downloaded.

UPLOAD: just the reverse of the download command where the file from the client
 is being transferred to the server.

DELETE: asks the path and name of the file to be deleted on the server and then performs the task.

Ftps1.java: This class is called by the Interface class after the request for DOWNLOAD comes from the
client side. This class makes the data connection through which the file data will be transferred. First
through the input stream it gets the name and the path of the file and through the output stream it transfers
the file content which is obtained by the client

Ftpc1.java: This class is called by the Lclient.java after the button “DOWNLOAD” is pressed . now this
class makes a window to enter the name of the source and the destination file to be downloaded .This
connects through the data socket set in the ftps1.java .and gets the contents of the source file through the
input stream.

Ftps2.java: Again this is called by Interface. java when “UPLOAD” button is pressed at the client side.
This connects to the socket set in the ftpc2.java and receives the file contents from the client.

Ftpc2.java: Called by the Lclient.java for the upload function. It makes a new socket for the data transfer,
that is, the file to the server, by setting an input stream and the output stream.

Ftpcd1.java: When the operation “DELETE” is requested by the client, this class is called by the
Lclient.java, which pops a window to enter the name of the file to be deleted at the server side. This passes
the name of the file to the server through a output stream which reacts accordingly.

 Ftpsd1.java: When it receives the file name, through its input stream, to be deleted it opens a file pointer
of the type file and manipulate it accordingly, that is, deleting the contents of the file requested to be
deleted.

 68

LServer.java

import java.io.*;
import java.awt.*;
import java.net.*;
import java.awt.event.*;
import javax.swing.*;

class LServer extends JFrame
{
 private JDesktopPane idesk;
 public LServer()
 {
 super("LSERVER");
 Container c = getContentPane();
 c.setBackground(Color.black);
 idesk = new JDesktopPane();
 idesk.setBackground(Color.black);
 c.add(idesk,BorderLayout.CENTER);
 }
 public JDesktopPane share()
 {
 return(idesk);
 }
}

 69

ftpc1.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
class ftpc1 extends JFrame
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextField tf1,tf2;
 private JButton b;
 private JLabel l1,l2;
 public ftpc1()
 {
 Container c = getContentPane();
 c.setBackground(Color.orange);
 tf1 = new JTextField(10);
 tf2 = new JTextField(10);
 l1 = new JLabel("Enter the file wanted:");
 l2 = new JLabel("Enter the filename to be saved:");
 b = new JButton("Start Downloading");
 JPanel p1 = new JPanel();
 p1.add(l1);
 p1.add(tf1);
 JPanel p2 = new JPanel();
 p2.add(l2);
 p2.add(tf2);
 JPanel p3 = new JPanel();
 p3.add(b);
 c.add(p1,BorderLayout.NORTH);
 c.add(p2,BorderLayout.CENTER);
 c.add(p3,BorderLayout.SOUTH);
 setSize(300,200);
 setVisible(true);
 b.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 run();
 setVisible(false);
 }

 70

 }
);
 }
 public void run()
 {
 try{
 Socket client = new
Socket(InetAddress.getByName("localhost"),clint_port);
 ObjectOutputStream out = new
ObjectOutputStream(client.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(client.getInputStream());

 String mesg1="";
 String mesg2="";
 String mesg3="";
 mesg2=tf1.getText();
 mesg3=tf2.getText();
 out.writeObject(mesg2);
 out.flush();

 FileOutputStream fs=new FileOutputStream(mesg3);
 ObjectOutputStream outf = new ObjectOutputStream(fs);
 while(true)
 {
 mesg1=(String)in.readObject();
 outf.writeObject(mesg1);
 outf.flush();
 if(mesg1.equals("EOF"))
 break;
 }
 outf.close();
 fs.close();
 out.close();
 in.close();
 client.close();
 }
 catch(Exception e)
 {
 System.out.println(e+"error");
 }
 }

}

 71

ftpc2.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
class ftpc2 extends JFrame
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextField tf1,tf2;
 private JButton b;
 private JLabel l1,l2;
 public ftpc2()
 {
 Container c = getContentPane();
 c.setBackground(Color.orange);
 tf1 = new JTextField(10);
 tf2 = new JTextField(10);
 l1 = new JLabel("Enter the file wanted:");
 l2 = new JLabel("Enter the filename to be saved:");
 b = new JButton("Start Uploading");
 JPanel p1 = new JPanel();
 p1.add(l1);
 p1.add(tf1);
 JPanel p2 = new JPanel();
 p2.add(l2);
 p2.add(tf2);
 JPanel p3 = new JPanel();
 p3.add(b);
 c.add(p1,BorderLayout.NORTH);
 c.add(p2,BorderLayout.CENTER);
 c.add(p3,BorderLayout.SOUTH);
 setSize(300,200);
 setVisible(true);
 b.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 run();
 setVisible(false);
 }

