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ABSTRACT 
 

 
Bioinformatics became very popular nowadays. Most of the tasks in bioinformatics 

involve searching of biological databases. The sizes of biological data records are very 

huge, and the numbers of records in the databases are increasing year by year. So we 

need efficient searching techniques for biological databases.  

 

Biosequences typically have a small alphabet, a long length, and patterns containing 

gaps of arbitrary size. Mining frequent patterns in such sequences faces a different 

type of explosion than in transaction sequences. In this project report, we study how 

this explosion affects the classic sequential pattern mining, and present a scalable two-

phase algorithm to deal with this new explosion.  

 

We propose a new algorithm called Two-Phase Searching Algorithm (2-PSA) that 

incorporates reliability and efficiency. The first phase “Segment Phase”  first searches 

for short patterns containing no gaps, called segments. This phase is efficient. The 

second phase “Pattern Phase” searches for long patterns containing multiple 

segments separated by variable length gaps. This phase is time consuming. The 

purpose of two phases is to exploit the information obtained from the first phase to 

speed up the pattern growth and matching and to prune the search space in the second 

phase. We evaluate this approach on synthetic and real life data sets. 
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Chapter 1 

Introduction 
This chapter provides a short summary of the work presented in the thesis and also 

some pointers of what each of the following chapters include 

This project falls under the broad area of study called Bioinformatics or 

Computational Molecular Biology [9,10,11]. Among the various fields of 

bioinformatics, we are particularly interested in efficient searching and 

comparison of the biological data. These tasks form a basic part of 

bioinformatics, and make contributions to many application areas in 

bioinformatics such as data analysis, data mining, biological reasoning, and 

evolutional deduction 

Bioinformatics is an emerging science, which in its current state can be broadly 

divided into two categories in much the same way as software: developers and users. 

Bioinformatics developers range from mathematicians, statisticians, computer 

scientists, to software engineers and also all of those skills combined - these people 

are Computational Biologists or 'Bioinformaticians'.  

Between these two layers are databases, whose structure is often maintained by 

developers, but whose content is provided by users. The databases are predominantly 

government-funded and accessible to the public with a typical browser. Richer 

institutions often copy the public databases onto a local network computer to speed up 

access by their local users.  



  

1.1 Contributions of this work 

We have proposed a new algorithm called Two-Phase Algorithm for finding 

frequently occurring patterns from sets of sequences.  

Biosequence patterns have the form of X1 * …………* Xk     spanning over a long 

region, where each Xi is a short region of consecutive items, called a segment, and * 

denotes a variable length gap corresponding to a region not conserved in the evolution 

[1,2].  

The presence of * implies that pattern matching is more permissible and involves the 

whole range in a sequence. These features create a different type of explosion of 

patterns. Here we discuss the effect of these features on the classic sequential pattern 

mining, and propose a two-phase mining strategy to better deal with the new type of 

explosion.  

• The first phase finds frequent segments Xi efficiently.  

• The second phase grows patterns X1 * ………… * Xk¡ - 1 * Xk rapidly one 

segment at a time, as opposed to one item at a time. The essence of this two-

phase approach is leveraging some information about Xi obtained in the first 

phase to prune patterns and speed up pattern matching in the second phase.  

Particularly, based on such information, we propose indexing or compression methods 

to reduce the work of pattern matching, and propose a novel pattern enumeration 

scheme to prune the search space. 

1.2  Thesis Outline   



  

The thesis is structured as follows. First chapter starts with a brief introduction and 

outline of this thesis. 

Chapter two consists of basics in Bioinformatics and the motivation and background 

factor of pattern matching of biological sequences. In Chapter 3 we discuss basic 

definitions and terminology used in bioinformatics. The algorithms in Bioinformatics  

are described in Chapter 4. The proposed algorithm and Techniques for pattern 

matching and pattern finding is being presented in chapter five. The techniques for 

biological database searching have been discussed in Chapter 6.  

Implementation of two-phase algorithm and experimental results for finding 

sequential pattern matching in bioinformatics are described in Chapter 7. Extension 

and conclusion is described in chapter 8. The Publicly available Software Tools and 

Databases of Patterns are described in Chapter 9 and finally, the References are 

presented in Chapter 10.  

 

 

 

 

 

 

 

 



  

 

 

 

 

Chapter 2 

Bioinformatics 

2.1 What is Bioinformatics used for? 

The Oxford English Dictionary defines bioinformatics as: "The science of collecting 

and analyzing complex biological data such as genetic codes”. Bioinformatics is 

used for a virtually limitless number of tasks, but some of the most common are [12, 

13, 14]: 

(1) Finding homologs ('twins') of a gene in your favourite species given a sequence 

you have in a model species eg. Finding a rice gene given the sequence of an 

Arabidopsis gene which has been characterized already.  

(2) Comparing the similarity between two or more gene sequences to get a 

measure of their relatedness.  This can be used to group genes into subsets 

(orthological, paralogical - ) which might give an indication of the function 

or activity of the members of these subsets based upon what is already known about 

the proteins encoded by the membership of that subset. Comparisons also allows 

taxonomy to be examined, as well as the drawing of phylogenetic trees (trees of 

relatedness) and insights can be made into sequence evolution.  



  

(3) Design of primers   Online and offline tools allow individuals and whole projects 

(eg. sequencing projects) to have their computers design thousands of primers with 

little effort.  The primers are then used to sequence or amplify unknown or interesting 

genes or gene sequence. 

 (4) Reconstructing genes from EST sequences.  Expressed Sequence Tags are short 

pieces of genes which are expressed, which have been cloned and sequenced - then 

deposited into the public gene databases.  

T

(5) Grouping of proteins into families.  There are is a huge amount of work being 

undertaken to classify the proteins encoded by genes into super families and families 

2.2   Motivation and background 

The amount of the data collected and stored in databases worldwide is growing with 

increasing speed. While computers were initially designed and used mostly for 

numerical computations, a large proportion of the data is nowadays collected and 

processed in textual form [7, 12,13]. The sources of textual data can be very different, 

varying from documents in natural languages to the sequences of biological 

macromolecules. Efficient methods of analysis are required for understanding the 

underlying principles about the sequence data. 

Perhaps one of the most fascinating languages being studied by the mankind is our 

own genetic code, the DNA, RNA, and protein molecules that are essential to all life 

on planet Earth. These macromolecules are built (usually in a linear manner) from a 

small amount of building blocks like nucleotides or amino acids. 

The genetic code, using perhaps an oversimplification, can thus be interpreted as 

sequences of these basic building blocks or letters. The function of each of the 

molecules is usually determined by their structure, and one of the key questions in 



  

modern molecular biology is to understand the relationship between the sequence, 

structure, and function of these molecules as well as the biological processes they are 

involved in. 

The machinery that is able to read, interpret, replicate, and otherwise utilize the 

information stored in DNA, RNA and protein molecules are essential to life. This 

universal language of life has evolved over billions of years, producing many different 

life forms from the simplest bacteria to human beings, being able to survive in 

extreme heat and pressure or under constant freezing conditions, or consuming 

completely different energy sources. Many of the properties of our genetic code and 

the ways to interpret that code remain yet to be discovered, described, and understood. 

In this thesis we study pattern discovery approaches for finding regularities in the 

sequence data. The main focus is on discovering patterns, the words or sentences 

according to some linguistic rules, that occur frequently in input sequences or are 

characteristic for certain subsets of the input data. Firstly, the frequently recurring 

patterns are often indicative of the underlying structure and function, as in biology, the 

conservation of certain features in the course of evolution usually indicates the 

importance of these features. Secondly, different subsets of input data may represent 

examples from meaningful concepts. Patterns common to these different subsets can 

help to distinguish between these sets, as well as to reveal features important for 

different classes of sequences. 

These two cases of pattern discovery describe the two basic problems  

• The family conservation problem and  

• The family classification problem, which both are discussed in the thesis. 



  

In this thesis we focus on pattern discovery in biological sequences, as this is perhaps 

one of the most important application areas with implications to molecular biology 

and medicine. The aim of the current research is to develop methods for discovering 

patterns that can be used for advancing the biological knowledge about the structure 

and function of the genes and gene products. 

2.3 Problem of Pattern Finding  

Sequence pattern matching is a research area aiming at developing tools and methods 

for finding a priori unknown patterns in a given set of sequences, patterns that are 

frequent, unexpected, or interesting according to some formal criteria. 

 Patterns are formal grammatical descriptions for certain languages representing 

subsets of all possible sequences over a finite alphabet. Patterns can be represented 

using different formalisms, for example, as regular expressions, or probabilistic 

weight matrices [12, 16]. The interestingness of patterns can be interpreted in relation 

to the pattern description itself or in relation to the sequences being analyzed. For 

example, if the pattern occurs significantly more frequently than expected by chance 

then the pattern may be considered interesting. In order to define the interestingness of 

a pattern a formal scoring mechanism is needed. And finally, for practical applications 

the algorithms and tools are needed that can be used for discovering interesting 

patterns.  

Overall, the pattern finding  problem can thus be divided into three sub 

problems: 

1. Choosing the appropriate language to describe patterns 

2. Choosing the scoring function for comparing patterns 



  

3. Designing an efficient algorithm for identifying the best-scoring patterns 

Appropriate language for describing patterns depends from the application area. For 

example, one can ask if the type of patterns one is looking to discover can in principle 

capture the biological phenomena one attempts to study. Thus, the pattern language 

has to be chosen appropriately from the biological point of view. Similarly, the 

scoring function has to be such that it has proven relevance also in the biological 

terms, not only in abstract mathematical or statistical sense. Unfortunately, not all 

pattern languages and scoring functions are such that efficient algorithms can be 

designed so that the pattern discovery could be performed in a reasonable time. 

 From the practical point of view, one may have to balance between the desire to use 

the very complex pattern language and scoring functions, which are biologically 

perhaps the most relevant, and the available compute resources that require to use 

computationally more feasible methods. For very large data sets, for example, one 

may have to use simpler pattern representation language that can offer improved speed 

in calculations. The balance has to be reasonable though, so that the chosen pattern 

language and scoring functions do not eliminate the biological relevance of the 

discovered patterns. 

In current thesis we have developed methods and tools for the exhaustive search for 

the best patterns from a range of different pattern representation languages. In the 

practical applications we also demonstrate that the choice of simple pattern languages 

is often sufficient to capture rather complex biological information. This is the 

motivation throughout the thesis, to design practical algorithms that can be used for 

studying biologically relevant pattern classes in a variety of biological applications. 



  

Before discussing the three aspects of pattern discovery in more detail we present a 

few practical applications of using the patterns to represent biologically meaningful 

concepts.  

2.3.1 Applications of pattern finding   

Biological sequences, or biosequences, can be grouped in families based on their 

function, structure, cellular location, molecular processes, gene regulation, or other 

criteria [1, 16]. Here we present some applications, where the patterns common to 

these groups are able to capture very different biological features.  

Sequence analysis  

Many of the protein families and their characteristic patterns have been collected in 

the protein family database PROSITE. Finding characterizations of biosequence 

families is an important sequence analysis problem. If a feature common to all known 

sequences of a family is found, then it is likely that this particular feature is important 

for the biological role of the family. Algorithms for sequence pattern discovery have 

been widely used for characterizing protein families. 

Structural information 

Jonassen and colleagues have studied patterns that incorporate structural information 

about the packing of residues, i.e. amino acids in the protein sequence, in three-

dimensional space. They define a packing motif as a pattern that has multiple 

occurrences in a set of protein structures. Packing motifs describe clusters of residues 

that are spatially close together in the 3-D structure, but not necessarily in the primary 

sequence.  

Finding Patterns   



  

Patterns in protein sequences can represent potentially important features for their 

functional activities. We have applied pattern discovery combined with careful 

targeted input sequence selection for predicting the coupling specificity of specific 

transmembrane receptor proteins called G-protein coupled receptors (GPCR) and the 

G-proteins from Gs , Gi/o =o , or Gq11 class. 

