THE PERFORMANCE AND EMISSIONS ANALYSIS OF A MULTI CYLINDER SI ENGINE WITH GASOLINE , CNG AND LPG

A major thesis submitted in partial fulfillment of the requirements for the award of the degree of

> Master of Engineering In Thermal Engineering

> > By

Joy Devgourev Sharma

Roll No.... 12641

Session 2005-08

Under the able guidance of **Prof. Amit Pal**

Sr. Lecturer

Department of Mechanical Engineering, Delhi College of Engineering, University of Delhi

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this project report entitled, "THE PERFORMANCE AND EMISSIONS ANALYSIS OF A MULTI CYLINDER SI ENGINE WITH GASOLINE, CNG & LPG" submitted as major project towards the fulfillment of the requirements for the award of the degree of Master of Engineering with specialization in Thermal Engineering, D.C.E. Delhi, is an authentic record of my own work carried out under the supervision of **Prof. Amit Pal, Senior Lecturer,** Mechanical Engineering Department, at Delhi College of Engineering, Delhi.

The matter embodied in this dissertation report has not been submitted by me for the award of any other degree.

Joy Devgourev Sharma 15/THR/05 University Roll No ...12641

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of knowledge.

Prof. Amit Pal

Sr.Lecturer Mechanical Engg. Deptt, Delhi College of Engineering,Delhi.

It is a distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Prof. Amit Pal, Sr. Lecturer** in the Department of Mechanical Engineering, at Delhi College of Engineering, for his invaluable guidance, encouragement and patient review. His continuous inspiration only has made me complete this major dissertation.

I would like to thank Sh. Manmohan, Sh. Lalit Kumar & Sh. Harjeet Singh for extending their kind support and sharing their valuable time for the completion of the project.

I am thankful to my all teachers, classmates and friends for their unconditional support and motivation during this project. It is a great opportunity for me to extend my heartfelt gratitude to everybody whoever helped me throughout the course of this dissertation in anyway.

> Joy Devgourev Sharma 15/THR/05 University Roll No.12641

ABSTRACT

The ever rising cost of fossil fuels has brought the attention of the world back to the fact that the stock of fossil fuels diminishing throughout the world and demand for energy based comforts and mobility is increasing and making mankind even more dependent on it. Therefore it becomes imperative to search for alternative fuels to cater to our needs and to optimally utilize the existing sources of energy. Moreover Environmental issues regarding emissions from conventional fuels such as gasoline and diesel are of serious concern. The emissions from conventional fuel driven vehicles are in the form of hydrocarbons (HC), carbon dioxide (CO₂), nitrogen oxides (NO_x), carbon monoxide (CO) and particulate matter (PM) and are harmful gases which not only have an adverse impact on the human body but also destroy the environment by causing the greenhouse effect, acid rain and global warming.

In the Indian context CNG and LPG are two such fuels which have been used as alternatives to conventional fuels in some Major Cities. These fuels have not only helped in reducing air pollution levels in these cities but also have reduced their dependence on conventional fuels. These fuels have emerged as a cost effective alternatives to both gasoline and diesel. The constraining factors in India remain building the requisite infrastructure for large scale implementation of these fuels and Safety Aspects which are of utmost importance while handling these fuels. In this project, the performance and emission characteristics of a multi cylinder automotive gasoline driven engine is compared vis-à-vis the same engine driven by CNG and LPG.