 72

 }
);
 }
 public void run()
 {
 try{
 Socket client = new
Socket(InetAddress.getByName("localhost"),clint_port);
 ObjectOutputStream out = new
ObjectOutputStream(client.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(client.getInputStream());
 String str="";
 String mesg1="";
 String mesg2="";
 String mesg3="";
 mesg2=tf1.getText();
 mesg3=tf2.getText();
 out.writeObject(mesg3);
 out.flush();

 FileInputStream fs=new FileInputStream(mesg2);
 BufferedReader br = new BufferedReader(new InputStreamReader(fs));
 long l = fs.available();
 while(l>=0)
 {
 out.writeObject(br.readLine());
 out.flush();
 l--;
 }

 fs.close();
 str="EOF";
 out.writeObject(str);
 out.flush();
 in.close();
 out.close();
 fs.close();
 out.close();
 in.close();
 client.close();
 }
 catch(Exception e)
 {
 System.out.println(e+"error");
 }
 }

 73

}

ftps1.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ftps1
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextArea ta;
 private JTextField tf;
 public ftps1()
 {}

 public void run()
 {
 try
 {
 ObjectOutputStream out;
 ObjectInputStream in;
 ServerSocket socket=new ServerSocket(server_port);
 Socket ftpc = socket.accept();
 byte tbyt[]=new byte[4] ;
 byte mesg[]=new byte[1];
 String mesg1;
 byte as[]=new byte[40];

 out = new ObjectOutputStream(ftpc.getOutputStream());
 out.flush();
 in = new ObjectInputStream(ftpc.getInputStream());

 String str ="";
 str=(String) in.readObject();
 char buf[]=new char[str.length()];
 str.getChars(0,str.length(),buf,0);
 CharArrayReader ini=new CharArrayReader(buf);
 BufferedReader outi=new BufferedReader(ini);
 mesg1=outi.readLine();

 74

 FileInputStream fs = new FileInputStream(mesg1);

 BufferedReader br = new BufferedReader(new InputStreamReader(fs));
 long l = fs.available();
 while(l>=0)
 {
 out.writeObject(br.readLine());
 out.flush();
 l--;
 }

 fs.close();
 str="EOF";
 out.writeObject(str);
 out.flush();
 in.close();
 out.close();
 ftpc.close();
 socket.close();
 }
 catch(Exception e){System.out.println("FTP :"+e);}
 }
}

 75

ftps2.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ftps2
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextArea ta;
 private JTextField tf;
 public ftps2()
 {}

 public void run()
 {
 try
 {
 ObjectOutputStream out;
 ObjectInputStream in;
 ServerSocket socket=new ServerSocket(server_port);
 Socket ftpc = socket.accept();
 byte tbyt[]=new byte[4] ;
 byte mesg[]=new byte[1];
 String mesg1;
 byte as[]=new byte[40];

 out = new ObjectOutputStream(ftpc.getOutputStream());
 out.flush();
 in = new ObjectInputStream(ftpc.getInputStream());

 String str ="";
 str=(String) in.readObject();
 char buf[]=new char[str.length()];
 str.getChars(0,str.length(),buf,0);
 CharArrayReader ini=new CharArrayReader(buf);
 BufferedReader outi=new BufferedReader(ini);

 76

 mesg1=outi.readLine();
 FileOutputStream fs = new FileOutputStream(mesg1);
 ObjectOutputStream outf = new ObjectOutputStream(fs);
 while(true)
 {
 mesg1=(String)in.readObject();
 outf.writeObject(mesg1);
 outf.flush();
 if(mesg1.equals("EOF"))
 break;
 }

 fs.close();
 str="EOF";

 in.close();
 out.close();
 ftpc.close();
 }
 catch(Exception e){System.out.println(""+e);}
 }
}

 77

ftpcd1.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
class ftpcd1 extends JFrame
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextField tf1;
 private JButton b;
 private JLabel l1;
 public ftpcd1()
 {
 Container c = getContentPane();
 c.setBackground(Color.orange);
 tf1 = new JTextField(10);

 l1 = new JLabel("Enter the file to be deleted:");

 b = new JButton("Start Deleting");
 JPanel p1 = new JPanel();
 p1.add(l1);
 p1.add(tf1);
 JPanel p3 = new JPanel();
 p3.add(b);
 c.add(p1,BorderLayout.NORTH);

 c.add(p3,BorderLayout.SOUTH);
 setSize(300,200);
 setVisible(true);
 b.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 run();
 setVisible(false);
 }
 }
);