The task of pattern discovery is to predict the potential regulatory signals, for example 

the transcription factor binding sites, from the DNA. From the computer science 

viewpoint considering pattern discovery as pure string algorithms, the DNA and 

proteins differ only by the alphabet size (four and twenty, respectively). Yet, these 

sequences do represent different physical objects and hence the need for finding 

patterns may arise in different biological research domains.  

Research & development  

Often the respective research communities are separated, as well as the approaches 

developed. The biological features represented by patterns can vary in semantics 

depending on the biological application, and hence the language of representing the 

patterns and the criteria for evaluating their interestingness can be very different for 

different applications.  

Usually, the data sets involving DNA sequences are much larger than those for the 

proteins. Finally, the physical-chemical properties of the real atoms represented by 

letters of an alphabet, or other physical constraints of the molecules in the different 

application domains differ and may need to be taken into account in pattern discovery. 

2.3.2 Pattern representation languages 

According to the pattern language we can distinguish between discrete patterns like 

regular expression type motifs and probabilistic patterns like probabilistic weight 



  

matrices. Here we discuss the deterministic regular patterns and approximately 

matching patterns[12, 14]. 

Although the probabilistic motif representation is more appropriate for describing 

certain physical features of the molecules, like a protein’s binding efficiency to DNA, 

these motifs are more complex to discover by computational methods due to a much 

larger search space.  

One of the oldest and most prominent pattern databases, the PROSITE database stores 

information about protein families, their descriptions, and patterns that can be used to 

determine the membership of novel sequences to these families. Biologically 

significant patterns and profiles are formulated in such a way that with appropriate 

computational tools they can help to determine to which known family of proteins the 

new sequence may belong, or which known domain(s) it contains.  

In this section we provide as an example the definition of the pattern language as used 

in the PROSITE database, as well as give two examples of the PROSITE entries 

showing how the patterns from this pattern language can capture biologically relevant 

features about real protein families.  

Example 2.1 Pattern definitions from the PROSITE database 

(http://www.expasy.org/prosite/). 

The PA (PAttern) lines contain the definition of a PROSITE pattern. The patterns are 

described using the following conventions: 

• The standard IUPAC one-letter codes for the amino acids are used. 

• The symbol ‘x’ is used for a position where any amino acid is accepted. 

http://www.expasy.org/prosite/


  

• Ambiguities are indicated by listing the acceptable amino acids for a given 

position, between square parentheses ‘[ ]’. For example: [ALT] stands for Ala 

or Leu or Thr. 

• Ambiguities are also indicated by listing between a pair of curly brackets ‘{  }’ 

the amino acids that are not accepted at a given position. For example: {AM} 

stands for any amino acid except Ala and Met. 

• Each element in a pattern is separated from its neighbor by a ‘-’.  

• Repetition of an element of the pattern can be indicated by following that 

element with a numerical value or a numerical range between parentheses. 

Examples: x(3) corresponds to x-x-x, x(2,4) corresponds to x-x or x-x-x or x-x-

x-x. 

• When a pattern is restricted to either the N- or C-terminal of a sequence, that 

pattern either starts with a ‘<’ symbol or respectively ends with a ‘>’ symbol. 

• A period ends the pattern. 

Examples: PA : [AC] _ x _ V _ x(4) _ {ED}: 

This pattern is translated as: [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or 

Asp }    

PA : < A _ x _ [ST](2) _ x(0; 1) _ V: 

This pattern, which must be in the N-terminal of the sequence (‘<’), is translated as: 

Ala-any-[Ser or Thr]-[Ser or Thr]-(any or none)-Val.Using this syntax for possible 

patterns in protein sequences, the sequence families can be described. 



  

Similar types of patterns can also be used for analyzing DNA sequences. The DNA-

binding proteins are known to bind to specific parts of DNA, which can be described 

in terms of sequence motifs. For example, the pattern GGTGGCAA which has been 

shown to be a protease specific control element. 

2.3.3 Pattern rating functions 

Given a family of related sequences, there may exist many patterns that are present in 

all or nearly all of the sequences [14,16]. The more complex the pattern language, the 

more different patterns match at least some of the sequences. It is a challenging task to 

tell which of these patterns are relevant. For sorting the patterns according to their 

interestingness and relevance we need formal fitness measures that give to each 

pattern a score that can be used for comparing patterns.  

These fitness measures can be based [10] on the specificity and sensitivity of the 

patterns, the information content, the ratio, the probability statistics, the minimum 

description length (MDL) principle, and others. Sometimes several simple quality 

indicators can be presented to users, as in the following example from PROSITE. 

The aim of different pattern discovery methods is usually to find motifs that are 

overrepresented in the data set analyzed, or unexpected according to some other 

criteria. It is possible to count how many sequences contain the motif or how many 

occurrences of the motif there is in total (i.e. count numbers of occurrences within the 

same sequence). When counting several occurrences within each sequence the 

occurrences may be overlapping and not independent. Therefore, it is simpler to count 

just the number of sequences that contain the motif. 

The ratio of pattern occurrences in two data sets tells how much more frequent the 

pattern is in one data set than in another. The problem with ratios is that if the 



  

frequencies are small then the ratios may be very high, even though the patterns do not 

represent meaningful concepts. These high ratios may be slightly compensated by 

assuming higher expected number of occurrences in the comparison set.  

Given the background model for the expected number of occurrences, for example 

from the explicit counting of pattern occurrences in comparison data, one can estimate 

how many occurrences of each pattern to expect.  

This estimate can be used to calculate how probable the actual number of occurrences 

is (assuming the same background model) based on binomial or hyper-geometric 

distribution, for example. Binomial distribution assumes independent random trials 

and allows to calculate the probability to observe each pattern at least a given number 

of times in the data. 

Hyper-geometric distribution corresponds to selection without replacement, i.e. the 

probabilities depend on previous outcomes. For large data sizes and small numbers of 

trials binomial distribution approximates well the hypergeometric distribution. When 

calculating the total number of occurrences for patterns, i.e. possibly several 

occurrences per one sequence, one can in principle use the same statistical criteria.  

However, one has to be aware of the possibility that pattern occurrences may be 

overlapping and thus not independent. The cyclic patterns, i.e. patterns that can have 

an overlap with themselves, have a higher expected number of occurrences even under 

the assumption that all nucleotides have equal and independent probability of 

occurrence at each position. 

2.4  Scope of Bioinformatics 

Bioinformatics means solving problems arising from biology using methods from 

computer science. The goal is to understand the functioning of living things, and to 



  

improve the quality of life [9, 10, 11]. This field has become very popular since 

1980s. 

There are many sub-areas in bioinformatics: 

• Data comparison 

• Data analysis 

• DNA assembly 

• DNA mapping 

• Gene finding 

• Evolutional deduction 

• Protein structure prediction 

• Data visualization 

• Data mining 

• Drug design 

• Statistical genetics etc.  

All these areas are more or less related. However, among these, the area of data 

comparison is most relevant to this project report. 

The biological data (sequences and structures) are naturally very huge. For example, a 

DNA sequence record includes 50 to 250 million characters. In addition, the numbers 

of records in the biological databases are dramatically increasing year by year because 

of the intensive researches in the field of molecular biology. So, it is totally 

impossible to search through these data without the help of computers. Indeed, their 

sizes are so enormous that it is even impossible for naive computer algorithms to carry 

out this job. So, we need “smart” algorithms to handle these large data efficiently. 



  

Database searching task mainly involves comparison of biological data. Sequence 

comparison is needed in the case of sequence data, and structural (3D) comparison in 

the case of structural data. The perfect solutions for these comparison tasks have 

shown to be very high in time complexities. But, in biology, the approximate results 

are also quite useful.  So, algorithms that provide sub-optimal solutions (i.e. with 

certain percentage of errors) within a reasonable time can still be extremely useful in 

many practical problems.  

 

Chapter 3  

Definitions  

Pattern discovery deals with methods for finding regularities in sequences. Here we 

define the concepts of sequences, patterns and provide the basic framework used later 

for the design of algorithms for pattern discovery. 

3.1 Strings 

We use Σ to denote a finite set of characters, an alphabet. The size of the alphabet Σ is 

| Σ |. Any sequence       S = a1a2a3 ……….. an  such that n >= 0 and each ai is in Σ is 

called a string (or sequence, or word) over the character set Σ. The length  |S| of the 

string S is n. The string of length 0, i.e. an empty string, is denoted     by λ.  The set of 

all possible strings over Σ is Σk  [5,6]. 

We identify individual characters by their positions within the string. The character ai 

at the position i can also be denoted by S[i]. Character positions of a non-empty string 



  

S are in the range 1 <= i < = |S| , i.e. the first character of the string is at position 1, 

and the last character is at position  |S|. 

Consecutive characters ai ………..aj of S form a substring of S that starts from 

position i and ends at position j. We denote this substring by S[i..j], where 1<= i 

<=j<=|S| . An alternative definition which does not use character positions within the 

string states that x is a substring of S if S = yxz for some strings y and z. 

A substring S[i..i] has length 1 and corresponds to the character ai at position i. A 

substring S[i..j] has length j - i + 1. We say that substring S[i..j] occurs at the position 

or location j of the string S. We say that a substring x has multiple occurrences in S if 

x = S[i..j] = S[i’..j’], and j’ !=  j’. 

3.1.1 Small alphabets:  Biosequences have a very small alphabet, i.e., 4 [ A T C G ] 

for DNA sequences and 20 for protein sequences, and many short patterns occur in 

most sequences. In contrast, transaction sequences have a large alphabet, ranging from 

1,000 to 10,000, and only a tiny fraction of items occurs in a transaction sequence. 

With most items occurring in every biosequence, pruning strategies and data 

structures based on the sparsity or absence of items, such as the hash-tree and the idlist 

or bitmap representation are not effective for biosequences. 

3.1.2 Long sequence length: A biosequence has a typical length of few hundreds, 

sometime thousands. In contrast, a transaction sequence has a typical length from 10 

to 20. A long sequence (especially, with a small alphabet) often contains long patterns. 

The classic sequential pattern growth of one item at a time requires many database 

scans and high frequency of pattern matching.  

3.2  Patterns 



  

Pattern finding is one of the fundamental problems in bioinformatics. It can be used in 

multiple sequence alignment, protein structure and function prediction, 

characterization of protein families, promoter signal detection, and other areas. 

One important problem arising from bio-applications is the discovery of sequential 

patterns that occur in many biosequences in a given database (i.e., DNA or protein 

sequences). Such frequent patterns typically correspond to residues conserved during 

evolution due to an important structural or functional role.  

Finding frequent patterns often is the first step in sequence analysis such as classifying 

sequences, extracting species-specific features, identifying transcription factor binding 

sites, etc. We focus on the scalable techniques for mining frequent patterns from a 

large database of biosequences. 

In biology, various tools have been developed for searching for similarity among 

biosequences. A well known tool is BLAST (Basic Local Alignment Search Tool). 

The idea is aligning sequences so that similarity can be revealed in the presence of 

small variations in position.  

Sequential pattern mining developed in data mining searches for all frequent patterns 

in transaction sequences" motivated in marketplaces. A transaction sequence can be a 

purchase sequence, a web link click stream, etc. The focus of those works is on the 

scalability on large databases. A natural solution is to sequential pattern mining to 

biosequences.  

Types of patterns  

Different programs discover patterns of different kind. On the most general level 

patterns can be divided between deterministic and probabilistic. A deterministic 

pattern either matches given string or not. On the other hand probabilistic patterns are 



  

usually probabilistic models that give to each sequence probability that this sequence 

is generated by the model. The higher is this probability; the better is the match 

between sequence and pattern [7,8].  

3.2.1 Deterministic patterns  

The simplest kind of a pattern is just a sequence of characters from alphabet Σ , such 

TATAAAA, the TATA box consensus sequence. We can also allow more complex 

patterns, adding some of the following frequently used features. 

• Ambiguous character - is a character corresponding to a subset of Σ . 

Ambiguous character then matches any character from this set. Such sets are 

usually denoted by a list of its members enclosed in square brackets e.g. [LF] is 

a set containing L and F. A-[LF]-G is a pattern in a notation used in PROSITE 

database. This patterns matches 3-character subsequences starting with A, 

ending with G and having either L or F in the middle.  