TABLE OF CONTENTS

CONTENT	Pages
Declaration	ii
Certificate	ii
Acknowledgement	iii
Abstract	iv
List of Figures	vii
List of Tables	viii
1. INTRODUCTION	1-2
2. LITERATURE REVIEW	3-26
S.I. ENGINES: AN OVERVIEW	3-4
2.1 The Otto Cycle	5-7
2.2 Working of S I Engine	8-10
2.3 Engine Performance Parameters	11-14
2.4 S I Engine Emissions	14-26
3. EMISSIONS CONTROL STRATEGIES FOR S.I. ENGINES	27-32
3.1 After Exhaust Treatment Devices	27-30
3.2 Alternative Fuels	31-27
3.2.1 Liquid Petroleum Gas (LPG)	31-32
3.2.2 Compressed Natural Gas (CNG)	32-33
3.2.3 Methanol	33-35
3.2.4 Hydrogen	35-37
3.2.5 Electricity	37-38
3.3 Hybrid Electric Vehicles	39-40
3.4 Advanced Engine Technologies	40-32
3.4.1 Conversion of two stroke engines to four stroke engines	40-41
3.4.2 Exhaust Gas Recirculation	41-43
3.4.3 Stratified Charge Engines	43-44

3.4.4 Positive Crankcase Ventilation	45-47
4. BASICS OF CNG	
4.1 Introduction	48-49
4.2 CNG Properties	49-50
4.3 Benefits and Limitations of CNG	50-52
4.4 Indian Initiatives on CNG	52-53
5. BASICS OF LPG	
5.1 Introduction	54-55
5.2 LPG Properties	55-56
5.3 Benefits and Limitations of LPG	56-57
5.4 Indian Initiatives on LPG	57-58
6. EXPERIMENTAL SET-UP	
6.1Description	59-61
6.2 Engine Test Setup Specifications	62-63
7. OBSERVATION OF THE PERFORMANCE EVALUATION T	EST
6.1 Curves for Thermal Efficiency vs Power	66
6.2 Curves for BSFC vs Power	66
6.3 Curves for CO vs Power	67
6.4 Curves for Power HC vs Power	67
6.5 Curves for NO _x vs Power	68
9. CONCLUSION	69-70
10. FUTURE SCOPE OF WORK	71

11. REFERENCES 72-73

LIST OF FIGURES

Figure No. & Name

Page No.

Figure-1 Constructional Details of an SI Engine	4
Figure-2 Ideal Otto Cycle	6
Figure-3 Actual Otto Cycle	6
Figure-4 Piston and valve position in 4-stroke I C Engine	6
Figure-5 Ideal Otto cycle Thermal Efficiency	8
Figure-6 Working of a 4-stroke IC Engine	8
Figure-7 Variation of SI engine CO emissions with various fuels	23
Figure-8 Schematic of a Catalytic Converter	30
Figure-9 Hybrid Electric Vehicle	39
Figure-10 Exhaust Gas Recirculation System	43
Figure-11 Positive Crankcase Ventilation System	45
Figure-12 Experimental Set Up	60
Figure-13 CNG and LPG Conversion Kits mounted on the Test Rig	61
Figure-14 CNG CONVERSION KIT	62
Figure-15 LPG CONVERSION KIT	62
Figure-16 Rotameter Arrangement	63
Figure-17 Curve b/w Thermal efficiency vs. Power (kW)	66
Figure-18: Curve b/w Bsfc vs. Power (Watt) (Gasoline)	66
Figure-19: Curve b/w CO (%) vs. Power (kW) for Gasoline, CNG & LPG	67
Figure-20: Curve b/w HC (ppm) vs. Power (kW) for Gasoline, CNG & LPG	67
Figure-21: Curve b/w NO _X (ppm) vs. Power (kW) for Gasoline, CNG & LPG	68

LIST OF TABLES

Table No.& Name

Page No.

Table-1Two and Four-Stroke Engine Powered Motorcycles (Driving Cycle Test)	41
Table-2 Properties of Natural Gas	49
Table-3 Properties of LPG	55
Table-4 Auto LPG vs Domestic LPG	56
Table-5 Comparative Table of LPG and Petrol	56
Table-6 Comparison of CNG and LPG	56
Table-7 Variation in various parameters with the Power for Gasoline	65
Table-8 Variation in various parameters with the Power for CNG	65
Table-9 Variation in various parameters with the Power for LPG	65