 78

 }
 public void run()
 {
 try{
 Socket client = new
Socket(InetAddress.getByName("localhost"),clint_port);
 ObjectOutputStream out = new
ObjectOutputStream(client.getOutputStream());
 ObjectInputStream in = new ObjectInputStream(client.getInputStream());

 String mesg1="";
 String mesg2="";

 mesg2=tf1.getText();

 out.writeObject(mesg2);
 out.flush();

 out.close();
 in.close();
 client.close();
 }
 catch(Exception e)
 {
 System.out.println(e+"error");
 }
 }

}

 79

ftpsd1.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ftpsd1
{
 final static int clint_port=28;
 final static int server_port=28;
 private JTextArea ta;
 private JTextField tf;
 public ftpsd1()
 {}

 public void run()
 {
 try
 {
 ObjectOutputStream out;
 ObjectInputStream in;
 ServerSocket socket=new ServerSocket(server_port);
 Socket ftpc = socket.accept();
 byte tbyt[]=new byte[4];
 byte mesg[]=new byte[1];
 String mesg1;
 byte as[]=new byte[40];

 out = new ObjectOutputStream(ftpc.getOutputStream());
 out.flush();
 in = new ObjectInputStream(ftpc.getInputStream());

 String str ="";
 str=(String) in.readObject();

 80

 char buf[]=new char[str.length()];
 str.getChars(0,str.length(),buf,0);
 CharArrayReader ini=new CharArrayReader(buf);
 BufferedReader outi=new BufferedReader(ini);
 mesg1= outi.readLine();
 FileOutputStream fs= new FileOutputStream(mesg1);
 File ft = new File(mesg1);
 ft.delete();
 out.flush();
 in.close();
 out.close();
 ftpc.close();
 socket.close();
 }
 catch(Exception e){System.out.println("FTP: "+e);}
 }
}

 81

Interface.java

import java.net.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Interface extends JFrame
{
 private static LServer server;
 private static JDesktopPane desk;
 public static void main(String args[])
 {
 final JFrame frame = new JFrame("INTRODUCTION");
 final Container c = frame.getContentPane();
 server = new LServer();
 c.setLayout(new FlowLayout());
 JTextArea intro = new JTextArea();
 intro.setFont(new Font("TimesRoman", Font.BOLD, 17));

 intro.setText("\t FTP IMPLEMENTATION\t\n\nProject Guide:\t\t\t\tDeveloped
by:\nDR GOLDIE GABRANI\n\t\t\t\tNEELABH SAXENA\n\t\t\t\tNISHANT
GUPTA\n\t\t\t\tPARAG MEHRA");
 intro.setBackground(new Color(Integer.parseInt("AEECCF",16)));
 intro.setForeground(Color.black);
 intro.setEditable(false);
 JPanel p1 = new JPanel();
 p1.setLayout(new FlowLayout(FlowLayout.LEFT));
 p1.add(intro);
 JButton b1 = new JButton("START");
 b1.setFont(new Font("Comic Sans", Font.BOLD, 14));
 JButton b2 = new JButton("CANCEL");
 b2.setFont(new Font("Comic Sans", Font.BOLD, 14));
 JPanel p2 = new JPanel();

 p2.setLayout(new FlowLayout(FlowLayout.CENTER));

 82

 p2.setBackground(new Color(Integer.parseInt("ACCCFF",16)));
 p2.add(b1);
 p2.add(b2);
 c.add(p1,BorderLayout.CENTER);
 c.add(p2,BorderLayout.SOUTH);
 c.setBackground(new Color(Integer.parseInt("AACCFF",16)));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(600,280);
 frame.setLocation(50,50);
 frame.setForeground(Color.green);
 frame.setVisible(true);
 b1.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 frame.setVisible(false);
 server.setSize(600,500);
 server.setLocation(50,50);
 server.setVisible(true);
 server.addWindowListener(
 new WindowAdapter()
 {
 public void windowClosing(WindowEvent e)
 {
 System.exit(0);
 }
 }
);
 desk = server.share();
 }
 }
);
 b2.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 System.exit(0);
 }
 }
);
 try
 {
 ServerSocket serve = new ServerSocket(5009);
 int i = 1;
 while(true)
 {
 Socket conn = serve.accept();
 Proxy pro = new Proxy(conn,desk,i);