For nucleotide sequence there is a special letter for each set of nucleotides, 

where R=[AG], Y=[CT], W=[AT], S=[GC], B=[CGT], D=[AGT], H=[ACT], 

V=[ACG], N=[ACGT].  

• Wild-card or don't care - is a special kind of ambiguous character that 

matches any character from Σ . Wild-cards are denoted by N in nucleotide 

sequences, X in protein sequences. Often they are also denoted by dot '.'. 

Sequence of one or several consecutive wild-cards is called gap and patterns 

allowing wild-cards are often called gapped patterns [1]. 

• Flexible gap  - is a gap of variable length. In PROSITE database it is denoted 

by x(i,j) where i is the lower bound on the gap length and j is an upper bound. 

Thus x(4,6) matches any gap with length 4, 5, or 6. They also denote a fixed 



  

gap of length i as x(i) (e.g.(3) = …...). Finally * denotes gap of any length 

(possibly 0). 

• Patterns with mismatches - One can further extend expressive power of 

deterministic patterns by allowing certain number of mismatches. Most 

commonly used type of mismatches are substitutions. In this case subsequence 

S matches pattern P with at most k mismatches, if there is a sequence S0 

exactly matching S that differs from S in at most k positions.  

3.2.2 Probabilistic patterns 

The simplest type of probabilistic pattern is position-weight matrix (PWM). PWMs 

are also sometimes called position-specific score matrix (PSSM), or a profile 

(however profiles are often more complicated patterns, allowing gaps). PWM is a 

simple ungapped pattern specified by a table. This table contains for each pair 

(position; character), the relative frequency of the character at that position of the 

pattern. 

Assume that the pattern (i.e. PWM) has lent k. The score of a sequence segment x1 

…….. xk of length k is  

 k  

      Π   =     A[xi; i] / f(xi) 

i=1 

where A[c; i] is an entry of position weight matrix corresponding to position i of the 

pattern and character c and f(c) is background frequency of character c in all 

considered sequences. This product represents odd-score that the sequence segment x1 

… xk belongs to the probability distribution represented by the PWM. 



  

3. 3 Biological motivations for finding patterns  

Nucleotide and protein sequences contain patterns that have been preserved through 

evolution because they are important to the structure or function of the molecule [10].  

In proteins, these conserved sequences may be involved in the binding of the protein 

to its substrate or to another protein, may comprise the active site of an enzyme or 

may determine the three dimensional structure of the protein.  

Nucleotide sequences outside of coding regions in general tend to be less conserved 

among organisms, except where they are important for function, that is, where they 

are involved in the regulation of gene expression. Discovery of motifs in protein and 

nucleotide sequences can lead to determination of function and to elucidation of 

evolutionary relationships among sequences [11]. 

3. 4 Finding pattern in proteins 

With the accumulation of nucleotide sequences for the entire genomes of many 

different organisms, comes the need to make sense out of all of the information. 

Attempts have been made to organize all of the proteins encoded in these genomic 

sequences into families based on the presence of common signature sequences.  

 Members of protein families are often characterized by more than one motif (on 

average each family has 3-4 conserved regions) which increases the certainty that a 

protein has been assigned to a correct family. Hierarchical trees of protein clusters 

often reveal functional and evolutionary relationships among proteins. Starting with a 

single "seed" sequence, protein families can be characterized in order to find ancient 

ancestor sequences [11,13].  



  

First, proteins related to a query sequence are found by searching the databases for 

similar sequences. Sequences revealed from this initial screen are then used as query 

sequences to search for other family members and the process is repeated to 

exhaustion. 

 All of the sequences are aligned in order to identify conserved regions which are used 

to generate models that represent ancient conserved regions. The rationale behind this 

approach is that if protein A is related to protein B, and B is related to C, then A is 

also related to C.  

By this method, proteins are assigned to a family based on sequence homology as 

determined primarily by alignment. If an alignment finds homology between a query 

protein and a particular family of proteins, a phylogenetic relationship between them 

is automatically assumed. There are two problems with this assumption: 

 1) Significant sequence similarities are not always indicative of close evolutionary 

relations.  

2) Despite limited sequence homology, proteins can have structural and mechanistic 

similarities, and even common ancestry not apparent through alignment. Perhaps 

structural information should also be considered when attempting to classify proteins 

that are highly divergent in homology, yet functionally equivalent.  

3. 5 Pattern matching  

The problem of pattern discovery, i.e. the algorithm is supposed to discover pattern 

unknown in advance. However in biology many consensus sequences are known and 

it is important to have tools that allow to find occurrences of known patterns in new 

sequences.  



  

This problem is called pattern matching. Program for pattern matching can be quite 

general, i.e. they get pattern as a part of input, or they can be built to recognize only 

one particular kind of pattern. 

 

 

 

 

 

Chapter 4  

Algorithms in Bioinformatics  

4.1 Introduction  

The following are some of the most important algorithmic trends in Bioinformatics [6, 

10] : 

1. Finding similarities among strings (such as proteins of different organisms)  

2. Detecting certain patterns within strings (such as genes, introns, and �-helices)  

3. Finding similarities among parts of spatial structures (such as motifs)  

4. Constructing trees (called phylogenetic trees) expressing the evolution of 

organisms whose DNA or proteins are currently known  



  

5. Classifying new data according to previously clustered sets of annotated data   

6. Reasoning about micro array data and the corresponding behavior of pathways.  

4.2  Pattern discovery algorithms  

Pattern discovery algorithms can be divided into two groups:  

• Pattern driven and  

• Sequence driven.  

4.2.1 Pattern-driven (PD)  

Pattern-driven approaches are based on enumerating candidate patterns and selecting 

those with the best fitness; the general framework of these algorithms is: 

(1) Define the solution space, i.e. a set of patterns, and the fitness measure 

(2) Enumerate the patterns in the solution space 

(3) Calculate the fitness of each pattern with respect to the given examples 

(4) Report the fittest patterns 

The most straightforward implementation is to limit the solution space by the size of 

the patterns, and to explicitly enumerate all the patterns from this space one by one. 

The advantage of this approach is that it is possible to guarantee finding the best 

patterns up to some limited size, almost regardless of the total length of the examples. 

This is because it is usually possible to organise the algorithm so that it is linear-time 

in this length.  

On the other hand the size of the pattern-space is exponential in the length of the 

patterns - for example there are more than 1013 different sub-string patterns of length 



  

10 over the amino acid alphabet. PD algorithms guaranteed to find the pattern with the 

highest fitness value, have worst case time complexity exponential in the length of the 

patterns.  

4.2.2 Sequence or structure-driven (SD) 

This method finds patterns by comparing given strings or structures and then looking 

for local similarities between them. For instance an SD algorithm may be based on 

constructing a local multiple alignment of given sequences and then extracting the 

patterns from the alignment by combining the segments common to most of the 

sequences [16]. This may be achieved by 

(1)  Grouping the sequences according to sequence similarity 

(2)  Finding a common pattern, e.g. by dynamic programming that matches all or 

most of the sequences described by the parent groups 

(3) Grouping similar patterns together and repeating step (2) until only one group    

is left. 

In general, more than two patterns may be combined in step (3). SD methods also 

differ in how the sets to be combined are chosen, how combination is performed 

(dynamic programming, heuristics) and how the (fittest) patterns are chosen, how 

patterns are represented and how many patterns are kept from stage (2). 

 It may be possible to discover patterns of an almost arbitrary size by SD algorithms. 

However, since the construction of an optimal alignment or finding the longest sub-

sequence are NP-hard problems, SD methods have to be based on heuristics and hence 

cannot guarantee optimal results. In general SD algorithms tend to work well if the 

sequences are sufficiently similar. 



  

4.3 Sequential Patterns    

Pattern finding programs usually consists of several sequences, some basic 

terminology used in this project are discussed below. 

4.3.1 Sequence  

Input sequences  

The input of pattern finding programs usually consists of several sequences, expected 

to contain the pattern. We denote Σ the alphabet of all possible characters occurring in 

the sequences [6, 10, 14].  Thus Σ = {A, C, G, T }  for DNA sequences and Σ   is a set 

of all 20 amino acids for protein sequences. Most of the algorithms can be easily 

adapted to work with any finite alphabet (this is true for algorithms, but not 

necessarily for their implementations). Thus the pattern finding algorithm can be used 

also outside bioinformatics, or on other types of biological data. 

A database D is a collection of sequences {s1, ……….sN }. Each sequence si  is an 

ordered list of items chosen from a fixed  alphabet. < si; j > denotes the jth position in 

a sequence si, where     j >= 1.  

 A segment refers to one or more items at consecutive positions in a sequence. A 

pattern has the form X1 * …………. Xn  (n >=  1), where Xi is a segment and * 

denotes the variable length “don't care" (VLDC). A  pattern X1* ………Xn  matches a 

sequence si if each segment Xj matches itself and each * can substitute for zero or 

more items. 

Useful patterns for sequences in D should occur frequently in sequences in D, but not 

in other sequences. For long sequences over a small alphabet, a segment Xi of a short 

length tends to occur in every sequence, similar to “stop words" that occur in every 



  

text document. Such trivial similarity is not discriminating, therefore, not useful for 

biology analysis. For example, it is known to biologists that a transcription factor 

binding site has a length from 6 to 15 . We can specify a minimum segment length to 

exclude trivial segments. 

 4.3.2 Support of a pattern 

 Support of a pattern is the percentage of the sequences in D that contain the pattern 

[1, 16]. Given a minimum segment length MinLen and a minimum support MinSup, a 

pattern     X1 * …………… Xn is frequent if  | Xi | >= MinLen for 1 <= i <= n ¸ 

MinLen for  and the support of the pattern is at least MinSup. The problem of mining 

sequence patterns is to find all frequent patterns. 

We find all frequent patterns in two phases. The first phase, Segment Phase, finds all 

frequent segments Xi satisfying the minimum length. The second phase, Pattern 

Phase, generates frequent patterns X1 * …………..* Xk using Xi found in the first 

phase.  

4.3.3 Pattern Generation Pruning:   

If P * X fails to be a frequent pattern, so does P’ * X. Therefore, we can prune P’ * X. 

4.3.4 Pattern Matching Pruning 

If P* X fails to occur before position I  in sequence s, so does P0 ¤ X. Therefore, we 

only need to examine the positions after i when matching P0 ¤ X against s. To support 

these prunings, we need a strategy for enumerating the pattern space X1 ¤¢ ¢ ¢¤Xk so 

that P is enumerated before P0, and we need to answer the following queries 

efficiently [1]. 

4.3.5 Position query  



  

Q(X; s; i): given a frequent segment X, a sequence id s, and a position i in s, find the 

smallest start positio n of X in s greater than i. If such a position j is found, return < s; 

j >; otherwise, return nil [1]. 

4.4  First Phase Algorithm - SEGMENT PHASE 

This phase finds all frequent segments and builds an auxiliary structure for answering 

position queries. 

4.4.1 Finding base/frequent segments: 

We use the generalized suffix tree (GST) to count support of segments. The time and 

space needed for constructing the GST is O (|D|), where |D| is the total length of the 

sequences in D. We extract the following information from the GST.  

(1) The frequent segments of length MinLen, Bi, called base segments, and the 

position lists for each Bi, 

s : p1 ,  p2 , ………,  where pj < pj+1 and each < s ,  pj  > is a start position of Bi. 

 (2) All frequent segments of length greater than MinLen [1].   

 (We do not extract position lists for such frequent segments.) 

4.4.2 Index-based querying  

In this method, we build an in-memory index for the positions [1, 6,10] of base 

segments. First, we rewrite each frequent segment X using base segments only. 

Consider two base segments B1 and B2, such that the last k items in B1 are identical to 

the first   k items in B2 where  k >=0. The k-join of B1 and B2,  denoted by     B1 |×|k 

B2 , is the segment obtained by overlapping the last k items of B1 with the first  k 

items of B2. 



  

ID SEQUENCE 

s1 abacdab 

s2 abcacda 

s3 baacdca 

   Table 1: The database D 

Example 4.1 

Table 1 shows a database of three sequences, with the alphabet { a ,  b ,  c ,  d }.  