 83

 pro.start();
 i++;
 }
 }
 catch(Exception a){System.out.println("main::"+a);}

 }
}

class Proxy extends Thread
{
 private Socket connect;
 private int count;
 private JDesktopPane desk;
 private String msg = "";
 private ObjectOutputStream output;
 private ObjectInputStream input;
 private JTextArea tb;
 private JTextField tg;
 private JInternalFrame client;
 Proxy(Socket c,JDesktopPane d,int i)
 {
 connect=c;
 desk=d;
 count=i;
 }
 public void run()
 {
 try
 {
 InetAddress cladd = connect.getInetAddress();
 String name = cladd.getHostName();
 output = new ObjectOutputStream(connect.getOutputStream());
 output.flush();
 input= new ObjectInputStream(connect.getInputStream());

 client = new JInternalFrame(name+count,true,true,true,true);
 Container c = client.getContentPane();
 c.setLayout(new FlowLayout());
 tb = new JTextArea(7,15);
 tg = new JTextField(15);
 tb.setEditable(false);
 tg.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 sendData();

 84

 }
 }
);
 c.add(new JScrollPane(tb),BorderLayout.CENTER);
 c.add(tg,BorderLayout.SOUTH);
 client.setSize(200,200);
 client.setLocation((10*count)+50,(10*count)+50);
 client.setBackground(Color.blue);
 client.show();
 desk.add(client);
 desk.setVisible(true);

 do
 {
 msg = (String) input.readObject();
 tb.append(name+">>"+msg+'\n');
 if(msg.equals("download."))
 askedhttp();
 if(msg.equals("upload."))
 askedftp();
 if(msg.equals("delete."))
 askedsmtp();
 }while((!msg.equals("quit"))||(!(tg.getText()).equals("quit")));

 tb.append("Connection Terminated by client "+count+'\n');

 output.close();
 input.close();
 connect.close();
 quit();
 }
 catch(SocketException ex)
 {
 client.setVisible(false);
 }
 catch(Exception e)
 {
 System.out.println("run::"+e);
 }
 }
 public void sendData()
 {
 try
 {
 String mesg = tg.getText().trim();
 tb.append(mesg+'\n');

 85

 output.writeObject(mesg);
 output.flush();
 }
 catch(Exception d)
 {
 System.out.println("sendData::"+d);
 }
 }
 public void quit()
 {
 client.setVisible(false);
 }
 public void askedhttp()
 {
ftps1 obj = new ftps1();
obj.run();
 }
 public void askedftp()
 {
ftps2 obj2=new ftps2();
obj2.run();
 }
 public void askedsmtp()
 {ftpsd1 obj3=new ftpsd1();
 obj3.run();
 }
}

 86

LClient.java

import java.io.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LClient extends JFrame
{
 private static JTextArea tb;
 private static JTextField tg;
 private static String msg = "";
 private static ObjectOutputStream out;
 private static ObjectInputStream in;
 private static String name = "";
 private static Socket conn;
 public LClient()
 {
 super("FTP CLIENT");
 JLabel label1 = new JLabel("Status");
 JButton b = new JButton("Connect");
 JButton df = new JButton("Download File");
 JButton uf = new JButton("Upload File");
 JButton x = new JButton("Delete");
 JButton d = new JButton("Disconnect");
b.setBackground(new Color(Integer.parseInt("EEAACF",16)));
df.setBackground(new Color(Integer.parseInt("EEAACF",16)));
uf.setBackground(new Color(Integer.parseInt("EEAACF",16)));
x.setBackground(new Color(Integer.parseInt("EEAACF",16)));
d.setBackground(new Color(Integer.parseInt("EEAACF",16)));
 Container c = getContentPane();
 c.setBackground(new Color(Integer.parseInt("AABCFF",16)));
 tg = new JTextField(25);
 tb = new JTextArea(8,25);
tg.setBackground(new Color(Integer.parseInt("ABCDFF",16)));
tb.setBackground(new Color(Integer.parseInt("BAACDF",16)));

 87

 tb.setEditable(false);
//JPanel p1 = new JPanel();
//p1.setLayout(new FlowLayout(FlowLayout.LEFT));
//p1.add(x);
JPanel p2 = new JPanel();
 p2.setLayout(new FlowLayout(FlowLayout.LEFT));
 p2.add(df);
 p2.add(uf);
 p2.add(x);