   Let MinSup = 2/3, and  MinLen = 2. 

 The following segments are frequent: 

 ab(2), ac(3), acd(3), acda(2), cd(3), cda(2), da(2). 

The integers in the brackets are support counts. The base segments and their position 

lists are given in Table 2.  ab * cda occurs in s1 and s2, so is a frequent pattern. We 

can write ab * cda as          B1 * (B3 11 B4) using only base segments. Similarly, ab * 

acda is frequent and can be written as        B1  * (B2 10 B4). 

Base Segments Position Lists  

B1 =  ab (s1  : 1,6) , (s2  :1)  

B2 =  ac (s1 : 3) , (s2  : 4 ), (s3 : 3)  

B3 = cd (s1 : 4) , (s2  : 5 ), (s3 : 4) 

B4 = da (s1 : 5) , (s2  : 6 ) 

   Table 2: The Position lists  



  

We build the following index using the position lists of base segments. 

  Root Directory      SP−trees  

B1: ab  (<s1 , 1>, ptr ),      (<s1 , 6>, nil ),     (<s2 , 1>, nil ) 

B2 : ac  (<s1 , 3>, ptr ),      (<s2 , 4>, ptr ),      (<s3 , 3>, ptr ) 

B3 : cd  (<s1 , 4>, ptr ),      (<s2 , 5>, ptr ),     (<s3 , 4>, nil ) 

B4 : da  (<s1 , 5>, ptr ),      (<s2 , 6>, nil )  

                                               Figure 1: The SP-index in Example 4.1 

4.4.3 SP-index (Segment-to-Position index)  

SP-index (Segment-to-Position index) has two components [1] 

• The root directory and  

• The SP-trees.  

• For each Bi, the root directory has an entry for the root of the SP-tree for Bi.  

• The SP-tree for Bi is a B-tree for indexing the start positions < s, p > of Bi in all 

sequences s.  

• A leaf entry has the form (< s, p >, ptr). Unlike the standard B-tree, ptr points to 

the leaf entry         (< s, p’ >, ptr’) for the next base segment in Corollary 1 if 

there is one, or else nil. 

4.4.4 Compression-based querying 



  

This method compresses all positions in a non-coding region into a new item ε that 

matches no existing item except *. A non-coding region contains no part of a frequent 

segment[1].  

We can scan each original sequence once, identify each consecutive region not 

overlapping with any frequent segment, collapse it into the new item ε. For a long 

sequence and large MinLen and MinSup, a compressed sequence is typically much 

shorter than the original sequence. To answer the query Q(X, S, i) over a compressed 

sequence S, we scan S sequentially because S is short. Note that ε  in S does not match 

any item in X[1]. 

Example 4.2. For the database in Example 4.1, the compressed sequences for s1; s2; 

s3 are:  

S1 : abacdab. 

S2 : ab ε acda (c collapses into ε). 

S3 : acd (ba and ca collapse into leading ε  and ending ε , which are deleted) 

The compression-based querying is amenable to approximate pattern matching [1].  

4.5 Second Phase Algorithm - PATTERN PHASE  

This phase generates all frequent patterns X1 * …………………..* Xk using frequent 

segments Xi found in Segment Phase. The key is to organize the search space for 

patterns X1 * …………………..* Xk  so that the Pattern Generation Pruning and 

Pattern Matching Pruning mentioned can be easily exploited. The segment tree and 

pattern tree defined below describe this organization [1] 

4.5.1 Segment tree (ST) 



  

 The ST organizes frequent segments X into a tree so that if X is a prefix of X’ then X 

is enumerated before X’ in the depth-first enumeration of the tree. A terminal edge is 

labeled by an integer k >= 0.  

A non-root node w is labeled by a base segment Bi, and represents the frequent 

segment                B1   |X|0 …………………..….. |X|0   BBp – 1    |X| k    BpB , where B1 , …….Bp – 1 ,   

k , Bp  are the labels on the path from the root to w. Let seg (w) denote the frequent 

segment represented by w[1]. 

Example 5.1. Figure 2 shows the ST for Example 4.1, with wi denoting the ith node in 

the depth-first enumeration of the ST. w3  represents the frequent segment seg(w3) = 

BB2   |X|1   B3B   = acd, where B2 , 1, B3 are the labels on the path from the root to w3. 

 w4  represents the frequent segment seg(w4 ) = B2   |X|0   BB4  = acda, and w6  represents 

the frequent segment seg(w6) = B3   |X|1   B4B   = cda.. 

4.5.2 Pattern tree (PT)  

The PT organizes patterns X1 * ………..* Xk  into a tree so that a           super-pattern 

is enumerated after a sub-pattern in the depth-first [1,6] enumeration of the tree. A 

non-root node v is labeled by a frequent segment seg(wi), where wi  is a node in ST, 

and represents the pattern           seg(w1)* ………*  seg(wk ), where seg(w1), 

………….. seg(wk) are  the labels on the path from the root to v. Let pat(v) denote the 

pattern represented by v.  

Furthermore, if v1 , …….. vn  are the child nodes from left to right, with the labels 

seg(w’1 ), …… seg (w’n ), where w’1, ………w’n , are in the order of depth-first 

enumeration of ST. 



  

Therefore, if (non-root node) w is the parent of w’ in ST (therefore, seg(w) is a prefix 

of seg(w0)), the node for P = X1 * ……………..* Xk – 1   *  seg(w) is the immediate 

left sibling of the node for     P’ = X1 * ……….* Xk – 1   *  seg(w’)  in PT, therefore, P 

is enumerated before P’ in the depth-first  enumeration of PT [1].  

Below, we sketch our algorithm of using this property to perform Pattern Generation 

Pruning and Pattern Matching Pruning. 

 

 

Chapter 5  

Proposed Algorithm: Two-Phase Searching Algorithm (2-PSA)   

5.1 Introduction 

In the problem of pattern matching the algorithm is supposed to discover pattern 

unknown in advance. However in biology many consensus sequences are known and 

it is important to have tools that allow to find occurrences of known patterns in new 

sequences. Programs for pattern matching can be quite general, i.e. they get pattern as 

a part of input, or they can be built to recognize only one particular kind of pattern 

 

We propose a new algorithm called Two-Phase Searching Algorithm (2-PSA) that 

incorporates reliability and efficiency. The first phase “Segment Phase” searches for 

short patterns containing no gaps, called segments . This phase is efficient. The second 

phase “Pattern Phase” searches for long patterns containing multiple segments 



  

separated by variable length gaps. This phase is time consuming. The purpose of two 

phases is to exploit the information obtained from the first phase to speed up the 

pattern growth and matching and to prune the search space in the second phase.  

The Segment Phase first searches for short patterns containing no gaps, called 

segments. This phase is efficient. The Pattern Phase searches for long patterns 

containing multiple segments separated by variable length gaps. This phase is time 

consuming. The purpose of two phases is to exploit the information obtained from the 

first phase to speed up the pattern growth and matching and to prune the search space 

in the second phase. We evaluate this approach on synthetic and real life data sets. 

5.2 First Phase:  Segment-Phase Algorithm  

1. Select the string for which a pattern is to be matched. [from the database 

like protein, nucleotide, DNA egi ATCG abcdacbc …] 

2. Find the location of the pattern with the help of function [ indexof(str)]        

[ user enters the pattern egi abc which is to be searched within the 

database] 

3. Display the location [say L1] and store it in a variable temp [ initially 

temp = 0  and  Display   temp + L1] it displays the locations of the 

pattern like abc occurs at position or location 1,5,7 etc. 

4. Find the substring of the original string starting with index of [ L1 + 

length of  the pattern ] and also increment the counter by 1 [ count = 

count +1 ] 

5. Repeat step2 till the length of substring becomes less than the length of 

pattern. [ if we are searching abc then continue till the length of substring 

becomes 2]  



  

6. Return the value of count. [ finally how many times it occurs in a data 

base]  

5.3 Second-Phase Algorithm: Wild Pattern Matching  

1. Select the string for which a pattern is to be matched. [Searching from the 

database] 

2. Find the last character of the wild pattern  [ ab* or abc? With the help of 

(length –1) ] of string  

3. Case 1: If  wild-pattern (wp) = ‘?’ then 

i. Find the location [ say L1] of pattern [P] excluding the last character  [ 

left last character * or ? ] in the string S 

ii. Extract the substring starting with the location L1 and  of length 

[pattern length P ] +1 such as ab@ , ab# , abx ie first two occurrences of 

pattern in ab? And any third character in the sequence. 

iii. Display the substring [as above ab# , ab$ etc.] 

iv. Now find the substring (s) of the original string (S ) with the starting 

location L1 + length of the pattern (P) and increment the counter by one. 

v. Repeat step first of case 1 till the length of the strings becomes less then 

the length of the pattern (P)  

 Case 2: if  wild-pattern (wp) = ‘*’ then       

    [ display entire string starting with ab in case of ab* ] 

i. Find the location [ say L1] of pattern [P] in the string [S] 



  

ii. Find the substring of the string with the starting location L1 

iii. Display the substring and increment the counter by 1 

4. If the pattern is not found then display a “NOT FOUND MESSAGE’ 

otherwise return the value of count  

5.4 Techniques for comparison   

Here we review the techniques for sequence based pattern finding and comparison, 

and show how these can be extended to RNA structures and abstract representations 

of protein structure at the fold level. We discuss the deterministic patterns over 

sequences and distinguish pattern matching from string comparison. 

5.4.1 Searching Approach   

Given a particular target sequence structure in which we are interested, and about 

which we are lacking certain information, we often wish to find homologous 

sequences/structures [6, 10, 16] in order to make some hypotheses about the function 

of that sequence/structure. In general we will have access to a set of reference 

sequences/structures, which are suitably annotated, with organism of provenance, 

biological function(s) etc., and which may be grouped into families according to 

certain criteria, e.g. biological function or phylogenetic relationship.  

The reference sets may be very large, e.g. all known nucleotide or amino-acid 

sequences – 16 million or 100,000 records respectively, or all publicly available 

protein structures – 17,000 The task is thus to use some effective method to relate the 

target to the reference set, i.e. to perform a search with the target, where effectiveness 

is measured both by biological usefulness of the results as well as ‘speed’ of 

operation. In principle there are two main approaches to searching 



  

(1) Pair-wise compare the target with each member of the reference set, 

(2) Group the reference set into families, extract common features of each family, 

and to match the target with these common descriptions. 

In each case, we will need to rank the results in some way in order to be able to 

consider the most significant. The two approaches can be regarded as being the same 

if each member of the reference set forms one singleton family.  

However, in general, the advantage is that each family usually comprises several 

members and thus there are fewer families than the reference individuals, and hence 

less matching operations have to be made than comparison operations. Moreover, 

matching may be faster than comparison, depending on the detail and form of the 

common descriptions. The disadvantages   are firstly how the choice is made to form 

family groupings, and how characteristic are the common descriptions. Of course, the 

groupings and generation of common descriptions is usually performed infrequently, 

and is certainly not carried out each time a search is made. 

5.4.2  Comparison of sequences  

If we compare a (new) sequence or structure with another sequence or structure, then 

we can obtain a measure of distance [14,16] or similarity between the two objects; the 

distance measure should ideally be a metric, i.e. 

� Distances should be positive and the distance from an object to itself should be 
zero 

� Distances should be symmetric 
� Distances should respect the triangle inequality (the direct distance is the 

shortest distance between two objects) Comparison of two sequences/structures 

should also produce a set of largest common subsequences or sub-structures 



  

(LCS) - it is not guaranteed that the set is a singleton - and a correlation 

between the two sequences/structures and each LCS.  

The sequences/structures can then be aligned using the LCS. In fact, pair-wise 

comparison can generalized to n objects, although the complexity of a naïve 

implementation of n-wise comparison can be very high. A form of n-wise distance can 

be obtained by computing the mean of all the pair-wise distances between the n 

objects. 

In general comparison is a more expensive operation than deterministic matching, and 

more closely related in complexity to probabilistic matching. The most common use 

of comparison is to pair-wise compare a new sequence or structure s with the 

members of a set T of sequences or structures, each of which has some known 

biological attributes (function, or at least organism of provenance) .  

As with probabilistic matching, the result of the comparisons will be the association 

with each member of T of a comparison value for s; the task is then to interpret these 

values. Again, these values can be ordered and also associated with some measure of 

significance (e.g. E-values or P-values). Thus the comparisons can be ordered, and 

only those deemed to be significant considered. 

5.4.3  Characteristics of Sequences   

There are many terms used to describe common similarities between sequences or 

structures, for example pattern, motif, fingerprint, template, fragment, core, site, 

alignment, weight matrix, profile. For our purposes we will regard a pattern as a 

description of some properties of a sequence [7,8] or structure, and a motif as a pattern 

associated with some biological meaning.   



  

Moreover, if in a new sequence we detect the presence of a pattern known to be 

characteristic to a certain family, then we can hypothesise that the new sequence 

belongs to that family, even if we do not know its biological properties yet. In this 

way patterns may be used for the classification of bio-sequences and for predicting 

their properties.  

Diagnostic: A pattern is said to be diagnostic for a family if it matches all the known 

sequences in the family, and no other known sequences. In general, patterns may be 

characteristic (match most of the sequences in a family and few other sequences), or 

classificatory (used to decide to which family a sequence belongs). 

Deterministic: Patterns can be deterministic, i.e. can be used to decide if a sequence 

or structure matches the pattern or not. 

Probabilistic: when a value can be assigned to the match.  

For instance Cx(2,4)-[DE] is a sequence pattern matching any sequence containing a 

substring starting with C followed by between two and four arbitrary symbols 

followed by either a D or an E. Examples of probabilistic patterns are profiles and 

Hidden Markov Models. Deterministic patterns are simple and pure mathematical 

concepts, and are easier to interpret than probabilistic patterns; they are also easier to 

discover from scratch, especially if the data is noisy (contaminated). On the other 

hand, probabilistic patterns have more modeling power since they permit weights to 

be attributed to alternatives. 

More generally, we will often wish to classify a new sequence or structure s using a 

library or set of M motifs. If the motifs are deterministic then matching s against the 

members of M will result in a subset of motifs which may be diagnostic for s. If M 



  

comprises probabilistic patterns then the result of the matching will be the association 

with each pattern of a match value for s; the task is then to interpret these values. 

 It is usual to associate an ordering relation with match values, for example total 

ordering over integers or reals, and also to associate some measure of significance 

with match value, for example E-values (expectation values) or P-values (probability 

values).  

Thus the matches can be ordered, and only those deemed to be significant considered. 

The use of such motif libraries is predicated on the prior identification of meaningful 

families, the selection of (possibly representative) family members, and the ability to 

generate patterns (either by hand, or automatically), which are sufficiently 

characteristic of the family. 

5.4.4  Protein family analysis using patterns  

Thus, the general protocol [7, 11] for family analysis is used for the following: 

(1) Collect sequences (structures) into a family based on biological function or 

phylogenetic relationships 

(2) Make family description by local multiple alignment, global multiple alignment 

or pattern discovery 

(3) Use the description to identify more family members 

(4) Analyze the extended set to see if the members are biologically related to the 

original family members 

5.4.5  Regular expressions  

Notation used for regular expression: 



  

Symbol: for each symbol a in the alphabet of the language, the regular expression a 

denotes the language containing just the string a 

Alternation: Given 2 regular expressions M and N then M | N is a new regular 

expression. A string is in language (M|N) if it is language M or language N. The 

language (a|b) = {a,b} contains the 2 strings a and b. 

Concatenation: Given 2 regular expressions M and N then M•N is a new regular 

expression. A string is in language (M•N) if it is the concatenation of two strings 

�and �such that �is in language M and �is in language N. Thus the regular 

expression (a|b)•a = {aa, ba} defines the language containing the 2 strings aa and ba 

Repetition: M* stands for zero or more times repetition of M, M+ one or more times, 

and M? for zero or one occurrences of M. 

Character ranges: [a-zA-Z] character set alternation, ‘.’ any single character except a 

new-line (i.e. a wild card) 

5.4.6  Expressions for biosequences 

In general we have the following basic alphabets:  

• �= {a, t, c, g} for DNA nucleotides,  

• �= {a, u, c, g} for RNA nucleotides.  

• In the case of proteins we have a 20 character alphabet of amino acids �= {A, 

C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.  

5.5 Structural sequence patterns  

Eidhammer introduce CBSDL, a constraint-based structure description language, 

where structural patterns contain constraints on the [5,10,11] 



  

(1) Length of a substring to match a specific component; 

(2) Distance (in the input string) between substrings to match the different 

components of a pattern; 

(3) Contents of a substring to match a component, e.g. the second symbol should be 

an a or a t; 

(4) Positions on the input string where a particular component can match; 

(5) Correlation between two substrings matching different components, e.g. the 

substrings should be identical, or the reverse of each other. 

This definition thus includes purely sequential patterns, which do not include a 

correlation constraint and are within the class of regular languages, for example 

PROSITE patterns. Structural patterns have at least one correlation constraint, for 

example repetitions or palindromes, and may describe context-free languages or even 

languages beyond the expressive power of context-free grammars, although there may 

be some languages in these classes, which they cannot describe.  

From the point of view of bioinformatics, sequential patterns can thus describe 

sequences, whereas structural patterns can describe ‘folded’ strings, i.e. RNA 

structures such as stem-loops and pseudo-knots, and some topological descriptions of 

protein structures. Some examples of patterns which can be described by this language 

are shown below. We use Greek letters to indicate sub-patterns, possibly superscripted 

by r for reverse and c for complement, and underline corresponding sections of 

sequences. 

5.5.1 Example of structural sequence patterns  

Tandem repeat �-� acg-acg 



  

Simple repeat �-�-�acg-aaa-acg 

Multiple repeat �-�-�-�-�acg-aa-acg-uu-acg 

Palindrome �-�r acg-gca 

Stem loop �-�-�rc acg-aa-cgu 

Pseudoknot �-�1-�-�2-�rc-�3-�rc augg-cuga-aggc-cgau-c-ucag-ggcau-aucg-ccgu 

5.6 Learning – pattern finding   

Brazma [12,16] have surveyed pattern discovery in biosequences and in the following 

we generalize their definitions to biostructures as well as biosequences. 

A protein family F+ is a set of protein sequences or structures sharing definite 

functional or structural properties. If we have a language L of strings or structures 

then F+ is a subset of the total set of all possible sequences/structures that can be 

generated by the grammar of L, and F- are all those sequences/structures in L which 

do not belong to the family.  

Pattern finding is then the problem of automatically finding functions approximating 

the characteristic function for the family F+. An algorithm for solving this problem 

takes as input a training set consisting of positive examples, which are sequences from 

F+, and optionally negative examples which are sequences from F-. This is a machine 

learning problem, namely that of learning a general rule from a set of examples. When 

both positive and negative examples are given, it is called the classification problem, 

and when only positive examples are given, it is called the conservation problem. 

In the classification problem, we are given a set of sequences/structures S+ believed to 

be members of a family F+, and a set S- of sequences/structures believed not to be 

members of F+, i.e. S+ � F+ and S- �F-. We also assume that F+ and F- are disjoint. 



  

The goal is then to find compact “explanations” of known sequences, i.e. functions 

that return true for all s �S+ and false for all s �S-, and have a high likelihood for 

returning true for s �F+ and false for s � F-. Furthermore, we would like to try to 

predict the family relationship of yet unknown sequences.  

 

 

 

 

Chapter 6  

Techniques for Biological Database Searching 

“This project brings us back to the beginning of time ... and the origin 

of life – dealing with DNA, RNA, proteins, human genome, etc. The 

goal is to apply database technologies for genome sequencing, 

indexing and searching.” 

6.1 Introduction 

This project falls under the broad area of study called Bioinformatics or 

Computational Molecular Biology [9,14,16]. Among the various fields of 

bioinformatics, we are particularly interested in efficient searching and comparison of 

the biological data. These tasks form a basic part of bioinformatics, and make 



  

contributions to many application areas in bioinformatics such as data analysis, data 

mining, biological reasoning, and evolutional deduction. 

In this chapter, we are going to study the existing methods of biological database 

searching, and investigate their respective advantages and disadvantages. Then, we 

develop our own system that can hopefully provide the optimal solutions in database 

searching – at least for certain biological applications, even if it cannot afford the 

optimal solutions for all. 

After this project is finished, its results would help the domain experts (biologists and 

doctors) in many ways. For example, it can be used in analyzing the functionality of a 

gene, in locating and curing of a disease causing gene, in deducing the process of 

evolution – to name a few. Because all of these tasks basically involve data searching 

and comparison, with the help of our efficient techniques, they would be able to 

perform these tasks efficiently. They can enjoy quick response times without having 

to use very expensive hardware resources.  

Finally, the results of this project may help the biologists, to certain extent, in 

achieving their ultimate goal, i.e., to decode the entire language of instructions of the 

nature (or God) used in creating and activating all the living things. 

6.2  Molecular Biological Background  

All organisms (living things) possess the discrete entities called genes that are the 

basic inherited units of biological function and structure [6,10]. An organism inherits 

its genes from its parents, and relays it own genes to its offspring. The study of 

heredity and variations of the organisms is called Genetics. 

Once the concept of gene was a logical one. But in the later half of the 20th century, 

the physical mechanism of the gene can be determined and studied with the help of 



  

Molecular Biology. Molecular biologists determined that the gene is made of DNA 

(deoxyribonucleic acid) – that is, DNA is the heredity material of all species. Crick 

and Watson determined in 1953 that the structure is a double helix and concluded 

correctly that this specific form is fundamental to DNA’s function as the agent that 

stores and transfers genetic information. 

The DNA double helix is elegant and simple. Each strand of the DNA double helix is 

a polymer (a huge compound made up of small simple molecules) consisting of four 

elements called nucleotides: A, T, C, and G (for adenine, thymine, cytosine, and 

guanine). The two strands of DNA are perfectly complementary. 

 When a T resides on one strand, an A occupies the corresponding position on the 

other strand; when there is a G on one strand, a C occupies the corresponding position 

on the other. That is, T pairs with A, and G pairs with C. (These pairs are sometimes 

referred to as base-pairs.) This redundancy is useful at the time of cell division. A 

complete set of genetic information is passed to each daughter cell.  

The DNA double helix unravels, and each strand serves as a completely sufficient 

template upon which a second strand can be synthesized. In addition, the redundancy 

also provided great resiliency against loss or damage of information during cell life. 

From a computer scientist’s point of view, the DNA double helix is a clever, robust 

information storage and transmission system. Like the binary alphabet {0, 1} used in 

computers, the four-letter alphabet of DNA {A, T, C, G} can encode messages of 

arbitrary complexity when encoded into long sequences. 



  

 

Figure 1. Structure of DNA double helix 

Particular stretches of the DNA are copied directly into an intermediate molecule 

called RNA (ribonucleic acid, also composed of A, T, C, and G). RNA is then 

translated into a protein – which is again a linear chain assembled from the 20 

different amino acids. Each consecutive [9,14] triplet of DNA elements specifies one 

amino acid in the protein chain.  

In this fashion, biology “reads” DNA (actually, the RNA copy of the DNA) as if it 

were a Turing machine tape. Once synthesized, the protein chain folds according to 

the laws of physics into a specialized form, based on the particular properties and the 

order of the amino acids. The structures of a protein can be viewed as a hierarchy: 

• Primary structure (linear amino acid sequence) 



  

• Secondary structure (local sequence elements with well determined regular 

shape) 

• Tertiary structure (3D structure of whole sequence) 

• Quaternary structure (combination of proteins) 

o Motif (combines a few secondary structure elements with a specific geometric 

arrangement) 

o Domain (combines several secondary structure elements and motifs; has a 

specific function) 

 

Figure 2. Synthesis of protein from DNA (below): 

 

 

 

 



  

 

 

 

Figure 3. Three-dimensional structure of a protein 



  

The human genome (the totality of genetic information in each person) contains about 

3 billion nucleotides.  