 JPanel p3 = new JPanel();
p3.setBackground(new Color(Integer.parseInt("EABCDF",16)));
 p3.setLayout(new FlowLayout(FlowLayout.LEFT));
 p3.add(label1);
 p3.add(new JScrollPane(tb));
 p3.add(tg);
p3.add(b);
 p3.add(d);
 c.add(p3,BorderLayout.CENTER);
 c.add(p2,BorderLayout.SOUTH);
 //c.add(p1,BorderLayout.SOUTH);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setSize(300,400);
 setLocation(100,50);
 setVisible(true);
 tg.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 sendData();
 }
 }
);
 b.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
try{
 String mesg = tg.getText().trim();
 tb.append("Connect to "+mesg);
 Socket client = new Socket(InetAddress.getByName(mesg),5009);
 out = new ObjectOutputStream(client.getOutputStream());
 in = new ObjectInputStream(client.getInputStream());
 }
catch(Exception f){System.out.println(e);}
 }
 }
);

 88

 df.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 askhttp();
 }
 }
);
 uf.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 asksmtp();
 }
 }
);
 x.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 askftp();
 }
 }
);
 d.addActionListener(
 new ActionListener(){
 public void actionPerformed(ActionEvent e){
 quit();
 }
 }
);
 }
 public static void main(String s[])throws IOException
 {
 LClient client = new LClient();
 }
 public static void sendData()
 {
 try
 {
 String mesg = tg.getText().trim();
 tb.append("Connect to "+mesg);
 Socket client = new Socket(InetAddress.getByName(mesg),5009);
 out = new ObjectOutputStream(client.getOutputStream());
 in = new ObjectInputStream(client.getInputStream());

 }
 catch(Exception d)
 {

 89

 System.out.println(d);
 }
 }
 public static void quit()
 {
 try{out.writeObject("quit");
 out.close();
 in.close();
 conn.close();}catch(Exception j){System.out.println(j);}
 }
 public static void finexit()
 {
 System.exit(0);
 }
 public static void askhttp()
 {
 try{
 out.writeObject("download.");
 out.flush();
ftpc1 obj = new ftpc1();

 }catch(Exception t){System.out.println("a:"+t);}
 }
 public static void asksmtp()
 {
 try{
 out.writeObject("upload.");
 out.flush();
 ftpc2 obj2 = new ftpc2();
 }catch(Exception i){System.out.println(i);}
 }
 public static void askftp()
 {
 try{
 out.writeObject("delete.");
 out.flush();
 ftpcd1 obj = new ftpcd1();

 }catch(Exception h){System.out.println(h);}
 }
}

 90

Output

On Running Interface.java

Then on Clicking Start….

 91

Now we run LCLient.java and connect to localhost

 92

A new window corresponding to the client opens up at the server…..

Now click on the download button…

Now selecting to Upload a file….

 93

Similalarly to delete a file….

The status of the Server during this time…..

 94

Limitations

 95

Despite our best efforts, there were some limitations which we observed during the
course of our project. Some of them are:

• The implementation of the File Transfer Protocol in the programming language C
is platform dependent, i.e. it has been made with Linux in mind. Though only
small changes would be required to make the code compatible with windows as
well.

• All the functionalities of the File Transfer Protocol could not be implemented.

Though all the basic as well as the commonly used functionalities have been
implemented in both C and JAVA making it a complete software.

• In the JAVA implementation of the code, the transferred files get some

unidentified characters prepended and appended to their contents.

 96

CONCLUSION

The current version of the File Transfer Protocol application has met all
the expectations that had been hoped for, with only a few problems
encountered. The project helped us to understand the concepts involved
in socket programming and implement them in a client server model.
Although there are some limitations in the software we are sure that
they can be removed.

 97

References

1. Unix Network Programming

 By: W. Richard Stevens

2. Programming in JAVA
 By: Herbert Schildt

3. TCP/IP Internetworking
 By: Douglas E. Comer

	CERTIFICATE
	ACKNOWLEDGEMENT
	INTRODUCTION
	
	HISTORY-
	OSI MODEL-
	PROCESSES-
	A Simplified Model-
	
	
	
	
	
	
	
	
	
	Client-Server Model
	
	
	
	
	
	
	
	
	
	FTP Operations
	Connect to the Remote Host
	Select a Directory
	List Files Available for Transfer
	Specifying the Transfer Mode
	Copy Files
	End the Transfer Session

	
	
	Sockets
	Daemon Processes
	
	
	Creating a socket
	Socket Options
	The select() function
	
	
	The connect() function
	
	
	IP Addresses for connect()
	
	Domain Name Service
	
	
	Incoming connections bind()
	Incoming Connections listen()
	Incoming connections accept()
	
	
	
	
	Receiving Data
	
	Sending Data
	Multiple Server Sessions
	Miscellaneous Routines