These are distributed among 23 separate strands called chromosomes, each containing 

about 50 to 250 million nucleotides. Each chromosome encodes about 10 to 50 

thousand genes. Not all the sequences in the DNA are genes. Only certain parts have 

their particular functions to serve as genes. Genes spell out the instructions for making 

proteins and controlling their production. But, on the other hand, many different DNA 

sequences can encode the same gene.  

Goal of Molecular Biology  

A major goal in molecular biology is functional genomics, or the study of the 

relationships among genes in DNA and their function. Gene function can be viewed 

through several prisms. A common interpretation [6,10]  is that function describes the 

role of a gene product, usually a protein, in reacting with other proteins in a metabolic 

or signaling pathway. 

However, molecular biologists know that protein interactions are dependent on protein 

structure, or shape. Functions can also be conveyed through annotations written by 

researchers who have studied in detail a given protein and its interactions with other 

proteins. The notion of function is essentially related to protein shape and to the 

behavior of the organs that make up a living being; for example, the study of cell 

differentiation in original stem cells is related to cell function. 

Biologists and computer scientists may conclude that the ultimate objective of 

functional genomics is: Given the DNA of an organism, produce a simulator for a cell 

of that organism. That simulator (or flowchart representing metabolic and signaling 

pathways) embodies all that it knows about a cell's behavior, allowing in-silico 



  

experiments that enable biologists to bypass costly and ethically sensitive in-vitro or 

in-vivo trials. We are far from this goal, but it is an area where computer science can 

provide considerable research impetus. 

Biologists deal with essentially four types of data structures: 

• Strings  To represent DNA, RNA, and sequences of amino acids;  

• Trees To represent the evolution of various organisms;  

• Sets of 3D points and their linkages. To represent protein structures; and  

• Graphs. To represent metabolic and signaling pathways.  

Furthermore, biologists are often interested in substrings, subtrees, subsets of points 

and linkages, and subgraphs. Strings (such as words and phrases) are also used to 

express annotations that convey a meaning given by researchers, though such 

meanings are sometimes vague and incorrect. Biological data is often characterized by 

huge size, the presence of laboratory errors (noise), duplication, and sometimes 

unreliability. 

For inferring function from the existing data, a biologist must consider three factors: 

• Genes, or substrings of DNA capable of generating proteins;  

• Protein structures represented in 3D space; and  

• The roles of these proteins within metabolic and signaling pathways.  

6.3 Biological Databases 

In the field of bioinformatics, a large number of databases are created and stored by a 

large number of organizations. Generally, there are five different types of databases. 



  

1. Sequence databases 

2. Structure databases 

3. Map databases 

4. Model organism databases 

5. Bibliographic databases 

Among these database types, sequence databases and structural databases are mostly 

related to this project. The growth rates of these databases are very fast. The amount 

of data doubles in less than a year [ 14,16] 

 6.3.1. Sequence Databases  

There are two types of sequences stored in the sequence databases: 

• Nucleotide or DNA sequence (made up of a four-letter alphabet) 

• Amino acid or protein sequence (made up of a twenty-letter alphabet) 

The most popular DNA sequence databases are: 

• GenBank (NCBI – National Center for Biotechnology Information, USA) 

•  EMBL (European Molecular Biology Laboratory)  

• Nucleotide Database 

• DDBJ (DNA Data Bank of Japan).  

The most popular protein sequence databases are:  



  

PIR (Protein Information Resource by NBRF – National Biomedical Research 

Foundation, USA) 

• SwissProt (SIB – Swiss Institute of Bioinformatics), and TrEMBL (EMBL). 

The above-mentioned organizations conduct experiments to collect their data 

sequences. In addition, other various research organizations also contribute data to 

them. 

They also exchange and share the data among them. Some of the data stored in these 

databases are primary ones (i.e. directly obtained from the experiments), but some are 

derived ones (i.e. obtained by analysis, deduction and prediction of the primary data). 

These data (both primary and derived) are static or archive in nature. But there may be 

some corrections or updating on them if the original sequences seem to be incorrect 

(because of an inaccurate experimental method, for example). 

According to the researches to date, data sequences (both DNA and protein) are 

known to be pseudo-random in nature, and no deterministic pattern can be found in 

them.  

Since the databases are developed by different organizations, they have different 

purposes, schemas, storage structures and access methods, etc. However, most of the 

databases store the sequences in flat file format (although their schema may be 

different). 

 

The following figure shows a sample entry of GenBank database [9,12]. 



  

 

Figure 4. A sample data entry of a virus in GenBank 

For sequence searching and comparison purposes, most of these database systems use 

BLAST (Basic Local Alignment Search Tool), FASTA, and SSEARCH (Smith-

Waterman Search). In addition, there are various other tools for data analysis, data 

mining, and prediction, etc.  

6.3.2 Structural Databases  

The tertiary and quaternary structures of the proteins are three-dimensional in nature. 

There structures are stored in structural databases. The typical example is PDB 

(Protein DataBank by RCSB – Research Collaboratory for Structural Bioinformatics). 



  

PDB has its proprietary data file format. In this format, 3D data are stored as the 

points in a 3D coordinate system.  

It provides facilities for viewing the 3D data by means of static images or by means of 

the graphical techniques such as VRML (Virtual Reality Modeling Language). It also 

provides the facilities for comparing and analyzing the 3D data. Such tools include 

VAST (Vector Alignment Search Tool), SCOP (Structural Classification of Proteins), 

FSSP (Fold Classification based on Structure-structure alignment of Proteins), etc. 

6.3.3 Collaboration of Databases 

Since the biological databases are heterogeneous in nature, an effort of collaboration 

is required in order to maintain the integrity and interoperatibility among them. This is 

particularity important if an application needs to use the data stored in more than one 

database. The degree of collaboration may vary from using the client-server 

architecture to transfer data between distributed heterogeneous databases to creating a 

seamless homogeneous database. 

Since 1990s, a set of agreements- protocols has been made between the major research 

institutes such as NCBI, EMBL, and DDBJ. These protocols include daily exchange 

of data, standardizing formats, standardizing rules, etc. But more collaboration efforts 

are still required. These include: 

• Global standardization of protocols, rules, and formats. 

• Distributed computing over multiple heterogeneous databases on the web. 

• Upgrading databases from flat files to real database files, etc. 

Some of the attempts on these issues are: 



  

• CORBA based approach by LSR (Life science Research Domain Task Force) 

of OMG (Open Management Group). 

• Java based approach by BioWidget. 

Today, some database systems are offering web-based application facilities. This can 

be viewed a step forward to the goal of total database collaboration. ([NCBI, 2001]. 

The following picture shows a web-based searching tool of NCBI. 

 

Figure 5. A search page from NCBI BLAST website 

6.4 Sequence Matching 

The general definition of “sequence matching” [10, 16] is that given a query sequence, 

the sequences in the database are search through in order to find ones that “match” the 



  

query sequence. The terms matching, comparison, searching, querying, and 

alignment are generally interchangeable.  

As mentioned above, we have very large of biological databases which are growing 

rapidly, and so we must have “smart” algorithms for this purpose. 

Strictly speaking, sequence matching may not be very useful in its own. But it plays 

an important role in many other bioinformatics tasks such as sequence analysis, gene 

mapping, structural prediction, data mining, reasoning and deduction, etc. 

 For example, we can deduce the function of an unknown protein sequence by 

comparing it to a set of known ones already stored in the database. The usefulness of 

sequence matching in bioinformatics can be compared with that of ordinary searching 

and sorting algorithms which are useful in many other areas of computing. 

Basically, there are two types of sequence matching:  

• Exact matching (the source and target strings must be exactly the same) and  

• Approximate/ similarity matching (the source and target strings must be similar 

according to some predefined criteria). 

 According to the nature of the biological applications, the latter is usually more 

useful. 

Here, the computer scientists try to use the existing general pattern matching 

techniques in biological sequence matching task. But some techniques (e.g. sequential 

search) cannot be used due to the hugeness of the biological data. Some techniques 

cannot build the data structures bigger than certain sizes due to the memory 

bottlenecks, etc.   



  

So the computer scientists invent the new algorithms dedicated to biological 

sequences (e.g. BLAST – Basic Local Alignment Search Tool [NCBI, 2001]), modify 

the existing algorithms to make them adaptable to biological sequences (e.g. suffix 

trees [Hunt et al., 2001]), or adopt the ideas from other areas to solve the problems in 

biological sequence searching (e.g. wavelets [Kahveci, Singh, 2001]). 

 However, since biological sequences have no words in them, the pattern matching 

algorithms based on words cannot be used. 

6.4.1 Parameters of Sequence  

The followings are the parameters common to all sequence matching techniques. 

• Source (S): A sequence (string) specified by a user in his query. It is sometimes 

called pattern. (|S| = m) 

• Target (T): A sequence (string) in the database. One that a user wants to match 

against the source. It is sometimes called text. (|T| = n) 

• Similarity score (SS): Let X and Y be two different strings. The similarity score 

between X and Y is defined by: the score for matches minus the score for 

mismatches minus the score of gaps. The score for each kind is calculated as the 

frequency of this kind times a pre-specified weight. The weights may be different 

from scoring system to system (e.g. PAM and BLOSUM). Please refer to Figure 8 

to learn the score concept. 

• Edit distance (ED): Let X and Y be two different strings. The minimum number 

of operations (insertion plus deletion plus replacement) required to transform X to 

Y is called the edit distance of these two strings. For example, the edit distance of 

the following two strings is 4. Either similarity score or edit distance can be used to 

measure the similarity between two sequences. 



  

A C T - - T A G C 

  R   I I       D 

A A T G A T A G - 

 

Figure 6. Transformation of the string ACTTAGC to AATGATAG using edit operations.  

(Here the edit operations are represented by I = insert, D = delete, and R = replace.) 

• Threshold score/ distance (σ): The maximum distance or the minimum similarity 

score between the source and the target for which a target string is to be shown in 

the result set of an approximate matching. The user must specify the threshold 

distance or score. 

• Sensitivity: Not all the algorithms can provide optimal solutions. Sensitivity is the 

measure of how many good answers are left out from a query result in the case of a 

sub-optimal solution. It is calculated as the result size divided by the number of 

good answers. 

• Alignment: A process of aligning two sequences so as to gain the maximum score 

or the minimum distance. For example in the following picture, we are trying to 

get the alignment like one shown in the second case. 

 

 

 

 

 



  

  

 

Figure 7. Finding the alignment between two strings to gain the maximum score 

• Pair-wise matching: Matching between only two sequences at a time. The term 

“matching” throughout this paper means pair-wise matching unless otherwise 

stated. 

• Multi-sequence matching: Comparing more than two sequences simultaneously. 

• Global alignment: Aligning two entire sequences. 

• Local alignment: Aligning the subsequences of two given sequences. 

• Substitution Matrices: The matrices used for comparing the similarity between 

two characters in the case of approximate matching. 

 

 



  

 A C T G 

A 1 0 0 0 

C 0 1 0 0 

T 0 0 1 0 

G 0 0 0 1 

Figure 8. Substitution matrix for nucleotides in DNA sequences 

6.4.2 Sequence Matching Methods  

In this report, we are going to discuss the some of the attempts to solve the problem of 

sequence matching [12,14,16]. 

Generally, the sequence matching methods can be classified as: 

• Dynamic Programming methods 

• Heuristics methods 

• Indexing methods (conventional indexing and metric space indexing) 

6.4.2.1  Dynamic Programming Methods  

Use of Dynamic Programming (DP) is the earliest attempt to solve the sequence-

matching problem. DP algorithms can provide the optimal (100% sensitive) solution. 

But the disadvantage is their slowness. 

A DP algorithm uses a bottom-up approach. It starts by solving the smallest problems, 

and uses the partial solutions to solve bigger and bigger problems. It uses extra 

memory called the similarity matrix to store the intermediate values. 



  

Two popular DP algorithms are: 

• Needleman-Wunsch algorithm (for global alignment) 

• Smith-Waterman algorithm (for local alignment) 

6.4.2.2  Heuristics Methods 

Heuristics methods trade speed for precision. They can only provide sub-optimal 

solutions in which some good answers may be left out. But, as mentioned above, the 

sub-optimal solutions are still very useful for the biologist. So, heuristics methods are 

widely used for searching large biological database.  

However, indeed, these methods partially use DP inside them. It is very important that 

the similarity results obtained must be statistically significant rather than just 

coincidences. Scoring systems and substitution matrices are used to ensure this. Those 

results that are statistically insignificant are thrown out since the initial steps. 

Today, heuristics methods are largely used in the major research institutes. The two 

industrial de facto standards are: 

• BLAST (Basic Local Alignment Search Tool) (Altschul et. al, 1990) 

• FASTA (Pearson, 1985) 

Example: BLAST 

The idea of BLAST is to integrate the substitution matrix in the first stage to find the 

hot spots (very high similarity regions). Here we need to define some fundamental 

objects concerning BLAST. 

Given two strings X and Y, a segment pair is a pair of equal length respective 

substrings of X and Y, aligned without gaps. 



  

 A locally maximal segment is a segment whose alignment score (without spaces) 

cannot be improved by extending it or shortening it. 

 A maximum segment pair (MSP) in X and Y is a segment pair with the maximum 

score over all segment pairs in X, Y.  

When comparing all the sequences in the database against the query, BLAST attempts 

to find all the database sequences that when paired with the query contain an MSP 

above some cutoff score S. Such a pair is called  hi-scoring pair (HSP). S is chosen 

such that it is unlikely to find a random sequence in the database that achieves a score 

higher than S when compared with the query sequence.  

The stages in the BLAST algorithm are as follows:  

• Given a length parameter w and a threshold parameter T, BLAST finds all the 

w-length substrings (called words) of database sequences that align with words 

from the query with an alignment score higher than T. Each such hot spot is 

called a hit in BLAST.  

• Extend each hit to find out if it is contained in a segment pair with score above 

S (HSP).  

The first stage may be implemented by constructing, for each w-length word wi in the 

query sequence, all the w-length words whose similarity to wi is at least T. These 

words are stored in a data structure which is later accessed while checking the 

database sequences.  

It is usually recommended to set the parameter w to values of 3 to 5 for amino acids, 

and ~12 for nucleotides. 

 



  

6.4.2.3  Indexing Methods 

Dynamic Programming and heuristics techniques do not build any persistent data 

structure. They build the data structures required for them on the fly while executing 

the program. In the indexing approach, the idea is to construct a persistent data 

structure (an index or a similar one) on the database sequences in advance. If properly 

constructed, this will surely enable first database searching. 

Some researchers adopt the existing general pattern matching techniques using 

indexes, and modify them for biological sequence matching. Some others propose 

entirely new approaches for sequence matching. Among all these solutions, some can 

offer optimal solutions, but some are sub-optimal ones. Other possible issues in 

indexing may be memory and storage bottlenecks, caching, etc. Most of the 

techniques are still under research, and are not publicly accepted yet. 

We can classify these indexing techniques into two categories: 

• Traditional indexing  

o Suffix Tree ([Hunt et al., 2001]) 

o NFA ([Baeza-Yates, Navarro, 1999]) 

o Suffix Array 

o R-tree 

o q-gram, etc. 

• Metric space indexing (measuring similarity or distance in Euclidean/ metric 

space) 

o  Wavelets ([Kahveci, Singh, 2001]) 



  

o GNAT trees and M-trees ([Chen, Aberer, 1997]) 

o TSVQ ([Giladi et. al, 2000]), etc. 

6.5 Suffix Tree 

Suffix tree is one of the traditional indexing techniques. Suffix tree is basically used 

for exact matching, but it can also be extended and utilized in approximate matching. 

The purpose is to build a persistent index for biological sequences. 

Suffix trees are compressed digital tries. Given a string, we index all suffixes, i.e. for a 

string of length 10, all substrings starting at index 0 through 9 and finishing at index 9 

will be indexed. The root of the tree is the entry point, and the starting index for each 

suffix is stored in a tree leaf. Each suffix can be uniquely traced from the root to the 

corresponding leaf. Concatenating all characters along the path from the root to a leaf 

will produce the text of the suffix. 

An example digital tree of ACATCTTA is shown in Figure 9. The number of 

children per node varies but is limited by the alphabet size. This tree can be 

compressed to form a suffix tree, shown in Figure 9. To change a tree into a suffix 

tree, we conceptually merge each node which has only one child with its child, 

recursively, and annotate the nodes with the indices of the start and end positions of 

the substrings indexed by that node. 



  

Figure 9. A tree on ACATCTTA and suffix tree on the same string 

Suffix link is a structure used to reduce the tree building time, but it can cause 

memory bottleneck. So they avoid the use of suffix links. In addition, multiple passes 

are performed over the sequence, constructing the suffix tree for a subrange of suffices 

at each pass. 

6.6  Methods for implementation of sequence matching 

These methods can be implemented in different modes: 

 
6.6.1 Sequential computing  

Traditionally, sequential implementation is used to implement each of the 

abovementioned technique. However, today, parallel and distributed computing 

techniques become very much developed. So, these two are the other options for 

implementing the sequence searching algorithms. 

 



  

6.6.2 Parallel computing 

Parallel computing is a simple implementation for both exact matching and 

approximate matching [10,16]. It can yield the satisfactory performance without 

having to scarifying the sensitivity. But the disadvantage is that it requires a lot of 

resources (parallel homogeneous computers/ CPUs and special hardware devices in 

some cases). Two basic types of parallelism are: 

• Fine grain: all processors cooperate to determine the similarity score. (Suitable 

for SIMD – Single Instruction and Multiple Data stream architecture.) 

• Coarse grain: each processor performs independent comparisons. (Suitable for 

MIMD – Multiple Instruction and Multiple Data stream architecture.) ([Yap et. 

al, 1996]) 

6.6.2.1  Hardware Oriented Approach 

Some parallel computing techniques are hardware oriented. The example case 

discussed here is form the paper [Hoang, 1993]. It utilizes systolic arrays implemented 

as Splash 2 Programmable Logic Array (PLA).  

Its objective is to calculate the edit distance between two strings (a fundamental step 

in approximate matching), and it uses a Dynamic Programming algorithm for this 

purpose. The algorithm is implemented using a hardware description language called 

VHDL. The algorithm used here is very much similar to Needleman-Wunsch 

algorithm. 

 

 

 



  

  

 

Figure 10. Bi-directional data flow in Splash 2 PLA 

Space complexity: O (min(m,n)) 

Time complexity: basic algorithm O(mn), enhanced algorithm O(n2 / log n) 

6.6.2.2  Software Oriented Approach  

Most of the parallel implementations are software-oriented ones. They use 

conventional multi-processor computers, or a set of standalone processors distributed 

over a LAN. The sample case discussed here is from the paper ([Matsuda, 1995]). 

It implements FASTA algorithm in parallel computing. It uses logic programming for 

data-parallel approach. Logic programming includes the query capabilities of a 

relational database with pattern matching operations. It stripes an entire database to 

map on local disks of workstations, search every partition in parallel, and combines 

their partial results into a complete answer. 

 

 



  

 

 

Figure 11. Execution model based on data-parallel execution 

There are two types of agents in the system: a controller coordinates the entire system, 

and the processes are supervised by the controller to perform query processing. 

There are two ways to implement parallelism. 

1. Distributing input data: if a user asks a query with a large set of input data, the 

controller divides the input data then distributes the partial input to each 

process. 

2. Broadcasting condition: if a user retrieves a set of data that satisfies specific 

conditions, the controller separates the entire database into partial blocks, 

decides the assignment of the blocks to processes, and broadcasts the 

assignment information to all processes. 

The algorithm is implemented by the use of “prolog engine” here. It operates in SIMD 

(Single Instruction, Multiple Data stream) mode. 

Performance: with 40 workstations, it can speed up 18.6 fold over a sequential 

algorithm for striping and searching, and 35.5 fold for searching only. 



  

6.7.3 Distributed computing 

Distributed implementation uses multiple heterogeneous processors distributed over a 

network (LAN or WAN). The sample attempt discussed here is from the paper 

([Anderson, Bansal, 1999]). 

This architecture is more suitable for applications involving multiple heterogeneous 

databases (compared to the homogeneous parallel processing). Common Object 

Request Broker Architecture (CORBA) is used to map multiple processes to a 

heterogeneous set of architectures and operating systems. 

It uses a two-phase process for approximate sequence matching (similar to one used in 

[Chen, Aberer, 1997]). 

In the first phase, BLAST algorithm is used to prune out dissimilar sequences. 

BLAST is an approximate string matching technique for similarity matching. In the 

second phase, Smith-Waterman (Dynamic Programming) algorithm is used for more 

accurate alignment using dynamic matrix technique. This two-phase approach greatly 

reduces the complexity. In this distributed system, the communication overhead is 

negligible compared to the string matching time. 

CORBA architecture is based on the object-oriented technique. The system is 

composed of various objects: coordinator object, queue object, server object, and 

genome object. The genome object constructs a map of genes and their positions in 

the file. The purpose of the map is to reduce searching time by indexing the 

corresponding gene sequence by name. 



  

 

Figure 12. The overall distributed scheme 

The advantages of this architecture: 

1. It offers the linear speed up. 

2. The system can harness thousands of inexpensive processors on the Internet and 

LANs in a scalable manner. 

Time complexity: (O(mn)) / (M/c) where M is number of genes in a genome and c is a 

constant. 

 

 

 

 



  

Chapter 7  

Implementation and experimental results 

7.1 First Phase Algorithm 

Welcome to My World! 

 

        Match a Patteren! 
 

        Play with Wild Cards!

 

Welcome To the World of Wild Cards! 

 

Enter the Pattern with Wild Card (? / *):   abc

 
Reset  

Matching Patteren "abc" with all the records of DataBase! 

Record no: 1 :gutyyutgj87 

Pattern "abc" is not found! 

Record no: 2 :675vdadxczd 

Pattern "abc" is not found! 

http://localhost:8080/New.html
http://localhost:8080/Wildcards.html


  

Record no: 3 :abfrabat 

Pattern "abc" is not found! 

Record no: 4 :cdabab 

Pattern "abc" is not found! 

Total pattern match in the Table are: 0 

Matching Patteren " ac t g " with all the records of DataBase! 

Record no: 1 :gutyyutgj87 

Pattern " ac t g " is not found! 

Record no: 2 :675vdadxczd 

Pattern " ac t g " is not found! 

Record no: 3 :abfrabat 

Pattern " ac t g " is not found! 

Record no: 4 :cdabab 

Pattern " ac t g " is not found! 

Total pattern match in the Table are: 0 

 

7.2 Second Phase Algorithm 

Matching Patteren "ab*" with all the records of DataBase! 

Record no: 1 :gutyyutgj87 

Pattern "ab*" is not found! 

Record no: 2 :675vdadxczd 

Pattern "ab*" is not found! 



  

Record no: 3 :abfrabat 

Patterns of type: ab* are abfrabat 

Record no: 4 :cdabab 

Patterns of type: ab* are abab 

Total pattern match in the Table are: 2 

 

Matching Patteren "a t c g?" with all the records of DataBase! 

Record no: 1 :gutyyutgj87 

Pattern "a t c g?" is not found! 

Record no: 2 :675vdadxczd 

Pattern "a t c g?" is not found! 

Record no: 3 :abfrabat 

Pattern "a t c g?" is not found! 

Record no: 4 :cdabab 

Pattern "a t c g?" is not found! 

Total pattern match in the Table are: 0 

 

Results  
We evaluated the proposed two-phase searching algorithm denoted by 2-PSA. and we 

compared this algorithm with two sequential pattern mining algorithm developed in 

the data-mining field [1, 3, 5], which have shown superior performance on 

biosequences compared to earlier algorithms [6, 7]. Our purpose is to see how this 

algorithm would respond to the new type of explosion in biological sequences.  All 

experiments have been executed on a PC with 2.40 GHZ CPU and 40 GB memory 



  

running the Microsoft Windows 2000 Professional using the platform of Java 

development Kit ( JSP and Tomcat Server). 

Synthetic data Set   

Table : Parameters of the data used [7] 

Symbol Description  

 

D Number of customers (= size of Database) =number of sequences 

C Average number of transactions per Customer =length of sequences 

T Average number of items per Transaction =1 

S Average length of maximal potentially frequent sequences  

I Average size of Itemsets in maximal potentially frequent sequences =1 

Ns Number of maximal potentially frequent Sequences 

Ni Number of maximal potentially frequent Itemsets = N 

N Number of items = 4 or 20 

 

The first set of experiments was conducted on the synthetic data sets generated in 

[1,7]. Table 1 shows the parameters used. The alphabet size N and sequence length C 

characterizes the explosion of search space. The data sets with N = 4 simulate DNA 

sequences, the data sets with N = 20 simulate protein sequences, and the data set with 

N = 10000 simulates transaction sequences. The DNA or protein sequences have 

significantly longer average length C. 

 

Biological data sets 

The second set of experiments was conducted on real life mRNA sequences extracted 

from the web site of EMBL-EBI (European Bioinformatics Institute) . 

MEDLINE; 91322517.    PUBMED; 1907511. Oxtoby E., Dunn M.A., Pancoro A., Hughes M.A.;  

http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?%5Bmed2pub-id:91322517%5D%3Emedline+-view+MedlineRef
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?%5Bmedline-PMID:1907511%5D+-e


  

"Nucleotide and derived amino acid sequence of the cyanogenic   beta-glucosidase      (linamarase) from white clover 

(Trifolium repens L.)."; Plant Mol. Biol. 17(2):209-219(1991). Submitted (19-NOV-1990) to the 

EMBL/GenBank/DDBJ databases. M.A. Hughes, UNIVERSITY OF NEWCASTLE UPON TYNE, MEDICAL 

SCHOOL, NEW CASTLE   UPON TYNE, NE2 4HH, UKBottom of Form 

 

General Information

Primary Accession # BC037576 
Accession # BC037576  

Entry Name EMBL:BC037576 
Molecule Type mRNA 
Sequence Length 1716 
Entry Division HUM 
Sequence Version BC037576.1  
Creation Date 18-SEP-2002 
Modification Date 17-APR-2005 
Description

Description Homo sapiens tropomyosin 4, mRNA (cDNA clone MGC:45298 
IMAGE:5582453), complete cds.  

Keywords MGC. ;  
Organism Homo sapiens (human)  
Organism 
Classification 

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; 
Hominidae; Homo. ;  

Sequence

Characteristics Length: 1716 BP, A Count:489, C Count:386, G 
Count:468, T Count:373, Others Count:0 



  

Sequence >embl|BC037576|BC037576 Homo sapiens tropomyosin 4, mRNA (cDNA clone 
MGC:45298 IMAGE:5582453), complete cds. ...
ccacgcgtccgcgcaggcaaaggcttggggggccggggcgcggctgtgcagctctcgccg
gagccgagcccagccgagcgtccgccgctgcccgtgcgcctctgcgcctccgcgccatgg
ccggcctcaactccctggaggcggtgaaacgcaagatccaggccctgcagcagcaggcgg
acgaggcggaagaccgcgcgcagggcctgcagcgggagctggacggcgagcgcgagcggc
gcgagaaagctgaaggtgatgtggccgccctcaaccgacgcatccagctcgttgaggagg
agttggacagggctcaggaacgactggccacggccctgcagaagctggaggaggcagaaa
aagctgcagatgagagtgagagaggaatgaaggtgatagaaaaccgggccatgaaggatg
aggagaagatggagattcaggagatgcagctcaaagaggccaagcacattgcggaagagg
ctgaccgcaaatacgaggaggtagctcgtaagctggtcatcctggagggtgagctggaga
gggcagaggagcgtgcggaggtgtctgaactaaaatgtggtgacctggaagaagaactca
agaatgttactaacaatctgaaatctctggaggctgcatctgaaaagtattctgaaaagg
aggacaaatatgaagaagaaattaaacttctgtctgacaaactgaaagaggctgagaccc
gtgctgaatttgcagagagaacggttgcaaaactggaaaagacaattgatgacctggaag
agaaacttgcccaggccaaagaagagaacgtgggcttacatcagacactggatcagacac
taaacgaacttaactgtatataagcaaaacagaagagtcttgttccaacagaaactctgg
agctccgtgggtctttctcttctcttgtaagaagttccttttgttattgccatcttcgct
ttgctggaaatgtcaagcaaattatgaatacatgaccaaatattttgtatcggagaagct
ttgagcaccagttaaatctcattccttccctttttttttcaaatggcaccagctttttca
gctctcttattttttccttaagtagcatttattcctaaggtaggcagggtatttcctagt
aagcatactttcttaagacggaggccatttggttcctgggagaataggcagccccacact

 

 

7.3 Sequence Database of DNA 

 
ID   BC037576_3; parent: BC037576
AC   BC037576; 
FT   CDS             117..863 
FT                   /codon_start=1 
FT                   /db_xref="GOA:P07226" 
FT                   /db_xref="GOA:P67936" 
FT                   /db_xref="HSSP:1C1G" 
FT                   /db_xref="UniProt/Swiss-Prot:P67936" 
FT                   /gene="TPM4" 
FT                   /product="tropomyosin 4" 
FT                   /protein_id="AAH37576.1" 
 
SQ   Sequence   747 BP; 
     atggccggcc tcaactccct ggaggcggtg aaacgcaaga tccaggccct gcagcagcag        60 
     gcggacgagg cggaagaccg cgcgcagggc ctgcagcggg agctggacgg cgagcgcgag       120 
     cggcgcgaga aagctgaagg tgatgtggcc gccctcaacc gacgcatcca gctcgttgag         180 

http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+%5BEMBL-id:BC037576%5D
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+%5BEMBL_features_features-id:BC037576_3%5D
http://www.ebi.ac.uk/ego/QuickGO?query=P07226&mode=search&entry=&querytype=protein&showcontext=false
http://www.ebi.ac.uk/ego/QuickGO?query=P67936&mode=search&entry=&querytype=protein&showcontext=false
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?%5Bhssp-ID:1C1G%5D+-e
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?%5Bswissprot-AccNumber:P67936%5D+-e
http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-noSession+-vn+2+(%5BUNIPROT-prd:AAH37576*%5D|(%5BUNIPARC-refdbi:AAH37576*%5D%3eparent))


  

     gaggagttgg acagggctca ggaacgactg gccacggccc tgcagaagct ggaggaggca        240 
     gaaaaagctg cagatgagag tgagagagga atgaaggtga tagaaaaccg ggccatgaag       300 
     gatgaggaga agatggagat tcaggagatg cagctcaaag aggccaagca cattgcggaa        360 
     gaggctgacc gcaaatacga ggaggtagct cgtaagctgg tcatcctgga gggtgagctg         420 
     gagagggcag aggagcgtgc ggaggtgtct gaactaaaat gtggtgacct ggaagaagaa        480 
     ctcaagaatg ttactaacaa tctgaaatct ctggaggctg catctgaaaa gtattctgaa        540 
     aaggaggaca aatatgaaga agaaattaaa cttctgtctg acaaactgaa agaggctgag        600 
     acccgtgctg aatttgcaga gagaacggtt gcaaaactgg aaaagacaat tgatgacctg         660 
     gaagagaaac ttgcccaggc caaagaagag aacgtgggct tacatcagac actggatcag      720 
     acactaaacg aacttaactg tatataa                                              747 

 

Execution time 
Figures 1-4 shows the result on biosequences [1]. The execution time includes the 

time in segment phase that is computing frequent segments and pattern phase. 

Figure 1: Graph between base sequences as input and the execution time  
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Figure 2: Graph for Scalability with respect to the database size 
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Figure 3:  Graph for Scalability with respect to the database size 
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Figure 4: Graph between minimum support and the execution time
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Chapter 8  

EXTENSION & CONCLUSION 

8.1 EXTENSION - Proposed Future Work  

We have the following solution set in our mind as the target for future work. 

• Distributed multi-database implementation. 

• Web-based approach. 

• Extension or integration with other bioinformatics applications (data mining, 
Image mining etc.). 

• A framework for parallel Data Mining  

 

8.2 CONCLUSION 

Biosequences experience a different type of explosion of search space from the 

transaction point of view since traditional pruning techniques are not effective for 

mining biosequences. We proposed a two-phase searching algorithm 2-PSA to address 

this problem. The greatness is using the information obtained from the first phase is 

used in reducing the search in second phase. Results demonstrate significant 

improvement over the two-phase sequential pattern mining algorithm.  Finally, we 

conclude the problems in this area of biological database searching and we can 

describe the problems as below: 



  

• Currently practicing methods (BLAST and FASTA) becomes insufficient for 

rapidly growing databases. 

• Newly proposed techniques look good on paper. But some are proposed only at 

the low level. All these techniques require thorough testing with live data. 

Almost all authors claims that his/her technique is the best. Nevertheless, each 

technique has its own beauty and virtue. 

• Collaboration efforts for integrity and interpretability among the database are 

still needed. 

Hence, it can be concluded that the technology in this area of research is not 

saturated yet. It is open for us to make new contributions. 

 

 

 

 

 



  

 

 

 

 

 

Chapter 9

Publicly Available Software Tools   

Sequence Similarity Search 

 

 BLAST -Basic local alignment search tool @ NCBI   

 Blast Search @EBI  

 Blast Search @Expasy 

 Blast Search @ISREC  

 Blast Search @Pasteur Institute , France 

http://www.ebioinfogen.com/bioinfo_search.htm#Seqdat
http://www.ncbi.nlm.nih.gov/BLAST/
http://dove.embl-heidelberg.de/Blast2/
http://www.expasy.ch/cgi-bin/BLASTEMBnet-CH.pl
http://www.ch.embnet.org/software/aBLAST.html?
http://bioweb.pasteur.fr/seqanal/interfaces/blast2-simple.html


  

 PSI BLAST -Position Specific Iterated Blast search @ NCBI  

 C. elegans Blast Server @ Sanger Centre: Sear 

 FASTA Fasta or fastx search @ EBI 

 BLAST Microbial Genomes -Genomic sequences search @ NCBI  

 MPsrch -Smith-Waterman algorithm-based search  

 BLASTPAT - BLAST-based Pattern Database Search  

 FASTPAT - FASTA-based Pattern Database Search 

 SectionSearch -FastA or TFastA search against predefined  Sequence database 

 WU-BLAST Archives - Washington University School of Medicine, St. Louis 

 

 

Databases of Patterns    

Sequence Database  

NCBI - National Center for Biotechnology Information (GenBank)  

EBI - European Bioinformatics Institute (EMBL) 

EMNEW - Index of New EMBL Sequences ( EBI) 

DDBJ - DNA Data Bank of Japan  

SWISS-PROT- Protein sequence database  

SWISSNEW - New SwissProt Sequence  Entries @ EBI 

http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST/nph-psi_blast
http://www.sanger.ac.uk/Projects/C_elegans/blast_server.shtml
http://www.ebi.ac.uk/fasta3/
http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html
http://www.ebi.ac.uk/MPsrch/
http://dot.imgen.bcm.tmc.edu:9331/seq-search/Option/blastpat.html
http://dot.imgen.bcm.tmc.edu:9331/seq-search/Options/fastpat.html
http://iubio.bio.indiana.edu:81/srsfasta/sfsectionsearch.html
http://blast.wustl.edu/
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/srs/srsc?-info||EMNEW
http://www.ddbj.nig.ac.jp/
http://www.expasy.ch/sprot/sprot-top.html
http://www.ebi.ac.uk/srs/srsc?-info||SWISSNEW


  

PIR - Protein Information Resource  

MIPS - Munich Information centre for Protein Sequences                 

 

yeast Yeast (Saccharomyces cerevisiae) genomic nucleotide 
sequences 

 
pdb 

Sequences derived from the 3-dimensional structure from 
Brookhaven Protein Data Bank

kabat   
[kabatnuc] 

Kabat's database of sequences of immunological interest 

vector Vector subset of GenBank (R), NCBI, in 
ftp://ncbi.nlm.nih.gov/blast/db/

mito Database of mitochondrial sequences 

Alu Select Alu repeats from REPBASE, suitable for masking Alu 
repeats from query sequences 

epd Eukaryotic Promotor Database
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